
On Dynamic Algorithms for Algebraic Problems

By: John H. Reif and Stephen R. Tate

J. H. Reif and S. R. Tate. ―On Dynamic Algorithms for Algebraic Problems‖, Journal of Algorithms, Vol. 22,

No. 2, 1997, pp. 347–371.

Made available courtesy of Elsevier: http://www.elsevier.com/

***Reprinted with permission. No further reproduction is authorized without written permission from

Elsevier. This version of the document is not the version of record. Figures and/or pictures may be

missing from this format of the document.***

Abstract:

In this paper, we examine the problem of incrementally evaluating algebraic functions. In particular, if f(x1, x2,

…, xn) = (y1, y2, …, ym) is an algebraic problem, we consider answering on-line requests of the form ―change

input xi to value v‘‘ or ―what is the value of output yj?‘‘ We first present lower bounds for some simply stated

algebraic problems such as multipoint polynomial evaluation, polynomial reciprocal, and extended polynomial

GCD, proving an Ω(n). lower bound for the incremental evaluation of these functions. In addition, we prove

two time-space trade-off theorems that apply to incremental algorithms for almost all algebraic functions. We

then derive several general-purpose algorithm design techniques and apply them to several fundamental

algebraic problems. For example, we give an O() time per request algorithm for incremental DFT. We also

present a design technique for serving incremental requests using a parallel machine, giving a choice of either

optimal work with respect to the sequential incremental algorithm or superfast algorithms with O(log log n)

time per request with a sublinear number of processors.

Article:

1. INTRODUCTION

In this paper we examine the problem of designing incremental algorithms for algebraic problems. In particular,

let = (S, +, · , 0, 1) be a ring with elements from a set S and appropriately defined addition and multiplication

operations, and let f: S
n
 → S

m
 be an algebraic function over this ring. Given an initial input vector (x1, x2, ... , xn)

for this function, an incremental algorithm for the function is allowed some preprocessing time using the initial

values of the function and then must quickly handle on-line requests. The requests are in one of two forms:

either ‗‗change input k to new value
 ‘‘ or ‗‗what is the value of output k?‘‘ Requests of both types are mixed

in the request stream, and we would like a fast guaranteed worst-case response time. The machine servicing the

requests may be either a sequential or parallel machine. While incremental versions of many graph problems

(for example [9, 11, 20]) and geometry problems (for example [1, 6, 21]) have been studied, very little has been

done in incremental versions of algebraic problems. Two notable exceptions are the incremental maintenance of

prefix sums studied by Fredman w10] and the incremental maintenance and evaluation of size n algebraic

expressions studied by Frederickson [12].

There are many real-world situations in which such incremental alge-braic problems may arise, where the inputs

change relatively slowly and various outputs need to be occasionally polled. Applications include real-time

control (e.g., kinodynamic control of machines and robots), signal processing (e.g., low-level image processing,

signal tracking, and dynamic error distortion control), data compression (the 2D transform methods),

econometrics (analysis of time series), and business processing (incremental updates of numerical spread

sheets). In all these applications, the input data often changes dynamically. The data comes as a continuous

stream of updates, interspersed with requests for specified algebraic computations determined from the most

recent version of the data. Moreover, there are often real-time constraints that make it essential to have a fast,

efficient response to these incremental changes. As an interesting specific example, we note that in image or

voice compression by transform methods, many of the outputs of an algebraic transform maybe ignored. For

http://libres.uncg.edu/ir/uncg/clist.aspx?id=110
http://www.elsevier.com/

example, JPEG, now a standard for image compression, requires as its key computation a two-dimensional

discrete Fourier transform (DFT), which is defined as a mapping from an n × n matrix of pixel intensity values

A = (aij) to an n × n matrix of transform coefficients C = (cij) by

where n is the nth complex root of unity. To browse this image (at low resolution), we need only a small

portion of this two-dimensional DFT. The incremental version of this problem arises naturally when video

images (consisting of sequences of slowly changing images) compressed by the JPEG transform are browsed at

low resolution. An additional problem from the domain of signal processing that we examine in this paper is the

‗‗chirp z-transform,‘‘ which transforms a vector A = (a0, a1, . . . , an - 1) of values to a vector of coefficients C =

(c0, c1,..., cn - 1) by

where z is an arbitrary complex number. Clearly, the standard one-dimensional discrete Fourier transform is a

special case of the chirp z-transform.

The most basic approach to this problem is simply to re-evaluate the entire function each time an output value is

requested. For example, if the function in question is a discrete Fourier transform (DFT), we can easily handle

each request on a sequential machine in O(n log n) time by performing a fast Fourier transform each time an

output value is requested. Since a change in a single input value affects all n output values, it is not immediately

obvious how to do better. In this paper, we first present lower bounds that show that many basic algebraic

problems cannot be solved substantially faster than using this naive ‗‗reevaluate every time‘‘ approach. In

particular, we prove an Ω(n) lower bound for the problems of multipoint polynomial evaluation, polynomial

reciprocal, triangular Toeplitz system solve, and extended polynomial GCD. In addition, we also prove a

space—time trade-off that applies to most interesting algebraic problems: if S(n) storage is available in addition

to the input storage, then any problem in which at least one output is dependent on all inputs will require

Ω(n/S(n)) time per request. To prove this trade-off for some of the problems, we require the use of a slightly

nonstandard algebra (which we call the -augmented algebra) which, in fact, is closely imitated by the way

floating point numbers are implemented on many real machines. See Table 1 for a summary of lower bounds

proved in this paper.

Second, we present two general methods for designing incremental algorithms on sequential machines. Both

methods make use of existing algebraic circuits for the nonincremental versions of the problems. Using the first

technique, we derive an incremental algorithm for the DFT where each request is handled in O() time. The

second technique gives slightly worse time bounds for some problems O() time for DFT, for instance),

but is applicable to a much wider range of problems. In particular, we derive O(log
O(1)

n) time incremental

algorithms for multipoint polynomial evaluation with changing coefficients, polynomial multiplication,

sequence convolution, and various matrix problems. The best results for the problems examined in this paper

are shown in Table 1.

Finally, we extend this last sequential technique to a model where requests are handled by a parallel machine.

We give a general theorem and show how it can be applied to various algebraic problems. In particular, we

show that the discrete Fourier transform can be handled with an optimal work parallel algorithm when the

number of processors is at most O(). In addition, by using more processors we can obtain super-fast

parallel algorithms that use O(log log n) time per request and O(n/log
c
 n) processors for any constant c. Similar

bounds hold for other problems, including multipoint polynomial evaluation and the chirp z-transform.

It should be noted that all of our algorithms give worst-case service times. Some previous incremental

algorithms for problems in other areas use the technique of amortized analysis to give bounds for an entire

request sequence. While amortized analysis may be acceptable in some cases, our worst-case analysis is far

more useful in application areas involving real-time processing.

1. 1. Algebraic Problems and Circuits

The problems we examine will be problems over an arbitrary algebraic ring = (S, +, · , 0, 1). In the

construction of our incremental algorithms we make use of efficient algebraic circuits for the nonincremental

versions of the problems. For example, in constructing an incremental algorithm for FFT, we use the well-

known algebraic circuit for FFT that has size O(n logn) [2, 7]. To make clear the form we would like the circuit

to be in, we use the following definition of a circuit.

DEFINITION 1. 1. An algebraic circuit over a ring is a circuit in which each noninput node performs some

basic algebraic operation (either addition or multiplication) from the ring . We call such a circuit simply an

algebraic circuit if the ring is understood or unimportant. The nodes of the circuit v1, v2, . . ., vσ(n) are ordered

so that v1, . . ., vn are the input nodes, and if the node vk has inputs vi and vj, then i < k and j < k. The number of

nodes σ(n) is called the size of the circuit.

The restriction on the numbering of the nodes is simply a matter of circuit representation--any circuit can

reorder its nodes so that the constraint on the node order holds. Since a circuit is a directed acyclic graph, to

determine such an ordering it suffices to perform a topological sort (a linear time operation) on the circuit. The

important property of this ordering is that we can evaluate the circuit in time σ(n) on an algebraic RAM: simply

calculate the value at each node in the order that the nodes are given. The order ensures that when node vk is

evaluated, all required values have already been computed.
1

2. LOWER BOUNDS

In this section, we derive lower bounds on the complexity of incremental algorithms for some algebraic

problems, including polynomial reciprocal and multipoint polynomial evaluation when the evaluation points

change. In both cases we prove a linear time lower bound. We also prove a space–time trade-off that applies to

most algebraic problems. The basis of our first lower bound results is the following theorem which follows

directly from results of Motzkin [17] and Belaga [3] (for the result as stated here, see [2, Theorem 12.4] or [5,

Theorem 3.2.5]).

THEOREM 2.1 [3, 17]. A computation for polynomial evaluation requires at least n/2 multiplications to

evaluate an arbitrary nth degree polynomial at a single point, even if multiplications in computations involving

only coefficients are not counted.

This theorem can be immediately applied to prove a linear time lower bound for incremental polynomial

evaluation when the evaluation points are allowed to change. In particular, consider an arbitrarily complex

preprocessing phase consisting of computations involving the coefficients of the polynomial. Now consider

changing an input evaluation point to an arbitrary new value, and then polling the output corresponding to the

new evaluation point. Theorem 2.1 now implies that n/2 multiplications are required to perform these two

operations—the following corollary is thus a reinterpretation of Theorem 2.1 from the point of view of

incremental algorithms (note that one output from a chirp z-transform is simply a polynomial evaluation at a

point z
k
 for some integer k).

COROLLARY 2.1 [3,17]. Any incremental algorithm for multipoint polynomial evaluation where evaluation

points are allowed to change requires Ω(n) time per request. Likewise, any incremental algorithm for the chirp

z-transform where z is allowed to change requires Ω(n) time.

It is worth noting that there is a simple incremental algorithm for this problem that has request service time

O(n)—we simply re-evaluate the polynomial at the appropriate point when an output is requested, which can be

done in an asymptotically optimal n/2 + o(n) multiplications if the polynomial coefficients are constant [19].

Proving a linear lower bound for the polynomial reciprocal problem uses the same idea, but requires a

substantially more complex proof. More specifically, if p(x) =

 is a degree n - 1 polynomial and

is the reciprocal of p(x), then q0 (the constant term of q(x)) can be viewed as a degree n polynomial h0(x) that is

evaluated at 1/pn-1. The coefficients of h0(x) depend only on pn-2, pn-3,...,p1,p0. More importantly, by selecting pn-

2, pn-3,...,p1,p0 properly, we can make h0(x)be any arbitrary degree n polynomial in which the degree 1 and

degree 0 terms are zero. Changing pn- 1 and polling output q0 is exactly the same as evaluating h0(x) at 1 /pn-1

thus requires Ω(n) operations. The details of this proof follow.

LEMMA 2. 1. Let y = 1 /pn -1 . Then q(x) can be written as

where hk(y) is a degree n - k polynomial in y, and the polynomial coefficients of hk(y) do not depend on pn - 1. If

the coefficients are denoted by

Proof. By considering the long division method, we can see that the coefficients of q(x) can be described by

Rewriting this in terms of the hk(y) polynomials, we get

Examination of these equations shows that hk(y) has degree n - k and that all hk(y) polynomials have no degree 1

term except for hn - 1(y). All the statements in the theorem follow immediately except the first case in (1). Some

fairly simple algebra proves this final statement. In the first equality below, we make use of the fact that h0,k = 0

for all k:

From this last equation, we can immediately read off the hi, k term, proving the i ≥ 2 case of (1).

Next we prove two lemmas that give a closed form expression for the hi,k coefficients.

LEMMA 2.2. For all i satisfying 1 ≤ i ≤ n,

Proof. The proof is by induction in i, using the recurrence equations from Lemma 2.1. For i = 1, the lemma is

trivially true. For i > 1, we see that

Using our inductive hypothesis, we get

which completes the proof of the lemma.

LEMMA 2.3. If i + k < n, then

where fi, k is some function that depends only on i and k.

Proof. Again, we use a proof by induction on i. For i = 1, the lemma is easily seen to be true. For i > 1,

Of the three parts of this equation, the inductive hypothesis can be applied to the first two terms, and Lemma

2.2 can be used for the last term, giving the rather large expression

Most of these terms depend only on coefficients pi+k—1,... ,pn-2, so combining these terms under the function

 (pi+k-1, …, pn-2), we can simplify notation considerably to give

By identifying fi,k with , we have proved the lemma.

Finally, we use the last two lemmas to prove that we can make the constant term of q(x). be (almost) any

arbitrary nth degree polynomial in 1 /pn -1 , so we can apply Theorem 2. 1.

LEMMA 2.4. Given any degree n - 2 polynomial A(x), there exists a degree n - 1 polynomial p(x) such that

h0(y) = y
2
(y).

Proof. If A(y) =
 iy

i
, then we want to find pi‘s such that hi+2,0 = ai for all 0 ≤ i ≤ n - 2. By Lemma 2.2, we

can select

and we will next find pn - 3, pn - 4, ... in that order. By Lemma 2.3, each hi,0 is a linear function in pi-2, which can

be inverted easily. In particular,

Since pn-2 0, this clearly gives a procedure for finding the pi‘s that satisfy the lemma.

Our main theorem is now an immediate consequence of Theorem 2.1 and Lemma 2.4.

THEOREM2.2. Any incremental algorithm for polynomial reciprocal must perform (1/2)(n/2-1) multiplications

per request in the worst case, thus must take Ω(n) time per request.

Many algebraic problems can be reduced easily to the polynomial reciprocal problem, so lower bounds easily

follow. As a simple example, consider solving a triangular Toeplitz system of equations. It is well known that

this problem is equivalent to finding polynomial reciprocals, giving the following corollary.

COROLLARY 2.2. Any incremental algorithm for solving a triangular Toeplitz system of equations must take

Ω(n) time per request.

For a less simple example, consider the extended GCD problem [4]. That is, given two polynomials A(x) and

B(x), find the two unique polynomials U(x) and V(x) such that U(x)A(x) + V(x)B(x) = G(x), where G(x) is the

GCD of A(x) and B(x) and deg[U(x)] < deg[B(x)] – deg[G(x)].

COROLLARY 2.3. Any incremental algorithm for the extended GCD problem on polynomials must take Ω(n).

time per request.

Proof. If p(x) =
 ix

i
 is a degree n - 1 polynomial, let prev(x) = x

n-1
p(1/x). denote the polynomial with

coefficients in the reverse order. In other words, prev(x) =
 n-1-ix

i
. It is easy to see that if p(x) has a nonzero

degree n - 1 term, then prev(x) and x
n
 are relatively prime. Solving the extended GCD problem for these two

polynomials gives polynomials U(x) and V(x) such that

We can derive, for formal variable y = 1/x,

http://qžx.be/

We know that deg[U(x)] < deg[prev(x)] ≤ n – 1, so it follows that y

n-2
U(1/y) is a polynomial with deg[y

n-2
U(1/y)]

< n - 1, which shows that Vrev(x) is the polynomial reciprocal of p(x). Therefore, any incremental algorithm for

extended GCD can trivially be converted into an incremental algorithm for polynomial reciprocal, so any

incremental algorithm for extended GCD must take Ω(n) time per request.

2.1. Space—Time Trade-Offs

In this section, we consider space—time trade-offs for incremental algebraic algorithms. First we consider

circuits working over a modified algebra. In particular, if we are considering a ring = (S, +,·, 0, 1. then we add

the special ‗‗infinity‘‘ element that has the property x + = and x · = for any element x S. We note

that such an algebra cannot be a ring, but when considering actual floating point computer implementations,

such infinite elements often do indeed exist. We will call such an algebra an -augmented algebra. Our main

space—time trade-off result can then be stated as follows.

THEOREM2.3. Let f(x1, x2, …, xn) be an algebraic function in which at least one output value is dependent on

all input values. Then any algorithm that uses S(n) storage in addition to the inputs and correctly computes f(x1,

x2, . . . , xn) over an -augmented algebra must take Ω(n/S(n)) time per request.

Proof. The outputs and temporary values of any algebraic algorithm can be viewed as multivariate polynomials

in the inputs. In particular, if b1, b2, . . . , bS(n) are the S(n). additional stored values, then each bi can be viewed as

a polynomial in the inputs. Since we have augmented our algebra with , any nonconstant polynomial can be

set to by setting a single appropriate variable to . In other words, we can make bi = values for all 1 ≤ i ≤

S(n) by setting at most S(n) of the inputs to .

In effect, we have now rendered the extra storage useless. We can set the remaining n — S(n) inputs to any

values that we want, and then substitute values for the S(n) inputs that were set to . These changes effectively

define a new size n problem, in which useful partial computations with inputs can be performed only during the

last S(n) changes. By next requesting an output value that depends on all n input values, we must have

examined all n inputs in the last S(n) + 1 requests in order to compute the value, so some query must have taken

at least n/(S(n) + 1) = Ω(n/S(n)) time.

We note here that for certain problems, a space—time trade-off can be obtained without having to resort to the

 -augmented algebra. This result follows from Tompa‘s work on space—time trade-offs for standard

(nonincremental) algorithms, in which he shows that straight-line programs for polynomial product,

convolution, or DFT that use S(n) space require Ω(n
2
 / S(n)) time [22]. In addition, Tompa proves a more

general result about space—time trade-offs for general linear functions. Any set of n linear functions in n

indeterminates can be represented as a product Ax, where x is the vector of n indeterminates. Tompa shows that

if all of the minors of A are nonsingular, then computing Ax with a straight-line program that uses S(n) space

requires Ω(n
2
 / S(n)) time [22, Corollary 1]. While we cannot use this for our most basic problem of prefix sum,

we use Tompa‘s results to obtain the following theorem. We call an incremental algorithm oblivious if the

actions taken at a request depend only on the position of the input or output, and not on any data values.

THEOREM 2.4. Any oblivious incremental algorithm that uses S(n) space in addition to the input storage for

polynomial multiplication, convolution, DFT, chirp z-transform, or two-dimensional DFT requires Ω(n / S(n))

time per request.

Proof. Consider a sequence of 2n requests in which we set all n input values and then request all n output

values. By Tompa‘s results referred to above [22], this requires Ω(n
2
 / S(n)) total time; therefore, at least one of

the 2n requests must take time Ω(n / S(n)).

3. CUT VALUE INCREMENTAL ALGORITHMS

In this section, we present a method for constructing incremental algorithms for some algebraic problems—the

quality of this method depends on the structure of a circuit for the nonincremental version of the problem. We

will call incremental algorithms like the ones of this section ‗‗ cut value‘‘ incremental algorithms, because they

evaluate all the nodes at a cut of the problem‘s circuit.

In particular, we show that this method can create an O(log n). query time algorithm for the prefix sum problem

and an O() query time algorithm for the discrete Fourier transform. In the next section we will give a

different and more widely applicable technique for constructing incremental algorithms, but the algorithms

produced by that method require Θ(). time per request for the prefix sum problem, and Θ() time per

request for the discrete Fourier transform. Thus the techniques of this section can give substantially better

results, but for a smaller set of problems than the technique of Section 4. Note that it was known how to do an

incremental prefix sum in O(log n) time per request by using the ―prefix tree‘‘ data structure w10x. We do not

improve on these previous bounds for doing incremental prefix sum (although we do match the best previously

known bound), and our presentation of this result is simply as an example of our algorithm construction

methods and to show the general utility of our methods.

To create a cut value incremental algorithm, we use a cut in the supplied circuit. The cut will induce two

subgraphs, with all of the input nodes in one subgraph (the input side) and all of the outputs in the other

subgraph (the output side). The nodes that are in the cut itself are considered to be in both the input side and the

output side. The idea is simple enough; when an input is changed, propagate that change as far as the cut. When

an output is requested, take the set of all nodes in the cut that affect the output, and propagate the values through

to the output. This second part can be simply performed by starting at the desired output node, and following

edges to the cut in depth-first-search fashion.

For this to be an efficient procedure, we need to find a cut such that a particular input affects a limited number

of nodes in the input side of the circuit. To make this more concrete, we introduce the following notation. For

any input node v, let InAff(v) denote the set of nodes in the input side of the circuit whose values are affected by

input node v, and let Nin(v) = |InAff(v)| denote the number of nodes in the input side of the circuit that input v

affects. In the previously described cut value incremental algorithm, Nin(v) is exactly the number of nodes that

have to be reevaluated in order to propagate a change from input node v to the nodes in the cut. We let

MaxInAff denote the size of the largest input effect set, or

For any output node v, we define the set OutAff(v) to be the set of nodes in the output side of the circuit that

affect the value of output v (note this is perfectly symmetric with the definition of InAff(w)). Finally, define

Nout(w) and MaxOutAff in the obvious way.

Given the above discussion, the following theorem is simple to prove.

THEOREM 3.1. Assume we are given a circuit for a function f(x1, x2, . . ., xn) with MaxInAff and MaxOutAff as

defined above. Then we can construct a ‗‗cut value‘‘ incremental algorithm that services all requests in

O(max(MaxInAff, MaxOutAff)) time.

We now apply this theorem to produce incremental algorithms for the prefix sum problem and the discrete

Fourier transform. The presentation of prefix sum is as a simple example of the above theorem—we note that it

was already known how to obtain O(log n) bounds [10].

COROLLARY 3. 1. There is a ‗‗cut value‘‘ incremental algorithm for prefix sum over a semigroup S that

services requests in O(A log n) time, where A is the time required to apply one semigroup operation to a pair of

elements in S.

Proof. The data flow of the most common prefix sum algorithm [151 can be viewed as a tree in which we make

two passes: First, we sweep from the leaves to the root, computing for each node the sum of its children (thus

each node has computed the sum of all children in the subtree rooted at that node). Second, we sweep from the

root to the leaves, computing the sum of all nodes ‗‗to the left‘‘ of the current node at that level. When we reach

the leaves, we have the prefix sum.

This intuitive data flow idea can be converted into a circuit by placing two trees back to back and connecting

each node with its ‗‗mirror image‘‘ on the other side (see Fig. 1). Each node of this tree actually does an

operation over semigroup S, so takes time A. Call the tree that is closest to the inputs the ‗‗input tree,‘‘ and the

tree closest to the outputs the ‗‗output tree.‘‘ The cut we use is the entire input tree. This cut consists of 2n — 1

nodes, but each input only affects O(log n) of these nodes (the ones on the path from the input to the root of the

input tree). In other words, MaxInAff = O(log n).

The only nodes in the output tree that have any effect on a particular output are the nodes in the path from that

output node to the root of the output tree. Each one of these nodes in the output tree is also affected by its

―mirror image‘‘ node in the input tree, but this only doubles the number of nodes that affect the output. Thus

MaxOutAff = O(log n).

Finally, by Theorem 3.1 we can construct an incremental algorithm for prefix sum that has worst case request

service time of O(log n) node evaluations. Since each node evaluation takes time A, the total time of the

algorithm is O(A log n).

Note. It should be noted that since the cut we used was actually the entire input tree, what we have derived is an

incremental data structure that has a tree structure. It turns out that in this case this was a known data structure:

the prefix tree [10]. In the usual cases such as computation over the integers, A = 1, so the total update time is

O(log n). An example over a more complex semigroup is shown below.

COROLLARY 3.2. Consider an order w linear recurrence defined by

with a vector of initial values (xw-1, . . ., x1, x0), where we are interested in the values x0, x1, ..., xn - 1. There is an

incremental algorithm for computing this function with worst-case request response time of O(M(w)log n),

where M(w) is the time required to multiply two w × w matrices. Equivalently, there is an incremental

algorithm for solving a linear system Ax = b, where A is an n × n triangular banded matrix with bandwidth w +

1 that has worst-case request response time O(M(w)log n).

Proof. The equivalence between solving a triangular banded linear system and solving a linear recurrence is

well known [14], so we concentrate on solving the linear recurrence. Define w × w matrices Ai for i = w, w + 1,.

. . ,n — 1 by

and vectors Bi = (bi, 0, 0, . . . , 0)

T
. We use Xk to denote the vector Xk = (xk, xk-1 , ... , xk—w+ 1)

T
, then we can

rewrite the recurrence as Xk = AkXk-1 + Bk.

We define the elements of a semigroup S to be all pairs (A, B), where A is a w × w matrix and B is a w × 1

vector. The semigroup operation ◦ can then be defined by

If should now be obvious that if

then Xk = MXw-1 + V, where Xw-1 is just the vector of initial conditions. Computing any such (M, V) pair can be

viewed as a prefix computation over semigroup S, and each semigroup operation can be done in time M(w).

Thus by Corollary 3.1 we can construct an incremental algorithm for this problem with worst-case request

response time O(M(w)log n).

COROLLARY 3.3. There is a ―cut value‘‘ incremental algorithm for the discrete Fourier transform that

services requests in O() time.

Proof. The FFT graph (showing the data flow of the Fast Fourier Transform algorithm) is a layered graph with

log n + 1 levels of gates (see [7] or [16, pp. 713ff]). The cut we use consists of all gates at level (log n)/2 (here

we are assuming that log n is even—if this is not the case, then simply use the gates at level (log n + 1)/2, and

the rest of this proof is very similar).

From the structure of the FFT graph, we know that each input affects 2
k-1

nodes on level k (where the inputs are

labeled as level 1). So input i affects a total of

nodes in the input side of the circuit. Since this is independent of the particular input, MaxInAff = - 1.

An entirely symmetric argument shows that MaxOutAff = - 1, so by Theorem 3.1, we can construct a ―cut

value‘‘ incremental algorithm that has request time O().

One of the important properties of the FFT graph, which makes finding the optimal cut easy, is that the FFT

graph is very regular: the circuit is a layered graph in which the fanout and fanin of every node is 2. Because of

this, the optimal cut is always the middle layer of the graph. We point out here that a large number of other

circuits exhibit similar regularity properties. One large class of algorithms that has this property is the class of

―normal hypercube algorithms‘‘ [16] (originally called ASCEND/DESCEND algorithms [18]. which includes

efficient algorithms for matrix multiplication and several popular parallel sorting algorithms such as odd—even

merge sort, bitonic sort, and flash sort (see [16] or [23] for further details.. Another large class of algorithms

that has the desired regularity property is the class of algorithms constructed using tensor product factorizations

[13], which includes many of the transform computations used in signal processing. For these classes of

problems, and others with regular circuits, finding good (or even optimal) cuts is easy, and hence constructing

incremental algorithms as described in this section is easy.

4. GENERAL INCREMENTAL ALGORITHM DESIGN FOR SEQUENTIAL MACHINES

In this section we present another general purpose technique for design-ing incremental algorithms. For some

problems, the resulting algorithms may not be as good as those designed using techniques from the previous

section, but the techniques of this section can be applied to a fairly wide class of problems. In designing an

incremental algorithm for a function f(x1, x2, ... , xn), we require both an algebraic circuit for the function and a

procedure called an update function. The update function uses a set of inputs (x1, x2, . . . , xn), one particular

output value from f(x1, x2, . . . , xn), and an optional set of precomputed values. From this information, the

update function computes the change in the output value due to one of the input values changing. We will use

the notation

where yk = f(x1, ... , xi, ..., xn), to denote the function that computes the new value

 = f(x1,... ,
 , ... , xn). We

use U(n). (called the update time) to denote the time complexity of the update function.

EXAMPLE. For the discrete Fourier transform, a single output can be viewed as a polynomial evaluation at a

power of a principal nth root of unity, say k
. Thus the value of the output maybe written as

If the input value xi is changed to some new value

 , then the new value of output yk can be simply computed

by

By precomputing all of the powers of in the initialization phase of the incremental algorithm, we can compute

this update function in constant time, so U(n) = O(1).

Our incremental algorithms divide the sequence of requests into blocks of b requests, where b is called the block

size. We evaluate the circuit during the b requests of a block, fixing the inputs to their values at the beginning of

the block. If σ(n) is the size of the circuit, we evaluate the next gates of the circuit after each request,

and the entire circuit is evaluated by the end of the block. Thus at any point in the input sequence, we know all

of the correct output values at the beginning of the previous block. We can calculate any current output value by

calling Update at most 2b - 1 times using the input changes that have been requested since the beginning of the

previous block.

THEOREM 4.1. For a particular algebraic function f(x1, x2, ... , xn), let σ(n) be the size of the smallest circuit

for that problem, and let U(n). be the update time, as described above. Then we can construct an incremental

algorithm for function f where each request is handled in time O()

Proof. For each request, we evaluate gates of the circuit and may need to perform 2b Update

operations (if the request is an output query). Thus the worst case complexity is

The b that minimizes this complexity is b = , giving a complexity of O().

An important aspect of this theorem is that the update time is at most σ(n), meaning that this theorem never

creates an incremental algorithm with time worse than O(σ(n)). In most cases, however, U(n) = o(σ(n)), so each

request is handled in o(σ(n)) time, beating the naive approach to this problem. In fact, in many common cases

U(n) = O(1), so the incremental algorithm time is O() We now look at some immediate consequences of

Theorem 4.1.

The following corollary deals with algebraic functions in which each output is a linear function in each input.

For example, output yk can be expressed as a function of input xi by yk = di,k + ci,kxi. We call ci,k the constant of

linearity. Note that there are common functions in which each output is linearly dependent on each input, but it

http://užn.be/

is hard to compute the constant of linearity; in other words, simply having a linear update func-tions does not

guarantee fast incremental algorithms. For example, the permanent of an n × n matrix is linearly dependent on

each input, but the constant of linearity cannot be computed in polynomial time unless P = P
#P

 [24], which is

very unlikely.

COROLLARY4.1. Let f(x1 , x2, . . ., xn) be any algebraic function such that each output value is linearly

dependent on each input value, and each constant of linearity can be computed from the function inputs in

constant time. Then if we have access to an algebraic circuit for f that has size σ(n), we can construct an

incremental algorithm for f that has worst-case query time of O().

Proof. Due to Theorem 4.1, we need only show that for such an f, U(n) = O(1). If input i changes from value xi

to value
 then output yk changes in value to

 , which can be written as

for a constant of linearity ci,k that can be computed in constant time. The new output value can clearly be

computed in constant time. The DFT example above is a concrete example of this corollary.

COROLLARY 4.2. There exist sequential incremental algorithms for each problem in the following table, with

worst case request service times as shown. In Table 2, the incremental version of multipoint polynomial

evaluation allows the polynomial coefficients to change (not the points of evaluation), the matrices are assumed

to be n × n, and M(n) refers to the complexity of matrix multiplication (currently known to be O(n
2.376

) [8]).

―Restricted change linear system solve‘‘ means that in a system Ax = b, only the elements of b are allowed to

change.

Proof. It is fairly simple to show that each of these problems satisfies the conditions of Corollary 4.1, and the

worst-case time follows from Corollary 4.1 by using the size of the best known algebraic circuit for that

problem (many of these circuits are easily derived from well-known sequential algorithms that can be found in

standard references [2, 4, 5]). For the ―restricted change linear system solve‘‘ we note that in a system Ax = b, if

we precompute A
-1

, then the dynamic problem is simply an instance of matrix-vector product.

Note. The restriction on the multipoint polynomial evaluation problem that only the coefficients change is vital.

Recall that in Section 2 we proved an Ω(n) lower bound for the problem when the evaluation points are allowed

to change.

For a more complex example, we examine the Δ(r) dynamic polynomial reciprocal problem. By Δ(r), we mean

that dynamic changes are allowed only in the coefficients of the r lowest order terms. For example, if the input

polynomial is p(x) =
 pix

i
, then we only allow changes on p0, p1, . . ., pr- 1.

THEOREM4.2. There is an incremental algorithm for the Δ(n/2) dynamic polynomial reciprocal problem that

has worst-case request service time of O().

http://xn.be/

Proof. We denote the input polynomial by p(x) = p1(x)x
n

/2

 + p2(x), where the degree of p2(x) is at most (n/2) - 1.

Using this notation, in the Δ(n/2) dynamic polynomial reciprocal problem, we allow changes only to the

coefficients of p2(x).

If q1(x) is the polynomial reciprocal of p1(x), then the reciprocal of p(x) is exactly

where this formula is obtained by using the Newton iteration formula (see [2, Section 8.3]).

From this formula it is easy to see that each coefficient of the output polynomial is linearly dependent on each

input coefficient, with the constant of linearity depending on the coefficients of q1(x). Since p1(x) is not allowed

to change, q1(x) in the above formula is constant, and the constants of linearity may be computed in the

preprocessing phase. After the preprocessing, each output update can be done in O(1) time. Combining this

update function with a size O(n log n) circuit for evaluating (2) gives the claimed time bound.

Note. The dramatic improvement possible by restricting the changeable inputs is fascinating here. Recall that in

Section 2 we showed that if all coefficients are allowed to change, any incremental algorithm for polynomial

reciprocal requires Θ(n) time; however, by restricting changes to half of the input coefficients, we manage to

produce an algorithm with O() time per request!

5. GENERAL INCREMENTAL ALGORITHM DESIGN FOR PARALLEL MACHINES

In this section we investigate the following question: what if requests can be answered using a parallel machine,

such as a PRAM? Our incremental algorithms for parallel machines use the same basic concepts as the

sequential algorithm, with the added benefit of being able to do the circuit recalculation and the update function

in parallel. We use TU(b, n) to represent the parallel time required to update a single output with b input changes

using PU(b, n) processors. We let b be a parameter to this function, since in parallel we can often perform all b

updates in o(b) time.

The overall parallel algorithm is similar to the sequential algorithm of the previous section, except that we

evaluate the circuit by levels. In other words, a time T(n) circuit for a particular problem has T(n) levels—if we

divide the circuit re-evaluation into B phases, then we evaluate T(n)/B levels per phase (note that T(n)/B may be

less than 1), and may have to handle as many as 2B — 1 individual update operations. We will sometimes refer

to B as the block size.

THEOREM 5. 1. For a particular algebraic function f(x1, x2, ... , xn), assume we have an algebraic circuit with

width P(n) and depth T(n), and we have a parallel algorithm for the update function that uses PU(b, n)

processors and TU(b, n) time. Then the parallel incremental algorithm with block size B can service each

request with Pinc(n) processors in time

We can immediately apply this theorem to give fast parallel incremental algorithms for multipoint polynomial

evaluation and the discrete Fourier transform.

COROLLARY 5.1. For the problems of discrete Fourier transform, two-dimensional discrete Fourier

transform, and chirp z-transform with constant z, there are parallel incremental algorithms with request service

time

In addition, there are parallel incremental algorithms for multipoint polynomial evaluation with changing

coefficients that have request service time

Proof. This proof is given for multipoint evaluation, which is almost identical to the proof of the DFT (in fact,

the DFT can be viewed as multipoint evaluation at the n powers of a principal nth root of unity). Two-

dimensional DFT is also similar, but with slightly different weights on the coefficients (when evaluating output

yi,j the weight on input value xk,m is ω
ik+jm

). Let z0, z1, . . . , zn - 1 be the fixed points of evaluation for the input

polynomial p(x) with coefficients p0, p1, . . ., pn- 1. Consider the k < 2B input coefficient changes since the

beginning of the previous block. Let si be the position of the coefficient for the ith change (i.e., the ith change is

on coefficient
), and let ci =

 -
 when coefficient

 is changed to
 . Using this notation, we can write

the change in the jth output since the beginning of the previous block as

Clearly, this is a simple weighted sum of k + 1 terms using the precomputed powers of an evaluation point as

weights, so updates can be computed with TU(k, n) = O(log k) time using PU(k, n) = O(k/log k) processors.

Our incremental algorithms use this update algorithm along with a circuit for multipoint polynomial evaluation

with P(n) = O(n) width and T(n) = O(log
2
 n) depth. By selecting a block size of B = log n when 1 ≤ Pinc(n) ≤

 log n, and a block size of B = n log
2
 n/Pinc(n) when log n < Pinc(n) ≤ n, simply plugging into (3) gives the

time bounds stated in the corollary.

For the discrete Fourier transform and chirp z-transform, we use circuits with P(n) = O(n) width and T(n) =

O(log n) depth [2, 7]. For block size selection, we use

Using these values in (3) gives the request service times claimed in the theorem.

What we notice from this corollary is that for the discrete Fourier transform, when Pinc(n) ≤ , the

processor/time trade-off is optimal with respect to the work required for the sequential algorithm of the previous

section. For larger numbers of processors, there is still an improvement in request service time, but the trade-off

is no longer linear. For the fastest algorithm, notice that with O(n/log
c
 n) processors for any constant c, the

request service time is O(log log n). The same bound is possible for multipoint evaluation.

CONCLUSIONS

We have examined lower bounds and algorithms for incremental versions of algebraic problems. We proved

Ω(n) lower bounds for many simply stated algebraic problems such as multipoint polynomial evaluation,

polynomial reciprocal, and extended polynomial GCD, meaning that sub-linear time incremental algorithms for

these problems are impossible. The simple interpretation of this fact is that for many algebraic problems, no

algorithm can substantially beat the trivial ―reevaluate every time‘‘ solution.

On the other hand, we have shown that by examining the algebraic circuits for certain other problems, fast

incremental algorithms can be obtained. We have given incremental algorithms for a wide class of problems

that have O(log
O(1)

n) worst-case request service time (see Table 1 for a complete list of results). In addition,

we have shown that for several problems in this class, superfast parallel algorithms can be derived that handle

requests in O(log log n) time using O(n/log
c
 n) processors for any constant c ≥ 0.

The incremental algorithm design techniques presented are general purpose, and can be easily applied to other

algebraic problems. However, due to our lower bound results, it is clear that many algebraic problems will not

have fast incremental algorithms.

Notes:

1 There is clearly an equivalence between circuits with nodes presented in this order and straight-line programs.

Our results could have been presented in terms of straight-line programs, but the circuit model will be more

useful in Section 3.

REFERENCES

1. P. K. Agarwal, D. Eppstein, and J. Matoušek, Dynamic half-space reporting, geometric

optimization, and minimum spanning trees, in ―Proceedings, 33rd Annual Symposium on Foundations of

Computer Science, Pittsburgh, 1992,‘‘ pp. 80]89.

2. A. Aho, J. Hopcroft, and J. Ullman, ―The Design and Analysis of Computer Algorithms,‘‘ Addison-Wesley,

Reading, MA, 1974.

3. E. G. Belaga, Some problems in the computation of polynomials, Dokl. Akad. Nauk. SSSR 123 (1958),

775]777.

4. D. Bini and V. Pan, ―Polynomial and Matrix Computations.‘‘ Vol. 1, ―Fundamental Algorithms,‘‘

¨Birkauser, Boston, 1994.

5. A. Borodin and I. Munro, ―The Computational Complexity of Algebraic and Numeric Problems,‘‘

American Elsevier, New York, 1975.

6. Y. Chiang and R. Tamassia, ―Dynamic Algorithms in Computational Geometry,‘‘ Technical Report CS-91-

24, Brown University Department of Computer Science, 1991.

7. J. M. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex fourier series, Math.

Comput. 19 (1965), 297]301.

8. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic expression, J. Symbolic Comput. 9,

No. 3 (1990), 251]280.

9. D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification—A technique for speeding up

dynamic graph algorithms, in ―Proceedings, 33rd Annual Symposium on Foundations of Computer Science,

Pittsburgh, 1992,‘‘ pp. 60]69.

10. M. L. Fredman, ―The complexity of maintaining an array and computing its partial sums,‘‘ J. Assoc.

Comput. Mech. 29, No. 1 (1982), 250]260.

11. G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning

trees, in ―Proceedings, 32nd Annual Symposium on Foundations of Computer Science, San Juan, 1991,‘‘ pp.

632]641.

12. G. N. Frederickson, A data structure for dynamically maintaining rooted trees, in ―Proceedings of the Fourth

Annual ACM–SIAM Symposium on Discrete Algorithms, Austin, TX, 1993,‘‘ pp. 175]184.

13. J. Granata, M. Conner, and R. Tolimieri, Recursive fast algorithms and the role of the tensor product, IEEE

Trans. Signol Process. 40, No. 12 (1992), 2921]2930.

14. D. Heller, A survey of parallel algorithms in numerical linear algebra, SIAM Rev. 20, No. 4 (1978), 740]776.

15. R. E. Ladner and M. J. Fischer, Parallel prefix computation, J. Assoc. Comput. Mech. 27, No. 4 (1980),

831]838.

16. F. T. Leighton, ―Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,‘‘

Morgan Kaufmann, San Mateo, CA, 1992.

17. T. S. Motzkin, Evaluation of polynomials and evaluation of rational functions, Bull. Amer. Math. Soc. 61

(1955),163.

18. F. P. Preparata and J. Vuillemin, The cube-connected cycles: A versatile network for parallel computation,

Comm. ACM 24, No. 5 (1981), 300]309.

19. M. O. Rabin and S. Winograd, ―Fast Evaluation of Polynomials by Rational Preparation,‘‘ IBM Technical

Report RC 3645, Yorktown Heights, NY, 1971.

20. D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System Sci. 26 (1983),

362]391.

21. K. J. Supowit, New techniques for some dynamic closest-point and farthest-point problems, in ―Proceedings

of the First Annual ACM—SIAM Symposium on Discrete Algorithms, San Francisco, 1990,‘‘ pp. 84]90.

22. M. Tompa, Time—space tradeoffs for computing functions, using connectivity properties of their circuits, J.

Comput. System Sci. 20 (1980), 118]132.

23. J. Ullman, ―Computational Aspects of VLSI,‘‘ Comput. Sci. Press, Rockville, MD, 1984.

24. L. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979), 189]201.

