

FUrther results on generalized

intersection searching problems:

counting, reporting, and dynamization

Prosenjit Gupta Ravi J anardan Michiel Smid

MPI-I-92-154 December 1992

Further Results on Generalized
Intersection Searching Problems:

Counting, Reporting, and Dynamization

Prosenjit Gupta* Ravi J anardan * Michiel Smid t

December 17, 1992

Abstract

In a generalized intersection searching problem, a set, S, of colored geometrie ob­
jects is to be preprocessed so that given some query object, q, the distinct colors of
the objects intersected by q can be reported efficiently or the number of such colors
can be counted effi.ciently. In the dynamic setting, colored objects can be inserted into
or de1eted from S. These problems generalize the well-studied standard intersection
searching problems and are rich in applications. Unfortunate1y, the techniques known
for the standard problems do not yie1d efficient solutions for the generalized problems.
Moreover, previous work [JL92] on generalized problems applies only to the static re­
porting problems. In thispaper, a uniform framework is presented to solve efficiently
the countingjreportingj dynamic versions of a variety of generalized intersection search­
ing problems, including: 1-, 2-, and 3-dimensional range searching, quadrant searching,
interval intersection searching, 1- and 2-dimensional point enclosure searching, and or­
thogonal segment intersection searching.

Keywords: Computational geometry, data structures, dynamization, intersection
searching, .persistence.

"Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, U.S.A. Email:
{pgupta, janardan}a»cs.umn.edu. The research of these authors was supported in part by NSF grant
CCR-92-00270.

tMax-Planck-Institut für Informatik, W-6600 Saarbrücken, Germany. Email: michielalmpi-sb.mpg.de.
This author was supported by the ESPRIT Basic Research Actions Program, under contract No. 7141
(project ALCOM 11).

1

1 Introduction

1.1 Intersection searching problems

Problems ansing in diverse areas, such as computer graphics, robotics, VLSI layout design,

and databases can often be formulated as intersection searehing problems. In a generic in­

stance of such a problem, a set S of geometrie objects is to be preprocessed into a suitable

data structure so that given a query object q we can answer efficiently questions regarding

the intersection of q with the objects in S. The problem comes in four versions, depending on

whether we want to report the intersected objects or simply count their number-the report­

ing version and the eounting version, respectively-and whether S remains fixed or changes

through insertion and deletion of objects-the statie version and the dynamie version, re­

spectively. In the dynamic version, which anses very often owing to the highly interactive

nature of the above-mentioned applications, we wish to perform the updates more efficiently

than simply recomputing the data structure from scratch after each update, while simulta­

neously maintaining fast query response times. We call these problems standard intersection

searching problems in order to distinguish them from the generalized intersection searching

problems that we investigate in this paper.

Typical examples of (S, q)-combinations include:

1. S consists of points in nd and q is a d-range: This is the d-dimensional range searehing

problem.

2. S consists of d-ranges and q is a point in nd : This is the d-dimensional point enclosure

searehing problem.

3. S consists of points in the plane and q is a quadrant: This is the quadrant searehing

problem.

4. S consists of intervals on the real line and q is an interval: This is the interval inter­

section searehing problem.

5. S consists of horizontal line segments in the plane and q is a verticalline segment:

This is the orthogonal segment intersection searehing problem.

6. S consists of line segments in the plane and q is a line segment: This is the segment

intersection searehing problem.

2

Due to their numerous applications, intersection searching problems have been the subject

of much study and efficient algorithms have been devised for many of them. See for example

[Cha86, CJ90, CJ92, EM81, EKM82, LP84, McC85, PS88, VW82], to mention just a few.

The efficiency of an intersection searching algorithm is measured by the space used by

the data structure, the query time, and, in the dynamic setting, the update time. In a

counting problem, these are expressed as a function of the input size n (i.e., the size of S)j

in a reporting problem, the space and update time are expressed as a function of n, whereas

the query time is expressed as a function of both n and the output size k (i.e., the number

of intersected objects) and is typically of the form O(f(n) + k) or O(f(n) + k . g(n)), for

some functions f and g. Such a query time is called output-sensitive.

1.2 Generalized intersection searching problems

In many applications, a more general form of intersection searching arises: Here the objects in

S come aggregated in disjoint groups and of interest are quest ions regarding the intersection

of q with the groups rather than with the objects. (q intersects a group if and only if it

intersects some object in the group.) In our discussion, it will be convenient to associate

with each group a different color and imagine that all the objects in the group have that

color. Then, in the generalized reporting (resp., generalized counting) problem, we want to

report (resp., count) the distinct colors intersected by qj in the dynamic setting, an object

of some (possibly new) color is inserted in S or an object in S is deleted. Note that the

generalized problem reduces to the standard one when each color dass has cardinality 1.

We give two examples where such generalized problems anse: (1) Consider the personnel

database of a large company, which contains age and salary information for employees across

all departments. Given an age-salary range, we wish to reportjcount the departments with

employees in that range. Clearly, this is an instance of the generalized 2-dimensional range

searching problem. (2) VLSI designs often consist of several layers, where each layer is

typically comprised of thousands of iso-oriented rectangles. Often it is necessary to wire

certain subsets of these layers using vertical channels called vias. Given a candidate position

for a via (a point), the layout designer is faced with the problem of identifying the layers

that get electrically connected, i.e., those layers that have at least one rectangle containing

the via. This can be solved by assigning each layer a different color and solving an instance

of the generalized 2-dimensional point endosure searching problem.

One approach to solving a generalized problem is to try to take advantage of solutions

known for the corresponding standard problem. For instance, we can solve a generalized

reporting problem by first determining the objects intersected by q (a standard reporting

3

problem) and then reading off the distinct colors. However, the query time can be very

high since q could intersect S1(n) objects but only 0(1) distinct colors. For a generalized

reporting problem, we seek query times that are sensitive to the number, i, of distinct colors

intersected, typicallyof the form O(f(n) + i) or O(f(n) + i . g(n)), where fand 9 are

polyloganthmic. For a generalized counting problem, the situation is worsej it is not even

dear how one can extract the answer for such a problem from the answer (a mere count) to

the corresponding standard problem. One could, of course, solve the corresponding reporting

problem and then count the colors, but trus is not efficient. Thus it is dear that different

techniques are needed.

Generalized intersection searching problems were first considered in [JL92], where solu­

tions using low space and efficient, output-sensitive query times were presented for several

problems, induding: interval intersection searching, 1- and 2-dimensional range searching,

d-dimensional point endosure searching (for constant d), and orthogonal and general seg­

ment intersection searching. The key idea there was to first obtain for each color dass a

sparse representation with the property that for certain special query ob jects q' (e.g., rays,

grounded rectangles), q' intersected the sparse representation if and only if it intersected an

object of the same color, and, furthermore, q' intersected only 0(1) objects in the sparse

representation. Then the sparse' representations for all colors were organized hierarcrucally

and at each level in the hierarchy a standard intersection reporting structure was built on

them. Given q, it was decomposed into two special queries q' and q" at some level in the

ruerarchy and these were used to query appropriately at that level. The answers to q' and

q" were then combined by eliminating duplicate colors. The time for doing this elimination

could be charged to the output size.

The above approach does not yield efficient solutions to the counting and dynamic prob­

lems. For the counting problem, one could try to generate a sparse representation such that

q' intersects exactly one (not just 0(1)) objects in the representation and then use a stan­

dard counting structure instead of a reporting structure. However, care must be taken in

combining the counts returned by q' and q", since if there is a color that is induded in both

counts then it should be counted only once for qj unfortunately, there seems to be no way

to deduce trus from the counts of q' and q". Moreover, even if trus combining were feasible,

there is no "output size" to which the time for trus can be charged, as was done in [JL92]

for the reporting case. · As for the dynamic problem, the techniques of [JL92] do not lend

themselves to efficient dynamization since even a single update can result in considerable

change in a sparse representation.

4

1.3 Summary of results

In this paper, we present efficient solutions to the counting/reporting/dynamic versions of

several generalized intersection problems, as summarized in Table 1. Note that in addition

to the generalized counting problem described in Section 1.2, we also consider a second

kind of counting problem, called a type-2 counting problem: Here we wish to report for

each intersected color, the number of intersected objects of that color. (The other counting

problem is implicitly a type-I counting problem, but, for brevity, we will omit the qualifier

"type-I".)

No solutions were known previously for any of the problems in Table 1, with the exception

of the 2-dimensional point enclosure reporting problem; for this problem, an O(nl.S)-space,

O(log n + i)-query time solution was given in [JL92] . In addition to the results shown in

the table, some other results obtained in the paper may be of independent interest. These

include: (i) efficient solutions for generalized problems with restricted types of queries (e.g.,

rays, grounded rectangles) and (ii) simpler and more direct solutions to some of the static

reporting problems considered in [JL92], whose bounds match those given in [JL92].

Dur results for the static counting and reporting problems are based on two techniques:

(i) persistent data structures and (ii) a simple geometrie transformation. Roughly speaking,

we use persistence as follows: To solve a given generalized problem we first identify a different

but simpler generalized problem and devise a data structure for it that also supports updates

(usually just insertions). We then make this structure partially persistent [DSST89] and

query this persistent structure appropriately to solve the original problem. On the other

hand, the transformation method works by converting a generalized problem to a different

standard problem and solving the latter. Although this method works (at least at this time)

only for the I-dimensional range searching problem, it is crucial to our work since it also

yields adynamie data structure for the counting version of this problem, which is then used

to build persistent structures for other generalized problems.

Our solutions for the dynamic problems are based on augmented data structures. Here

again the transformation approach is crucial because it gives adynamie data structure for

the I-dimensional range reporting problem, which is then used to build an augmented data

structure for the dynamic quadrant reporting problem. Notice that for some dynamic prob­

lems we obtain improved solutions in the insertions-only case; these solutions constitute

the building blocks of an efficient solution to the generalized 3-dimensional range reporting

problem.

Thus the contribution of this paper is a uniform and general framework within which

efficient solutions are derived for a wide variety of . interesting, application-rich problems.

5

Generalized Problem IT Space Query Time Update Time

I-D RANGE SEARCH

Dynamie reporting n logn + i logn
Statie eounting nlogn logn

n log n / log log n log2 n/ log log n
Dynamie eounting nlogn lo~n logl:n

Static eounting (type-2) nlogn logn + i
QUADRANT SEARCH

Static reporting n logn + i
Statie eounting nlogn logn

Dynamie reporting nlogn logl: n + ilogn logl:n
Dyn. reptg. (insertions only) n logl:n + i logn (amort.)

2-D RANGE SEARCH

Statie eounting n2log2 n log2 n
n3 logn logn

Dynamie reporting nloglSn logl: n + ilogn log'ln
Dyn. reptg. (insertions only) nlog2 n log.i: n + i log,) n (amort.)

3-D RANGE SEARCH

Statie reporting nlog4 n log2 n + i
INTERVAL INTERSECTION

Static eounting nlogn logn
Dynamie reporting nlogn log:.! n + ilogn log.i: n

Dyn. reptg. (insertions only) n logl:n + i logn (amort.)
I-D POINT ENCLOSURE

Statie eounting n logn
Static eounting (type-2) n logn + i

Dynamie reporting n (i + 1) logn log n (amort.)
2-D POINT ENCLOSURE

Statie reporting nlogn log2 n + i
Statie eounting nlogn . logn

ORTH. SEGMENT INTERSECTION

Statie eounting nlog2 n lo~n
n2logn logn

-

Table 1: Summary of main results. All bounds given are "big-oh" and, unless stated other­
wise, are worst-case. Here i 2:: 0 denotes the output size, i.e., the number of distinct colors
intersected.

6

This paradigm may find use in other geometrie problems as weil.

The rest of the paper is organized as follows: Section 2 discusses some techniques that

we will use frequently in the rest of the paper. Sections 3-10 contain the main results, one

per section. We conclude in Section 11 with a discussion of future work.

2 Preliminaries

In this section, we review briefly persistent data structures and augmented BB(a) trees-two

data structuring techniques that we will use frequently. We also discuss some of the issues

involved in handling colors, especially in the dynamic setting. Finally, we set the notation

that we use in the paper.

2.1 Persistent data structures

Ordinary data structures are ephemeral in the sense that once an update is performed the

previous version is no longer available. In contrast, a persistent data structure supports

operations on the most recent version as well as on previous versions. A persistent data

structure is partially persistent if any version can be accessed but only the most recent one

can be updatedj it is fully persistent if any version can be both accessed and updated.

In [DSST89], Driscoll et al describe a general technique to malte persistent anyephemeral

linked data structure. A linked data structure consists of a finite collection of nodes, each

with a fixed number of fields. Each field can hold either a piece of data such as, say, an

integer or areal, or apointer to another node. The in-degree of anode is the number of

other nodes pointing to it. Access to the structure is accomplished via one or more access

pointers. Examples of linked structures include linked lists and balanced binary search trees.

An update operation typically modifies one or more fields in the structure. We will call

each modification a memory modification. Driscoll et al showed that any linked structure

whose nodes have constant in-degree can be made partially or fully persistent such that

each memory modification in the ephemeral structure adds just 0(1) amortized space to

the persistent structure and, moreover, the query time of the persistent structure is only a

constant factor larger than that of the ephemeral structure.

For our purposes, partial persistence suffices. As mentioned earlier, we begin by design­

ing some ephemeral dynamic linked structure (e.g., a linked list or a binary search tree),

which has one access pointer. Start~g with an empty structure, we then perform a suitable

sequence of O(n) updates using the technique of Driscoll et al and obtain a partially per-

7

sistent structure, which contains all versions of the ephemer al structure. Each version has

an associated "timestamp" , usually an z-coordinate (or a y-coordinate) in the input. We

store the access pointers of the different versions in an array, sorted by timestampj thus any

desired version can be accessed for querying by doing a binary search in the array. If m(n) is
the total number of memory modifications made by the update sequence, then the persistent

structure uses O(m(n)) space.

2.2 Augmented BB(o:) trees

BB(o:) trees are a dass of weight-balanced trees introduced by Nievergelt and Reingold

[NR73]. (Here 0: is a positive real number which specifies the balance of the tree and for

technical reasons 0: < 1 - 1/,J2.) Willard and Lueker [WL85] showed how these trees could

be used to design augmented data structures with good query and update times. We review

their basic approach herej for more details we refer the reader to [WL85] . At the end of

this subsection, we discuss brie:fiy the changes that are needed in order to accommodate our

generalized problems.

Let P be a set of n points in d-dimensional space and suppose that we want to answer a

decomposable query on P and also want to do updates on P. (A query on Pis decomposable

[SB79] if it can be answered by combining the queries on P1 and P2 in 0(1) time, where

(Pb P2) is any partition of P.) A general approach is to construct an augmented BB(o:) tree

for P, which consists of a BB(0:) tree, T, in which the points of P are stored at the leaves

in sorted order according to one of the coordinates. At each internal node v of T, the points

in v's subtree are stored in a suitable dynamic data structure D, which is called an auxiliary

strocture of v. A query on P is answered by identifying a suitable subset of O(log n) nodes

in T, querying the D-structures at these nodes, and combining the answers. If S(m) and

Q(m) are the space and query time of a D-structure on m points, then the augmented tree

uses O(S(n)logn) space (assuming that S(.) grows at least linearly) and has a query time

of O(Q(n) log n).

To insert / delete a point p, we search down T and insert / delete a leaf and then update

the D-structure at each node on the search path. We then rebalance T via rotations. The

rotations will change the set of descendant leaves of certain nodes and thus ren der obsolete

their D-structures. These D-structures must then be rebuilt. If the rebuilding is done all

at once, then, as Willard and L'ueker prove, the amortized update time for the augmented

tree is O(U(n)logn), where U(m) is the amortized update time for a D-structure built on

m points.

As shown in [WL85], it is possible to obtain a worst-case update time of O(U(n) log n)

8

if a D-structure with a worst-case update time of U(m) is available, where m is the num­

ber of points in the D-structure. The idea is to spread the rebuilding work at anode v
\

over a sequence of future updates in v's subtree. (Thus an update operation will perform

some rebuilding work at each node on the search path.) While v's D-structure is under

construction, queries at v are answered by querying its children and combining the answers.

This requires that the structures at v's children be up-to-date and, moreover, the children

should not undergo rotation while v's structure is under construction. Willard and Lueker

show how to assure this by requiring that a certain condition be satisn.ed for anode to be

eligible for rotation. Moreover, they show that it is sufficient to perform just 0(1) rebuilding

operations at v and still guarantee that v's structure will be ready before v becomes eligible

for rotation. Occasionally, some node may become highly unbalanced before it is eligible for

a rebalancing rotation. Fortunately, as shown in [WL85], the subtree of such anode will

have size just 0(1) and so the node can be handled by simply rebuilding its entire subtree

into a balanced subtree.

We will use augmented BB(a) trees in several places-specifically in Sections 3.1.3, 4.2,

5.2, 8.3. In Section 3.1.3, we use these trees to solve a standard range searching problem and

so the above discussion applies unchanged. In Sections 4.2 and 5.2, we use these trees to

solve generalized range searching problems. The only difference from the above discussion

is in the querying: As before, when we have to do a query at anode v whose structures are

under construction, we query v's children and combine the answers. However, combining the

answers takes more work since duplicate colors must be eliminated. This can be done in O(i)
time (not 0(1) time) by using a technique to be described in Section 2.3. Our organization

of augmented BB(a) trees in Section 8.3 is somewhat different from what we have described

here and we defer further discussion of this to that section.

2.3 Issues in the handling of colors

We discuss some of the issues that anse in the encoding and handling of colors, especially in

the dynamic setting. Throughout the paper, we will assume that our algorithms incorporate

the mechanisms that we describe here and so we will not repeat them afterwards.

The number of colors for a given problem can range from 1 to n. We encode each color

as an integer in the range [1, n).
In many of our generalized reporting problems, when answering a query we may encounter

the same color more than once (but no more than 0(1) times). Our goal is to eliminate

the duplicate colors efficiently before we output the answer. This situation arises in several

different ways, such as, for instance: (i) In augmented BB(a) trees, when we answer a query

9

at anode whose auxiliary structure is under construction by querying its two children (see

Section 2.2), (ü) when answering a query by decomposing the query object into 0(1) simpler

objects and querying with the latter, (iü) when querying with a single query object which

intersects 0(1) input objects of the same color, and (iv) combinations ofthe above three

cases.

We can eliminate duplicate colors by simply using an array, C[1 : n), of colors to keep

track of the distinct colors that are found during the query. After a query, C can be reset in

time proportional to the output size. Thus the asymptotic query time is unaffected. (This

idea is borrowed from [JL92).)

While this approach works fine in the static case, it can lead to problems in the dynamic

setting. Assume that n is the current size of 5 and let C have size n. When inserting an

object of a new color, we encode the color with an unassigned integer; when deleting the

last object of some color from 5, we return the integer encoding the color to the pool of

unassigned integers. Now, if many new colors are inserted in 5, then we could run out of

space in C; conversely, if many colors are deleted from 5, then the size of C could become

much larger than the new size of 5.

To overcome this problem, we periodically build a new version of the entire data structure

and during this process we re-encode the distinct colors in 5 into a larger or smaller range

of integers, as appropriate, and also create a new C. While the rebuilding is underway, the

current structure continues to be in use for queries and updates. The rebuilding is done by

piggy-backing a small amount of rebuilding work onto each future update on the current

structure. The key is to make sure that the rebuilding can be done without affecting the

update time of the current structure and that the new structure can take over from the

old one in time. (This idea is reminiscent of the global rebuilding technique of Overmars

[Ove83).)

Specifically, let no have been the size of 5 when the previous rebuilding was initiated (i.e.,

the rebuilding that resulted in the current structure) and assume that C was created with

size 2no. When the number of updates (insert ions and deletions) on the current structure

exceeds, say, no/3, we start building a new structure, with the goal of having it take over by

the time an additional no/3 updates have been done on the current structure. If nl is the size

of 5 at this point, then the newC has size 2nl. Note that nl satisfies 2no/3 ::; nl ::; 4no/3.

With each future update, we do four rebuilding insertions on the new structure and also do

that update on it. Since nl ::; 4no/3, it is clear that the new structure will be ready within

the next no/3 updates .

. Note that at any time during the rebuilding the size of 5 is less than nl + no/3 = 5no/3

10

and greater than nl - no/3 = no/3. Thus, we will neither run out of space in C, which has

size 2no, nor will C's size become too large compared to the size of S. The query time is

clearly unaffected. Let I(m) and D(m) denote, respectively, the insertion and deletion time

for our data structure when it has m points, exclusive of the rebuilding insertions. Then, with

the rebuilding insertions, the insertion time of the current structureis O(I(no) + I(no)) =
O(I(no)) and the deletion time is O(D(no) + I(no)). In all our algorithms, I(m) and D(m)
are of the same order and so the overall deletion time is O(D(no)).

2.4 Notation

Finally, for ease of reference, we summanze some of our notation and terminology. As

mentioned before, we use n to denote the input size (e.g., the number of points/line seg­

ments/rectangles etc. in S)j in the dynamic setting, n stands for the current size of S. We

use i to denote the output -size of a generalized reporting or type-2 counting problem, i.e.,

the number of distinct colors intersected.

If v is a. node in some binary tree T, then T(v) denotes the subtree rooted at v and left(v)

and right(v) denote the left and right child of v, respectively. If a set of points is stored

in nondecreasing order (according to some coordinate) from left to right at the leaves of T,

then the range of v is the closed interval bounded by the leftmost and rightmost points in

T(v).

Unless stated otherwise, all bounds in the paper are worst-case.

3 Generalized I-dimensional range searching

Let S be a set of n colored points on the z-axis. We show how to preprocess S so that for

any query interval, q, we can solve:

1. the dynamic reporting problem in O(log n + i) query time and O(log n) update time,

using only O(n) space.

2. the static counting problem in O(log n) (resp., 0(1og2 n/ log log n)) query time using

O(n log n) (resp., O(n log n / log log n)) space.

3. the dynamic counting problem in O(n log n) space, 0(1og2 n) query time, and O(10g2 n)
update time.

4. the static type-2 counting problem in O(n log n) space and O(log n + i) query time.

11

Previous work on the problem is as follows: In [JL92l, the static reporting version of the

problem was considered, and an O(n)-space and O(log n+i)-query time algorithm was given.

Using a result of [Lop91l, the dynamic version of the problem can be solved in O(nlog n)

(resp., O(n)) space, O(log n + i) (resp., O(log2 n + i)) query time, and O(log2 n) (resp.,

O(log n)) amortized update time. Our dynamic algorithm is more efficient and much simpler.

Moreover, the static version of trus structure is even simpler and solves the static problem

within the same bounds as [JL92l but, unlike [JL92l, does not use fractional cascading. No

results were known before for any of the counting problems.

Our schemes for the reportingj counting problems are based on a simple transformation,

wruch converts the original generalized reportingj counting problem to an instance of some

standard reportingj counting problem, for wruch efficient solutions are known. Subsequently,

we also present an alternative solution, with the same performance bounds, for the static

counting problem and a solution to the static type-2 counting problem. Trus approach is

based on persistent data structures and has the advantage of being generalizable to other

problems as weIl.

3.1 A transformation-based approach

We first describe the transformation and prove its correctness.

For each color c, we sort the distinct points of that color by increasing x-coordinate. For

each point p of color c, let pred(p) be its predecessor in the sorted order; for the leftmost

point of color c, we take the predecessor to be the point -00. We then map p to the point

p' = (p, pred(p)) in the plane and associate with it the color c. Let S' be the resulting

set of points. Given a query interval q = [l, rl, we map i~ to the grounded rectangle q' =
[l, r] x (-00, I).

Lemma 3.1 There is a point 0/ color c in q = [l, rl i/ and only i/ there is a point 0/ color

c in q' = [l, rl x (-00, l). Moreover, i/ there is a point 0/ color c in q', then this point is

un'tque.

Proof (~) Let p' be a c-colored point in q', where p' = (p, pred(p)) for some c-colored

point pES. Since p' is in [l, rl x (-00, l), it is clear that 1 :::; p :::; r and so p E [l, rl.
(:::}) Let p be the leftmost point of color c in [l, rl. Thus 1 :::; p :::; rand since pred(p) rJ. [l, rl,

we h~ve 1 > pred(p). It follows that p' = (p,pred(p)) is in [l,rl x (-oo,l). We prove that p'

is the only point of color c in q'. Su ppose for a contradiction that t ' = (t, pred(t)) is another

point of color c in q'. Thus we have 1 :::; t :::; r. Since t > p, we also have pred(t) 2: p 2: l.

Thus t ' = (t,pred(t)) cannot lie in q'-a contradiction. The claim follows. 0

12

Lemma 3.1 implies that we can solve the generalized 1-dimensional range reporting (resp.,

counting) problem by simply reporting the points in q' (resp., counting the number of points

in q'), without regard to colors. In other words, we have reduced the generalized reporting

(resp., counting) problem to the standard grounded range reporting (resp., counting) problem

in two dimensions. In the dynamic case, we also need to update S' when S is updated. We

discuss these matters in more detail below.

3.1.1 The dynamic reporting problem

Our data structure consists of the following: For each color c, we maintain a balanced binary

search tree, Tc, in which the c-colored points of S are stored in increasing x-order. We main­

tain the colors themselves in a balanced search tree, GT, and store with each color c in GT a

pointer to Tc. We also store the points of S' in a balanced priority search tree (PST) [McC85].

Recall that a PST on m points occupies O(m) space, supports insertions and deletions in

O(log m) time, and can be used to report the k points lying inside a grounded query rectangle

in O(log m + k) time via the query Enumeratf!-Rectangle in [McC85]. (Although this query

is designed for query ranges of the form [I, r] x (-00, I], it can be trivially modified to ignore

the points on the upper edge of the range, without affecting its performance.) Clearly, the

space used by the entire data structure is O(n).
To answer a query q = [I, rl, we simply query the PST with q' = (I, r] x (-00, I) and

report the colors of the points found. Correctness follows !rom Lemma 3.1. The query time

is O(log n + k), where k is the number of points inside q'. Ey Lemma 3.1, k = i, and so the

query time is O(log n + i).
Suppose that a c-colored point p is to be inserted in S. H c fI. CT, then we create a tree

Tc containing p, insert p' = (p, -00) into the PST, and insert c, with apointer to Tc, in GT.

If cE CT and p E Tc, then we insert another copy of p in Tc and stop. Otherwise, cE GT

and p fI. Tc. Let u be the successor of p in Tc. If u exists, then we set pred(p) to pred(u) and

pred(u) to p; otherwise, we set pred(p) to the rightmost point in Tc. We then insert p into

Tc, p' = (p, pred(p)) into the PST, delete the old u' !rom the PST, and insert the new u' into

it.

Deletion of a point p of color c is essentially the reverse. We delete p !rom Tc. If there is

no other copy of p in Tc, then we delete p' !rom the PST and if p had a successor, u, in Tc

then we reset pred(u) to pred(p), delete the old u' !rom the PST, and insert the new one. If
Tc becomes empty in the process, then we delete c !rom CT. Clearly, the update operations

are correct and take O(log n) time.

13

Theorem 3.1 Let S be a set 0/ n colored points on the real line. S can be preprocessed

into a data stnLcture 0/ size O(n) such that the i distinct colors 0/ the points 0/ S that

are intersected by any query interval can be reported in O(log n + i) time and points can be

inserted and deleted online in S in O(log n) time. 0

For the static reporting problem, we can dispense with CT and the Tc's and simply use

a static form of the PST to answer queries. This provides a simple O(n)-space, O(log n + i)­
query time alternative to the solution given in [JL92].

3.1.2 The static counting problem

We store the points of S' in nondecreasing x-order at the leaves of a balanced binary search

tree, T, and store at each internal node t of T an array At containing the points in t's subtree

in nondecreasing y-order. The total space is O(n log n), since each of the O(log n) levels in

T uses O(n) space. To answer a query, we determine O(log n) canonical nodes v in T such

that [1, r] covers v's range but not the range of v's parent. Using binary search we determine

in each canonical node's array the highest array position containing an entry less than 1 (and

thus the number of points in that node's subtree that lie in q') and add up the positions

thus found at all canonical nodes. (~he case where an array has runs of equal-valued y­

coordinates can be handled by st oring , during the preprocessing, apointer with each such

entry to the highest array entry of the same value. Thus if the query falls within a run,

the highest entry of the same value can be accessed in 0(1) time.) The correctness of this

algorithm follows from Lemma 3.1. The total query time is 0(log2 n).

We can reduce the query time to O(log n) as follows: At each node t we create a linked

list, B t, which contains the same elements as At and maintain apointer from each entry of

Bt to the same entry in At. We then apply the technique of fractional cascading [CG86] to
-......

the B-lists, so that after an initial O(log n)-time binary search in the B-list of the highest

canonical node, the correct position in the B-list of each of the other canonical nodes can

be found directly in 0(1) time. (To facilitate binary search in a B~list, we build a balanced

search tree on each B-list after the fractional cascading step.) Once the position in aB-list

is known, the appropriate position in the corresponding A-array can be found in 0(1) time.

We now give an alternative solution which reduces the space to O(nlognjloglogn) at

the expense of an 0(log2 n j log log n) query time. We sort the points of S' in nondecreasing

y-order, breaking ties arbitrarily. We then draw a horizontalline after every r nj Cl: 1 points

in this sorted list, where Cl: .:::; n is a parameter to be fixed later. This partitions the plane

into at most Cl: horizontal strips, each of size rn j Cl: 1 (with the possible exception of one strip

14

which may contain fewer points). With each strip, we store an array containing its points in

nondecreasing z-order, ties broken arbitrarily. We perform this processing recursively within

each strip, stopping when a strip has size 1. The number of levels is O(log nj log 0:) and each

level uses O(n) space. Thus the total space is O(nlog njlog 0:).
A query is answered as follows: Note that q' will completely span, in the y direction, all

but possibly one strip. For each spanned strip, we can determine the number of points of

the strip lying in q' from the positions of land r in the strip's array. This takes O(1og(njo:))

time, via binary search, and so the total time for all spanned strips is O(o:.log(njo:)). Using

fractional cascading this can be reduced to O(o:+log(njo:)). The one partially.,spanned strip

is handled recursively since q' behaves like a grounded rectangle for this strip. This yields a

total query time of O((0: + log(n j 0:)) log n j log 0:). Choosing 0: = [log n 1 gives a query time

of O(log2 n j log log n) and aspace bound of O(n log n /log log n).

Theorem 3.2 Let 8 be a set oJ n colored points on the real line. 8 can be preprocessed

into a data strocture oJsize O(nlogn) (resp.) O(nlognjloglogn)) such that the number oJ

distinctly-colored points oJ 8 that are intersected by any query interval can be determined in

O(logn) (resp.) O(log2n/loglogn)) time. 0

3.1.3 The dynamic counting problem

We store the points of 8' using the same basic two-Ievel tree structure as in the static

problem. However, T is now a BB(0:) tree (Section 2.2) and the auxiliary structure, D(t),
at each node t of T is a balanced binary search tree where the points are stored at the leaves

in left to right order by nondecreasing y-coordinate. To facilitate the querying, each node v

of D(t) stores a count of the number of points in its subtree. Given areal number, r, we can

determine in O(1og n) time the number of points in D(t) that have y-coordinate less than r

by searching for r in D(t) and adding up the count for each node of D(t) that is not on the

search path but is the left child of anode on the path. It should be dear that D(t) can be

maintained in O(log n) time under updates.

In addition to the two-Ievel structure, we also use the trees Tc and the tree CT, de­

scribed in Section 3.1.1, to maintain the correspondence between 8 and 8'. We omit furt her

discussion about the dynamic maintenance of the Tc's and of CT.

Queries are answered as in the static case, except that at each auxiliary structure we use

the above-mentioned method to determine the number of points with y-coordinate less than

I. Thus the query time is 0(1og2 n). (We cannot use fractional cascading here.)

15

Insertion/ deletion of a point is done using the worst-case updating strategy described in

Section 2.2. Since here we have U(n) = O(1og n) for an auxiliary structure, the worst-case

update time for the entire data structure is O(log2 n).

Theorem 3.3 Let S be a set of n colored points on the real line. S can be preprocessed into

a data structure of size O(n log n) such that the number of distinctly-colored points of S that

are intersected by any query interval can be determined in O(log2 n) time and points can be

inserted and deleted online in S in 0(1og2 n) worst-case time. 0

3.2 A persistence-based approach

3.2.1 The static counting problem

In this subsection, we give an alternative scheme for the static counting problem which also

achieves O(n log n) space and O(log n) query time. We first solve a related problem, namely

when q is of the form [a, 00) and where we also wish to insert and delete points.

For each color c, we determine the maximal (i.e., rightmost) point of that color and store

all these maximal points at the leaves of a balanced binary search tree T. At each node of T,

we store a count of the number of leaves in the node's subtree. Given q, we identify O(log n)
canonical no des v such that q spans the range of v but not the range of v's parent and sum

the counts at all such nodes v.

To support updates we also maintain a balanced search tree, eT, which stores all colors.

With each color c in eT, we store apointer to a balanced binary search tree Tc for all c­

colored points. To insert a point p of, say, color c, we first search in eT for c. If c does not

exist in eT, then we make a binary tree Tc consisting of p alone and store c, with apointer

to Tc, in eT. If c exists in eT, then we insert p in Tc and if pis to the right of the current

maximal point of color c, then we delete the latter from T and insert p as the new maximal

point of color c. Deletion of a c-colored point is essentially the reverse process. (We do not

require deletion capability in this section; however, we will need this later, in Section 10.)

Clearly, the update time is O(log n) and the number of memory modifications is O(log n).

Lemma 3.2 A set S of n colored points on the real line can be preprocessed into a data

structure of size O(n) such that the number of distinctly-colored points contained in any

query interval q = [a, 00) can be reported in O(log n) time. The structure supports insertions

and deletions in O(log n) time with O(log n) memory modifications. 0

16

We can now solve the problem for a query interval q = [a, b] as follows: Using the approach

of Driscoll et al [DSST89] described in Section 2.1, we bulld a partially persistent version

of the data structure of Lemma 3.2, by treating the x-coordinate as time and inserting the

points by nondecreasing x-coordinate (ties broken arbitrarily) into an initially-empty data

structure. (Note that only the tree T needs to be made persistent. GT and the trees Tc
are only needed to do updates efficiently in the current version. They are not needed fcr

queries and can, in fact, be discarded once the persistent version of T has been bullt.) Given

q = [a, b], we determine the version corresponding to the greatest x-coordinate that is less

than or equal to band then query that version with the interval [a, 00).

Theorem 3.4 A set S of n colored points on the realline can be preprocessed in O(n log n)

time into a data structure of size O(n log n) such that the number of distinctly-colored points

contained in any query interval q = [a, b] can be reported in O(log n) time.

Proof First note that the structure of Lemma 3.2 has bounded in-degree and so the results

of [DSST89] (Section 2.1) apply. The correctness of the query algorithm follows from the

observation that since the version accessed does not contain any point to the right of b,

querying it with q = [a, b] is equivalent to querying it with q = (a, 00). The query time

follows from Lemma 3.2. To bulld the structure we do n insertions, each of which causes

O(log n) memory modifications. Thus, the persistent structure uses O(n log n) space. The

preprocessing time is clearly O(nlog n). 0

3.2.2 The static type-2 counting problem

We wish to preprocess a set S of n colored points on the x-a.xis, so that for each color

intersected by a query interval q = [a, b], the number of points of that color in q can be

reported efficiently.

We first show how to solve the problem for q = [a, 00). We sort the points of S in non­

decreasing order (ties broken arbitrarily) as Pl,P2, ... ,Pn, and store them and the points

Po = -00 and Pn+1 = 00 in an array A. This defines n + 1 intervals, some possibly empty.

Let I j denote ~nterval (Pj, Pj+1]. N otice that for any position of a in I j , the answer is invariant.

With I j we store a list L j : Let m be the number of points of color c with x-coordinate greater

than or equal to Pj+1. If m > 0, then Lj contains the entry < c,m >. (The entries in L j

appear in no particular order.)

To answer a query, the interval I j containing ais located by binary search in A. Then L j

is output in 9(i) time. Thus the total query time is O(1og n + i). The space used is clearly

O(n2
).

17

The space can be reduced to O(n) by observing that L j - 1 and L j are nearly the same;

the only difference is that if Pj is of color c and the entry < c, m > is stored in Lj- 1 , then, if

m > 1, then the entry < c, m - 1 > is stored in L j and, if m = 1, then there is no entry for

C in L j • Treating the x-coordinate as time, we store all the L-lists in a partially persistent

doubly-linked list as follows: We start at po with the doubly-linked list Lo which contains

an entry < c, m > for each distinct color c. For j = 1,2, ... , n, if pj is of color c, then

we obtain L j by performing a decrement or a delete operation on the entry for c in L j - 1 .

Each operation takes 0(1) time and causes 0(1) memory modifications. (The entry for c

in L j - 1 can be accessed in 0(1) time by maintaining an array which stores for each color

c apointer to the entry for c in the most re cent list.) Since there are n operations in all ,

the entire structure occupies O(n) space and can be built in O(n) time once the points have

been pre-sorted.

To answer a query, we access the appropriate version by binary search in A. Ey the

results in [DSST89), the time to output the list is still 9(i).

Lemma 3.3 A set S of n colored points on the real line can be preprocessed in O(n log n)

time into a data structure of size O(n) such that for any query interval [a, 00), a type-2

counting query can be answered in O(1og n + i) time, where i is the output size. 0

U sing the above structure, we can handle a finite query interval [a, b] as follows: We

associate the root r of a balanced binary search tree T with the point(s) of S with median

x-coordinate. At r we store three structures, Left(r) , Right(r) , and Mid(r): Left(r) is an

instance of the structure of Lemma 3.3, built on the points to the left of the median; Right(r)

is a symmetric structure (for queries of the form (-00, b]) built on the points to the right

of the median; and Mid(r) is a linked list containing entries of the form < c, m > for each

color c, if there are m > 0 points of color c at the median x-coordinate. We also store the

median x-coordinate in a field X(r). The left and right subtrees of r are built recursively

on the points to the left and to the right of the median, respectively. The total space is

clearly O(n log n) and the structure can be built easily in O(n log n) time, once the input is

pre-sorted.

A query is answered by searching down T and locating the highest node v such that

a ~ X(v) ~ b. If v does not exist, then we stop. Otherwise, we query Left(v) with [a, 00)
and Right(v) with (-00, b]. We take the two lists of answers output and the list Mid(v) and

if a color appears in more than one of these lists, then we add up its counts before outputting

the final answer. (This combining can be done in 9(i) time by using an array indexed by

color.) The query time is O(log n + i).

18

Theorem 3.5 A set S of n colored points on the realline can be preprocessed in O(n log n)

time into a data structure of size O(nlog n) such that for any query interval q = [a, b], a

type-2 counting query can be answered in O(log n + i) time, where i is the output size. 0

4 Generalized quadrant searching

Let S be a set of n colored points in the plane. For any query point q = (a, b), the northeast

quadrant of q, denoted by NE(q), is the set of a.ll points (z, y) in the plane such that z ~ a

and y ~ b. We show how to preprocess S so that for any NE(q) we can solve

1. the static reporting problem in O(n) space and O(1og n + i) query time.

2. the static counting problem in O(n log n) space and O(1og n) query time.

3. the dynamic reporting problem in O(n log n) space, 0(1og2 n + i log n) query time, and

O(log2 n) update time.

4. the semi-dynamic reporting problem, where only insertions are a.llowed, in O(n) space,

0(1og2 n + i) query time, and O(log n) amortized insertion time.

We present some applications of these results in Section 5.2 and Section 7.

4.1 The static reporting and counting problems

Consider the reporting problem. We first solve a related problem, namely: preprocess a set

of colored points on the rea.lline so that thei distinct colors intersected by a query interva.l

[a, 00) can be reported efficiently and, moreover, points can be inserted efficiently.

For each color, we determine the rightmost point of that color and store a.ll these points

in sorted order at the leaves of a ba.lanced search tree l' and thread the leaves into a doubly­

linked list L. Moreover, we store a.ll the colors in a ba.lanced search tree CT. With ea.ch

color, we store the rightmost point of that color.

A query can be answered by simply scanning L from right to left, stopping when a point

to the left of a is encountered. The query time is e(i) and the space is O(n). To insert a

point p of color c we use CT to determine if p is to the right of the c-colored point (if any)

currently in L and if so then we delete that point from T and insert p. This takes O(log n)

time and causes 0(1) memory modüications in the list L.

19

To solve the quadrant reporting problem, we consider the points of S in non-increasing

y-order and insert their z-coordinates into a partially persistent version of the above list L.

(The trees T and CT are needed only to do updates efficiently in the current list. They

are not used for queries. Therefore, we need not make them persistent and, in fact, we can

discard them after the persistent version of L has been built.)

Given NE(q), where q = (a, b), we determine the smallest y-coordinate in S that is

greater than or equal to band query the corresponding version of L with [a, 00).

Theorem 4.1 A set S of n colored points in the plane can be preprocessed in O(nlog n)

time into a data structure of size O(n) such that for any query point q, the i distinct colors

of the points lying in the northeast quadrant of q can be reported in O(log n + i) time.

Proof To see that the method is correct, note that only those points that are at least as

high as q can possibly be in NE(q). The version accessed consists of precisely these points.

Moreover, since NE(q) is infinite upwards, any such point (z,y) is in NE(q) if and only if

z is in [a, 00). The query time is O(log n + i) since O(log n) time is required to access the

correct version and 9(i) additional time is required to query it. There are n insertions into

L, each taking O(log n) time and 0(1) memory modifications. Thus, the space is O(n). The

preprocessing time is clear. 0

For the static quadrant counting problem, we use a similar approach. However, the 1-

dimensional problem that we need to solve now is counting the number of distinct colors in

any query interval [a, 00). For this we use the structure of Lemma 3.2. To solve the quadrant

problem, we make this structure partially persistent.

Theorem 4.2 A set S of n colored points in the plane can be preprocessed in O(n log n)

time into a data structure of size O(n log n) such that the number of distinctly-colored points

lying in the northeast quadrant of any query point q can be reported in O(log n) time. 0

4.2 Dynamic quadrant reporting

We store the points of S in nondecreasing y-order from left to right at the leaves of a BB(a)

tree T. For any node v of T, let Y(v) be the y-coordinate stored at the leftmost leaf in

T(v). At v we store an auxiliary structure, D(v), which is an instance of the structure of

Theorem 3.1 for dynamic generalized 1-dimensional range searching. D(v) is built on the

z-coordinates of the points in T(v).

20

Given a query NE(q), where q = (a,b), we proceed as follows: Let v be the current node

in the searchj initially, v is the root of T. H v is nil then we return. If b ::; Y(v) then we

query D(v) with [a, 00)and return. If b > Y(right(v)) then we recursively search T(right(v))j

otherwise (b ::; Y(right(v))), we query D(right(v)) with [a,oo) and then recursively search

T(left(v)).

Insertion/deletion of a point is done using the worst-case updating strategy described in .

Section 2.2. (In particular, note the discussion at ~he end of Section 2.2 on how queries are

performed at anode whose auxiliary structure is under construction.)

Theorem 4.3 Let S be a set of n colored points in the plane. S can be stored in a data

structure of size O(n log n) such that for any query point q, the i distinct colors of the points

lying in q 's northeast quadrant can be reported in O(log2 n + i log n) time and points can be

inserted and deleted in O(log2 n) time.

Proof To show that the query algorithm is correct we first prove the claim that if v is the

current node in the search, then the query algorithm correctly returns the distinct colors of

the points in T(v) that are in NE(q). From this the correctness of the query algorithm will
follow since we begin with v == rand all points of S are in T(r) = T.

H v is nil then the claim is immediate. So assume that v =1= nil and that the claim holds

for v's children. If b::; Y(v), then the points in T(v) are no lower than q and so the problem

becomes I-dimensional in z. The claim then follows from the correctness of D(v) and the

fact that all points of T(v) are stored in D(v). Otherwise, if b > Y(right(v)), then the points

in T(left(v)) are all below q and so the points of T(v) that could possibly be in NE(q) are

all in T(right(v)). Thus the recursive search on T(right(v)) satisfies the claim. Otherwise,

we have b ::; Y(right(v)). In this case, the points in T(right(v)) are all no lower than q

and so with respect to these points the problem becomes I-dimensional in z. The query on

D(right(v)) handles these points correctly. Moreover, the points in T(left(v)) that are in

NE(q) are handled correctly by the recursive search in that subtree.

The generalized quadrant reporting query is decomposable in the sense that, for any node

v, the points of T(v) that are in NE(q) can be determined by combining the answers for

v' schildren. Thus the query algorithm is correct even at anode v for which D(v) is under

construction.

The query time is O(log2 n+i log n) since O(log n) nodes are queried and at each node the

query can take O(1og n + i) time. By Theorem 3.1, the update time, U(n), for a D-structure

is O(logn)j thus the update time for the entire structure is O(log2 n). Each level of T uses

O(n) space and so the total space is O(nlog n). 0

21

4.3 Dynamic quadrant reporting: the insertions-only case

In this subsection, we show that the results of Section 4.2 can be improved substantially if

only insertions are allowed. Our scheme uses O(n) space, has a query time of O(log2 n + i),
and an amortized insertion time of O(log n). More imp ort antly, this result is one of the

building blocks of an efficient scheme for generalized 3-dimensional range searching which

we describe in Section 6.

For each color c, we determine the c-maximal points. (A point p is called c-maximal if it

has color c and if there are no points of color c in p's northeast quadrant.) We discard all

points of color c that are not c-maximal. In the resulting set, let the predecessor, pred(p),

of a c-colored point p be the c-colored point that lies immediately to the left of p. (For the

leftmost point of color c, the predecessor is the point (-00,00).) With each point p = (a, b),
we associate the horizontal segment with endpoints (al, b) and (a, b), where al is the x­

coordinate of pred(p). This segment gets the same color as p. Let Sc be the set of such

segments of color c. (Note that the segments in Sc form a staircase.) The data structure

consists of the following:

1. A structure T storing the segments in the sets Sc, where c runs over all colors. T
supports the following query: given a point q in the plane, report the segments that

are intersected by the upward-vertical ray starting at q. Moreover, it allows segments

to be inserted and deleted. We implement T as the structure given in [CJ90]. This

structure uses O(n) space, supports insert ions and deletions in O(log n) time, and has

a query time of O(log2 n + 1), where 1 is the number of segments intersected.

2. A balanced search tree, GT, storing all colors. For each color c, we maintain a balanced

search tree, Tc, storing the segments of Sc by increasing y-coordinate. This structure

supports the following operation: Given a c-colored point p in the plane, find all

segments in Sc that intersect the southwest quadrant, SW(p), of p. Moreover, after

the segments have been found, p must be inserted into Tc.

Let SI, • • • , Sie be the segments, in increasing y-order, that intersect SW(p). These

segments can be found by binary search in Tc. To insert p, we do the following on

Tc. We delete S2, . •. ,Sie from Tc, insert the horizontal segment that starts at p and

stretches left to the x-coordinate of the left endpoint of Sie, and keep only that part of

SI that stretches to the right of p's x-coordinate. (See Figure 1.) The entire operation

can be done in O((k + l)logn) time (or even O(logn + k) time).

22

p -,

Figure 1: Insertion of a c-colored point p into the data structure for generalized semi-dynamic
quadrant reporting. Segments Sb S2, ••• ,Sie E Sc are replaced by the dashed horizontal
segment and by the portion of SI that is to the right of the dashed vertical segment.

Let us now consider how to answer a quadrant query, NE(q), and how to insert a point in

S. To answer NE(q), we query T with the upward-vertical ray from q and report the calors

of the segments intersected. The correctness of this algorithm follows from the easily proved

facts that (i).a c-colored point lies in NE(q) if and only if ac-maximal point lies in NE(q)
and (ii) if ac-maximal point is in NE(q), then the upward-vertical ray from q must intersect

a segment of Sc. The correctness of T guarantees that only the segments intersected by this

ray are reported. Since the query can intersect at most two segments in any Sc, we have

.[:s; 2i, and so the query time is O(log2 n + i).
Let p be a c-colored point that is to be inserted into S. If c is not in CT, then we insert

it into CT and insert the horizontal, leftward-directed ray emanating from p. If c is present

already, we find the segments SI, •• • , Sie as just described. We update CT and then perform

the same updates on T. Hence, an insertion takes O((k + 1) log n) time.

What is the total time for doing n insert ions into an initially-empty set? We can charge

O(logn) time to each of the full segments S2,S3, •• • Sie deleted during an insertion. Notice

that none of these segments will reappear. Thus each segment is charged at most once.

Moreover, each of these segments has so me previously inserted point as a right endpoint.

It follows that the number of full segments existing over the entire sequence of insertions

is O(n) and so the total charge to them is O(nlog n). We charge the cost of handling the

partial segment SI to the point p inserted. The total charge thus incurred is O(n log n) since

each p is charged at most once. It follows that the n insertions take O(n log n) total. Thus

the amortized insertion time is O(log n).

23

Theorem 4.4 Let S be a set of n colored points in the plane. There exists a data structure

of size O(n) such that for any query point q, we can report the i distinct colors of the points

that are contained in the northeast quadrant of q in 0(1og2 n + i) time. Moreover, if we do

n insertions into an initially-empty set then the amortized insertion time is O(1og n). 0

5 Generalized 2-dimensional range searching

We show how to preprocess a set S of n colored points in the plane so that for any axes­

parallel query rectangle q = [a, b] x [c, d], we can solve

1. the static counting problem in O(n210g2n) (resp., O(n3 10gn)) space and O(log2 n)

(resp., O(log n)) query time.

2. the dynamic reporting problem in O(n log3 n) space, O(log2 n + i log n) query time, and

O(log 4 n) update time.

3. the semi-dynamic reporting problem, where only insertions are allowed, in O(nlog2 n)
space, O(log2 n + i) query time, and O(log3 n) amortized insertion time.

No results were known for these problems. The static reporting version had been solved

in [JL92] in O(nlog2n) (resp., O(nlogn)) space and O(logn+i) (resp., 0(1og2 n +i)) query

time.

5.1 The static counting problem

We first solve the problem for q' = [a, 00) X [c, d]. We sweep over the points of S by

nonincreasing x-coordinate and insert their y-coordinates into a partially persistent version

of the structure of Theorem 3.3 for dynamic 1-dimensional range counting. Given q', we

access the version corresponding to the smallest x-coordinate Xo such that Xo ;:::: a and query

it with [c, d].
To solve the problem for q = [a, b] x [c, d], we build for each distinct x-coordinate x in S

an instance of the above structure for those points whose x-coordinate is less than or equal

to x. Given q, we access the structure corresponding to the greatest x-coordinate Xl in S

such that Xl ::; band query it with q'.

Theorem 5.1 A set S of n colored points in the plane can be preprocessed in O(n210g2 n)

time into a data structure of size O(n 2 log2 n) such that for any aus-parallel query rectangle

24

q = [a, b] x [c, d]J the number 01 distinctly-colored points in q can be reported in O(log2 n)
time.

Proof Consider the structure for q'. Since the structure of Theorem 3.3 supports insertions

in O(log2 n) time, the number of memory modifications per update is also O(log2 n). Thus

the persistent structure uses O(n log 2 n) space and can be built in O(n log2 n) time. Also

the query time is the same as in Theorem 3.3, namely O(log2 n). The correctness of the

query algorithm follows from the observations that only those points of S with z-coordinate

greater than or equal to Zo can possibly be in q' and the version accessed contains just these

points. Moreover, since q' is infinite to the right of a, the problem becomes I-dimensional in

y.
N ow consider the structure for q. The space, query time, and building time are immediate

from the above discussion. For correctness, note that the only points of S that can possibly

be in q are those with z-coordinate less than or equal to Zl. Since the version accessed

contains just these points, querying it with q is equivalent to querying it with q'. 0

We now give an alternative solution wruch trades space for query time. We sort the

points by nondecreasing y-coordinates as P1,P2, ... ,Pn, with ties broken arbitrarily. Let

y(pi) denote the y-coordinate of Pi. For each i,j, such that i ::; j, we project the points with

y-coordinates in the range [y(pi), Y(Pj)] onto the z-axis and store these in an instance Tij
of the data structure of Theorem 3.2 for generalized I-dimensional range counting. Given

q = [a, b] x [c, d], we determine, by binary search, the smallest i and the largest j such that

c ::; y(pi) and d 2: Y(Pj). If i > j we return zero. Otherwise, we query Tij with the interval

[a, b] and return the count obtained from trus query as the answer to the 2-dimensional

problem.

Theorem 5.2 A set S 01 n colored points in the plane can be preprocessed into a data

structure 01 size O(n3 log n) (resp'J O(n3 log njlog log n)) such that the number 01 distinctly­

colored points in any azes-parallel query rectangle q = [a, b] x [c, d] can be determined in

O(1ogn) (resp'J O(log2 nj log log n)) time.

Proof The correctness of the method follows from the observation that only the points in

the range [y(pi), Y(Pj)] need be considered and since q is effectively y-infinite in the range

. [y(pi), Y(Pj)], a I-dimensional range counting query suffices. The query time is either O(log n)
or O(log2 n j log log n), depending on the structure used for Tij . Correspondingly, since

there are O(n2
) distinct pairs i, j, the total space is easily seen to be either O(n3 log n)

or O(n3 log n flog log n). 0

25

5.2 The dynamic reporting problem

Our solution is based on the dynamic quadrant reporting structure of Section 4.2. We first

solve the problem for q' = [a, b] x [c, 00).
We store the points of S in sorted order by x-coordinate at the leaves of a BB(a) tree T'.

At each internal node v, we store an instance of the structure of Theorem 4.3 for NE-queries

(resp., NW-queries) built on the points in v's left (resp., right) subtree. Let X(v) denote the

average of the x-coordinate in the rightmost leaf in v's left subtree and the x-coordinate in

the leftmost leaf of v's right subtreej for a leaf v, we take X(v) to be the x-coordinate of the

point stored at v.

To answer a query q', we do a binary search down T', using [a, b], until either the search

runs off T' or a (highest) node v is reached such that [a, b] intersects X(v). In the former

case, we stop. In the latter case, if v is a leaf, then if v's point is in q' we report its color. If v

is a non-Ieaf, then we query the structures at v using the NE-quadrant and the NW-quadrant

derived from q' (i.e., the quadrants with corners at (a, c) and (b, c), respectively), and then

combine the answers.

Updates on T' are performed using the worst-case updating strategy described in Sec­

tion 2.2. (Agam, note the discussion at the end of Section 2.2 regarding querying.)

Lemma 5.1 A set S 0/ n colored points in the plane can be preprocessed into a structure

0/ size O(n log2 n) such that the i distinct colors 0/ the points lying inside a grounded axes­

parallel query rectangle q = [a, b] X [c, 00) can be reported in O(log2 n + i log n) time. The

structure supports updates in O(log3 n) time.

Proof We first show that the query algorithm is correct. If v does not exist, then [a, b] lies

between two successive x-coordinates in T' (or lies outside of the range of x-coordinates of

T') and thus q' cannot contain any point of S. If v exists and is a leaf, then [a, b] contains

only v's point (otherwise, the search would have stopped at a non-Ieaf) and this point is

checked for inclusion in q'. Otherwise, v exists and is a non-Ieaf. Since [a, b] intersects X(v),
q' functions like a NE-quadrant (resp., NW-quadrant) with respect to the points in v's left

(resp., right) subtree and hence the problem can be solved by querying the structures for

these subtrees and combining the answers.

Our generalized query is decomposable in the sense that the query at anode v can be

answered by combining the answers to queries at v's children. Thus the query algorithm is

correct even at anode whose auxiliary structure is under construction.

The space and time bounds rely on the bounds in Theorem 4.3. The query time is

dominated by the time for the two quadrant queries and is hence O(log2 n + i log n). Each

26

level of T' uses O(n log n) space and so the total space is O(n log2 n). Since U(n) is O(log2 n),

the update time for the entire structure is O(log3 n). 0

We can now solve the problem for q =[a, b] x [c, d] as folIows: We store the points of

S by sorted y-order at the leaves of a BB(a) tree T. At each internal node v, we build an

instance of the structure of Lemma 5.1 for points in v's left subtree to answer queries with

upward-grounded rectangles. Similarly, for points in v's right subtree, we build a structure

to support queries with downward-grounded rectangles. We also store at v areal number

Y(v), which is similar to X(v) of the previous structure, but defined on the y-coordinates in

T's leaves.

To ans wer a query, we proceed as in the previous algorithm, except that we search in T·

for anode v such that [c, d] intersects Y(v). If v exists and is a non-Ieaf, then we query its

auxiliary structures with the two grounded rectangles derived !rom qj if v is a leaf, then we

check its point for indusion in q. Updates are done using the worst-case updating strategy

of Section 2.2.

Theorem 5.3 A set S of n colored points in the plane can be preprocessed into a structure

of size O(n log3 n) such that the i distinct colors of the points lying inside an aus-parallel

query rectangle can be reported in O(log2 n + i log n) time. The structure supports updates

in O(log4 n) time. 0

Proof Similar to the proof of Lemma 5.1. 0

5.2.1 Dynamic reportiilg: insertions only

As we did in Section 4.3, we can improve upon Theorem 5.3 in the insertions-only case. We

will use this improved result in Section 6. The following lemma is almost immediate !rom

Lemma 5.1.

Lemma 5.2 Let S be a set ofn colored points in the plane. There exists a data structure of

size O(nlog n), such that for any grounded query rectangle [a, b] x [c, 00), we can report the

i distinct colors of the points that are contained in it in O(log2 n + i) time. Moreover, if we

do n insertions into an initially-empty set then the amortized insertion time is O(log2 n).

Proof We use the same structure as in Lemma 5.1, except that the auxiliary structures

for quadrant queries are the ones in Theorem 4.4. The query algorithm is unchanged but

the query time becomes O(log2 n + i). The total space is O(n log n) since the space per level

27

reduces to O(n). To do an insertion, we use the approach in Section 2.2 for obtaining an

amortized update time. By Theorem 4.4, Ü(n) = O(log n) and so the amortized update

time of the entire structure is O(log2 n). 0

Theorem 5.4 Let S be a set 0/ n colored points in the plane. There exists a data structure

0/ size O(nlog2 n) such that /or any query rectangle [a, b] x [c, dl, we can report the i distinct

colors 0/ the points that are contained in it in O(log2 n + i) time. Moreover, i/ we do n

insertions into an initially- empty set then the amortized insertion time is O(log3 n).

Proof Similar to the proof of Lemma 5.2. 0

6 Generalized 3-dimensional range searching

We show how to preprocess a set of n colored points in 3-space, so that for any query box

q = [a, b] x [c, dl x [e, /] the i distinct colors of the points inside q can be reported efficiently.

First consider queries q' = [a, b] x [c, dl x [e, 00). Let S be the given set of n points in

3-space. We sort the points by nonincreasing z-coordinates, and insert them in this order

into a partially persistent version of the structure of Theorem 5.4, taking only the first two

coordinates into account. To a.Ii.swer q', we access the version corresppnding to the smallest

z-coordinate greater than or equal to e and query it with [a, b] x [c, dj.

Lemma 6.1 Let S be a set 0/ n colored points in 3-space. There exists a data structure 0/
size O(n log3 n) that can be built in O(n log3 n) time, such that /or any query box [a, b] x

[c, dl x [e, 00), we can report the i distinct colors 0/ the points that are contained in it in

O(log2 n + i) time.

Proof First note that the structure of Theorem 5.4 is of bounded in-degree, so that the

results of [DSST89] apply. Correctness follows from the observation that the only points that

need be considered are those with z-coordinate at least e and these are precisely the points in

the version accessed. Since the box is infinite above e, the problem becomes 2-dimensional.

The query time and building time follow from Theorem 5.4. Also, by Theorem 5.4 the

total insertion time is O(n 10g3 n), which implies the same bound for the number of memory

modifications. Thus the space bound is O(n 10g3 n). 0

From Lemma 6.1 we get:

28

Theorem 6.1 Let S be a set of n colored points in 3-space. There exists a data structure

of size O(n log4 n) that can be built in O(n log4 n) time, such that for any query box [a, b] x

[c, d] x [e, f], we can report the i distinct colors of the points that are contained in it in

0(1og2 n + i) time.

Proof Use an approach similar to Lemma 5.2. However, since the problem is static the

outer tree need not be a BB(a) tree; any static balanced binary tree will do. 0

7 Generalized interval intersection searching

In this section we give some applications of the results of Section 4. Let S be a set of n colored

intervals on the x-axis. We show how to preprocess S so that for any query interval q = [a, b],

we can solve the static counting, the static reporting, and the dynamic and semi-dynamic

reporting problems efficiently.

Our approach is as follows: Let [z, y] be any interval in S. Then [a, b] intersects [z, y] if

and only if x ~ b and y ~ a. Let us map [z,y] to the point (z,y) in the plane and [a,b]

to the query point (b,a). Then it is clear that [a,b] intersects [z,y] if and only if (z,y) lies

in the northwest quadrant of (b, a). It follows that we can solve the generalized problems

stated above by using a data structure for the corresponding generalized quadrant searching

problem (these structures are symmetrie to the ones in Theorems 4.1-4.4).

Theorem 7.1 A set S of n colored intervals on the real line can be preprocessed so that

given a query interval q

1. the number of distinctly-colored intervals intersected by q can be reported in O(1og n)

time. The data structure uses O(n log n) space.

2. the i distinct colors of the intervals intersected by q can be reported in O(1og n + i)
time. The space used is O(n).

3. the i distinct colors of the intervals intersected by q can be reported in 0(1og2 n+i log n)

time and, moreover, intervals can be inserted or deleted online in 0(1og2 n) time. The

data structure uses O(n log n) space. Furthermore, if only insertions are allowed then

the bounds can be improved to O(n) space, O(log2 n + i) query time, and O(1og n)

insertion time, where the insertion time is amortized over a sequence of n insertions

into an initially-empty set. 0

29

We note that the static reporting version has been solved previously, with the same bounds,

in [JL92]. However, our solution above is simpler and more direct. No results were known

for the other two problems, although a very restricted version of the dynamic reporting

problem has been considered in [Lop91]. Under the assumption that no two intervals of the

same color ever overlap, a solution is given in [Lop91] which uses O(nlog n) (resp., O(n))
space, O(log n+i) (resp., O(log2 n+i)) query time, and o (log 2 n) (resp., O(log n)) amortized

update time.

8 Generalized 1-dimensional point enclosure search-
• Ing

We show how to preprocess a set, S, of n colored intervals on the z-a.xis so that for any

query point q on the z-axis we can solve

1. the counting problem in O(log n) time using O(n) space.

2. the type-2 counting problem in O(log n + i) query time using O(n) space.

3. the dynamic reporting problem in O(n) space, O((i+l)log n) query time, and O(log n)
amortized update time.

The static reporting problem was solved in O(n) space and O(log n+i) query time [JL92].

No results were known for the other problems. (The dynamic reporting version is solvable,

under the restriction that no two intervals of the same color overlap, using the results in

[Lop91] mentioned in Section 7.)

8.1 The counting problem

In preprocessing, we replace all equal-valued left (resp., right) endpoints in S by a single

left (resp., right) endpoint of that value. Then we sort the resulting set of end points in

nondecreasing order into an array A, such that if there is a left endpoint and a right endpoint

of the same value, then the left endpoint is stored before the right endpoint. The endpoints

in A partition the z-axis into at most 2n + 1 basic intervals. For each endpoint, we store the

number of distinctly-colored intervals that" span the basic interval to its right. We also store

with the endpoint a bit indicating whether it is the left endpoint or the right endpoint of an

interval in S.

30

Given q, we locate it in A via binary search. If q falls outside A, we return zero. Otherwise,

if q falls between two entries of A or if it coincides with an entry that is the right endpoint

of some interval in S, then we return the count associated with the entry to the left of q.

Otherwise, q coincides with a.Ii entry that is a left endpoint of some interval in Sand we

return the count associated with that entry.

Theorem 8.1 A set S of n colored intervals on the real line can be preprocessed into a

data structure of size O(n) such that the number of distinctly-colored intervals that contain

a query point can be determined in O(log n) time.

Proof The correctness of the method is dear if q falls inside a basic interval. Consider

the case where q coincides with an endpoint e. Then we need to count the distinct colors of

the intervals that (i) contain e, (ii) that begin at e, and (iii) that end at e. Suppose that e

is a left endpoint. Then intervals of the first two types span the basic interval to e's right.

If there are intervals of the third type also, then they must span the (empty) basic interval

to e's right; this follows from the way we broke ties. Thus the query algorithm is correct in

returning the count associated with e. Suppose that e is a right endpoint. Intervals of the

first and third type span the basic interval to e's left. If intervals of the second type exist,

then they too must span the (empty) basicinterval to e's left, because ofhow we broke ties.

Thus the query algorithm is correct in returning the count associated with e's predecessor.

The space and query time bounds are obvious. 0

8.2 The type-2 counting problem

The structure is similar to the one in Section 8.1. However, instead of storing a count with

each entry of A, we store a doubly-linked list. The list contains, for each color c, the item

< c, m > if there are m > 0 intervals of color c spanning the basic interval to the right of the

entry. The O(n2
) spa.ce implied by this approach can be reduced to O(n) using persistence,

as follows:

As we march left to right on ~he z-axis, each list changes from the previous one through

(i) insertion of color c if we see the left endpoint of an interval of color c and cis not in the

previous list, or (ii) incrementing of c's count if we see the left endpoint of an interval of

color c and c is already in the previous list, or (iii) decrementing of c's count if we see the

right endpoint of an interval of color Cj this is followed by the deletion of the entry for c if

its count becomes zero.

Thus, to create our space-efficient structure, we start with an initially-empty doubly­

linked list, scan the endpoints in left to right order, and perform the appropriate operation

31

from above in a partially persistent fashion on the list. Each operation causes only 0(1)
memory modifications in the current list and so the total space is just O(n). (By maintaining

a balanced search tree for the colors in the current list, each operation can clearly be done

in O(log n) time. Once the partially persistent list has been created, we can discard the tree

since it is not needed for querying.)

To ans wer a query, we simply access the appropriate list, using the approach of Sec­

tion 8.1, and output it. This takes O(log n + i) time.

Theorem 8.2 A set S 0/ n colored intervals on the realline can be preprocessed into a data

structure 0/ size O(n) such that /or any query point, a type-2 counting query can be answered

in O(log n + i) time, where i is the output size . 0

8.3 The dynamic reporting problem

The data structure that we use is a dynamic interval tree, T, which is implemented as a

BB(o:) tree [Meh84, pages 192-198}. The distinct z-coordinates of the endpoints of the

intervals in S are stored in increasing order from left to right at the leaves of T. For any

node v, let X (v) be the average of the z-coordinate stored in the rightmost leaf in v' s left

subtree and the z-coordinate stored in the leftmost leaf in v's right subtreej for a leaf v,

we take X (v) to be the z-coordinate stored at v. Each interval, I, of S is allocated to the

highest node v such that I intersects X(v). We caJl the set of intervals allocated to v the

node-list 0/ v and denote it by NL(v). The following is the auxiliary structure stored at v:

1. Balanced search trees NLl(V) and NR.,.(v): NLl(v) stores the left endpoints of the

intervals in NL(v) in nondecreasing z-order at the leaves and the leaves are threaded

into a linked list. NLr (v) is defined symmetrically. These lists constitute a sorted

representation of NL(v).

2. Balanced search trees L(v) and R(v): For each color c, L(v) contains the leftmost

c-colored endpoint from NLl(v). The entries in L(v) are stored in nondecreasing z­

order at the leaves and the leaves are threaded into a linked list. R(v) is defined

symmetrically.

3. A balanced search tree CT(v) which stores the distinct colors of the intervals in NL(v).
With each color c, we store pointers to the entries of color c in L(v) and R(v). We also

store with ca pointer to a balanced search tree Bc (v), which stores in sorted order the

endpoints of all the intervals ofcolor c in NL(v).

32

Note that the BB (Ct) tree in the above data structure is organized somewhat differently

from the one in Section 2.2. Here the auxiliary structure at anode v is built on only the

intervals in NL(v) rather than on all the intervals that have both their end points in T(v) (as

one would expect in a direct extension of the structure of Section 2.2 to intervals.)

Given a query point q, we search down T from the root. Let v be the current node. If

q ~ X (v) then we scan L(v)' sieaves from left to right, list out the colors of the entries that

are less than or equal to q, and then search T(left(v)) recursively. Otherwise, we proceed

symmetrically with R(v) and then search T(right(v)) recursively.

We now discuss updates. Consider the insertion of a c-colored interval]. We insert

1's endpoints in T and then determine the node v to whose node-list] should belong. We

insert 1's left endpoint into NLl (v) and into Bc (v). If 1's left endp6int becomes the leftmost

endpoint in Bc (v) then we update L(v). Symmetrically, with 1's right endpoint. We then

rebalance T via rotations. Consider Figure 2 which shows a right rotation about an edge

(u, v) E T, and representative intervals Ct, ß, and ,. (The discussion for a left rotation and

a double rotation is similar.) Before the rotation, Ct E NL(v) and ß" E NL(u), whereas

after the rotation, Ct" E NL(v) and ß E NL(u)j as shown in [Meh84], no other node-list is

affected by this rotation. Thus, following the rotation, we rebuild, all at once, the auxiliary

structures of u and v. A similar discussion applies for the deletion of an interval. (Note that

since the rebuilding of auxiliary structures is done all at once, T is always up-to-date for a

query and so the query algorithm above applies unchanged.)

Theorem 8.3 Let S be a set 0/ n colored intervals on the real line. S can be preprocessed

into a data structure 0/ size O(n) such that the i distinct colors 0/ the intervals 0/ S that

contain a query point can be reported in O((i + 1) log n) time and intervals can be inserted

and deleted online in O(log n) time, where the update time is amortized over a sequence 0/
n updates into an initially-empty set.

Proof We show that the query algorithm is correct. Note first that if anode is not on the

search path then no interval in its node-list can contain q. This is because for any node in

T, the endpoints of the intervals in its node-list are contained in its subtree and the search

guarantees that if anode is not on the search path then q is not in the range of x-coordinates

stored in its subtree. Thus only nodes v on the search path need be considered.

We claim that a color cis reported at anode v if and only if a c-colored interval] E NL(v)
contains q. Wlog assume q ~ X (v). If] contains q, then q is grea ter than or equal to the left

endpoint of] and hence greater than or equal to the left endpoint of]', where]' E NL(v)

is the c-colored interval whose left endpoint appears in L(v) . Thus]"s left endpoint will be

33

~

----0: ----0:
"1 "1

Figure 2: Single right rotation and representative intervals 0:, ß, and "1.

encountered in the scan of L(v) and color c will be reported. For the converse, assume that

color cis reported. Then the left endpoint of]' must have been encountered in the scan of

L(v) and so q is greater than or equal to this endpoint. Moreover, since]' E NL(v), its right

endpoint must be in v's right subtree and hence must be greater than or equal to q. Thus

]' contains q.

The query time at any node is O(i) + O(1) and so the overall query time is 0« i + 1) log n).

The space used by the structure is O(n) since each interval is in exactly one node-list and

the space used by the auxiliary structure of anode is linear in the size of the corresponding

node-list.

Consider the insertion or deletion of an interval]. The time to update the auxiliary

structure of the node to whose node-list] belongs is clearly O(log n). N ext, consider the

time for doing the rebuilding at the no des u and v that are involved in the rotation. Given

the sorted representations of the old NL1(u) and NLz(v), we can construct the new NL1(u)
and NL1(v) in sorted order in O(INL(u)1 + INL(v)l) time, as follows: We merge the lists

of leaves of the old NL1(u) and NL1(v) into a single list, then extract from this, in sorted

order, the lists of leaves for the new NL1(u) and NL1(v) (by checking whether the interval

corresponding to a leaf belongs to the new NL(u) or to the new NL(v)), and then build the

trees on these two lists bottom-up. Similarly for NL,.(u) and NL,.(v). Once this is done, L,
R, and CT at u and v can be easily constructed in the same amount of time. Thus the cost

34

of a rotation is O(INL(u)1 + INL(v)I). It then follows from the results in [Meh84] that the

update time is O(log n), whenamortized over a sequence of n updates into an initially-empty

set s. 0

9 Generalized 2-dimensional point enclosure search-
• Ing

We show how to preprocess a set S of n colored, axes-parallel rectangles in the plane so that

given a query point q = (a, b), we can solve

1. the static reporting problem in O(nlog n) space and O(log2 n + i) query time

2. the static counting problem in O(n log n) space and O(log n) query time.

For the reporting problem, an O(n1.5)-space and O(log n + i)-query time structure was

given in [JL92]. No results were known for the counting problem.

9.1 The reporting problem

We create a segment tree, T, [Meh84, pages 212-215], on the distinct z-coordinates of the

vertical sides of the rectangles in S. Each node of Twillcontain a data structure solving the

generalized one-dimensional point enclosure problem for an appropriate set of y-intervals,

which we now define.

Let r = [Zl' Z2] X [Y1' Y2] be a rectangle of S. Let v be anode of T such that the range

of v is contained in [Zl' Z2], but the range of v's parent is not. Then, rectangle r-or more

precisely, the interval (Y1' Y2]-is associated with v. (However, we do not necessarily store

[Yb Y2] at v.)
Now we define the set of y-intervals that are allocated to v-these are the intervals

on which the auxiliary structure of v is huilt. H v is the root of T then the intervals

allocated to it are just the intervals associated. with it . If v is a non-root node of T, then

let Vb V2, •.• , V m = v be the nodes on the path from the root, vb to v. For each color c, let

81, ... ,81e be the pairwise disjoint y-intervals that form the union of all c-colored y-intervals

that are allocated to vb • •. , Vm -1. Moreover, let t b ... , tz be the pairwise disjoint y-intervals

that form the union of all c-colored y-intervals that are associated with v. Then, we allocate

to v the pairwise disjoint c-colored y-intervals that span

35

We take the intervals of all eolors alloeated to v and store them in the data strueture for

generalized I-dimensional point enclosure reporting given in [JL92]. If n" is the number

of intervals alloeated to v, then this strueture uses O(n,,) spaee and reports the i" distinet

eolors of the intervals eontaining a query point in O(log n" + i,,) time.

Given a query point q = (a, b), we proeeed as follows: Assume that ais in the range of

the root of T; otherwise, we ean stop. We do a binary search in T for a and query with b

the auxiliary strueture of eaeh node v visited.

Theorem 9.1 Let S be a set of n co 10 red, aus-parallel rectangles in the plane. S can be

stored in a data structure of size O(n log n) so that for any query point q, the i distinct colors

of the rectangles containing q can be reported in 0(1og2 n + i) time.

Proof We first prove the eorreetness of the query algorithm. The seareh visits anode of

T if and only if the node's range contains a. Thus, the rectangles assoeiated with the nodes

on the seareh path are preeisely the ones whose x-intervals contain a. Any such rectangle

contains q if and only if its y-interval contains b. Thus we ean report the distinet eolors

of the rectangles eontaining q by doing at eaeh node v on the seareh path a generalized 1-

dimensional point endosure query on the y-intervals associated with v, using b as the query

point. Reeall though that our auxiliary struetures are built on the y-intervals alloeated to v.

However, the portion of any y-interval associated with v that contains bis allocated to v or

to a predeeessor of v on the search path. It follows that the distinct eolors of the rectangles

containing q will be reported.

We now establish the query time. Note that, for any c, the c-colored intervals allocated

to v are pairwise disjoint. Moreover, if v and w are nodes of T such that v is in w's subtree,

then the c-colored intervals allocated to v and to w are pairwise disjoint, except possibly at

end points. Thus there are at most two c-colored allocated intervals on the seareh path that

contain b and so the total number of distinctly-colored intervals intersected during the query

is at most 2i. In addition, O(log n) time is spent in searching the auxiliary structure at each

of O(1og n) nodes visited in the search. Thus the query time is 0(1og2 n + i). (Note that

since the auxiliary structure used in [JL92] is a window list [Cha86], it is not dear how to

re du ce the query time by applying fraetional cascading.)

Finally, we prove the space bound. Since each reet angle is associated with O(log n) nodes

of T [Meh84], the total number of y-intervals assoeiated with nodes of T is O(nlog n). We

will prove that the total number of allocated intervals is also O(n log n) by counting the total

number of endpoints of alloeated intervals.

Call an endpoint of an allocated interval a primary endpoint if it is an endpoint of an

interval associated with some node of T. Call it a secondary endpoint if it is an endpoint

36

created when a primary endpoint in USi chops off a portion of some interV""al in Uti. Note

that secondary endpoints can be created onlyby primary end points; a secondary endpoint

created at anode v cannot create a secondary endpoint at any descendant U of v since at 'U

it will be in the interior of some interval in USi.

The total number of primary endpoints is clearly O(n log n). How many secondary end­

points are there? Observe that: (1) If eis the endpoint of an interval associated with v then

e could be a primary endpoint of an interval allocated to v but e cannot be an end point of

any interval allocated to a descendant U of v since intervals allocated to v are subtracted

out at 'U. (2) e can create at most one secondary endpoint in v's left subtree; if it creates a

secondary endpoint at anode w in v's left subtree, then at any descendant w' of w, e will

fall in the interior of some interval in USi. Similarly for v's right subtree.

We charge each secondary endpoint to the primary endpoint that created it. By the above

discussion, each primary endpoint is charged 0(1). Thus there are O(nlog n) secondary

endpoints in total and hence O(n log n) endpoints of allocated intervals. It follows that

there are O(n log n) allocated intervals.

As mentioned before, if there are n" intervals allocated to v, then the auxiliary structure

at v uses O(n,,) space. Since an allocated interval appears in exactly one node and there

are O(n log n) of them, it follows that the auxiliary structures occupy a total of O(n log n)
space. 0

9.2 The counting problem

Except for two key differences, the approach described in Section 9.1 carries aver to the

counting problem once we replace the reporting version of the auxiliary structuxe by the

counting version (Theorem 8.1) and add up the counts reported from each auxiliary structure

queried.

The first difference is that in the reporting version we could afford to allow a c-colored

interval allocated to anode w to share an endpoint with a c-colored interval allocated to

a descendant v. However, we cannot allow this in the counting version, since then c would

be counted twice if q's y-coordinate coincided with that endpoint. To remedy this, we

exclude the shared endpoint in the c-colored interval allocated to the descendant v. Thus

the auxiliary structure of anode can now contain closed intervals, half-open intervals, and

open intervals. The structure of Theorem 8.1 can be modified very easily to handle this

without affecting its performance. (We omit the details.)

The second difference is that we can now apply fractional cascading to the auxiliary

structures so that the query time can be reduced to O(log n) . (Actually, we do not apply

37

fractional cascading directly to the auxiliary structures since the cascaded elements can

change the answer. Instead, we use the approach described in Section 3.1.2: at each node

we create a list, which is used to guide the search in the auxiliary structure, and then apply

fractional cascading to these lists.)

Theorem 9.2 A set S of n colored, axes-parallel rectangles in the plane can be preprocessed

into a data structure of size O(n log n) such that the number of distinctly-colored rectangles

. that contain a query point can be determined in O(log n) time. 0

10 Generalized orthogonal segment intersection search-
• Ing

We show how to preprocess a set, S, of n colored horizontalline segments in the plane such

that the number of distinctly-colored segments intersected by a vertical query segment q can

be determined efficiently. We give several solutions.

In the first solution, we sort the endpoints of S by non-decreasing z-coordinate. A tie

between two left or two right endpoints is broken arbitrarily; a tie between a left endpoint

and a right endpoint is broken by storing the left endpoint before the right endpoint. Then

we sweep over the sorted list. When we encounter a left endpoint, we insert its y-coordinate

into a partially persistent version of the structure of Theorem 3.3 for dynamic generalized

I-dimensional range counting. Similarly, when we see a right endpoint, we delete it's y­

coordinate from the structure.

We answer a query as follows: Let a be q's z-coordinate and let el, e2, ... , e2n be the end­

points in sorted order. If a falls between ei-l and ei, then we query the version corresponding

to ei-I. Suppose that a coincides with an ei. If ei is a left endpoint, then we determine the

rightmost left endpoint ej with the same z-coordinate as ei (this can be done in 0(1) time

by storing, during the preprocessing, apointer with ei) and query the version corresponding

to ej. If ei is a right endpoint, then we determine the leftmost right endpoint ej with the

same x-coordinate as ei and query the version for ej-l'

Using an argument similar to the one in the proof ofTheorem 8.1, it can be shown that the

version that is accessed contains exactly those segments of S that include q's x-coordinate.

Thus the problem becomes I-dimensional in y . Since the structure of Theorem 3.3 supports

updates in 0(log2 n) time, the number of memory modifications per update is 0(log2 n).
Thus the persistent structure occupies O(n log2 n) space, can be built in O(n log 2 n) time,

and supports queries in 0(log2 n) time.

38

Another approach is as folIows: Draw a verticalline through each segment endpoint in

S and partition the plane into at most 2n + 1 strips. Suppose the query q falls inside strip

8. Since any segment t which intersects the interior of s also crosses s, q intersects t if and

only if q's y-projection contains t's y-projection. So the problem can be solved by storing the

y-projections of the segments crossing s in an instance of the data structure for generalized

I-dimensional range counting, i.e., Theorem 3.2 or Theorem 3.4. (To handle the case where

q falls on the boundary of a strip, we store the endpoints falling on the boundary in a similar

structure.) This gives aspace bound of O(n210g n) (resp., O(n210g njlog log n)) and a query

time of O(log n) (resp., O(log2 njlog log n)).
Yet another solution is as folIows: We sweep over the segments in S from left to right,

handling ties as before. When we encounter a left (resp., right) endpoint, we insert (resp.,

delete) its y-coordinate in a partially persistent version of the structure of Lemma 3.2. It can

be shown that the resulting structure uses O(n log n) space and can answer a counting query

for an upward-vertical ray in O(logn) time. To solve the problem for a query segment q, we

sort the distinct y-coordinates of the segments of S in increasing order as Yl, Y2, . . . , Ym, where

m ~ n. Then, for i = 1,2, .. . , m, we build the structure just described on the segments

whose y-coordinates are less than or equal to Yi. Given q, we determine the greatest i such

that Yi is less than or equal to the y-coordinate of the upper endpoint of q and then query

the ith structure. It is easy to show that the algorithm is correct and that the space and

query time are O(n2 log n) and O(log n), respectively.

We summanze in the following theorem:

Theorem 10.1 A set S ofn colored horizontalline segments in the plane can be preprocessed

into a data structure ofsize O(nlog2n) (resp., O(n210gn), O(n2 log njlog log n)) such that

the number of distinctly-colored segments that are intersected by a vertical query segment can

be determined in time O(log2 n) (resp., O(logn), O(log2 n jloglogn)). 0

11 Conclusions and open problems

We have considered a dass of problems that generalizes the dass of standard intersection

searching problems and is rich in applications. We have presented a uniform framework to

solve efficiently a wide variety of problems in this dass. Our techniques have been based on

persistent data structures and, to a somewhat lesser extent, on a geometric transformation.

Several open problems remain. First, are other problems, such as, for instance, gener­

alized segment intersection searching, amenable to a similar approach. Second, there are

39

several gaps in Table 1 that need to be filled, especially with regard to dynamic count­

ing and reporting problems. Third, it would be desirable to improve the query time of

O(log2 n + i log n) for some of the fully dynamic solu tions in Table 1 to o (polylog (n) + i).
Finally, it would be interesting to explore the transformation-based approach further and see

if there are problems other than I-dimensional range searching to which it can be applied.

Acknowledgement

The counting problem was initially posed to one of the authors (RJ) by Matthew Katz at

a summer school in Computational Geometry, which was held at the Fibonacci Institute in

Trento, Italy, from June 15-19, 1992.

References

[CG86] B.M. Chazelie and L.J. Guibas. Fractional cascading: I. A data structuring tech­
nique. Algorithmiea, 1:133-162, 1986.

[Cha86] B.M. Chazelie. Filtering search: a new approach to query-answering. SIAM
Journal on Co mputing, 15:703-724, 1986.

[CJ90] S.W. Cheng and R. Janardan. Efficient dynamic algorithms for some geometric
intersection problems. Information Proeessing Letters, 36:251-258, 1990.

[CJ92] S.W. Cheng and R. Janardan. Algorithms for ray-shooting and intersection search­
ing. Journal of Algorithms, 13:670-692, 1992.

[DSST89] J.R. DriscolI, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures
persistent. Journal of Computer and System Seienees, 38:86-124, 1989.

[EKM82] B. Edelsbruriner, D. Kirkpatrick, and B.A. Maurer. Polygonal intersection search­
ing. Information Proeessing Letters, 14:74-79, 1982.

[EM81] B. Edelsbrunner and B. Maurer. On the intersection of orthogonal objects. In­
formation Proeessing Letters, 13:177-181, 198!.

[JL92] R. Janardan and M. Lopez. Generalized intersection searching problems. Inter­
national Journal of Computational Geometry & Applieations, 1992. To appear.
(Available as Technical Report TR-90-54 (revised Aug. 1991), Dept. of Computer
Science, University of Minnesota, Minneapolis, MN.).

[Lop91] M. Lopez. Algorithms for eomposite geometrie objects. PhD thesis, Department
of Computer Science, University of Minnesota, Minneapolis, Minnesota, 1991.

40

[LP84] D.T. Leeand F.P. Preparata. Computational geometry - a survey. IEEE Trans­
actions on Computers, 33:1072-1101, 1984.

[McC85] E.M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257-276,
1985.

[Meh84] K. Mehlhorn. Data structures and algorithms 3: Multi-dimensional searching and
computational geometry. Springer-Verlag, 1984.

[NR73] J. Nievergelt and E.M. Reingold. Binary search trees of bounded balance. SIAM
Journal on Computing, 2:33-43, 1973.

[Ove83] M.B.Overmars. The design of dynamic data structures. LNCS, Vol. 156. Springer­
Verlag, 1983.

[PS88] F.P. Preparata and M.L Shamos. Computational Geometry - An Introduction.
Springer-Verlag, 1988.

[SB79] J.B. Saxe and J.L. BentIey. Transforming static data structures into dynamic data
structures. In Proceedings of the 20th Annual IEEE Symposium on Foundations
of Computer Science, pages 148-168, 1979.

[VW82] V.K. Vaishnavi and D. Wood. Rectilinear segment intersection, layered segment
trees, and dynamization. Journal of Algorithms, 3:160-176, 1982.

[WL85] D.E. Willard and G.S. Lueker. Adding range restriction capability to dynamic
data structures. Journal of the ACM, 32:597-617, 1985.

41

	92-1540001
	92-1540002
	92-1540003
	92-1540004
	92-1540005
	92-1540006
	92-1540007
	92-1540008
	92-1540009
	92-1540010
	92-1540011
	92-1540012
	92-1540013
	92-1540014
	92-1540016
	92-1540017
	92-1540018
	92-1540019
	92-1540020
	92-1540021
	92-1540022
	92-1540023
	92-1540024
	92-1540025
	92-1540026
	92-1540027
	92-1540028
	92-1540029
	92-1540030
	92-1540031
	92-1540032
	92-1540033
	92-1540034
	92-1540035
	92-1540036
	92-1540037
	92-1540038
	92-1540039
	92-1540040
	92-1540041
	92-1540042
	92-1540043
	92-1540044
	92-1540045

