SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-3801

TECHNICAL REPORT NO. 1119

February 1995

Approximation Algorithms
for Steiner and

Directed Multicuts
by

Philip N. Klein!, Serge A. Plotkin?
Satish Rao, and Eva Tardos®

1Research supported by NSF PYT award CCR-9157620, together with PYI matching funds
from Honeywell Corporation. Thinking Machines Corporation, and Xerox Corporation. Ad-
ditional support provided by ARPA contract N00014-91-J-4052 ARPA Order No. 8225.
2Research supported by US Army Research Office Grant DAAL-03-91-G-0102 and by a grant
from Mitsubishi Electric Laboratories.

3Research supported in part by a Packard Fellowship, an NSF PYI award, by the National
Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval
Research, through NSF grant DMS-8920550, and by NEC.

Approximation Algorithms
for Steiner and Directed Multicuts

Philip N. Klein* Serge A. Plotkin'
Brown University Stanford University
Satish Rao FEva Tardos
NEC Research Cornell University
Abstract

In this paper we consider the steiner multicut problem. This is a generalization of the
minimum multicut problem where instead of separating node pairs, the goal is to find a
minimum weight set of edges that separates all given sets of nodes. A set is considered separated
if it is not contained in a single connected component.

We show an O(log?(kt)) approximation algorithm for the steiner multicut problem, where
k is the number of sets and ¢ is the maximum cardinality of a set. This improves the O(t log k)
bound that easily follows from the previously known multicut results.

We also consider an extension of multicuts to directed case, namely the problem of finding
a minimum-weight set of edges whose removal ensures that none of the strongly connected
components includes one of the prespecified k node pairs. In this paper we describe an
O(log? k) approximation algorithm for this directed multicut problem. If k < n, this represents
and an improvement over the O(log n log log n) approximation algorithm that is implied by the
technique of Seymour.

*Research supported by NSF PYI award CCR-9157620, together with PYI matching funds from Honeywell Cor-
poration, Thinking Machines Corporation, and Xerox Corporation. Additional support provided by ARPA contract
N00014-91-]-4052 ARPA Order No. 8225.

tResearch supported by U.S. Army Research Office Grant DAAL-03-91-G-0102 and by a grant from Mitsubishi
Electric Laboratories.

tResearch supported in part by a Packard Fellowship, an NSF PYI award, by the National Science Foundation, the
Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550, and by
NEC.

1 Introduction

Steiner Multicuts

Given an edge-weighted undirected graph, the minimum multicut problem is to find the minimum
weight set of edges whose removal separates all given node pairs. The multicut problem is well
studied [10, 9], and can be approximated to within a factor of O(log k), where k is the number of
pairs [5].

In this paper we consider the steiner multicut problem. This is a natural generalization of the
multicut problem, where instead of node pairs, we have sets of nodes. We say that a set is “separated”
if it is not contained in a single connected component. The problem is to find 2 minimum weight
set of edges whose removal separates all of the given sets.

Using techniques used to produce the O (log k) approximation to the multicut problem [10, 9, 51,
it is relatively easy to get an O(tlog k) approximation to the steiner multicut problem, where ¢ is
the cardinality of the largest set. In this paper we develop an O (log® (kt)) approximation algorithm.

The previous results about multicuts can be viewed as a consequence of a simple and very useful
network decomposition lemma. This lemma states that that given a graph with n nodes and m
edges, and a positive §, one can remove at most O(log n) edges such that the distance between
any two nodes that stay in the same connected component is bounded by 6.! Other applications
of network decomposition techniques of this type include routing with small size tables [11, 1],
symmetry-breaking (2], and synchronization of asynchronous networks [3].

In contrast to the previous approaches, our multicut results do not follow from a generalized
decomposition lemma. We derive a generalization of the above lemma as a corollary of our steiner
multicut theorem. We show that by removing at most O (2 log®(kt)) edges, one can separate all the
sets whose minimum steiner trees have at least § edges, where k is the number of sets considered, t
is the cardinality of the largest set, and m is the total number of edges. We also prove a weighted
version of this lemma.

Directed multicuts

Feedback arc set is the problem of finding a minimum set of edges whose removal makes the graph
acyclic. Leighton and Rao showed an O(log® n) approximation algorithm [10], where n is the
number of nodes. This was improved to O(log t loglogt) by Seymour [14], where t is the size of
the minimum size feedback arc set. Seymour’s result trivially extends to the weighted case and leads
to an O(log nloglogn) approximation algorithm (see [4D).

A natural generalization of the feedback arc set problem is to consider a weighted directed graph
and a set of node pairs. The directed multicut problem is to find a minimum-weight multicut that
separates all the given pairs. In other words, we have to find a set of edges whose removal ensures
that none of the prespecified node pairs are contained in a strongly connected component.

An example of a problem that reduces to finding minimum weight directed multicuts is the
2-CNF clause-deletion problem, i.e. the problem of finding a minimum weight set of clauses in a 2-
CNE formula whose deletion makes the formula satisfiable. Previously known undirected multicut

Note that m/é is an easy lower bound.

results have been used in approximation algorithm for the special case of 2-CNF= clause-deletion

problem, as described in [9, 51.

As observed in [4], Seymour’s result implies an O(log n loglog n) approximation algorithm for
the directed multicut problem. In this paper we show an O(log? k) approximation to the minimum
weight directed multicut problem, where k is the number of given pairs. This is an improvement
for the case where k < n. The same bound for a slightly more specialized case was later discovered

by Even et. al. [4].

At the heart of our minimum-weight directed multicut algorithm lies the following directed de-
compositionlemma: By removing at most O log? n) edges, any directed graph can be decomposed
into a set of strongly connected components where any two nodes in the same connected component
lic on a directed cycle whose length is at most é.

Our techniques are based on a fundamental relationship between multicuts and symmetric
multicommodity flows in directed graphs. (A flow is symmetric if each unit of flow sent from a
source s to the corresponding sink ¢ also has to return from ¢ to s, though not necessarily along
the same path.) Multicuts can be viewed as integer solution to the linear programming dual of a
multicommodity flow problem that naturally corresponds to the multicut problem.

As a byproduct we show that if the capacity of every multicut is at least O(log® k) times the
demand separated by the multicut, then a feasible multicommodity flow exists. We also give
an O(log® k)-approximation algorithm for the minimum-ratio directed multicut problem, i.e., the
problem of finding a directed multicut minimizing the ratio of the capacity of the multicut to the
sum of the demands that are separated by the multicut. The only previously known non-trivial
results of this type for directed graphs are due to Leighton and Rao [10], who considered the special
case where there is a unit demand between every pair of nodes.

Running Times

The computational bottleneck of the methods described in this paper is solving appropriately
constructed linear programs. The LP needed to be solved for the directed cuts approximation can
be solved by any linear programming algorithm. The corresponding LP in the steiner cuts case
has an exponential number of constraints and can be solved by using convex programming (see .£.
[15]).

Although this leads to polynomial time algorithms, the resulting running time is pretty slow.
Much faster algorithms can be obtained by using the techniques of [13], where the authors develop
a general framework for constructing fast approximation algorithms for certain classes of linear
programs. All the linear programs that arise in the context of the methods described in this paper
fall into this general framework, and thus can be solved efficiently.

2 Steiner Multicuts

In this section we consider multicuts in undirected graphs where instead of separating pairs of
terminals we need to separate sess of terminals. The main result in this section is an O(log® (kt))-
approximation algorithm for finding a minimum-capacity multicut of this sort, where k is the
number of sets and ¢ is maximum cardinality of a set. The traditional multicut approximation

algorithms that deal with separating pairs of nodes were derived using a result about graph decom-
position. In contrast to this, the proof of the corresponding decomposition result for the Steiner
case (presented at in the end of this section) follows as a corollary of our results about minimum
Steiner multicuts.

2.1 Definitions

Let S; denote the sets of terminals for commodity i where 1 < i < k. A multicut A is a partition

of V into sets Uy, ... ,U,; we say that a multicut separases terminal set S; if there is no set U;
containing all of S;. The capacity of the multicut u(A) is the sum of the capacities of all edges
crossing from one set in the partition to another, ie. w(Ui,...,U,) = 1 3, u(Ui). The goal is to

find a minimum-capacity multicut that separates all k sets of terminals.

In the related minimum-ratio Steiner cut problem there is a demand d; associated with every
st of terminals. The demand d(U) across a cut U is the sum of the demands associated with the
separated sets. The problem is to find a cut that minimizes the ratio of the capacity of the cut
and the demand across the cut. In this minimum cut problem, demands express the desirability of
separating the corresponding sets of terminals. For the minimum ratio problem we use cuts instead
of multicuts. While multicuts would also give a natural way of separating sets of terminals, it turns
out that the minimum ratio of a multicut is no less than the minimum of the cut ratios associated
with the sets defining the multicut.

The minimum-ratio Steiner cut problem is closely related to the following generalization of
the multicommodity flow problems that we will refer to as the concurrent Steiner flow problem. In
contrast to concurrent flow, where each commodity is associated with a single pair of terminals, here
commodity i is associated with a set of terminals S;, fore =1, , k. Each commodity i also has an
associated demand d;. A Steiner flow f; of commodity i in G connecting terminal set S; is defined
as a collection of Steiner trees spanning the terminal sets S;; each tree has an associated real value.
Let 7; denote a collection of Steiner trees that span terminals S;, and let f;(7) be a nonnegative
value for every tree r € T;. The value of the Steiner flow thus defined is 3, ¢ fi(7). The amount
of flow of commodity ¢ through an edge vw is given by f;(vw) = 3_{/; (r) : 7€ Trandvw € 7}.
A flow is feasible if it satisfies the capacity constraints, 3, fi(vw) < u(vw) for every edge vw € E.
The goal is to maximize a common percentage 2 such that there exists a feasible Steiner flow for
which the flow of commodity i is zd;.

One can view this concurrent Steiner flow problem as a fractional packing of Steiner trees into
a capacitated graph, where for each i we pack at least zd; trees associated with terminal set ;.
Notice that the integer version of this tree packing problem, namely integer packing of Steiner
trees with given sets of terminals, arises in VLSI design, in particular in the problem of routing
multiterminal nets. Another natural application of this problem arises in the context of optimal
routing of multicast circuits in a communication network.

2.2 Finding approximately minimum-ratio Steiner cuts

The minimum-ratio Steiner cut provides a simple combinatorial bound on the maximum possible
value of z. We prove that this bound is the best possible up to a factor of O (log”(kt)). We also givea
polynomial time O (log” (kt))-approximation algorithm for finding the minimum-ratio Steiner cut.

3

Using this algorithm as a subroutine, we give an O(log® (kt))-approximation algorithm for finding
the minimum-capacity Steiner multicut separating all sets of terminals.

The maximum concurrent Steiner flow problem can be formulated as a linear program, albeit
one with an exponential number of variables, one for every possible Steiner tree. In order to find
an optimal solution using the a convex programming algorithm e.g., [15], or the more efficient
approximation algorithm of [13], we would have to solve the minimum-cost Steiner tree problem,
which is NP-hard. Instead of working with this linear program, we work with a closely related one,
in which instead of Steiner trees we pack restricred Steiner trees. A restricted Steiner tree in G for
a terminal set S is a connected multigraph H spanning S constructed in the following way: Let
Gs = (S, Es) be a complete auxiliary graph on nodes in S and let T be a spanning tree in Gs.
Multigraph H is constructed by replacing each edge vw of T' with edges of some path from v to
w in G. Observe that using restricted Steiner trees essentially corresponds to using the standard
2-approximation algorithm for the minimum-cost Steiner tree problem. Also, note that min-cost
restricted Steiner tree can be found by assigning each vw edge in G's weight equal to the distance
from v to w in G and computing a minimum-weight spanning tree of Gs.

We will bound the capacity of the multicut we obtain in terms of the value of the optimum
primal solution to the restricted problem. Clearly the value of the restricted problem z* is no more
than the optimum value z* for the unrestricted problem. It is not hard to show that z* < 2Z*, but
we will not need this fact.

Consider the linear-programming formulation of the concurrent restricted Steiner flow problem.
The linear programming dual of the concurrent restricted Steiner flow problem is as follows. There
is 2 nonnegative cost variable £(e) for every edge e. Let W,(S;) denote the minimum cost of a
restricted Steiner tree with terminal set S;. The goal is to minimize 3, £(e)u(e) subject to the
constraint 37, d;W,(S;) > 1. Using the fact that min-weight restricted Steiner tree can be found in
polynomial time, we can solve the separation problem for this dual linear program, and hence can
find (approximately) optimum solutions to both the dual and the primal problem [15, 13].

We will use W to denote 3, £(e)u(e), and W (F) = Y cp £(€)u(e) for a subset of the edges
F C E. For a subset of nodes S we use e(S) to denote the set of edges having at least one endpoint
in S. For Steiner flow and cut problems with sets of terminals S; fori = 1,...,k,let t; denote | S;|.
Recall that t = max; ¢;. The number of terminals | U; S} is denoted by 7.

Theorem 2.1 Given an instance of the minimum ratio Steiner cut problem, let C denote the set of cuts
that separate some the demand sets. Then one can find a cut U in polynomial time such that

- u(U) _ w(U)
R S TN (1)

<

< O(log T log(kt))z*.

We will use the following lemma due to Garg, Vazirani and Yannakakis [5]:

Lemma 2.2 For any positive ¢ and p, and any node s, there exists a set U containing s such that
w(T'(U)) < € (W/p+ W (e(U))), and every node in U is at a distance less than e ! In(p + 1) from s.

Proof: We include the proof of this lemma for completeness. Consider the set of nodes V(z) =
{v € V : dist,(s,v) < «} for a parameter z. The function W (z) defined below is in essence the

4

volume reachable in distance z with an additional W/p extra volume at node s.

W(z) =W/p+ Z u(vw)l(vw) + Z u(vw)(z — dist(s,v)).

v,weV(z) veV(z)wgV(z)

Note that W is a monotone function of z, it is differentiable almost everywhere, and satisfies
W'(2) > Coevie)wevie) LW)- If the lemma is false, then W’'(z) > €W (x) for every = <
¢~'In(p + 1). This implies that for z = ¢~ In(p+ 1)

In W(2) > ez + In W(0) = In (p’;lw)
g-ﬂ
4

In addition, we have that W (0) = W/p,and W (z) < W/p+W =
contradiction proves the lemma. |

W for every z. The resulting

First we prove a weaker version of Theorem 2.1 with the log(kt) in the bounds replaced by
log D where D = y_;(t; = 1)d;, and we assume that the demands are integral. Then we show how
to improve the weaker bound involving log D to the bound claimed in the theorem by using the
technique of Plotkin and Tardos [12].

Theorem 2.3 Given an instance of the minimum ratio Steiner cut problem, let C denote the set of cuts
that separate some the demand sets. Then one can find a cut U in polynomial time such that

u(U") _ u(U)
@) = 40)

2 < z" < min
UI

in < O(logT log D)z*.

2,

Proof The only non-trivial inequality is the last one. We prove this inequality by induction on
D. Let 0* = minyrec %((-g—:% denote the minimum ratio of a cut. Let £ denote the optimum dual
solution to the concurrent restricted Steiner flow problem. Then z* equals the dual optimum value
W = 3, £(e)u(e). The dual solution satisfies the constraint 3, d;%,(S;) > 1, therefore it suffices
to prove the following inequality:

~ W
(1) Zdiwg(S;) < O(log T log D) —.

W start along the lines of the proof of Klein, Rao, Agrawal and Ravi [9]. Apply Lemma 2.2
for a source s, p = T, and an appropriately chosen €. Delete the resulting set U from the graph
along with all the edges in e(U), and apply the lemma to another terminal in the remaining graph.
Repeat until no more terminals are left. Let A = (U, U, - - ,U,) denote the resulting multicut
with U, denoting the set remaining when there are no more terminals left. By adding the bounds
on capacities of the cuts we get that the total capacity of the multicut does not exceed 2¢W.

Consider a terminal set S;. The multicut A = (Us, ..., U,) partitions the set S;. For every j
such that S; N U; # 0, select one element in the intersection to represent the intersection, and let
S! denote the set of these representatives.

The fact that the diameter of each one of the sets U; for j > 1 is bounded by 2~ In(T" + 1)
implies that

(2) W[(S.,) S ‘X’g(S:) + QIS, - S:Iéﬁl ln(T -+ 1)

We use the induction hypothesis on the problem with demands d; and set of terminals S} for
i=1,...,k Wesete= %L to guarantee that D' = 3, d;(1S]| — 1), the quantity corresponding
to D in the new problem, is at most half of D. Indeed, by definition, for each j, we have
w(U;)/d(U;) > o*. Hence we have

LUy 2u(A) 2u(A) 4eW
SR ST Il X (VR T

which implies D’ < D/2 by the choice of ¢. By the induction hypothesis:

S (1) < O(log T log D') =

o

Together with inequalities (2) and the fact that D’ < D/2, this implies the desired inequality (1).

Since we do not know the value of o, in order to turn this proof into an algorithm we make do
with an estimate of it. The estimate is initialized by considering single-node cuts and it is updated
each time the algorithm discovers that the estimate is more than a factor of two away from the
minimum observed value. |

In order to complete the proof of Theorem 2.1, it remains to improve the log D in the above
theorem to O(log(kt)). We proceed along the lines of the proof of the similar improvement in
the two-terminal case [12]. We group the demands into groups according to the magnitude of
the demand. Group p consists of all the commodities with demand between (2t3k)P~! min; d;
and (2t3k)? min; d;, so that the range of demands in a single group is limited by 2¢°k. Let
o* = miny4 u(A)/d(A) denote the minimum capacity-to-separated demand ratio, and let o denote
the minimum capacity-to-demand ratio in the problem induced by the commodities in group p.
Similarly, let 3* denote the optimum value of the concurrent restricted Steiner flow problem, and
2 denote the value of the concurrent restricted Steiner flow problem induced by the commodities
in group p. Using simple rounding and Theorem 2.3 we get the following lemma:

Lemma 2.4 For every group p we have that z; < o, < O(log T log(kt))z, .

Clearly, 3* < min,, %;. It remains to prove that the minimum can not be much larger than 2.
The following lemma was proved in essence in [12].

Lemma 2.5 [12] Consider two sets X and X' of 2-terminal commodities, and let Dx denote the sum of
the demands of the commodities in X . Assume that there exists a feasible flow that satisfies demands of
commodities in X, and another feasible flow that satisfies demands of the commodities in X’. Then there
exists a feasible flow that satisfies the demands of the commodities in X and also, for each commodity ¢
in X', satisfies demand d; — 2Dx.

The corresponding lemma for the Steiner flow case is as follows.

6

Lemma 2.6 Let Q and @’ denote two sets of Steiner commodities, with at most ¢ terminals per commodity.
Assume that every commodity in ()’ has demand at least 2¢3 times more than the total demand of
commodities in)’, and assume that there is a feasible packing of restricted Steiner trees satisfying the
demands in O, and another feasible packing of restricted Steiner trees satisfying the demands in ’. Then
there exists a feasible packing of restricted Steiner trees satisfying all the demands in () and at least half
of each of the demands in Q'.

Proof We reduce the proof to Lemma 2.5. A restricted Steiner tree for terminal set S; consists of
|S;] — 1 paths connecting pairs of terminals. A packing of restricted Steiner trees for terminal set
S; corresponds this way to a solution to a problem on up to |S;|*/2 two terminal nets with total
demand (|S;| — 1)d.

Let X denote the set of terminal pairs (with associated demands) corresponding to the restricted
Steiner tree packing for @, and let X' denote the set of terminal pairs (with associated demands)
corresponding to the restricted Steiner tree packing for Q'. The sum of demands Dx of commodities
in X is at most ¢ 3¢ d;. By Lemma 2.5 there exists a feasible flow that satisfies the demands of
the commodities in X and also, for each commodity i in X', satisfies demand d; — 2Dx. A feasible
flow that satisfies the demands of the commodities in X is a restricted Steiner flow satisfying the
demands in Q.

Consider the restricted Steiner flow of a commodity i in Q'. The total amount of flow removed
from commodity i due to decreased flow from s to ¢ in X for two nodes s,t € S; is at most
2Dx <2ty ;o d;- Fora commodity in i € Q' we have to consider paths between up to t?/2 pairs
of its terminals. Therefore, there exists a feasible restricted Steiner flow that satisfies the demands
of commodities in Q, and at least d; — 3 Y ;¢ d; demand of commodity i. The assumption
guarantees that this satisfies at least half of the demand of commodity i. The claim follows by
repeating this procedure for all commoditiesin Q. 1

Applying the above lemma, we can now prove that z* is not much smaller than the smallest ;:

Lemma 2.7 min, Z; < 42",

Proof: First consider all the commodities in Q,, for even p. Observe that for any p, the commodities
in Q, and @, satisfy the assumptions of Lemma 2.6. Thus, by induction on p it is easy to show
that there exists a feasible restricted Steiner flow that satisfies min,, Z; /2 fraction of demands in all
groups Q, with even p. The claim follows from repeating the same argument for odd-numbered
commodity groups. |l

Proof of Theorem 2.1. Applying Lemmas 2.4 and 2.7, we get:
7 <o* < mpin oy < O(log T log(kt)) mpin z < O(log T log(kt)) - (427).

Next we consider the problem of finding a minimum-capacity multicut separating all sets of
terminals. This problem is naturally related to another Steiner flow problem, the maximum sum
Steiner flow problem. In this problem we are seeking to find a feasible Steiner flow that maximizes
Yirer: fi(r). The minimum capacity of a multicut that separates all of the terminal sets gives

7

a combinatorial upper bound on the maximum Steiner flow value. For computability reasons
we shall consider the analogous maximum sum restricted Steiner flow problem, in which flow of
commodity ¢ is carried by restricted Steiner trees for set i, rather than Steiner trees spanning set
S;. Using the above algorithm and Theorem 2.1, we show that this upper bound is within a factor
of O(log T log k log(kt)) of the maximum flow value.

Theorem 2.8 Given an instance of the problem of separating & sets of terminals with minimum capacity,
one can find a multicut .A in polynomial time such that

¢ < ¢ < minu(B) < u(A) < O(log T'log(kt) log k)¢®

where ¢* is the value of the corresponding maximum sum Steiner flow, q~3“ is the vaiue of the maximum
sum restricted Steiner flow, and B is the set of multicuts that separate all of the given sets of terminals.

Proof: The only non-trivial inequality is the last one. To prove this inequality, consider the
linear programming dual of the max-sum restricted Steiner flow problem. In the dual there is a
nonnegative length variable £(vw) for each edge. The dual of the maximum sum restricted Steiner
flow problem is to minimize W = 3_,,, u(€)£(e) subject to the conditions £ > 0 and W,(S;) > 1 for
all commodities i. Let £ be such optimal dual.

We use Theorem 2.3 with terminal sets S; fori =1,...,k and demands d; = 1 for every t.
Note that D < kt for this problem and that ¢/k is a feasible solution to the dual of this concurrent
restricted Steiner flow problem with objective value W/k. Therefore, W/k is an upper bound to
the concurrent restricted Steiner flow value. By applying Theorem 2.3 we obtain a cut U with
capacity-to-demand ratio at most O(log T log(kt))W/k.

Let k' denote the number of terminal sets separated by the cut U. We have that u(U) <
O(log T log(kt)) £ W. Now, apply induction for the problem with the &’ terminal sets separated
by the cut U removed. The length function £ is a feasible dual solution with objective value W,
therefore W is an upper bound on the maximum sum restricted Steiner flow value for the problem
with k — k' terminals. Adding the cut U to the multicut resulting from the induction we get a
multicut with capacity at most

O(logT Iog(kt))%W + O(log T log(kt)) In(k — k") W.

Solving the recursion we get that the resulting multicut has capacity at most O (log T log (kt) log k)W,
as desired. i

Finally, we derive a weighted version of the decomposition theorem mentioned in the intro-
duction. Let £ be a nonnegative length function and a capacity function on the edges, and let
W =3, u(e)f(e). Assume that we are given k sets of terminals S;, such that |S;| < ¢, |U; Si| £ T
and the minimum cost of a Steiner tree spanning the set of terminals S; is at least § for every i.

Theorem 2.9 Consider a graph G with edge-capacities u, edge-lengths ¢, k sets of terminals. In poly-
nomial time one can find a multicut of capacity at most §~*O(log T log(kt) log k)W that separates every
set of terminals, where W and ¢ is defined above.

Proof: Observe that #(vw) = £/§ is a feasible dual for the maximum-sum Steiner flow problem
with terminal sets specified by {S;}. Hence the value of the maximum-sum flow is at most
T, w(vw) (vw) = W/. By Theorem 2.8 we have that there exists a multicut whose capacity is
bounded by O (% log T log k log(kt)) that separates each set of terminals, and such a multicur can
be found in polynomial time. 1

2.3 Computing the Dual Solutions

The most time-consuming stage in the approximation algorithms described in the previous section
is computation of ¢, the dual solution to the restricted steiner flow problem. Although this LP can
be solved in polynomial time by any interior-point linear programming algorithm, the resulting
running time is pretty slow. Much faster algorithms can be obtained by using the techniques of [13].
In what follows we sketch how to apply these techniques and state the running times.

Let 7; denote a collection of restricted Steiner trees that span terminals S;, let fi(7) be a
nonnegative value for every tree 7 € T;, and let fi(vw) = S{fi(r) : 7 € Tiandvw € 7}. The
corresponding LP is as follows:

minimize A subject to:

3) D filvw) < Au(vw) Yow € E

@ Y filr) = d 1<i<k

T€T;
filr) 2 0

Let A* denote the optimal value of this LP. Since A* can be quickly approximated to within
a factor of k, we can scale the capacities u(vw) such that A* is between 1 and 2. The packing
algorithm in [13] approximately solves LPs of the form “minimize A subject to Az < b,z € P7,
where Az > 0¥z € P and P is a convex set. The solution involves repeated invocations of a
minimization subroutine over P, which is assumed to be given. In our case, P is defined by (4).
Observe that it can be written as a Cartesian product of simplices Py X Py X - - - X Py, where
minimization over each such simplex corresponds to finding a minimum-cost restricted steiner tree
and can be done in O(min{tm logn, M(n) logn}) time, where M(n) is the time to multiply two
n X n matrices.

The expected number of iterations of the packing algorithm in [13] is proportional to parameter
k max; p;; in our case p; = maxy.ep,; fi(vw) /u(vw). Observe that restricting each 7; to include
only trees that use edges with capacity above d;/(2m) can change the value of the LP by at most
a constant factor. Thus, we have that k max; p; = O(mk). Using Theorem 2.7 from [13], the
expected number of iterations is O(kmlogn), resulting in an O* (km min{mt, M(n)}) algorithm
that solves the above LP to within a constant factor. The deterministic version of this algorithm
requires the same number of iterations, where at each iteration we need to optimize over all of P,
which can be done in O* (M (n) + kt?).

In fact, in addition to the primal solution, this algorithm produces dual variables £(vw), such
that AY,, u(vw)€(vw) < O(F; diwy(S:)), where 1/A > O(27) and where W, (S;) denotes the
minimum-cost restricted steiner tree that spans nodes S; and that does not use edges with capacity

below d;/(2m). Setting £'(vw) = max{{(vw),) vy u(vw)f(vw)/ (mu(vw)} we get

A u(vw)l (vw) < O(Z d;i%,(S5))-

Normalization produces a feasible dual with value within a constant factor of optimum. Thus, we
have the following theorem:

Theorem 2.10 The approximate length function £, needed for the algorithm in Theorem 2.1, can be
computed in expected O* (km min{m¢, M}) time by a randomized algorithm and in O*(mk(M(n) +
kt?)) time by a deterministic one.

3 Directed Multicuts

3.1 Directed Decomposition

In this section we prove a new directed decomposition theorem that is the basis of our directed
multicut results described in the next subsection. In essence, the decomposition theorem states that
given a graph where each edge e has capacity u(e) and length £(e), we can remove some edges with
small total capacity such that any two nodes that stay in the same strongly connected component
are close.

Let £ be a nonnegative length function on the edges, and let W = ¥, £(vw)u(vw). Assume
that we are given k pairs of nodes (s;, t;), such that the round trip distance between s; to ¢; is at
least 6. We will refer to these nodes as zerminals. A multicut separates a given pair of nodes if after
removing the edges associated with this multicut, these nodes are left in different strongly connected
components. Note that there are graphs where the capacity of a multicut separating all the given

node pairs is at least Q(W/8). The following theorem gives the complementary upper bound.

Theorem 3.1 Consider a directed graph G with edge-capacities, edge-lengths, k pairs of terminals, and
§ and W as defined above. In polynomial time one can find a multicut of capacity at most (5“1O(log2 EYw
that separates every terminal pair.

We are going to prove the theorem through a sequence of lemmas. The first lemma is a
straightforward adaptation of the related undirected graph lemma in [5]. For a node set U let
e(U) denote the set of edges with at least one endpoint in U, I**(U) C e(U) denote the set of
edges leaving U, and I'™(U) C e(U) denote the set of edges entering U. For a set of edges F let

w(F) = Typer u(vw), and W(F) = Tyyer v(vw)f(vw).

Lemma 3.2 For any positive € and p, and any node s, there exists a set U containing s such that
w(T(U)) < e (W/p+ W(e(U))) , and every node in U is at a distance less than ¢~ ! In(p+ 1) from s.

In the undirected case, using the set U of the above lemma we get a region around the node
s such that the distance between any pair of nodes in this region is bounded by 2¢ !In(p + 1),
i.e. all the nodes in this region are close to each other. Unfortunately, we cannot make this type

10

of claim for the directed case. This fact is the main reason that the previously known undirected
decomposition theorems cannot be easily extended to the directed case.

Now set ¢ = 46~ In(k + 1). Let s be a source, and let R**" denote the “outregion” constructed
using this €, p = k, and node s. Similarly, (by considering graph with reverse edges) we construct
an “inregion” R™. By the choice of ¢, for any node z in the intersection R N R™, there is an
s-to-z path and an z-to-s path, each of length less than §/4. Using the fact that the distance from
s; to t; plus the distance from ¢; to s; is at least & (by the assumptions stated above Theorem 3.1),
we obtain the following lemma.

Lemma 3.3 There are no pairs of terminals {s;, ¢;} in the intersection R*** N R™.

Lemma 3.4 Consider a graph G with edge-capacities, edge-lengths, k pairs of terminals, and dand W
as defined above Theorem 3.1. In polynomial time one can find a multicut A= (Uy,...,U,) of capacity
at most 6-10(log k)W such that each part U; contains at most k/2 pairs of terminals.

Proof: We give a recursive algorithm to construct the multicut. Select a source s, and construct the
regions R°* and R™ using Lemma 3.2 as used in Lemma 3.3. It follows from Lemma 3.3 that one
of the two regions contains at most k/2 terminal pairs. Let U be this region.

We delete region U from the graph along with all adjacent edges e(U), and recursively construct
a multicut A’ = (U4, ..., U,) in the remaining graph. In applying Lemma 3.2 we use p = k in all
levels of the recursion. We add the part U to multicut A’. If U was an outregion, the new multicut
is A= (U,Uy,...,U,). IfU was an inregion, the new multicut is A = (Uy, ..., U, U). In cither
case, the capacity we added in going from A’ to A is at most 46~ In(k + 1) (W/k + W (e(U))-

Now consider the capacity of the resulting multicut A = (U, . .., U,). Lemma 3.2 bounds the
contribution of each region U; to the capacity of the multicut. The bound consist of two parts, a
term independent of the region, 467" In(k + 1)W/k; and a term depending on the edges adjacent
to the region. In each recursion we reduce the number of pairs by at least one, so the number p
of parts is at most k. Furthermore, since the edges adjacent to set U have been deleted from the
graph before the recursive call, the sets of edges whose weight is used to bound the contribution are
disjoint. Hence the capacity of A is at most 8 'In(k+1Ww. 1

Proof of Theorem 3.1: The Theorem follows from Lemma 3.4 by induction on k. First apply
Lemma 3.4, then apply the inductive hypothesis to the problems defined by the graphs spanned
by cach of the regions U;, the pairs of terminals included in U}, and the original length function £.

3.2 From Decomposition to Directed Multicuts

In this section we show how to use the directed decomposition technique presented above in order
to design an algorithms that find approximately optimal solutions for two multicut problems. In
the minimum multicut problem we are given k pairs of terminals (s;, t:), and the problem is to find
the minimum capacity multicut that separates all terminal pairs. In the minimum ratio multicut
problem each pair of terminals (s;,;) has an associated demand d;, and the problem is to find a
multicut whose capacity-to-separated demand ratio is minimal.

11

The multicut problems are closely related to two flow problems. A multicommodity flow problem
(ot mulsiflow problem for short) is defined by a directed graph G with nonnegative edge-capacities
u(vw), and k commodities. A commodity is specified by a source-sink pair (s;, t;), the terminals of
commodity i. In a symmerric st-flow f each unit of flow sent from a source s to the corresponding
sink ¢t also has to be returned from ¢ to s, though not necessarily along the same path. The amount
of flow through an edge vw is defined to be the sum of the values of all paths in the flow that include
the edge vw. A multiflow is feasible if, for each edge vw, the amount of flow through vw is at most
its capacity u(vw).

We consider two kinds of optimization problems concerning symmetric multiflows. The
minimum capacity multicut problem is related to the maximum sum symmetric multiflow problem,
in which the goal is to find a feasible symmetric multiflow maximizing the sum of the values of the
flows. The minimum ratio multicut problem is related to the concurrent multiflow problem, in
which we are given a nonnegative demand d; for each commodity i. A multiflow f has throughpuz
z if the value of commodity i’s flow f; is zd;. The concurrent multiflow problem is to find a feasible
multifiow with maximum throughput z*. We will use D to denote the sum 37, d;, and in bounds
containing D we will assume that the demands are integral.

The dual linear programs for these multiflow problems can be viewed as linear programming
relaxations of the corresponding multicut problems. The dual linear programs are similar. In
cach, there is a nonnegative length variable ¢(vw) for each edge. Let dist,(z,y) denote the
distance from z to y in G with respect to the length function £. The dual of the maximum sum
symmetric multiflow problem is to minimize W = 3, u(€)£(e) subject to the conditions £ > 0and
disty(s;, t;) + diste(t;, s;) > 1 forall commodities 7. The dual of the concurrent flow problem is to
minimize W = ¥, u(e)(e) subject to the conditions £ > 0and 37, d;[dist, (s;, t;) +-dist, (ti,s:)] >
1.

Now we show how to use the directed decomposition Theorem 3.1 to derive an algorithm
that, given a feasible solution to the linear programming dual of the multiflow problem, finds a
multicut with value at most a logarithmic factor above the value of the dual solution. Since an
optimal dual solution value is equal to the optimal value of the multiflow problem, this proves both
the approximate max-flow min-cut theorem, and that the multicut produced by the algorithm is
close to optimal. The basic outline of our proof and algorithm is analogous to the outline of the
algorithms for the undirected case [10, 9, 5]. The main difference is the use of the more involved
directed decomposition given by Theorem 3.1.

Let ¢ be an optimal dual solution of the maximum multicommodity flow problem. The
dual objective value is W = ¥, u(vw)f(vw). The dual constraints ensure that dist,(s;, ;) +
dist,(t;, s;) > 1, for all commodities i. Hence by Theorem 3.1 there is a multicut of capacity at
most O (log? k)W, that is, at most O (log” k) times the dual objective value. Since the dual objective
value equals the primal objective value, the maximum multiflow value, we obtain the following
theorem.

Theorem 3.5 Given an instance of directed multicut problem with k terminal pairs, let B denote the set of
the multicuts that separate all the demand pairs. Then one can find a multicut A in polynomial time such
that

¢" < min u(B) < u(A) < O(log” k)¢*

where ¢* is the value of the maximum sum multifiow in the corresponding directed symmetric multifiow

12

problem.
For the minimum ratio multicut problem we have the following theorem:

Theorem 3.6 Given an instance of directed minimum ratio muiticut problem with k terminal pairs and
symmetric demands, let C denote the set of all multicuts that separate some demand pairs. Then one can
find a multicut A in polynomial time such that

u(C) _ u(A)

2" < min —— <

= de) — dA

< O(log” k)",

where for a multicut C we use d(C) to denote the sum of the demands separated by C, and z* denotes the
maximum value of the corresponding directed concurrent muitifiow problem.

We start with proving a weaker version of the theorem with one log k replaced by a log D in
the upper bound. Similarly to the case of undirected graphs, the proofs of Theorems 3.1, and 3.5
can be modified along the lines of [9] to prove this version. Kahale [8] has shown that in the
undirected case this weaker form of the min-max theorem for concurrent multiflows can be derived
directly from the claim of maximum sum multifiow theorem, instead of modifying the proof of
this theorem. Kahale’s derivation, which can be easily adapted to the directed case, is based on the
following lemma.

Lemma 3.7 [8] For given positive 8y, . . . , &, and integers di,...,dcthereexistsaset@Q C {1,..., k}
such that

k
= diéi .
(5) ——Zl:-l-—i,—"‘—"" S (Z d,) (mln 63').
In(14+3di) — ieg i€Q
Theorem 3.8 Given a directed concurrent flow problem with symmetric demands, let C denote the set of
all multicuts that separate some demand pairs. Then one can find a multicut A such that:

u(C) _ u(A)

z* < min —=+ <

el 4(C) = d(A)

< O(log Dlog” k)2,

where for a multicut C we use d(C) to denote the sum of the demands separated by C.

Proof: The only non-trivial inequality is the last one. To prove the last inequality let £ be an
optimal dual solution for the concurrent multiflow problem. The dual objective value is W =
3, t(vw)€(vw). For commodity ¢ let §; = dist, (si,t;) + diste(t;, ;). The constraint of the dual
linear program ensures that 3, d;&; > 1. Apply Lemma 3.7 to obtain a set Q, and let § = min;¢q 6;.
The inequalities (5) and 3, d;6; > 1 imply that

1

©) S >)

13

We apply Theorem 3.1 to the length function £, and the commodities in Q. The theorem shows
that there is a multicut A separating all commodities in Q) of capacity 10(log® k)W. The demand
separated by A is at least 3¢ d;. Using (6) we see that the capacity-to-demand ratio of A is

u(A)
d(A)

Since W = 5, u(vw)€(vw) is the dual objective value and is therefore equal to the primal objective
value z*, we obtain the theorem. 1

= O(log Dlog® k)W.

Next we show how to get the stronger bound of Theorem 3.6, independent of the size of the
demands, by extending the technique of Plotkin and Tardos [12] to the case of directed graphs.
In essence we prove that up to small constant factors the worst min-cut/max-flow ratios occur in
problems with integer demands that are bounded by a small-degree polynomial in k.

First, observe that rounding the demands up to multiples of min; d; can change the value of 2*
by at most a factor of 2. Moreover, this rounding cannot change the demand across any multicut
by more than a factor of 2. This implies that the value of D in Theorem 3.8 can be replaced by
D =3, d;/ min; d; without assuming the integrality of the demands.

Next we group the demands into groups according to the magnitude of the demand. Group p
consists of all the commodities with demand between (10k?)P~* min; d; and (10k?)? min; d;, so that
the range of demands in a single group is limited by 10k%. Let o* = min4 u(A)/d(A) denote the
minimum capacity-to-separated demand ratio, and let o7 denote the minimum capacity-to-demand
ratio in the problem induced by the commodities in group p. Similarly, let z* denote the optimum
value of the concurrent flow problem, and 2 denote the value of the concurrent flow problem
induced by the commodities in group p. Theorem 3.8 together with the fact that the range of the
demands in each group is bounded by O(k?) and the above observation about demand rounding,
gives the following lemma.

Lemma 3.9 For every group p we have that 25 < 0, < O(log’ k) z;.

Next we prove that the optimum value of the concurrent flow z* is within a constant factor of
the min, 2. Clearly, z* < z; for all p. The next lemma encapsulates the main ideas needed to
prove the opposite inequality.

Lemma 3.10 Let Q and (' denote two sets of demands. Assume that every commodity in @' has
demand at least (8% + 4) times more than the total demand of commodities in (), and assume that there
is both a feasible flow f satisfying the demands in (), and a feasible flow f' satisfying the demands in Q'
Then there exists a flow satisfying all the demands in () and at least half of each of the demands in '
such that the flow through an edge v is limited by (1 + ¢)u(vw).

Proof: It is no loss of generality to assume that both of the flows f and f’, and the capacities u are
rational. Multiplying up with the common denominator, we can further assume without loss of
generality that f, f’, and u are integral. We will regard an edge e with capacity u(e) as a collection
of u(e) parallel edges, and flows f, f’ as collections of edge-disjoint paths in the network. Notice
that nothing prevents a flow path of a commodity in @ from using the same edge as some flow path
of a commodity in Q. We will call such situation a collision.

14

The idea of the proof is to delete a small number of flow paths of commodities in @’ and reroute
the flow paths of the commodities in Q, in order to climinate all collisions berween flow paths of
the commodities in Q and Q. The rerouting procedure, as described below, creates both unit-flow
paths that carry up to one unit of flow each, and (1/k)-flow paths that carry 1/k units of flow.
The goal is to ensure that a single unit-capacity edge will participate in at most one unit-flow path
and one (1/k)-flow paths. We will eliminate collisions one at a time, giving a pscudopolynomial
algorithm for rerouting. Note, however, that the flow, whose existence is proved by this lemma, can
be constructed without referring to this proof, by running a multicommodity flow algorithm.

First, we will concentrate on eliminating collisions with a single commodity j € Q'. We remove
some flow paths of commodity j, and reroute some of the flow paths of a commodities in Q.
We will show that this procedure will not create further collisions, except that unit-capacity edges
used by the flow paths of commodity j might participate in an (1/k)-flow paths in addition to a
unit-flow paths. Repeating this procedure for each commodity in Q' we obtain the lemma.

To eliminate collisions with commodity j, we first create a set of beginning segments P, of the
flow paths of commodities Q. Initially, P, consists of all flow paths of commodities in Q. On each
flow path of commodity j, we will note the Last collision with a path in P;, and denote the set of
these “last collision edges” by L;. Consider a path P € Py that uses more than k edges of L, ‘.e.
|P N L;| > k. Let P, denote the part of this path from its source until the kth collision, and delete
the rest of this path. This operation changes L;, by exposing new collisions as the last ones on some
flow paths of commodity j. However, the number of collisions is decreasing, and hence after a
finite number of such changes the set L; will have of at most k collision edges on each of the paths
in P.

In a symmetric way create a set of end segments P of the flow paths of commodities . Again,
we start with letting P, consist of all flow paths of commodity Q- We consider the “first collision”
edges F;. In a way analogous to the above we delete the beginning segments of paths in P, until
each path in P, has at most k edges in Fj.

An example of the construction of the start and end segments is shown in Figure 1. The
flow paths of the jth commodity are going from top to bottom, and the flow paths of the three
commodities (a, b, and ¢) in Q are going from left to right. Collisions are represented by black
and grey circles; black circles crossed out with “¢” represent collisions in L; and plain black circles
represent collisions in F;. To simplify the figure we constructed beginning and end segments with
keeping only 2 collisions on every flow path in Q. The “end segments” are shown as dashed lines,
the “beginning segments” as solid lines.

Now delete all the flow paths of commodity j that contain edges of L; and F; (that is, those
that cause collisions). This ensures that there are no collisions between remaining flow paths of
commodity j and paths in Py U Pa.

For each flow path P of a commodity in @ with source s and sink ¢, we have two path segments
P, = (s,v) € Prand P, = (w,t) € Pa where v and w are some intermediate nodes on the path
P. If P = P, U P,, then there are no collisions on P, and we leave it as it was originally routed.
Otherwise, there are k paths associated with collisions L; N P, of the jth commodity, and another
k paths of the jth commodity associated with collisions F; N P,. Split the unit flow associated
with P, into k pieces, each carrying (1/k) units of flow, and route each piece from s to the sink
t; of the jth commodity using part of the segment P;, and one of the removed flow paths of the

15

Figure 1: Construction of the start and end segments.

jth commodity associated with one of the collisions in L; 0 P;. Similarly, split the unit of flow
associated with P,, and route from the source of the jth commodity to ¢, using the removed flow
paths of the jth commodity associated with F; N P».

Observe that the above procedure adds only (1/k)-flow paths that use edges freed by the
commodity j € Q. The added paths can not collide with flow paths of commodities in Q'.
Moreover, the procedure does not create any collisions between unit flow paths of commodities in
Q. New collisions can be created only on edges freed by removing flow paths of commodity j. Note
that (1/k)-flow paths that connect start segments to ¢; are edge-disjoint and do not have edges in
common with the start segments. Similarly, (1/k)-flow paths that connect s; to the end segments
are edge-disjoint and do not have edges in common with the end segments. Thus, the worst that
can happen is that some of the edges freed by removing flow paths of commodity j are used by a
single unit-flow path and a single (1/k)-flow path at the same time.

Now we repeat the rerouting procedure in order to get rid of collisions with the flow of the jth
commodity from t; to s;. After this rerouting, each flow path ofa commodity i in Q is either routed
from the corresponding source s; to the corresponding sink ;, or is split into two parts, where the
first part routes a unit of flow from s; to either ¢; or s;, and the second routes a unit from either s;
or t; to t;, respectively. By removing additional d; flow paths of the jth commodity from s; to ¢;
and another d; flow paths from t; to s;, we create sufficient number of free paths thart allow us to
complete the routing of the ith commodity.

The above procedure removed at most 2k + 1 paths from of commodity 7 from s; to ¢; for every
flow path of a commodity in Q; same bound on the removed flow from ¢; to s;. By symmetry, there
are two flow path for every unit of demand, and amount of unsatisfied demand of commodity j is
bounded by 4k + 2 times the total demand of the commodities in Q. The conditions of the lemma
imply that this is below d; /2. Notice that after rerouting that eliminates collisions with j, an edge
can be assigned at most 1 + 1/k units of flow: one unit due to unit-flow path of a commodity in
Q, and the rest due to a (1/k)-flow path path of a commodity in Q. Recall that this can happen
only on the edges originally used by commodity j. Hence, after eliminating collisions with all the
commodities in @, it is sufficient to increase the capacity by an (1 + 1/k) factor to be able to route

16

all of the commodities in @ and half of the demand of the commodities in Q' simultaneously. I

Theorem 3.11 2* < min, z; < 827

Proof: Clearly, 2* < 2} forall p. To prove the other inequality, let z = min,, z. First we consider all
of the commodities in @, with even p. For every such group Q,, we have a feasible multicommodity
flow f, satisfying demands zd;, where i € Q,. Let &' denote the number of non-empty even indexed
groups. We claim that there exists a feasible multicommodity flow feven that satisfies demands 2d;
for each commodity i in group Q, with even p, where the flow though an edge vw is limited by
(14 1/k)* u(vw).

We prove the above claim by induction on the number of non-empty even-indexed groups. Let
k, denote the number of non-empty even indexed groups among the first p groups. The claim is
obviously true for p such that k, = 1. To prove that the required flow exists for some even p such
that Q,, is non-empty, apply Lemma 3.10 for commodity groups @ = Q2U. . .UQp_2 and Q' = Q,.
Inductively, assume that there exists a flow f that satisfies at least £ fraction of the demand of each
commodity in @, and the flow through an edge vw is limited by (1 + 1/k)*»-?u(vw). Lemma 3.10
applied to f and f, implies that there exists a flow that satisfies the demands that were satisfied by
f and at least 1/2 of the demands satisfied by flow f, and the flow through an edge vw is limited
by (1 + 1/k)*»u(vw).

Applying the same argument for the sets Q, for odd p, we conclude that there exist a feasible
flow f.aq that satisfies at least £ fraction of each demand in odd indexed groups such that the flow
though an edge vw is limited by (1+ 1/ k)*" u(vw), where k” denotes the number of non-empty
odd indexed groups. Therefore, there exists a feasible flow f that satisfies z/2 fraction of each one of
the demands such that the flow though an edge vw is limited by [(1 + 1/k)F + (14 1/k)* Tu(vw).

Observe that &' + &”, the number of non-empty groups, is at most k, and (1+1/ E)* 4+ (1+
1/k)*" < (1+ 1/k)* 4+ 1 < 4. Diving the flow by 4 we get that there exists a feasible flow f that
satisfies demands Zd; for every commodity <. 1l

Proof of Theorem 3.6. By combining Lemma 3.9 and Theorem 3.11, we get:
2 <o" < mpin o, < O(log® n) mpin z, < O(log® n)z".

3.3 Application: 2-CNF Clause Deletion Problem

One direct application of our minimum multicut algorithm yields an approximation algorithm for
the 2-CNF clause-deletion problem, i.e. the problem of finding the minimum-weight set of clauses in
2 2-CNF formula whose deletion makes the formula satisfiable, where k is the number of literals in
the formula. The exact variant of this problem is equivalent to the MAX 2-SAT problem, in which
one seeks the maximum subset of clauses comprising a satisfiable formula. However, in the context
of approximation algorithms, these problems seem to differ in difficulty. It is easy to approximate
MAX 2-SAT, and even MAX SAT to within a small constant factor [7, 16, 6]. However, the number

17

of clauses discarded by these algorithms cannot be expected to be within a polylogarithmic bound
of the minimum.

The basis for the reduction is the following well-known graph construction. Given a 2-SAT
formula F, we can assume its clauses have the form p — ¢, where p and g are literals (variables or
negations of variables). To reduce this problem to the directed multicut problem, we construct an
auxiliary graph G(F) with a node for each literal. For each clause p — ¢ of weight w, there is an
edge p — g and an edge § — P each of capacity w.

Lemma 3.12 The formula F is satisfiable if and only if no strongly connected component of G(F) contains
both a variable and its negation.

Proof: Note that for any satisfying assignment, the literals in a directed cycle must all receive the
same truth value. The same therefore holds for a strongly connected component. The “only-if”
direction is then immediate.

Conversely, suppose that no strongly connected component contains both a variable and its
negation. Note that by the construction of the graph, for each cycle py = --- = pa = P1> there
is a negated cycle py — pn — - -+ = P1- Hence the strongly connected components come in pairs:
for a strongly connected component containing some set of literals, there is a strongly connected
component containing exactly the negations of these literals.

Consider the graph G obtained from G(F) by treating each strongly connected component as
a single supernode. Then G is a directed acyclic graph. Let V be a strongly connected component
that is a sink in G i.e., V has no outgoing edges. Let V denote the strongly connected component
consisting of the negations of the literals in V. Observe that V has no incoming edges in G’. We
assign true to all the literals in V, and false to all the literals in V. We claim that this ensures the truth
of every clause involving a literal in V. Such a clause must be of the form p — g, where g is in V,
because V' has no outgoing edges. Since g is in V, we have assigned it true, so the clause is satisfied.
Since V has no incoming edges, all clauses involvinga literal in V are of the form ¢ — p, where ¢ is
in V, and hence are automatically satisfied. Thus, we can delete V, V and all the associated clauses,
and recurse. |

The 2-CNF dause-deletion problem is related to the minimum multicut problem by the following
lemma.

Lemma 3.13 The minimum capacity of a multicut in G (F) separating every variable from its negation is
at most twice the minimum weight of a set of clauses whose deletion makes F satisfiable. Conversely,
given any multicut A that separates every variable from its negation, one can find a set of clauses having
weight at most the capacity of A whose deletion makes the formula satisfiable.

Proof Let S be a set of clauses whose deletion from F yields a satisfiable formula F”. Let C be
the set of edges corresponding to the clauses in S. For each clause there are two edges, each having
capacity equal to the cost of the clause. Hence the capacity of C is twice the cost of S. Then
G(F) — C is the auxiliary graph G(F”) for the satisfiable formula F’. By Lemma 3.12, G(F") has
no variable and its negation in the same strongly connected component, and thus a subset of C'is a
multicut separating each variable from its negation.

18

Conversely, given a multicut A, delete from F the clauses corresponding to edges in .A. For
the resulting formula F’, the auxiliary graph G(F”) is a subgraph of G(F) — A. Since the latter
graph has no variable and its negation in the same strongly connected component, neither does the
former. Hence by Lemma 3.12, F” is satisfiable. |}

We can use the algorithm of Theorem 3.5 to find a multicut separating each variable from its
negation. The multicut found has capacity at most O(log” k) times the minimum total capacity
of an edge set whose deletion separates each variable from its negation. We obtain the following
theorem.

Theorem 3.14 There exists a polynomial-time algorithm to approximate the minimum-weight deietion
problem for 2-CNF formulae. The solution output has weight O(log” k) times optimal, where k is the
number of variables in the formula.

Recently, Even et al [4] observed that the fractional directed cycle packing result of Seymour [14]
directly implies an O(log n log log n) approximation algorithm to the directed multicuts problem.
Since our reduction of 2-CNF deletion problem results in a graph with n = O(k?) nodes, this
implies that the 2-CNF minimum deletion problem can be approximated to within a factor of
O(log k log log k).

3.4 Computing the dual solution

As in the Steiner cuts case, the most time-consuming part of our directed multicut algorithms is
computing the solution to the corresponding LP, which in this case corresponds to the dual of
maximum sum directed multiflow problem.

Instead of solving the directed multifiow problem, we will solve the following LP: Let T}
denote a collection of directed path pairs, where in each pair one path is from s; 10 ¢; and the
other one is from ¢; to s;. Let fi(v) be a nonnegative value for every path-pair v € T';, and let
filvw) = S{fi(y) + v € Tyand vw € 7}. The corresponding LP is as follows: '

minimize A subject to:

@ Zfi(vw) u(vw) Yow € E
® Y fily =1 1<i<k

i yel;
fily) > 0 Vyel,1<i<k

IN

e

Observe that any feasible primal solution to this LP with value A can be directly transformed
into a primal feasible solution of symmetric maximum multiflow with value ¢ = 1/(2X). Also, any
primal feasible solution to symmetric max multiflow with value ¢ can be transformed to a primal
feasible solution to the above problem with X = 1/¢. Thus, we have:

2

(10) <29 < =

1
)*

19

where A* denotes the optimum solution to the above LP. Moreover, since we can easily approximate
) to within a factor of k, we can use binary search to scale capacities such that the problem reduces
to the case where the optimum solution A* is between 1 and 2.

Observe that restricting each T; to include only path pairs that do not use edges with capacity
below 1/(2m) can change the value of the linear program by at most a factor of 2. Let I} denote
the set of restricted path pairs. Thus, by Theorem 2.7 of [13], we can find a constant factor
approximation to the above LP in O(mlogn) iterations, where each iteration involves finding a
shortest v € U;T". This can be done in O(M (n)logn) time by first computing all-pairs shortest
paths, where M(n) denotes the time to multiply two . x n matrices.

In addition to the primal solution {f;}, the algorithm produces a vector £/, such that A < O(X*)
where A* is the optimum value and such that

)\ZE’(vw)u(vw) < f min Z ¢ (vw)

vyeuU; T vweny

for some constant 3. Note if we set £/ (vw) = max{f(vw), 3, ¢ (vw)u(vw)/(mu(vw)}, it will
satisfy the same inequality (with a different constant §') with T} replaced by I';.

Let £ = 80" /(A Y, ¢ (vw)u(vw)). The length of the shortest directed cycle with respect to £
is above 1. Moreover, we have

3 u(vw)l(vw) = B/A < /X < 264

vw

The above discussion implies the following claim.

Theorem 3.15 The length function £ needed to compute the muiticut in Theorem 3.5 can be computed
in O* (mM(n)) time.

Remark. In [4] the authors develop an algorithm similar to the packing algorithm but not based
on [13] to find the length function £. Using our notation their running time is O*(m*M(n)).

Acknowledgments

We are grateful to Jon Kleinberg for many helpful discussions. In particular, we would like to thank
him for pointing out a crucial flaw in an earlier approach to making the min-multicut/max-flow
bound for the directed symmetric concurrent multifiow problem independent of D, the sum of the
demands. We would like to thank the author of [4] for pointing out reference [14].

References
[1] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Improved routing strategies with succinct
tables. /. Alg., 11:307-341, 1990.

[2] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network Decomposition and
Locality in Distributed Computation. In Proc. 30th IEEE Annual Symposium on Foundations
of Computer Science, pages 364-369, 1989.

20

[3] B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic overhead. In Proc.
31s¢ IEEE Annual Symposium on Foundations of Compuer Science, pages 5 14-522,1990.

[4] G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and
multi-cuts in directed graphs. Unpublished manuscript, May 1994.

[5] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems
and their applications. In Proc. 25th Annual ACM Symposium on Theory of Computing, May
1993.

[6] M. X. Goemans and D. P. Williamson. A new $-approximation algorithm for MAX SAT.
In Proc. Third Conference on Integer Programming and Combinatorial Optimization, pages
313-322,1993.

[7] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comp. and Syst.
Sci., 9:256-278.

[8] N. Kahale. On reducing the cut ratio to the multicut problem. Technical Report TR-93-78,
DIMACS, 1993.

[9] P. N. Klein, S. Rao, A. Agrawal, and R. Ravi. An approximate max-flow min-cut relation
for multicommodity flow, with applications. Combinatorica. to appear. Preliminary version
appeared as “Approximation through multicommodity flow,” In Proc. 31th IEEE Annual
Symposium on Foundations of Computer Science, pages 726-737,1990.

[10] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with applications to approximation algorithms. In Proc. 29th IEEE
Annual Symposium on Foundations of Computer Science, pages 422-431,1988.

[11] D. Peleg and E. Upfal. A tradeoff between size and efficiency for routing tables. J. ACM,
36:510-530, 1989.

[12] S.Plotkin and E. Tardos. Improved bounds on the max-flow min-cut ratio for multicommodity

flows. In Proc. 25th Annual ACM Symposium on Theory of Computing, May 1993.

[13] S. A. Plotkin, D. Shmoys, and E. Tardos. Fast Approximation Algorithms for Fractional
Packing and Covering. In Proc. 32nd IEEE Annual Symposium on Foundations of Computer
Science, 1991.

[14] PD. Seymour. Packing directed circuits fractionally. Unpublished manuscript. Revised
November 1993, June 1992.

[15] PM. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Proc.

301h IEEE Annual Symposium on Foundations of Computer Science, pages 338-343,1989.

[16] M. Yannakakis. On the approximation of maximum satisfiability. In Proc. 3rd ACM-SIAM
Symposium on Discrete Algorithms, pages 1-9, 1992.

21

