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Abstract

We find the balanced cut in a graph that minimizes the maximum
difference between edge lengths, in time 0{m -f- n^logn), improving a
previous0{m + n^-^) bound. We use subroutines for solving a dynamic
subset sum problem, in time O(^log^logn) per operation in the fully
dynamic setting, or in time O(^logn) per operation in the semi-online
setting in which one can predict a superset of future deletions.
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1 Introduction

Many graph optimization problems, such as shortest paths, minimum span
ning trees, and minimum cuts, aim to find a subgraph satisfying certain
requirements and minimizing the sum of its edge lengths. By contrast, a
minimum range problem [1, 2, 6, 7, 8] instead seeks to find a subgraph
minimizing the maximum difference between any two edge lengths; in other
words the lengths in the subgraph should be as uniform as possible.

In this paper we study the minimum range balanced cut problem: par
tition the vertices of our input graph G into two equal-cardinality subsets
A and B, minimizing the differences among lengths of edges with one end-
point in A and the other in B. Equivalently, we seek a set of edges in C,
the removal of which leaves connected components which can be combined
into two such sets A and B. The corresponding standard optimization prob
lem, of finding a minimum balanced cut, is NP-complete, but the minimiiTn
range balanced cut can be found in polynomial time. Dai et al. [2] note that
the minimum range balanced cut problem can be used to approximate the
minimum cardinahty balanced cut, using an approach previously studied by
the same authors for the minimum cut problem [3]: if one assigns random
weights to the edges of a graph, the cuts with few edges wiU likely have
small weight ranges, so the minimum range balanced cut can give a good
approximation to the minimum balanced cut.

We also study a dynamic subset sum problem: given a collection of inte
gers Ui and a target integer £, maintain a;,- G{0,1} satisfying ^ = £ (or
more generally maximizing "^XiUi < £) as values are inserted and deleted
in the collection. The connection of subset sums with minimum range bal
anced cuts is that, if we are given a weight range, we can test whether the
edges in that range partition G into pieces that can be assembled into sets
A and B of the appropriate sizes by using a subset sum algorithm.

2 New Results

We show the following results.

• We can insert or delete integers in a subset sum problem, and maintain
the solution to the problem in 0{£\og£\ogn) time per update and
0{n£) space. No fully dynamic algorithm was previously known.

• If we are given a limited ability to predict future deletions, in that
for any k we can find a set of 0{k) values containing all values that



could be deleted in the next k steps, we can improve our bounds to
0{£\og n) time per update and 0(n+^) space. This semi-online model
was previously considered by Dai et al. [2] who gave an 0{£y/n) time
bound for the semi-online subset sum problem.

• We can find the minimum range balanced cut in 0(m -f logn) time
and 0{n) space. Previously 0(m -1- time was known [2].

All our algorithms assume a random access model of computation in
which arithmetic operations on max(log n, log£)-bit integers can be per
formed in constant time. Some such restriction on the size of integers is
necessary: if we were to allow arithmetic on unbounded (or even n£-bit)
integers we could update the dynamic subset sum problem in constant time,
and find the minimum range balanced cut in time 0{m -t- nlogra). For our
balanced cut algorithm, the edge weights may be real numbers as long as
we can compare any pair of weights or weight differences in constant time.

3 Reduction from Cuts to Subset Sums

We now show how to solve the minimum range balanced cut problem by
using an algorithm for dynamic subset sums. In fact we give two reductions:
to online, semi-online, and offline subset sums. Similar reductions are used
by Dai et al. [2], however weare able to speed up the semi-online reduction by
generalizing up our previous offline minimum spanning forest algorithm [4].

For any cut in our graph G, the minimum and majcimum weight cut
edges are part of the minimum and maximum spanning trees respectively.
Therefore the range of the cut can be determined solely by considering edges
in these two trees, and ignoring all other edges. Following Dai et al. [2], we
perform a preprocessing step in which we compute these two trees, and
remove all other edges from G. This can be done in time 0{m -|- nlogn),
dominated by the other steps of our algorithm. Thus from now on we can
assume without loss of generality that G has 0{n) edges.

3.1 The Matrix of Feasible Ranges

Given two edge weights a and /?, we define the range [a, (3] to consist of
aU edges with weight a < w < /3. A range is feasible for the balanced cut
problem if there is a partition of V(G) into two equal-cardinality subsets A
and B such that all edges crossing the partition are in the range. A range is



minimal if it is feasible and no other feasible range contains a subset of its
edges. We will find the minimum balanced cut by listing aU minimal ranges
and finding the minimum difference /? —a among these ranges.

Lemma 1. We can test whether a range is feasible by solving a subset sum
problem.

Proof: We consider the graph G' formed by removing from G aU edges
in the range. G' has connected components with vertex sets of cardinaUties
Ui satisfying ^ ni = n. The range is feasible iff there is some subset of the
components with Uj- summing to n/2; this can be tested as a subset sum
problem with i = n/2. •

Sort the m = 0{n) edges of G by weight, producing a sequence of weights
wi, W2, .. -Wm- We define the m x m square 0 —1 matrix F to have the
values Fij = 1 if range [wi,Wj] is feasible, and Fij = 0 otherwise.

Lemma 2. The O's and I's in F form connected regions, separated from
each other by a monotone path.

Proof: This follows simply from the fact that as one decreases i or increases
j, the range [tn,-, Wj] becomes larger, so it can not change from being feasible
to being infeasible. •

The minimal ranges ['Wi,Wj] we seek are those for which = 1 and
Fi-ij = Fij-i —0. If we foUow the path separating the 0' and I's in F, we
can find these ranges as the points at which the path turns a corner.

3.2 Reduction to Online Subset Sum

As discussed aboVe, we have reduced the minimum range balanced cut prob
lem to one of following a monotone path in a 0-1 matrix. We next discuss
how to use dynamic subset sum algorithms to speed up the evaluation of
values Fij in such a path. We consider a dynamic process, in which after
evaluating an entry Fij we wiU next want to evaluate some where i'
and j' are within one step of i and j respectively.

Lemma 3. Suppose we can solve the dynamic subset sum problem in time
f{n,i) per insertion or deletion. Then we can step from entry to adjacent
entry of Fij as described above, in time 0(y^ -|- f(n, n)) per step.



Proof: Each step consists of adding or removing a single edge from a
range, and hence deleting or inserting an edge in the graph G' described in
Lemma 1. If we remove an edge from G', we may possibly split a single
connected component in two; this causes one deletion and two insertions in
the subset sum problem of Lemma 1. Similarly if we insert an edge we may
connect two components of G' and cause two deletions and one insertion in
the dynamic subset sum problem. We can keep track of the components of
G' and their sizes by using a dynamic minimum spanning forest algorithm,
in time 0{y/n) per update [5]. •

We can then simply foUow the monotone path separating O's and I's
in F, to find the corners of the path and hence (as discussed above) the
minimal ranges, thereby solving the minimum range balanced cut problem.

Lemma 4 (Dai et al. [2]). Assume we have an algorithm for performing
a dynamic subset sum algorithm, in time f{n,£) per insertion or deletion.
Then we can solve the minimum range balanced cut problem in total time
0(m + + nf(n, n)).

Proof: As noted earlier we use minimum and maximum spanning trees to
remove unnecessary edges from G, reducing the number of edges to 0(n).

We use Lemma 3 to step from entry to entry of matrix F and find in
each row i the minimum value of j = j{i) for which Fij = 1. Note that, as
discussed in Lemma 2, j{i + 1) > j{i). We begin at {i,j) = (0,0). Then,
whenever we have F[i,j) = 0, we increase j by one; whenever F{i,j) = 1
we instead increase i by one. The values j[i) are those at which we found
F(i,j) = 1. After at most 2m = 0(n) steps we will have found aU such
values, so by Lemma 3 the time for this stage is 0(n^-^ + f{n, n)).

We next list the minimal ranges as those values (i,j(i)) for which j(i —
1) < j(i). We compute Wj - Wi for each such range, and find the minimum
such difference. This gives the minimum range of a balanced cut; we then
use a static subset sum algorithm to find the actual cut. •

3.3 Reduction to Semi-Online Subset Sums

Dai et al. [2] noted that there is a simple structure to the sequence of graph
operations performed in Lemma 4: edges are inserted and deleted in in
creasing order of length. Only the order of insertions relative to deletions
is dynamic. Since each graph operation gives rise to 0(1) subset sum oper
ations, the predictability of the graph update sequence means we can also



make some predictions about the subset sum update sequence. However the
predicted structure is less simple: we cannot, for instance, predict the order
in which deletions will occur in the subset sum problem.

In order to exploit the predictability of these two update sequences, Dai
et al. introduce the following model. A dynamic algorithm in which elements
are inserted or deleted from a set is said to be semi-online if we are given an
oracle that can at any time perform the following prediction task: given an
integer k, return a prediction set of size 0{k) with the property that any of
the elements currently in the input set and deleted within the next k steps
must belong to the prediction set.

This semi-online model generalizes other standard types of dynamic al
gorithms: Incremental algorithms (allowing insertions only) can be handled
by returning an empty prediction set. Offline algorithms (in which the entire
update sequence is known) and semi-dynamic algorithms (in which only the
order of the deletions is known) can be handled by returning a prediction
set consisting of the next k deletions in the known sequence.

The relevance of semi-onhne algorithms to our situation is, first, that the
dynamic minimum spanning forest algorithm used to determine component
sizes clearly fits this model (indeed, it also fits the more specialized semi-
dynamic model discussed above). Second, the subset sum problem used in
the reduction can also be solved with a semi-online algorithm:

Lemma 5 (Dai et al. [2]). The sequence of updates to the dynamic sub
set sum problem ofLemma 4 is semi-online, with a prediction set oracle that
takes time 0{klogn).

Proof: Given a value k, we examine the next k edges to be inserted and the
next k edges to be deleted in G'. We return a prediction set consisting of the
at most 4k values corresponding to components of G' containing an endpoint
of one of these edges. These components can be found by representing the
minimum spanning forest of G' by a dynamic tree data structure [9]. •

As a consequence, if we can perform semi-online subset sums in time
f{n,l) per update, we can solve the minimum range balanced cut problem
in time 0{m + ® nf(n, n)). We improve this somewhat by generalizing
the offline dynamic minimum spanning forest algorithm of [4] to apply in
the present situation.

Lemma 6. We can solve the version of the dynamic minimum spanning
forest problem in which the sequences of insertions and deletions are both



known, but in which the way these two sequences are merged may vary
online, in amortized time O(logra) per update.

Proof: The algorithm of [4] uses the fact that, for any sequence of k
updates to a graph, we can find a set S of 0{k) edges such that any change
to the MST caused by one of the updates involves only edges in that set. S
includes aU 'edges updated in the given sequence. The remaining edges in S
are found by examining the MST T of the graph G, performing all deletions
of edges of T in the sequence and collecting the edges of G —T added to
replace them, and performing all insertions in the sequence and collecting
all edges of T removed to replace them. Once we have calculated S, we can
reduce the problem within this sequence to an equivalent one of size k by
removing from G all edges in G —T —S and contracting all edges in T —S.

By repeating this contraction process at O(logn) levels, with smaller
and smaller values of k, one reduces the problem to graphs of size 0(1), for
which it is trivial. This contraction process does not involve the ordering
among the k updates, and works equally well if (as in the Lemma) we know
a set of 2k updates such that any of the k actual updates is taken from this
set. Thus the algorithm works not just for the offline problem considered
in [4] but for the problem considered here.

We omit the details, and refer the reader to our original paper [4], as
this result is not necessary for our eventual 0(m + n?\ogn) bound. •

Lemma 7. Assume we have an algorithm for performing a semi-online
subset sum algorithm, which takes time f{n, i) per insertion or deletion using
a prediction set oracle with time bound O(klogn). Then we can solve the
minimum range balanced cut problem in total time 0(m+n logn+7i/(u, n)).

4 Online Subset Sums

In this section we describe an algorithm for maintaining the solution to
a subset sum problem, as values are inserted or deleted. Since we could
solve a static problem by inserting its n values one at a time, and since
the best static algorithm takes time 0{ni), the best we could hope for in
a dynamic algorithm would be time 0{£) per update; our algorithm takes
time O(i\ogi\ogn), within a small polylogarithmic factor of optimal. We
can either test whether there is a subset adding to a given value I, or find
the largest I' < I for which such a subset exists, in the same amount of time.



We assume that we can perform arithmetic on majc(logn,log^)-bit in
tegers; this many bits are required simply to represent the input values.
Note that some such assumption is needed for the problem to be nontriv-
ial: if we were allowed unlimited precision we could maintain the value

P = n(l + 2"'^') in constant time per update, and recover the number of
solutions to the subset sum problem for a given £ as P/2"^ mod 2".

Given a set N of values Ui, define Bi(N) to be 1 if some subset 6f the
values has sum i, and 0 otherwise. We let B{N) denote the vector of £ such
values, for i in the range 1,2,. ..,£.

Lemma 8. Given two collections of values S and T which are disjoint (in
the sense that no element ofS belongs to T or vice versa, although elements
in different collections may have the same value) we can compute B(S UT)
from the two vectors B(S) and B(T), in time 0(£log£).

Proof: For notational convenience we extend the length of the vectors by
one, and define Bo(S) = Bo(T) = 1 (the empty subset of any set sums to
zero). Let A,- = Bj(S)Bk(T). Then Ai counts the number of ways i
may be formed as the sum of values j and k that can respectively be formed
as sums of subsets of S and T. We then let Bi{S U T) = 1 if A,- > 0, and
Bi{S U T) = 0 otherwise. A; is simply a vector convolution, so it can be
computed in time O(flogf) by the fast Fourier transform algorithm. It is
then trivial to compute P; from A,- in time 0(£). •

Theorem 1. Wecan solve the online subset sum problem in 0{£log flog n)
time per update, using 0(n£/log£) space.

Proof: Our data structure consists of a balanced binary tree, with n leaves
corresponding to the n input values. For each internal node v we store the
vector B{N{v)), where N(v) denotes the set of leaves descending from v.
The solution to the subset sum problem can then be found simply by looking
at the stored value for B({N{r)) where r is the root of the tree.

After each update we recompute the vectors at O(logn) tree nodes. The
vector P({x}) at a leaf can be constructed easily: P2;({x}) = 1 and all other
values of P({a:}) are 0. At each internal node v with children u and w we
compute B{N{v)) —B{N{u) UN{w)), in time 0{£\og£) by Lemma 8.

The vector of 0(£) bits at each of 0{n) tree nodes can be compressed
into 0{£/log£) integer values, giving the claimed space bound. •



Note that the steps in which we produce the vectors Bi by "throwing
away" information from the A,- are necessary: if we left them out, and
instead stored at each node the convolution of the vectors at its children,
the bits per value would exceed the O(log£) bound.

By using this data structure with Lemma 4 we can solve the minimum
range balanced cut problem in time 0{m+n^log^ n) and space 0{'n?/ log n).
HoweVer, we can get better time and space bounds, and avoid the complex
ity of the FFT-based onbne algorithm, by instead using the semi-online
algorithm to be described next.

5 Semi-Online Subset Sums

We solve the semi-online subset sum problem using a recursive blocking
technique similar to that in our previous offline minimum spanning forest
algorithm [4]: we partition the sequence of update events that we will be
handhng into a sequence of blocks. Each block contains a number of events
that is a power of two, and is partitioned into two smaller blocks, its children.
Thus the overall sequence of blocks has the structure of a complete binary
tree. The length L{h) of a block h is defined to be the number of update
operations occurring within it. If n denotes the total number of operations
performed in the algorithm, the sum of the lengths of the blocks at a given
level of the tree is exactly n, and since there are O(logn) levels the sum of
the lengths of all blocks is O(nlogn). In what follows, we let b' denote the
parent of any block 6, i.e. the unique block containing bwith L{b') = 2L{b).

When we perform an update operation, we will do some computations
within each of the blocks for which that update is the first operation, in
order from longer blocks to shorter blocks. These operations compute an
active set X(b) for each block b, with the property that any deletion in b
is in the active set. This is essentially just the prediction set for which the
semi-online problem gives us an oracle, so |X(6)| = 0{L{b)). However we
make the minor restriction that X{b) C X{b'). We can safely remove any
values from the prediction set of b that are not in X{b'), since we know they
can not actually be deleted in block b.

We let N(b) denote the set of aU subset sumvalues present in the problem
before the first operation of b that are not members of X(b). Foreach block
bwe wiU maintain a vector B{N{b)) (with the same definition of B(S) as in
the previous section).

Lemma 9. We can compute B{N{b)) from B{N{b')) in time 0(L(b) •£).



Proof: Let S = N{b)-N{b')] then S consists of X{b')-X{b), together with
those values inserted in the other child of b' (if b is the second child) and not
part of X{b). Thus |5| = 0{b). Let the values in S be denoted ui, .. .Vk.
We compute thevectors .. .B^, where B* = B{N{b')\j{vi,V2,.. .u,}.
Each B' can be calculated in time 0{i) from B*~^ and u,- since Bj is one iff
either Bj~^ or BjZ],. is one. The desired vector B{N{b)) = B^. •

I

Theorem 2. We can solve the semi-online subset sum problem, with a
prediction oracle that takes time kp(n), in amortized time 0{{p{n)-\-i)logn)
per update, using 0(£) space.

Proof: We compute the values B{N{b)) for each block b as described
above. At the leaves of the tree of blocks (those blocks containing only a
single operation), |A(6)| = 0(1) and we can compute B{S) for the actual
set of values in the problem at that time by computing B{N{b) UX{b)) in
time 0{£) using the same technique as Lemma 9.

The algorithm performs 0{L{b) •£) work computing B{N{b)) for each
block, and 0{L{b)p{n)) work constructing X(b). Over a sequence of n op
erations it takes 0{{p{n) -\-£)J2 H^)) = 0((p(n) + £)n\og n) total time.

The space bound foUows since at any point in time we need to remember
the values of O(logn) vectors B{N(b)), each of which can be stored as
0(f/log n) integer values. •

Theorem 3. We can solve the minimum range balanced cut problem in
time 0{m -f n?logn).

Proof: We apply Lemma 7, using f{n,n) = 0(n log n) by Theorem 2
(with p{n) = O(logn)). •
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