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Abstract

Given a set of n real values, each with a positive weight, we wish
to find the subset of n− k values having maximum weighted average.
This is equivalent to the following form of parametric selection: given n
objects with values decreasing linearly with time, find the time at which
the n − k maximum values add to zero. We give several algorithms
showing that these problems can be solved in time O(n) (independent
of k). We also show that a slight generalization of the original problem,
in which weights are allowed to be negative, is NP-complete.
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1 Introduction

A common policy in grading coursework allows students to drop a single
homework score. The remaining scores are then combined in some kind of
weighted average to determine the student’s grade. We would like to be able
to perform such calculations automatically. This problem has an easy linear
time solution: simply try one by one each set of n − 1 scores. The average
for each set can be computed in constant time from the sums of all scores
and of all weights.

However, consider the generalization of this problem in which not one
but two scores may be dropped. More generally, of n scores, suppose k
may be dropped. Now how can we maximize the weighted average of the
remaining scores, more quickly than the naive O(nk) algorithm?

We formalize the problem as follows: We are given a set S of n scores
〈vi, wi〉, where vi denotes the value of a score and wi denotes the weight of
the score. For later convenience we let V and W denote the sums of the
values and weights respectively. We assume that all weights wi are positive.
We wish to find a subset T ⊂ S, with |T | = n− k, maximizing the weighted
average

A(T ) =
∑
i∈T vi∑
i∈T wi

. (1)

In the coursework problem we started with, vi will typically be the grade
received by the given student on a particular assignment, while wi will denote
the number of points possible on that assignment.

Some similar problems have been studied before, but we were unable
to find any reference to the minimum weighted average subset problem.
Algorithms for finding a cycle or cut in a graph minimizing the mean of the
edge costs [12, 13, 15, 27] have been used as part of algorithms for network
flow [8, 11, 24] and cyclic staffing [17], however the averages used in these
problems do not typically involve weights. More recently, Bern et al. [2] have
investigated problems of finding the possible weighted averages of a point
set in which the weight of each point may vary in a certain range. However
that work does not consider averages of subsets of the points.

One intuitively appealing idea for solving the maximum weighted av-
erage problem is a greedy approach: find i1 maximizing A(S − i1), then
i2 maximizing A(S − i1 − i2), and so on. This would take total time
O(kn), and due to its simplicity would be suitable for practical implemen-
tations. Unfortunately, this technique does not work: consider the input
S = {〈1, 1〉 , 〈0, 2〉 , 〈1, 6〉 , 〈1, 6〉}. The maximimum weight three-element
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subset is {〈1, 1〉 , 〈1, 6〉 , 〈1, 6〉}, dropping the score i1 = 〈0, 2〉, but the maxi-
mum weight two-element subset {〈1, 1〉 , 〈0, 2〉} does not drop i1. The same
input similarly serves as a counterexample for the “dual greedy” approach
of selecting at each step a score to maximize the weighted average of the set
selected so far.

Instead we give several algorithms for the problem, based on the following
approaches. First, we show how to test for a particular candidate average
A whether some set T has average A or above, by a simple linear time
algorithm. With this idea one can simply perform binary search for the
true optimal value A (in time O(n logW ) if the inputs are integers). The
ideas in this section also help us reformulate the problem as one of parametric
selection: given n objects with real values that decrease linearly as a function
of time, choose the time at which the n−k largest object values sum to zero.
We describe two other general techniques for such problems, namely Newton
iteration and Megiddo’s parametric search method, and discuss why these
techniques do not provide fully satisfactory solutions to our problem.

Second, we show that our problem falls into the class of generalized linear
programs, defined by various computational geometers [1, 10, 21] for their
applications to problems such as the minimum enclosing circle. A number
of generalized linear programming algorithms are known to take time linear
in the input size but exponential or subexponential in the dimension of the
problem. For our weighted average problem, we show that the dimension is
k, so for any fixed k we can find in O(n) time the set of n − k scores with
maximum weighted average. A version of Seidel’s algorithm [25] provides a
particularly simple randomized algorithm for the case k = 2, with expected
running time approximately three times that of the algorithm for the easy
case k = 1.

Third, we give another randomized algorithm, based on the linear time
quickselect algorithm for finding the k smallest values in a set. The idea
is to solve the parametric selection problem defined above by simulating
quickselect on the values of the objects as measured at the optimal time t∗

we are seeking. We do not have access to these values themselves but we
can perform approximate comparisons on them by using our linear-time al-
gorithm for testing a candidate average. Our method runs in O(n) expected
time for any k, however the constant factor improves for small k, so that
this method is an improvement over Seidel’s algorithm for k ≥ 4.

Fourth, we show how to derandomize a variant of the third algorithm
by applying a second technique from computational geometry, that of ε-
cuttings. The algorithm here is too complicated for practical use, but it
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settles the theoretical question of the asymptotic complexity of the problem
as well as demonstrating once again the usefulness of geometric ideas in
seemingly non-geometric problems.

Finally, we show that if we generalize the problem somewhat, to allow
negative weights, it becomes NP-complete, so no polynomial time solution
is likely in this case.

2 Feasibility testing and parametric selection

Suppose that some (n− k)-element set T ⊂ S has weighted average at least
A. We can write this as an inequality of the form

A ≤ A(T ) =
∑
i∈T vi∑
i∈T wi

. (2)

Rearranging terms, and using the assumption that the wi are positive, we
can rewrite this as ∑

i∈T
(vi −Awi) ≥ 0. (3)

Similar inequalities hold if we wish to know whether some T has average
strictly greater than A.

Define for each i the decreasing linear function fi(t) = vi − twi, and
define

F (t) = max
|T |=n−k

∑
i∈T

fi(t). (4)

Then F (t) can be computed in linear time simply by selecting the n − k
largest (or equivalently k smallest) values fi(t). Equation 3 can be rephrased
as saying that some set has average at least A iff F (A) ≥ 0. We state this
as a lemma:

Lemma 1. For any value A, some set T with |T | = n − k has weighted
average at least A iff F (A) ≥ 0, and some T has weighted average greater
than A iff F (A) > 0. F (A) can be computed in time O(n).

F (A) is a piecewise linear decreasing function since it is the maximum of( n
n−k

)
decreasing linear functions. Thus our original problem, of finding the

maximum weighted average among all n− k point sets, can be rephrased as
one of searching for the root of F (A). This can also be viewed as a para-
metric matroid optimization problem [7] in which the matroid in question
is uniform.
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Newton(S ):
choose an initial set T0 ⊂ S
i ← 0
repeat

let Ti+1 be the set giving F (A(Ti))
i ← i + 1

until A(Ti) = A(Ti−1)
return A(Ti)

Figure 1. Newton iteration for the maximum weighted average.

By binary search we can find the position of a root of F within an
accuracy of (1 + ε) in time O(n log 1/ε). If the input values vi and wi
are integers, the weighted average of any set is a rational number with
denominator at most W =

∑
wi. Any two such numbers must differ by at

least 1/W 2, so if we find the optimal average A∗ within O(1/W 2) error, any
set T with at least this average will be an optimal set and we can find the
optimal average exactly. Thus we can solve our original weighted average
problem in time O(n logW ).

An alternate general method of finding the roots of functions is to use
Newton iteration: start with an initial value x0 and at each step compute
xi+1 = xi−F ′(xi)/F (xi). For this particular problem note that F ′(x) is the
slope of the linear function

∑
i∈T fi(x), where T is the set giving the value of

F (x). Thus this method can be implemented by the algorithm depicted in
Figure 1. Each successive pair of values of A(T ) found by this algorithm is
separated by a breakpoint of F (T ), and F (T ) can only have O(n

√
k/ log∗ k)

breakpoints [23], so after polynomially many steps the algorithm terminates
in the correct solution. (See e.g. [7] for the equivalence between the break-
points of F and the k-set problem studied in [23].) The worst case time of
this algorithm may be larger than we wish, but it gives a simple method
that may be useful in practice.

A third general method of solving our problem is provided by Megiddo’s
parametric search technique [22]. This method takes an algorithm for testing
a parameter A, such as that of Lemma 1, and simulates the execution of
that algorithm as it would run when given the optimal parameter A∗ as
input. At each step, any comparison involving A∗ with some other value
α is performed by running the same test algorithm on input α. In general
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this squares the running time (giving an O(n2) time algorithm in our case)
but it can be made more efficient by simulating a parallel version of the
test algorithm. (In our case what is needed is a parallel median-selection
algorithm.) Typically all comparisons with A∗ done in a single step of
the parallel algorithm can be tested by binary search with O(log n) calls
to the (sequential) test algorithm. A technique of Cole [4] further speeds
up this idea, so that for our problem the resulting time bound should be
O(n log n). However we find this unsatisfactory for two reasons. First,
the time is still greater than we want. Second, and more importantly, the
resulting algorithm is extremely complicated and not easily understood.

In subsequent sections we show how to use the feasibility testing function
F (A) with randomization and more direct forms of parametric search in
order to improve the worst case or expected time to linear.

3 Generalized linear programming

Matoušek et al. [21] define a class of generalized linear programming prob-
lems that can be solved by a number of algorithms linear in the input size
and exponential or subexponential in the combinatorial dimension of the
problem. Their definition of a generalized linear program follows.

We assume we are given some f taking as its argument subsets of some
domain S (in our case, subsets of the given set of scores), and mapping these
sets to some totally ordered domain such as the real numbers. This function
is required to satisfy the following two properties:

• If A ⊂ B ⊂ S, f(A) ≤ f(B).

• If A ⊂ B ⊂ S, f(A) = f(B), and s is any element of S, then f(A+s) =
f(A) iff f(B + s) = f(B).

A basis of such a problem is a set B ⊂ S such that for any proper
subset A ⊂ B, f(A) < f(B). The dimension of a problem is the maximum
cardinality of a basis. The solution to the problem is a basis B such that
f(B) = f(S).

In our problem, we let S be the set of scores we are given. We define the
objective function f(A) as follows.

f(A) = max
B⊂A,|B|=k

A(S −B) (5)
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In other words, we consider a constrained version of our weighted average
problem, in which the k scores we drop are required to come from set A. If
|A| < k, we define f(A) to be a special value (−∞, |A|) less than any real
number. The comparison between two such values (−∞, x) and (−∞, y) is
defined to give the same result as the comparison between x and y.

Any basis must consist of at most k scores, so the dimension of this
problem is k. To verify that this is a generalized linear program, we must
prove that it satisfies the requirements above.

Lemma 2. For the pair (S, f) defined as above from our weighted average
problem, any sets A ⊂ B satisfy f(A) ≤ f(B).

Proof: For A and B both having k or more members, this follows imme-
diately since the choices allowed in the maximization defining f(B) are a
superset of the choices allowed for f(A). Otherwise, f(A) = (−∞, |A|); if
|B| ≥ k then f(B) is a real number greater than f(A) by definition, and
otherwise f(B) = (−∞, |B|) ≥ f(A) since |B| ≥ |A|. 2

Lemma 3. For the pair (S, f) defined as above from our weighted average
problem, any sets A ⊂ B satisfying f(A) = f(B), and any score s = 〈vi, wi〉,
f(A+ s) = f(A) iff f(B + s) = f(B).

Proof: If |A| < k, then the assumption that f(A) = f(B) forces A and
B to be equal, and the lemma follows trivially. Otherwise, there must be
some basis C ⊂ A ⊂ B with f(C) = f(A) = f(B), and |C| = k. Suppose
that C is non-optimal in A+ s or B + s. By an argument similar to that in
Lemma 1, there is some other k-element set D in A+ s or B + s such that∑

i∈S−D
fi(A(S − C)) > 0. (6)

Further, we know that ∑
i∈S−C

fi(A(S − C)) = 0 (7)

by the definition of fi. Since the sum for S − D is greater than the sum
for S − C, there must be scores i, j with i ∈ D − C, j ∈ C − D, and
fi(A(S−C)) < fj(A(S−C)). Then D′ = C+i−j also satisfies inequality 6,
showing that D′ is a better set to remove than C. We assumed that C was
optimal in A and B, so it must be the case that i = s and D′ shows that C
is non-optimal in both A+ s and B + s. Thus C is optimal in A+ s iff it is
optimal in B + s. 2
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Corollary 1. The pair (S, f) given above defines a generalized linear pro-
gram, and the solution to the program correctly gives us the set of k scores
to drop in S to maximize the weighted average of the remaining points.

It is a curious phenomenon that although the generalized linear program
class was defined to study minimization problems (such as finding the min-
imum radius of a circle containing a set of n input points) the results above
show that the same definition applies without reversing inequalities to our
maximization problem.

As noted by Matoušek et al., many previously known linear program-
ming algorithms can be adapted for solving generalized linear programs in
time linear in n and exponential or subexponential in k [3, 21, 25]. For our
purposes, such algorithms will be only interesting when k is very small, and
then only if the algorithm itself is relatively simple. Therefore the exponen-
tial algorithm of Seidel is preferable to the more complicated subexponential
algorithms of Matoušek et al.

The procedure in Figure 2 is a modification of that of Seidel for our
problem. As shown, we return a pair of values: the maximum weighted
average a of the set, and the value

x = max
〈vi,wi〉∈B

fi(a) (8)

where B is the basis of scores dropped from S giving a = A(S −B). If the
actual basis B is desired as output, it can be stored whenever we compute
a new value of a.

Note that the recursive calls operate only on the subsequence of S from
1 to i − 1. Recursive calls may permute this subsequence in place, rather
than making a new copy of it, since those scores will only be revisited in
other recursive calls which will re-permute them (in particular the set S can
be stored in a single array, pointers to which are used by all recursive calls).

Theorem 1. Seidel’s algorithm, modified as described above to solve our
maximum weighted average problem, returns the optimal subset in expected
time O(k!n).

Proof: We prove by induction that after each step i in the loop, a is the
maximum of the values A(S −B) for sets B ⊂ S with |B| = k such that B
contains only scores with indices in the range from 1 to i. The base case is
trivial. At each successive step, if any set improves on the previous value of
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Seidel(S ,n, k ,V ,W ):
randomly permute scores 1 through n
a ← (V −∑1≤i≤k vi)/(W −∑1≤i≤k wi)
x ← max1≤i≤k fi(a)
for i ← k + 1 to n do

if fi(a) < x then
(a, x )← Seidel(S , i − 1, k − 1,V − vi ,W − wi)
x ← max{x , fi(a)}

return (a, x )

Figure 2. Seidel’s generalized linear programming algorithm, modified to solve the
maximum weighted average problem.

B, it will be a set involving index i by Lemma 3. A closer examination of that
lemma shows that we can test i by the comparison used in the if statement
above. Then if there is an improvement to be made in a, it will be found by
the recursive call which (by induction) finds the maximum A(S−B) among
sets B meeting the conditions above and containing 〈vi, wi〉.

Thus each execution of the if statement in the loop gives rise to a re-
cursive call if and only if every optimal basis for scores 1 through i contains
score i itself. We consider the conditional probability that this is the case,
subject to the condition that we know the first i scores but not their permu-
tation. Then because the initial permutation of the whole input sequence
was randomly selected, any permutation of the given prefix of the sequence
is also equally likely. Let X denote the set of scores that belong to all opti-
mal bases of the first i scores. |X| ≤ k (since it is a subset of a base), so the
conditional probability that i belongs to X is at most k/n. Therefore the if
statement succeeds with at most this probability, and the expected time for
the algorithm satisfies the recurrence

T (n, k) ≤ O(n) +
∑
i

k

i
T (i, k − 1), (9)

which is easily shown to solve to O(k!n). 2

To compare the time algorithm more carefully with the obvious one
for k = 1, let us count only the number of multiplications and divisions
performed. In all the algorithms we consider, this will be proportional to
the total amount of work. In the k = 1 algorithm, this number is n. In the
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Seidel2(S ,V ,W ):
randomly permute scores 1 through n
a ← (V − v1 − v2)/(W − w1 − w2)
x ← max{f1(a), f2(a)}
for i ← 3 to n do

if fi(a) < x then
find j < i maximizing (V − vi − vj )/(W − wi − wj )
a ← (V − vi − vj )/(W − wi − wj )
x ← max{fi(a), fj (a)}

return a

Figure 3. Seidel’s algorithm, special case for k = 2.

algorithm above, the expected number of multiplicative operations satisfies
a recurrence M(k, n) = kM(k−1, n)+n+o(n). In particular, this is always
less than 2k!n.

The version of this algorithm for k = 2 can be made particularly simple
by replacing the recursive call with a loop implementing the usual algorithm
for k = 1, as shown in Figure 3. For this version we return only a and not x.

If we are computing the solutions for a sequence of problems having the
same value of n (such as the grades of a group of students in the same
class) we can save some more time, without compromising the expected
case analysis, by initially choosing one random permutation to use for all
problems.

For k = 2, the expected number of multiplicative operations performed
in either version of Seidel’s algorithm is at most 3n + O(log n). Thus we
should expect the total time for this algorithm to be roughly three times
that for the k = 1 algorithm.

4 Connection with computational geometry

Before describing more algorithms, we first develop some geometric intuition
that will help them make more sense.

Recall that we have defined n linear functions fi(A), one per score. We
are trying to find the maximum weighted average A∗, and from that value
it is easy to find the optimal set of scores to drop, simply as the set giving
the k minimum values of fi(A∗).
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Consider drawing the graphs of the functions y = fi(x). This produces
an arrangement of n non-vertical lines in the xy plane. The value fi(A∗) we
are interested in is just the y-coordinate of the point where line fi crosses the
vertical line x = A∗. We do not care so much about the exact coordinates
of this crossing—we are more interested in its order relative to the similar
crossing points for other lines fj , as this relative ordering tells us which of i
or j is preferable to drop from our set of scores.

By performing tests on different values of A, using Lemma 1, we can
narrow the range in which the vertical line x = A∗ can lie to a narrower
and narrower vertical slab, having as left and right boundaries some vertical
lines x = AL and x = AR. AL is the maximum value for which we have
computed that F (AL) > 0, and AR is the minimum value for which we have
computed that F (AR) < 0. If we use the algorithm of Lemma 1 on some
value AL < A < AR, we can determine the relative ordering of A∗ and A;
this results in cutting the slab into two smaller slabs bounded by the line
x = A and keeping only one of the two smaller slabs. For instance, the
binary search algorithm we started with would simply select each successive
partition to be the one in which the two smaller slabs have equal widths.

Any two lines fi and fj have a crossing pij unless they have the same
slope, which happens when wi = wj . If it happens that pij falls outside the
slab [AL, AR], we can determine immediately the relative ordering of fi(A∗)
and fj(A∗), as one of the two lines must be above the other one for the full
width of the slab. If the two lines have the same slope, one is above the
other for the entire plane and a fortiori for the width of the slab. We can
express this symbolically as follows.

Lemma 4. If AL ≤ A∗ ≤ AR, fi(AL) ≥ fj(AL), and fi(AR) ≥ fj(AR),
then fi(A∗) ≥ fj(A∗).

In this formulation, the lemma can be proven simply by unwinding the
definitions and performing some algebraic manipulation.

Define A(i, j) to be the x-coordinate of the crossing point pij . If fi and
fj have the same slope, A(i, j) is undefined. If we use Lemma 1 to test
the relative ordering of A∗ and A(i, j), the resulting slab [AL, AR] will not
contain pi,j and so by the result above we can determine the relative ordering
of fi(A∗) and fj(A∗). Symbolically A(i, j) = (vi − vj)/(wi − wj), and we
have the following lemma.

Lemma 5. If A(i, j) ≤ A∗ and wi ≥ wj , or if A(i, j) ≥ A∗ and wi ≤ wj ,
then fi(A∗) ≤ fj(A∗).
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Again the lemma can be proven purely algebraically.
The algorithms below can be interpreted as constructing slabs containing

fewer and fewer crossing points pij , until we know enough of the relative
orderings of the values fi(A∗) to select the smallest k such values. This will
then in turn give us the optimal set of scores to drop, from which we can
compute the desired maximum weighted average as the weighted average of
the remaining scores.

For instance, one method of solving our problem would be to use binary
search or a selection algorithm among the different values of A(i, j). Once
we know the two such values between which A∗ lies, all relative orderings
among the fi(A∗) are completely determined and we can apply any linear
time selection algorithm that uses only binary comparisons. (Each such
comparison can be replaced with an application of Lemma 5.) However
there are more values A(i, j) than we wish to spend the time to examine.
Instead we use more careful approaches that can eliminate some scores as
belonging either to the set of k dropped scores or the remaining set of n− k
scores, without first having to know their relative order compared to all
other scores.

We note that similar methods have been applied before, to the geometric
problem of selecting from a collection of n points the pair giving the line
with the median slope [5, 6, 18, 19, 26]. A geometric duality transformation
can be used to transform that problem to the one of selecting the median
x-coordinate among the intersection points of n lines, which can then be
solved by similar techniques to those above, of finding narrower and narrower
vertical slabs until no points are left in the slab. The algorithm is dominated
by the time to test whether a given x-coordinate is to the right or left of the
goal, which can be done in time O(n log n). In our weighted average problem,
the faster testing procedure of Lemma 1 and the ability to eliminate some
scores before all pairwise relations are determined allow us to solve the
overall problem in linear time.

5 Randomized linear time

We now describe a randomized algorithm which finds the subset with max-
imum weighted average in linear time, independent of k. The algorithm is
more complicated than the ones we have described so far but should improve
on e.g. Seidel’s algorithm for values of k greater than three.

The idea behind the algorithm is as follows. If we choose a random
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member i of our set of scores, and let A∗ denote the optimal average we
are seeking, the position of fi(A∗) will be uniformly distributed relative to
the positions of the other fj(A∗). For instance i would have a k/n chance
of being in the optimal subset of scores to be removed. If we know that
it is in this optimal subset, we could remove from our input those j with
fj(A∗) < fi(A∗) and update k accordingly. Conversely, if we know that score
i has to be included in the set giving the maximum weighted average, we
would know the same about all j with fj(A∗) > fi(A∗) and we could collapse
all such scores to their sum. In expectation we could thus reduce the input
size by a constant fraction—the worst case would be when k = n/2, for
which the expected size of the remaining input would be 3n/4.

To compute the position of fi(A∗), and to find the scores to be removed
or collapsed as described above, would require knowing the relative ordering
of fi(A∗) with respect to all other values fj(A∗). For any j we could test this
ordering in time O(n) by computing F (A(i, j)) as described in Lemma 5.
We could compute all such comparisons by binary searching for A∗ among
the values A(i, j) in time O(n log n), but this is more time than we wish
to take. The solution is to only carry out this binary search for a limited
number of steps, giving the position of fi(A∗) relative to most but not all
values fj(A∗). Then with reasonably high probability we can still determine
whether or not score i is to be included in the optimal set, and if this
determination is possible we will still expect to eliminate a reasonably large
fraction of the input.

We make these ideas more precise in the algorithm depicted in Figure 4.
Much of the complication in this algorithm is due to the need to deal with
special cases, and to the expansion of previously defined values such as F (A)
into the pseudo-code needed to compute them.

Let us briefly explain some of the notation used in our algorithm. F (A)
and fj(A) were defined earlier. Let A∗ denote the optimal average we seek;
then as noted earlier the optimal subset is found by choosing the scores with
the n−k largest values of fj(A∗). A(i, j) is defined as the “crossover point”
for which fi(A(i, j)) = fj(A(i, j)). We initially let [AL, AR] give bounds on
the range in which A∗ can lie. (It would be equally correct to set AL = −∞
but the given choice AL = V/W allows some savings in that some crossover
points A(i, j) are eliminated from the range.) Note that AL ≤ A∗ since
removing scores can only increase the overall weighted average.

In order to compare fi and fj at other values of A, we define σ(i, j)
as a value that is positive or negative if for A > A(i, j), fi(A) < fj(A) or
fi(A) > fj(A) respectively. We usually compute σ(i, j) by comparing wi and
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Random(S , k):
AL ← V /W
AR ← +∞
while |S | > 1 do

choose i randomly from S
for 〈vj ,wj 〉 ∈ S do

if wi = wj then
σ(i , j )← vj − vi

A(i , j )← −∞
else

σ(i , j )← wi − wj

A(i , j )← (vi − vj )/(wi − wj )
E ← {〈vj ,wj 〉 | σ(i , j ) = 0}
X ← {〈vj ,wj 〉 | A(i , j ) ≤ AL and σ(i , j ) > 0}

∪{〈vj ,wj 〉 | A(i , j ) ≥ AR and σ(i , j ) < 0}
Y ← {〈vj ,wj 〉 | A(i , j ) ≤ AL and σ(i , j ) < 0}

∪{〈vj ,wj 〉 | A(i , j ) ≥ AR and σ(i , j ) > 0}
Z ← S −X −Y − E
repeat

A← median{A(i , j ) | 〈vj ,wj 〉 ∈ Z}
for 〈vj ,wj 〉 ∈ S do fj (A)← vj −Awj

F (A)←∑
(the largest |S | − k values of fj (A))

if F (A) = 0 then return A
else if F (A) > 0 then AL = A
else AR = A
recompute X , Y , and Z
if |X |+ |E | ≥ |S | − k then

remove max(|E |, |X |+ |E |+ k − |S |)
members of E from S

remove Y from S
k ← k − (number of removed scores)

else if |Y |+ |E | ≥ k then
collapse max(|E |, |Y |+ |E | − k) members of E

and all of X into a single score
until |Z | ≤ n/32

return v1/w1

Figure 4. Randomized algorithm for the maximum weighted average.
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wj , but we use a different definition if the weights are equal (corresponding to
the geometric situation in which lines y = fi(x) and y = fj(x) are parallel).

Then set E consists exactly of those scores that have the same value and
weight as the random selection 〈vi, wi〉. Set X consists of those scores for
which fj(AL) ≥ fi(AL) and fj(AR) ≥ fi(AR), with one inequality strict. In
other words these are the scores for which fj(A∗) is known by Lemma 4 to
be greater than fi(A∗). Similarly Y consists of those scores for which we
know that fj(A∗) < fi(A∗). Set Z consists of those scores for which the
relation between fi(A∗) and fj(A∗) is unknown.

If Z were empty, we would know whether score i itself should be included
or excluded from the optimal subset, so we could simplify the problem by
also removing all of either X or Y . The purpose of the inner loop of the
algorithm is to split the range [AL, AR] in a way that shrinks Z by a factor
of two, so that this simplification becomes more likely.

In order to compare this algorithm to others including Seidel’s gener-
alized linear programming algorithm, we analyze the time in terms of the
number of multiplicative operations. It should be clear that the time spent
on other operations is proportional to this.

In what follows, we make the simplifying assumption that E contains
only score i. This is without loss of generality, as the expected time can
only decrease if E has other scores in it, for two reasons. First, Z can
initially have size at most |S − E|. Second, the fact that scores in E are
equivalent to score i lets us treat them either as part of X or as part of Y ,
whichever possibility allows us to remove more scores from our problem.

Lemma 6. Let n denote the size of S at the start of an iteration of the
outer loop of the algorithm. The expected number of scores removed or
collapsed in that iteration is at least 49n/256.

Proof: Let p be the position of fi(A∗) = vi−A∗wi in the sorted sequence of
such values. Then p is uniformly distributed from 1 to n, so with probability
at least 7/8, p differs by at least n/32 from 1, k, and n. Consider the case
that p−k ≥ n/32. Then by the end of the inner loop, we will have at least k
scores in Y and can collapse anything placed in X during the loop, removing
at least n− p− n/32 scores overall. Similarly if k − p ≥ n/32 we will have
at least n − k scores in X and can remove at least p − n/32 scores. The
worst case happens when k = n/2, when the expected size of X (in the first
case) or Y (in the second case) is 7n/32. Thus we get a total expectation of
49n/256. 2
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Lemma 7. In a single iteration of the outer loop above, the expected num-
ber of multiplicative operations performed is at most 371n/64.

Proof: Let n denote the size of S at the start of the outer loop. Note
that the only multiplicative operations are n divisions in the computation
of A(i, j) in the outer loop, and |S| multiplications in the computation of
F (A) in the inner loop. The inner loop is executed at most five times per
outer loop, so the worst case number of operations per iteration of the outer
loop is 6n.

To reduce this bound we consider the size of S in each iteration of the
inner loop. The analysis of the expected size of S in each iteration is very
similar to that in Lemma 6, with the n/32 bound on Z replaced by the
values n, n/2, n/4, n/8, and n/16. For the first three of these, we can prove
no bound better than n on the expected value of |S|. For the iteration in
which |Z| ≤ n/8, we have probability 1/2 that p has distance n/8 from 1, k,
and n, and when p is in this range we can expect to remove n/8 values, so
the overall expected size of S in the next iteration is 15n/16. And for the
iteration in which |Z| ≤ n/16, we have probability 3/4 that p has distance
n/16 from 1, k, and n, and when p is in this range we can expect to remove
3n/16 values in iterations up through this one, so the expected size of S
in the last iteration is 55n/64. Adding these expectations gives the overall
bound. 2

Theorem 2. The total expected number of multiplicative operations per-
formed in the algorithm above is at most 1484n/49+O(1) ≈ 30.3n, and the
total expected time is O(n).

Proof: The time can be expressed as a random variable which satisfies a
probabilistic recurrence

T (S) ≤ 371|S|/64 + T (R) (10)

where R is a random variable with expected size (1 − 49/256)|S|. By the
theory of probabilistic recurrences [16], the expected value of T (S) can be
found using the deterministic recurrence

T (n) = 371n/64 + T ((1− 49/256)n) (11)

which solves to the formula given in the theorem. 2
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Although the constant factor in the analysis of this algorithm is some-
what disappointingly large, we believe this algorithm should be a reasonable
choice in practice for several reasons. First, the bulk of the time in the al-
gorithm is spent in the computations of F (A), since other operations in the
inner loop depend only on the size of Z, which is rapidly shrinking. Thus
there is little overhead beyond the multiplicative operations counted above.
Second, Lemma 7 assumes that initially Z = S, however due to bounds on
[AL, AR] from previous iterations of the outer loop, Z may actually be much
smaller than S. Third, the analysis in Lemma 6 assumed a pathologically
bad distribution of the positions of fj(A∗) for j ∈ Z: it assumed that for p
close to k these positions would always be between p and k, while for p far
from k these positions would always be on the far side of p from k. In prac-
tice the distribution of positions in Z is likely to be much more balanced,
and the number of scores removed will be correspondingly greater. Fourth,
for the application to grading, many weights are likely to be equal, which
helps us in that there are correspondingly fewer values of A(i, j) in the range
[AL, AR] and fewer multiplications spent computing A(i, j). Fifth, the worst
case for the algorithm occurs for k = n/2, but in the case of interest to us k
is a constant. For small k the number of operations can be greatly reduced,
as follows.

Theorem 3. Let k be a fixed constant, and consider the variant of the
algorithm above that stops when |Z| < n/16. Then expected number of
multiplicative operations used by this variant is at most 580n/49 +O(k) ≈
11.8n.

Proof: We mimic the analysis above. With probability 7/8, n/16 ≤
p ≤ 15n/16. For such p, the expected number of scores removed is 7n/16.
Therefore the expected number of scores left after an iteration of the outer
loop is (1 − (7/8)(7/16))n = (1 − 49/128)n = 79n/128. The same sort of
formula also tells us how many scores are expected to be left after each
iteration of the inner loop. As long as |Z| ≥ n/2 we can’t expect to have
removed any scores, so the first two iterations have n expected operations
each. In the third iteration, |Z| ≤ n/4, and with probability 1/2 n/4 ≤
p ≤ 3n/4. For p in that range, we would expect to have removed n/4 of the
scores. Therefore in the third iteration we expect to have (1−(1/2)(1/4))n =
(1−1/8)n = 7n/8 operations. Similarly in the fourth iteration we expect to
have (1− (3/4)(3/8))n = 21n/32 operations. We can therefore express our
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expected number of operations as a recurrence

T (n) = 145n/32 + T (79n/128) (12)

with the base case that if n = O(k) the time is O(k). The solution to the
recurrence is given by the formula in the theorem. 2

This method is already better than Seidel’s when k = 4, and continues
to get better for larger k, since the only dependence on k is an additive O(k)
term in place of Seidel’s multiplicative O(k!) factor.

6 Deterministic linear time

Much recent work in theoretical computer science has focused on the differ-
ence between randomized and deterministic computation. From this work,
we know many methods of derandomization, that can be used to transform
an efficient randomized algorithm (such as our linear time algorithm de-
scribed above) into a deterministic algorithm (sometimes with some loss of
efficiency).

In our case, we have an algorithm that selects a random sample (a score
〈vi, wi〉) from our input, and eliminates some other scores by using the fact
that the position of fi(A∗) in the list of all n such values is likely to be
reasonably well separated from 1, k, and n. We would like to find a similar
algorithm that chooses this sample deterministically, so that it has similar
properties and can be found quickly. Since the randomized algorithm is
already quite satisfactory from a practical point of view, this derandomiza-
tion process mainly has significance as a purely theoretical exercise, so we
will not worry about the exact dependence on n (e.g. as measured previ-
ously in terms of the number of multiplicative operations); instead we will
be satisfied with any algorithm that solves our problem in time O(n).

We return to the geometric viewpoint: graph the linear functions y =
fi(x) to form a line arrangement in the xy-plane, which is cut into slabs
(represented as intervals of x-coordinates) by our choices of values to test
against A∗. We are trying to reduce the problem to a slab [AL, AR] con-
taining few crossings of the lines; this corresponds to having many pairs of
scores for which we know the preferable ones to drop.

Many similar problems of derandomization in computational geometry
have been solved by the technique of ε-cuttings, and we use the same ap-
proach here.
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A cutting is just a partition of the plane into triangles. If we are given
a set of n lines y = fi(x) in the xy-plane, an ε-cutting for those lines is a
cutting for which the interior of each triangle is crossed by a small number of
the lines, at most εn of them. For instance, if we start with the arrangement
of all lines, and add diagonals to form a triangulation, we would get a cutting
for which each triangle is crossed by no lines. Therefore it would be an ε-
cutting for any ε ≥ 0, however it would have far too high a complexity for
our purpose.

Matoušek [20] showed that an ε-cutting involving O(1/ε2) triangles can
be computed deterministically in time O(n/ε), as long as 1/ε < n1−δ for a
certain δ. We will be choosing ε to be some fixed constant (1/8), so the
resulting cutting has O(1) triangles and can be computed in linear time.

The idea of our algorithm is as follows. We first compute an ε-cutting for
the set of lines y = fi(x) (that is, a certain triangulation of the xy-plane).
By binary search, we can restrict the optimal value A∗ we are seeking to lie
in a range [AL, AR] that does not contain the x-coordinate of any triangle
vertex. Therefore if we consider the vertical slab AL ≤ x ≤ AR, the edges
of triangles in the cutting either cross the slab or are disjoint from it. If a
triangle crosses the slab, at most two of its three sides do so, and the top
and bottom boundary lines of the triangle are well defined.

For each edge that crosses the slab, we consider the line y = ax+b formed
by extending that edge, and pretend that it is of the form y = fi(x) for some
pair (which must be the pair 〈b,−a〉). We then use this pair to eliminate
scores from S similarly to the way the previous randomized algorithm used
the pair 〈vi, wi〉. It turns out not to be important that 〈b,−a〉 might not
be in S. (If it is absent from S we have fewer special cases to deal with.
However if the input includes many copies of the same score, it may be
necessary for 〈b,−a〉 to be in S.)

Thus for each pair 〈b,−a〉 found in this way we compute sets X, Y ,
and Z as before and eliminate either X or Y if the other of the two is large
enough. Unlike the previous randomized algorithm, we do not need an inner
loop to reduce the size of Z. Instead we use the definition of our ε-cutting to
prove that |Z| ≤ εn. Further, for two edges bounding the top and bottom
of the same triangle, the corresponding sizes of X and Y differ from one
edge to the other by at most εn. Therefore at least one of the edges from
the ε-cutting, when used as a sample in this way, allows us to eliminate a
constant fraction of the input.

These ideas are made more specific in Figure 5. Much of the code and
notation is similar to that of our previous randomized algorithm, so we do
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Deterministic(S , k):
AL ← V /W
AR ← +∞
while |S | > 1 do

compute a 1/8-cutting C of the lines y = vi − xwi

T ← {vertices (x , y) in C with AL < x < AR}
while |T | > 0 do

A← median{x | (x , y) ∈ T}
compute F (A) and update AL, AR, and T

for each triangle ∆i ∈ C crossing slab AL < x < AR

find the upper boundary line y = ax + b of ∆i

for 〈vj ,wj 〉 ∈ S do
if wi = −a then

σ(j )← vj − b
A(j )← −∞

else
σ(j )← −a − wj

A(j )← (b − vj )/(−a − wj )
E ← {〈vj ,wj 〉 | σ(j ) = 0}
X ← {〈vj ,wj 〉 | A(j ) ≤ AL and σ(j ) > 0}

∪{〈vj ,wj 〉 | A(j ) ≥ AR and σ(j ) < 0}
Y ← {〈vj ,wj 〉 | A(j ) ≤ AL and σ(j ) < 0}

∪{〈vj ,wj 〉 | A(j ) ≥ AR and σ(j ) > 0}
Z ← S −X −Y − E
if |X |+ |E | ≥ |S | − k then

remove max(|E |, |X |+ |E |+ k − |S |)
members of E from S

remove Y from S
k ← k − (number of removed scores)

else if |Y |+ |E | ≥ k then
collapse max(|E |, |Y |+ |E | − k) members of E

and all of X into a single score
return v1/w1

Figure 5. Deterministic linear time algorithm.
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not explain it again in detail here.

Lemma 8. For each boundary line y = ax+ b considered in the algorithm
above, the set Z computed in the algorithm has size at most |Z| ≤ n/8.

Proof: If a score 〈vj , wj〉 is in Z then, by the definition of sets X, Y , and
Z, it must be the case that the two lines y = ax + b and y = fj(x) have
their crossing point within the slab AL < x < AR. Thus in particular line
y = fj(x) crosses triangle ∆i near that crossing point. By the definition of
an ε-cutting, at most εn = n/8 lines can cross this triangle. 2

Lemma 9. Let line y = ax + b be the top boundary line of a triangle
∆i ∈ C, and let y = cx + d be the bottom boundary line of ∆i (and hence
the top boundary of a different triangle.) Then the sets X1 computed for
y = ax + b and X2 computed for y = cx + d differ in size by at most n/8,
and the same is true for the sets Y computed for each line.

Proof: Every score 〈vj , wj〉 in X1 must also be in X2. (Geometrically,
this is trivial: if the line y = fj(x) passes above the top boundary of ∆i, it
certainly passes above the bottom boundary.) If a score 〈vj , wj〉 is in X2 is
not in X1, it must be the case that the line y = fj(x) crosses triangle ∆i.
(Geometrically, if the line y = fj(x) passes above the bottom boundary of
∆i, but does not pass above the top boundary, it must either cross the top
boundary or stay between the two, and in either case a portion of the line is
contained in ∆i.) As in the previous lemma the definition of the ε-cutting
bounds the number of lines crossing ∆i by εn. The same argument applies
by symmetry to Y1 and Y2. 2

Lemma 10. Each iteration of the algorithm removes at least half the
scores from S.

Proof: Consider the sequence of lines y = aix + bi in order from bottom
to top. As we proceed, the sizes of the sets Yi computed for each line
increase by at most n/8 at each step, so there must be a step at which
k ≤ |Yi| ≤ k+n/8. At this step Xi will be collapsed so that at most k+n/4
scores can remain, of which at most n/4 can be in the eventual optimal
solution. Similarly if we proceed from top to bottom we can find a step at
which (n− k) ≤ |Xi| ≤ (n− k+ n/8), at which point we will remove Yi and
at most n/4 of the remaining scores can be omitted in our eventual optimal
solution. Therefore overall there can be at most n/2 scores left. 2
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Theorem 4. The algorithm described in Figure 5 returns the maximum
weighted average among all (n− k) element subsets of S, in time O(n).

Proof: Correctness follows from the same considerations used in our ran-
domized algorithm for the same problem. Each iteration of the algorithm
takes linear time, and removes a constrant fraction of the input. Therefore
the times for all iterations add in a geometric series to O(n). 2

7 Negative weights

The methods above do not make any assumption about the values vi, how-
ever the non-negativity of the weights wi was used in Lemma 1 and therefore
in all our algorithms.

It is natural to consider a slight generalization of the problem, in which
we allow the weights wi to be negative. The weighted average V/W of a set
S is still well defined (as long as we make some consistent choice of what
to do when W = 0) so it makes sense to seek the (n − k) element subset
maximizing this quantity. We can define F (A) as before, and as before
we get a convex piecewise linear function. Unlike the previous situation,
however, there might be either zero or two values of A for which F (A) = 0.
In the situation in which F (A) has two roots, it turns out that our problem
can be solved by finding the larger of these two, by minor modifications of
the algorithms we showed before. However it is not so obvious what to do
when F (A) has no roots.

Unfortunately, this problem turns out to be NP-complete, as we now
show. We use a reduction from the following standard problem.

Subset Sum. Given a collection S of positive integers si, and a value t,
is there a subset of S with sum exactly t?

As shown by Karp [9, 14], subset sum is NP-complete, although it can be
solved in pseudo-polynomial time O(nt) by a dynamic programming tech-
nique [9].

Theorem 5. It is NP-complete to find the (n − k) element subset of a
collection of scores 〈vi, wi〉 maximizing the weighted average

∑
vi/

∑
wi, if

one or more of the weights can be negative.
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Proof: Given an instance (S, t) of the subset sum problem, we transform
S to the set of scores 〈1, 2si〉. We also include n additional “dummy” scores
〈1, 0〉 and one final score 〈1, 1− 2t〉. We then ask for the set of n+ 1 scores
maximizing the weighted average. We claim that the maximum possible
average is n+ 1 exactly when the subset sum problem is solvable.

Note that for any set containing 〈1, 1− 2t〉, ∑wi is odd (so nonzero).
For any other set of n + 1 values there must be at least one score 〈1, si〉,
and the sum is positive (so nonzero). Therefore we need not worry about
what to do when

∑
wi is zero. Also note that any sum of weights must be

an integer, so all weighted averages of subsets of the input are of the form
(n+ 1)/x for some integer x.

Since all values vi are equal, this weighted average is maximized by
finding a set for which

∑
wi is positive and as small as possible. If some

set A ⊂ S has sum exactly t, we construct a set of scores by including all
pairs 〈1, si〉 for si in A, together with 〈1, 1− 2t〉 and enough dummy scores
to make the set have n+1 scores total. This set of scores then has

∑
wi = 1

and weighted average n+ 1.
Conversely, suppose some set of scores has weighted average n+1. There-

fore
∑
wi = 1. Since this sum is odd, it must include the pair 〈1, 1− 2t〉.

Then the remaining weights must sum to 2t, and the non-dummy scores
from this set can be used to construct a set A ⊂ S with sum exactly t. 2

If weights of zero are not allowed, the dummy scores can be replaced by
〈1, ε〉 for any sufficiently small ε.

Finally, we note that our original maximum weighted average problem
can, like subset sum, be solved in pseudo-polynomial time. Suppose all
the vi and wi are integers. Let Wmin and Wmax denote the largest and
smallest possible sum of weights in any subset of our scores. We use a
dynamic program to determine, for each possible sum of weights w in the
range [Wmin,Wmax], the minimum and maximum sum of values Vmin(w) and
Vmax(w) among all sets having that sum of weights. The maximum weighted
average can then be found by comparing Vmin(w)/w for negative w with
Vmax(w)/w for positive w. The overall algorithm takes time O(n(Wmax −
Wmin)).
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