
0
I "

CONSTRUCTING COMPUTER VIRUS PHYLOGENIES

LESLIE ANN GOLDBERG', PAUL W. GOLDBERG', CYNTHIA A. PHILLIPS*, AND
GREGORY B. SORKIN~

Abstract. There has been much recent algorithmic work on the problem of reconstructing the evolutionary his-
tory of biological species. Computer virus specialists are interested in finding the evolutionary history of computer
viruses - a virus is often written using code fragments from one or more other viruses, which are its immediate
ancestors. A phylogeny for a collection of computer viruses is a directed acyclic graph whose nodes are the viruses
and whose edges map ancestors to descendants and satisfy the property that each code fiagment is "invented" only
once. To provide a simple explanation for the data, we consider the problem of constructing such a phylogeny with
a minimal number of edges. In general this optimization problem cannot be solved in quasi-polynomial time unless
NQP=QP; we present positive and negative results for associated approximation problems. When tree solutions
exist, they can be constructed and randomly sampled in polynomial time.

RECEIVED

DECLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

* 1esl ieQdcs .warwick. ac .uk. Department of Computer Science, University of Warwick, Coventry CV4 7AL,
United Kingdom. Part of this work was performed at Sandia National Laboratories and was supported by the U.S.
Department of Energy under contract DEAC0476AL85000. Part of this work was supported by the ESPRIT
Basic Research Action Programme of the EC under contract 7141 (project ALCOM-IT).

t goldbepwQhelios. aston. ac.uk. Department of Applied Mathematics and Computer Science, Aston Univer-
sity, Aston Triangle, Birmingham B4 7ET, United Kingdom. Part of this work was performed at Sandia National
Laboratories and was supported by the U.S. Department of Energy under contract DE-AC0476AL85000.

t caphill8cs.sandia.gov. Sandia National Labs, P.O. Box 5800, Albuquerque NM 87185. This work was
performed under U.S. Department of Energy contract DE-AC0476AL85000.

sorkinQwatson.ibm.com. IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights NY
10598.

STER

http://caphill8cs.sandia.gov
http://sorkinQwatson.ibm.com

1. Introduction. There are now several thousand different computer viruses in existence,
with new ones being written at a rate of 3 to 4 per day. Most of these are based upon previous
ones: someone copies and modifies a virus, or creates a new virus with subroutines borrowed
from one or more ancestors.

For most purposes, a computer virus can be regarded as a fixed string of bytes, each byte
consisting of eight bits. If one virus is based on another, long substrings of the ancestor, say
20 bytes or more, will appear in the descendant. Using probability models similar to those
employed in speech recognition it is possible to estimate the probability that a given byte string
occurs in several viruses by chance [13]; if the probability is low but the string does occur in
several viruses then we conclude that it was written for one virus, and copied into the others.
More details of the pattern-matching approach used to identify duplicated byte strings are given
in Section 1.3.

We wish to infer an evolutionary or phylogenetic history for a set of computer viruses.l As
most phylogenetic literature to date has been based upon biological evolution, we adopt that
terminology. Thus, the viruses in the input set S = {SI, ..., s,} are called species. The species
are defined by a set of binary characters C = {cl, . . . , c k) . A binary character is a function
c : S + (0,l): (In general, the range of a character can be arbitrary, but the presence or absence
of byfe-striggs can be modeled with binary characters.) Each character c corresponds to a byte
string:%i,th cfs):??if the string occurs in species s and c(s) = 0 otherwise. If c(s) = 1, we say
that sGiies s has or contains character c. In analogy with terminology from the logic synthesis
area of, coyputer circuit design, we define the on-set Sc of a character c to be the set of all
species on' which its value is 1: S, = {s E S I c(s) = 1). A character c is trivial if lScl 5 1. A
trivial character can be ignored since it imposes no constraints on possible solutions.

We assume that the input species are all related: that the bipartite graph joining species to
characters that have them is connected. Otherwise, the connected components can be considered
independently.

We also assume that each code fragment is invented only once. For sufficiently long fragments
this is justified by differences in programming style, the many possible orderings of unconstrained
events, etc. We model the evolution of a set of viral species with a directed graph in which an
edge s;+sj indicates that species s; is an ancestor of species s j (i.e. s j inherited some character(s)
from si).
Definition: A phyloDAG for input species S and characters C is a directed acyclic graph (DAG)
with node set S. For each character c E C, the subgraph induced by on-set S, is connected, in
the sense that from a single archetype a, E S, there is a directed path, within S,, to every other
s E sc.

The phyloDAG model allows the possibility that a species may be derived from several
ancestors rather than from a single ancestor. For computer viruses this is appropriate, since a
virus author could appropriate code from a variety of sources. It is also a plausible model for
evolution of bacteria populations which have inherited genes via infection by bacteriophages[7]:
the genes evolve only once, and can be transferred from host to host by these viruses.

A phyloDAG exists for any inputs (S,C): for any chronology ascribed to the species (i.e. any
total ordering of the species set), the directed graph with edges from each species to all later
species is a phyloDAG. However, every pair of species is related by an edge in this graph. Since

One of us (Sorkin) is a member of the computer anti-virus group at IBM Research. The group produces a
commercial software product, IBM ANTIVIRUS, and conducts related theoretical research. Phylogenetic informa-
tion may be useful for tracking global virus trends, while the byte strings serving as characters can be used for
virus detection.

1

most virus species presumably have few ancestors, we seek a Minimum PhyloDAG, one with
a minimal number of directed edges.

We assume that the input is given in the following compact format: for each species s E S,
we are given a list of the characters c for which c(s) = 1.
Definition: The input length 4 = 4(S,C) = &cIScl. The size is n = IS]. The number of
characters is IC = ICI.

Our approach to the evolution problem corresponds to a restricted model of evolution: one in
which we are not allowed to introduce hypothetical species outside of the input set. This model
is well-suited to computer viruses, where because of good world-wide communications, sharing of
data between anti-virus organizations, and the brief history involved, there are likely to be very
few gaps in our viral database - a situation quite different from that in biology. Previous work
on restricted models of evolution will be discussed in Section 1.2. For our model, if additional
species could be introduced into a phyloDAG, there would always be a trivial spmse phyloDAG:
a star graph with the center an added species s such that c(s) = 1 for all c E C.

If a phyloDAG’s vertices are labeled with the values of one character, the postulate that
no character is “invented” twice corresponds to an assertion that there is at most one directed
edge labeled 041. Thus the sequence of labels along any source-to-leaf path is described by the
regular expression 0*1*0*, that is, zero or more O’s, followed by zero or more l’s, and finally zero
or more 0’s again.

1.1. Paper organization and results. We will show in Section 3.3 that the Mini-
mum PhyloDAG problem is “hard”: if NTIME(nPo1y1”gn) # DTIME(npolYIOg”) (a plausible
complexity-theoretic assumption related to P # NP), it cannot be approximately solved within
better than a logarithmic factor (let alone solved exactly) in polynomial time. In fact, we know of
no way to approximate Minimum PhyloDAG within a logarithmic factor: Section 3.3 shows that
various natural greedy strategies (including randomized ones) do not even approximate within a
factor of cn.

Because of the difficulty of the phyloDAG problem, we consider two variants. In the first,
we require that each species have just one ancestor, so that the phyloDAG is an arborescence
(a tree with edges directed away from a root). In Section 2 we define a 0-1-0 phylogeny to
be an arborescent phyloDAG’s underlying undirected tree. Species S and characters C may be
consistent with zero, one, or multiple 0-1-0 phylogenies. We give two polynomial-time algorithms
to randomly sample 0-1-0 phylogenies if any exist.

The first atomic-set algorithm (Section 2.1) computes a concise data structure that repre-
sents all 0-1-0 phylogenies for the input data and can be used to select a phylogeny uniformly at
random in time O(nt). When no solution exists the algorithm returns a witness set: a concise
indication of why no there can be no phylogenetic tree.

The second minimum spanning tree algorithm (Section 2.2) characterizes a 0-1-0 phy-
logeny of the input species set as a minimum spanning tree (MST) of a particular undirected
edge-weighted graph. With it, 0-1-0 phylogenies can be constructed in deterministic time
O(4n+n2 logn) or (with high probability) in randomized time O(ln) , and sampled uniformly at
random in time O (t n + M(n)), where M(n) is the time needed to multiply two n x n matrices.
It does not produce a concise witness when there is no 0-1-0 phylogeny.

The second variant of phyloDAG is simply its undirected analogue. A phylograph for
species S and characters C is an undirected graph with with vertex set S, with the property
that the subgraph induced by the on-set of each character c E C is connected. The Minimum
Phylograph problem is find a phylograph with the minimum number of edges. Theorem 3.1

2

shows that it is hard to approximate Minimum Phylograph within a factor‘iess than (1/16) loge,
while Theorem 3.3 shows that approximating it within a factor of Ink‘ is easy.

The model of computation used in this paper is the uniform-cost random-access machine.

1.2. Related work. Previous work in phylogeny has focused on constructing phylogenetic
trees. However, the problem of modeling virus evolution is more suited to phylographs and
phyloDAGs, in which undirected cycles may arise. As far as we know, ours is the first phylogenetic
work that allows cycles.

There is substantial literature on character-based phylogenies where each subgraph induced
by all species sharing a state for a character is required to be connected. This problem is
called the perfect phylogeny problem, and is NP-complete for the “unrestricted” case (where
putative species may be added) with general characters [3, 171. For the unrestricted case with
binary characters Gusfield gives an elegant O(nk) algorithm [ll], and for the restricted case with
general characters Goldberg et al. [lo] give an’algorithm analogous to the MST algorithm of
Section 2.2.

Our 0-1-0 phylogeny problem is similar to a restricted version of the general character
compatibility problem of Benham et al. [2]. There a character c maps each species s to a
subset c(s) (0,1,2} rather than to a single value; the leaves of the tree are the species S; for
each c and s a single value from c(s) is chosen as a label; and the goal is to find a rooted perfect
phylogeny in which the sequence of labels along any root-to-leaf path is of the form 0 + 1 + 2.
The problem is NP-hard [2].

1.3. Choosing characters. For the bulk of this paper the set of species and the characters
are simply inputs, but at an earlier stage they too must be determined algorithmically. In
one mathematical model of the problem, we are given a collection of byte strings representing
computer viruses (there might be 5,000 such strings, each typically 2,000 bytes long) and a similar
collection representing legitimate computer code (perhaps 40,000 strings, each typically 20,000
bytes long); we wish to find all strings of 20 bytes or more that occur in at least 2 viruses but in
no legitimate programs. Of course the numerical parameters might be varied, or another criterion
might be substituted, e.g. the string’s appearance in at least 10 times as many viral programs as
legitimate programs.

The problems can be solved in linear space and time by a straightforward application of
suffix trees [6]. All viral and legitimate strings are concatenated together, separated by a special
character, and a suffix tree is constructed. The leaves of the suffix tree represent all suffixes of
the input string, and the internal nodes - viewed as paths from root part-way to leaf - denote
prefixes of suffixes, which is to say substrings of the input string. Depth-first search can be used
to propagate, from leaves to root, the number of times each substring appears, and in fact the
number of times it appears in viruses and (separately) in legitimate strings; this provides the
solution to the stated problem.2

.

2. Computing a 0-1-0 phylogeny. The case in which each species has only one ancestor
is of obvious special interest, and corresponds to cases in which the phyloDAG is an arborescence
- a tree with all edges directed as a flow away from‘some root. There is a straightforward n:l
correspondence between arborescences and undirected trees: the undirected graph underlying an
arborescence is a tree; and each of the n possible rootings of a tree is an arborescence. There
exist phyloDAGs whose underlying graphs are trees but which are not arborescence^.^ These

* For the sake of accuracy, we note that this is not precisely the approach employed in practice at IBM; we have
simplified here for the sake of exposition.

An example, for species with characters (a) , (ab), and (b) , is (a) + (ab) + (b) .
3

_ . - -
, I

,
I

instances, however, hypothesize multiple ancestors for a species, and therefore are not solutions
to our problem. Therefore we concentrate on undirected 0-1-0 phylogenies:
Definition: An (undirected) 0-1-0 phylogeny, or phylogenetic tree, is a tree T on species S
with characters C such that each on-set S, induces a sub-tree of T.

If T' is a phyloDAG whose underlying graph is a tree T, then T is a 0-1-0 phylogeny as
defined above: as each on-set S, was connected in p, it is connected in T. Also, if T is a 0-1-0
phylogeny, any arborescence based on T is a phyloDAG: the archetype of any character c is the
species in S, closest to the root. In this section, we will show how to generate 0-1-0 phylogenies,
and how to generate them uniformly at random. Given a uniformly random phylogenetic tree,
choosing a root uniformly at random generates a uniformly random arborescent phyloDAG.

Because an arborescence can be rooted anywhere, a 0-1-0 phylogeny alone does not determine
an evolutionary chronology, but it can be useful in combination with external information. For
example if the first species' identity is known, the rest of the evolutionary history follows.

2.1. The atomic-set algorithm for computing 0-1-0 phylogenies. As described in
the Introduction, our atomic-set algorithm produces a data structure, an AS-tree, which concisely
represents all 0-1-0 phylogenies for species S and characters C, and can be used to generate an
arbitrary solution or a solution chosen uniformly at random.

Generalizing the definition of the on-set of a character, define the on-set of a collection of
characters to be the species having all those characters: Sc = r),EcS,.
Definition: Let 6 C C be a maximal (not necessarily maximum) set of characters for which
IS61 2 2. Then A = 5'6 is an atomic set with defining characters 6.

LEMMA 2.1. For any atomic set A and character C, either S, _> A (c is a defining character),
or ISc n AI = 1 (C is a non-defining character), or S, n A = 0 (c is an avoiding character).

Proof. The only logical possibility missing is that ISc n AI >_ 2 but S, n A # A, which would
contradict the maximality of A's set of defining characters. 0

Where n = IS1 and k = ICl, an atomic set can be constructed in time O(kn): start with
6 = 0 (so 5'6 = S), sweep through all characters c E C in turn, reject c if ISc n Scl 5 1, but
otherwise add c to the defining set, so 6 := 6 U {c}. An O(l)-time algorithm to find an atomic
set is given in the Appendix.

LEMMA 2.2. Suppose all species in S are connected, i.e. the bipartite graph joining characters
to species that have them is connected. Then i f 51, s2 E S have no characters in common, no
phylogeny contains the edge (SI, s2).

Proof. Suppose a phylogenetic tree T contained (s1,s2), and delete (~1,s~) to create a
forest T', consisting of two trees. For any character c and any s, s' E S,, T has a path s, . . . , s'
within Sc. The path does not include the edge (~ 1 , s ~) ~ since not both s1 and s2 can be in S,,
so T' contains the same path. Thus in T' there is a path from any species having character c to
any other. Given the connectedness of the species-character graph, a series of such paths joins
any species in S to any other, contradicting the fact that T' is not a connected graph. 0

LEMMA 2.3. If A is an atomic set, then in any 0-1-0 phylogeny A's induced subgraph is -a
subtree.

Proof. In a 0-1-0 phylogenetic tree T, the on-set of any character c E C induces a connected
subgraph, therefore a subtree. A is the intersection of the subtrees corresponding to A's defining
characters, and the intersection of subtrees is itself a subtree. 0

LEMMA 2.4. For any phylogeny T and atomic set A, i f the subtree TA is replaced by any
other tree Ti on the set A, the resultant overall tree T' is also a phylogeny.

4

Proof. For any character c and species s, s’ E S,, consider the (unique) path s, . . . ,SI in T .
If S, n A = 0, the path never enters A, so it is unaffected (i.e. the identical path exists in T’). If
lScnAl = 1, the path touches at most one vertex in A, hence no edges within A, and is unaffected.
Otherwise (by Lemma 2.1) S, _> A, and if the path through T included any sub-paths through TA
(in fact there can be at most one), those sections could be replaced by sub-paths through T i
(and thus still within S,). So connectedness of all characters in T implies the same for T‘, and T‘
is a phylogeny. 0

LEMMA 2.5. For any phylogeny T and atomic set A, if A is collapsed - replaced by a single
species “a” having all defining and non-defining characters of A (but not its avoiding characters),
and the subtree TA is contracted to the single species a, then the resultant overall tree T’ is a
phylogeny for SI = (S \ A) U {a}.

Proof. Same as previous. 0
LEMMA 2.6. If (S,C) has an atomic set A, with species ~ 1 , s ~ E A owning non-defining

characters c1, c2 respectively, and i f Scl n S,, # 0, then there is no 0-1-0 phylogeny for S .
Proof. Suppose there is a phylogeny T for S. Root T at any s3 E Scl n S,,, and let s,

be the lowest common ancestor of s1 and s2. Then the path (all paths in a tree are unique)
from s1 to s2 passes through s,; the path from s3 to s1 passes through s, (since s, is an
ancestor of SI); and the path from s3 to s2 passes through s, (since s, is an ancestor of s2). By
Lemma 2.3, A induces a subtree, so SI, s2 E A implies that the SI-s2 path is contained in A, and
in particular s, E A. Similarly SI, s3 E Scl implies s, E S,, , and s2, s3 E S,, implies s, E S,, .
Therefore s, E AnSclnS,,. But c1 and c2 are nondefining characters with distinct owners, so
AnSclnS,, = 0, a contradiction. 0

If the hypotheses of Lemma 2.6 are satisfied, we say that the atomic set A, characters c1, c2,
and species ~ 1 , s ~ provide a witness attesting to the non-existence of any 0-1-0 phylogenetic
tree.

LEMMA 2.7. Let A be an atomic set, and suppose that no SI, s2, c1, c2 satisfy the conditions
of Lemma 2.6. As before, “collapse” A to the single species a having all defining and non-defining
characters of A. If S‘ = (S \ A) U {a} has a phylogeny, so does S .

Proof. Let T‘ be a phylogeny for S’. Delete a and its incident edges, and replace them with
the set A and any tree on A. Additionally, replace each edge (s, a) with a single edge as follows.

By Lemma 2.2, s and a must share some character(s), which (since a has them) must be
defining or nondefining characters of A. If s and a share any non-defining characters, those
characters must have a single owner SI (or else A, these characters, their owners, and s are a
negative witness), in which case add the edge (s,s’). Otherwise, s and a only share defining
characters of A, in which case add any edge (s, s’) with s’ E A.

Replacement of each edge (s , a) with an edge (s, S’), s‘ E A, means that the tree components
created by a’s deletion are all connected to the tree on A, creating a single tree T. Using
arguments similar to those in Lemma 2.4, all characters induce connected components in T as
they did in TI. 0

In fact, the constructive nature of the proof of Lemma 2.7 immediately suggests the atomic-
set algorithm. Starting from So := S, repeatedly, find an atomic set Ai and check for a witness
as per Lemma 2.6. If one is found, terminate negatively. Otherwise, collapse Ai to a single new
species ai, and re-define the species set to be S; := (Si-1 \ A;) U {ai} . Since each atomic set
contains at least two species, this reduces the number of species, and needs to be performed at
most n - 1 times.

We construct the AS-tree during this contraction phase. The leaves of the AS-tree are the
species in S, and all elements of any set Ai have ai as their parent. Equivalently, the final ai is the

5

root of the AS-tree, and each aj has all species in Aj as children. This tree concisely represents
all possible phylogenies.

Now, starting at the root of the AS-tree, we expand any node a; whose parent is already
expanded using the method suggested by the proof of Lemma 2.7: Replace a; with A; and form
any tree 2’; on A;. For each old edge (s,a;), if s has a nondefining character c of Ai, add edge
(s, ownerA,(c)); otherwise s must have only defining characters, in which case add any edge (s, s’),

THEOREM 2.8. The algorithm above produces a phylogeny for S , C i f one exists, and otherwise
produces a negative witness. If the algorithm is implemented to choose trees T; uniformly at
random, and to choose s’ E Ai uniformly at random for defining-character edges (s,s‘), then it
produces a uniformly random undirected 0-1-0 phylogeny.

Proof. The first assertion follows directly from the preceding sequence of lemmas. If we detect
a negative witness, we correctly terminate negatively by Lemma 2.6 coupled with Lemma 2.5.
Otherwise, by Lemmas 2.5 and 2.7, we can collapse the atomic set, solve the problem on the new
set, and “expand” the collapsed set to a 0-1-0 phylogeny. The choices made in the expansion
phase are independent and lead to different phylogenies. The uniform generation of phylogenies
follows from this one-to-one correspondence between phylogenies, and choices in the algorithm.
0

Since we can generate a random 0-1-0 phylogeny from the AS-tree, it concisely represents
all possible 0-1-0 phylogenies.

The atomic-set algorithm produces an AS-tree in time O (d) : in each of the O (n) collapsing
iterations, we find an atomic set, check for a witness, and collapse the set each in time O(4).

The expansion can be completed in time O (d) . There are O(n) expansions. To expand node
a;, we can produce a random tree on the set A; in time O(lAil), since a labeled tree on r nodes
can be selected uniformly at random in O(r) time. (See, for example, [15].) If we store pointers
to owners of non-defining characters when constructing the AS-tree, we can connect this tree to
its neighbors in time O(1).

1

S’ E Ai.

2.2. The Minimum Spanning Tree algorithm. In this section we give a second algo-
rithm for computing 0-1-0 phylogenies. It is very simple, and is based on the observation that
0-1-0 phylogenies for species S and characters C correspond to minimum-weight spanning trees
(MSTs) of a particular undirected edge-weighted graph G(S,C). (This observation was also used
in [lo] to obtain an algorithm finding restricted perfect phylogenies.)

The graph G(S,C) is a complete graph on S, with edge weights w (s ~ , s ~) = k - l(c E C I
c(s1) = c(s2) = 1}1. It can be constructed in O (l n) time.

THEOREM 2.9. 0-1-0 phylogenies for (S,C) are spanning trees of G(S,C) with weight nk-4.
Furthermore, G(S, C) has no spanning trees of smaller weight.

Proof. Every spanning tree of G(S) has weight at least nk -4 , since the contribution of each
character c to the total weight is at least (n - 1) - (ISc] - 1). Spanning trees of G(S) with weight
nk - 4 correspond to trees in which each on-set S, is connected (see [lo]). 0

Because of this correspondence, phylogenies can be constructed (or randomly sampled) by
established algorithms for constructing (or randomly sampling) MSTs. Prim’s algorithm [16, 91
constructs an MST of G in O(m1og m) time, where m is the number of edges in G, and m = (;) for
G = G(S, C). If a faster algorithm is required, Karger, Klein and Tarjan’s randomized algorithm
constructs an MST, with high probability, in O(m) time [12]. (Their model of computation is a
unit-cost random-access machine with the restriction that the only operations allowed on edge
weights are binary comparisons. See also the other algorithms discussed in [12].)

6

Given an unweighted n-vertex graph, an algorithm of Colbourn, Myrvold and Neufeld [4]
selects a spanning tree uniformly at random in O (M (n)) time? (Here M (n) = O(n2*376) is the
time needed to multiply two n x n matrices [5].) Colbourn and Jerrum note that the algorithm
can be used to select an MST of a weighted graph G uniformly at random in O (M (n)) time:
construct a random spanning tree on each connected component of the subgraph of G induced
by the edges of minimum weight, put the spanning trees’ edges into the final solution, contract
the spanning trees, and repeat.

Compared with the atomic-set algorithm, the MST approach has the advantage of using
an unusually widely understood and simple paradigm, a benefit echoed in the availability and
efficiency of computer programs. However, it does not supply a structural representation of all
possible phylogenies, nor a concise witness when no phylogeny exists.

3. Phylographs and phyloDAGs. Having considered the problem of constructing phy-
logenetic trees, we now turn to phylogenies that are not trees. In particular, we consider the
phylograph and phyloDAG problems that were defined in the Introduction. In Section 3.1 we
prove that it is hard to approximate the optimal phylograph within better than a logarithmic
factor, and in Section 3.2 that the natural greedy algorithm gives an approximation within such
a factor. In Section 3.3 we show both that it is hard to approximate the optimal phyloDAG
within better than a logarithmic factor, and that in this case the natural greedy algorithm can
perform very badly, even on average.

3.1. Hardness of approximation of phylograph. The following theorem states that
unless nondeterministic quasi-polynomial time is equivalent to deterministic quasi-polynomial
time, Minimum Phylograph is at best log-approximable:

there is no polynomial-time algorithm that takes as input species S and characters C and outputs
a phyloDAG G = (S , E) such that IEI is within a factor of clog 1 of the minimum possible value.

Definition: The neighborhood of a vertex w of a graph G = (V, E) is the set N(w) = {w} U {w :
(v, w) E E}. A dominating set of G is a set of vertices D C_ V whose neighborhoods cover the
graph: N (d) = V.

The following theorem, from [14], shows that it is hard to approximate Minimum Domi-
nating Set to within better than a logarithmic factor; a similar result appears in [l].

THEOREM 3.2 (LUND AND YANNAKAKIS). Let c be a constant in the range 0 < c < 1/4.
Unless NTIME(npolylogn) = DTIME(nPo1y1Ogn), there is no polynomial-time algorithm that takes
as input a graph G and outputs a dominating set D of G such that ID1 is within a factor of
clog IVl of the minimum possible value.

THEOREM 3.1. Let c < 1/16 be a constant. Unless NTIME(npolylogn) = DTIME(npolylogn 1,

We use the following notation in the proof of Theorem 3.1.

We are now ready to prove Theorem 3.1.
Proof. We use an approximation-preserving reduction from Minimum Dominating Set to

Minimum Phylograph. Given an input G = (V, EG) with IVl = u, construct an instance‘P to
Minimum Phylograph as follows: The species set is S = V U X where X is a set of u3 ‘‘auxiliary
vertices”. For each pair of vertices {VI, w2} E V@), define a character with on-set {VI, 212). Thus
any phylograph for P contains each edge in the complete graph on V. In addition, for each pair
of vertices (v, z) E V x X we define a character with on-set {z} U N(w).

Another randomized algorithm, due to Wilson [18], has an expected running time equal to the mean hitting
time of the graph; this is often smaller than M (n) , but can be larger.

7

If Po = (S, Eo) is an optimal phylograph for P and Do is a minimum dominating set for G,
then [Eo1 = (3 + 1x1]Dol. To see this, observe that the complete graph on V added to V x DO
is a phylograph for P, so]Eo1 5 (3 + 1x1]Dol. On the other hand, every phylograph for P has
at least (3 edges connecting species in V and has at least ID01 edges adjacent to each z E X.

Suppose we had an algorithm A that could produce a phylograph (S,EA) for P with l E ~ l 5
clog(L) IEol edges. By the construction of P, some vertex 5 E X is connected to a dominating
set D for G with 101 5 IE~l/lxl 5 clog(L)lEol/lXl edges. Since]Eo1 = (3 + 1x1]Dol, we have

ID1 5 clog(^) ((;I + 1x1 l~Ol)/lXl*

Thus (since 1x1 = v3 and ID01 2 l), 101 5 c(1 -l- o(l))log(l)lDol. Now note that L = Y(Y - 1) +
2vlX1+21E~lIXl = O(v5) . Thus,]Dl 5 5c(l+o(l))log(v)~D0~, which is contrary to Theorem 3.2
if c < 1/20, unless NTIME(nPo1Y1Ogn) = DTIME(npo1ylogn). Using 1x1 = v2+€ instead of u3 gives
the constant 1/16. 0

3.2. Greedy algorithm for phylograph. There is a natural greedy algorithm for the
Minimum Phylograph problem. In a phylograph, every character’s induced subgraph consists of
a single connected component, so the greedy algorithm “grows” a solution by iteratively adding
an edge that maximally reduces the number of connected components.

The same notation needed to define the algorithm more precisely can be used in the proof of
its quality. Given species S and characters C, and a set of edges E 5 S(2) define the COS^'^ of E
to be

f (~) = components(Sc) - ICl,
CEC

where components(S,) denotes the number of connected components in the subgraph of (S ,E)
induced by the on-set of c. Thus f(0) = CcEC ISc] - IC1 = L - ICl, and if E is a phylograph,

For any edge set E and any edge e, let A,(e) = f (E) - f (E U {e}) be the amount by
which e decreases the cost f. The greedy algorithm begins with each species an isolated vertex,
and iteratively adds the edge which maximally decreases the cost, until the cost is 0. (See the
Appendix for pseudocode).

THEOREM 3.3. Suppose that for species S and characters C, of total input length 1, the
minimum phylograph { e (l) , . . . , e (r)) has cardinality r . Then the greedy algorithm produces a
phylograph EG of size IEGI 5 rln(L - IC]).

Proof. If we have any partial solution, adding in all r edges of a minimum phylograph will
certainly yield a phylograph. Since r more edges are enough to complete the job, some edge (one
of these, even) must take care of at least 1/rth of the cost. I€ the initial cost was f(S), and the
greedy algorithm reduces it by 1 - 1 / r at each step, after rln f(0) steps the cost must be reduced
below 1, and the algorithm must have terminated?

5 E(r) , where
E(i) = E(0) U { e (l) , . . ., e(i)} and the edges e(i) are those of the minimum phylograph. Note
that E(r) is a phylograph, since it contains the minimum phylograph. Because components (with

f(E) = CcEC 1 - IC1 = 0.

More formally, for any edge set E(0) define a series of sets E(0) C

’ We observe even now that the same approach wil l not work for phyloDAG. Since directed cycles are forbidden,
chosen edges constrain the addition of future ones, and even if there was a solution of size T initially, there may
not be once some edges have been chosen sub-optimally.

8

8 ’

respect to any character) only become more connected as i increases, for any e, if i 5 j then
AE(i)(e) 2 AE,,)(e). Thus for any starting set EO,

2

i=l
T

i=l
P

Comparing the first and last quantities, we conclude that there always exists an edge e for which

Therefore the greedy algorithm reduces the cost by a factor 1 - 1/r at each step. Since
the initial cost is L - IC], the cost after rln(L - IC]) steps of the greedy algorithm is at most
(1 - l/r)Th(L-lcl)(L - ICl) 5 1. The greedy algorithm therefore terminates within rln(L - IC])
steps, producing a phylograph of the same size. 0

This complements the result of Theorem 3.1: Minimum Phylograph is apparently hard to
approximate to better than a factor of (1/16)1oge, but easy to approximate to a factor ln(1-
ICl) 5 l n L . It would be of some interest to derive better bounds on the constant c, 10g2(e)/16 <
c 5 1, for which (cln1)-approximability is possible.

AE(0)(e) 2 f (EO)/.-

3.3. PhyloDAGs. We begin by observing that a phyloDAG cannot always be obtained by
directing the edges of a phylograph. Consider four species with s1 defined by characters (b, c, d),
s 2 by (a, c, d), sg by (a, b, d), and s4 by (a, b, c). The cycle SI, s2, sg, s4, s1 is a 4-edge phylograph,
but there is no way to direct the edges of the cycle to obtain a phyloDAG: any acyclic orientation
will create two archetypes for some character’s on-set.

We now prove the following theorem, which is analogous to Theorem 3.1.
THEOREM 3.4. . Let c < 1/16 be a constant. Unless NTIME(npo’y’ogn) = DTIME(npo1ylogn 1,

there is no polynomial-time algorithm that takes as input species S and characters C and outputs
a phyloDAG G = (S, E) such that IEI is within a factor of c1og.t of the minimum possible value.

Proof. The proof uses the same reduction as the proof of Theorem 3.1. Let EO be the edge
set in an optimal phyloDAG for P. We must show that EO = (2”) + 1x1 IDol. The direction
that differs from the proof of Theorem 3.1 is showing that given a dominating set DO, we can
construct a phyloDAG of size (2”) + 1x1 !Dol. To do so, first construct a phylograph (as in the
proof of Theorem 3.1). Then direct edges having both end-points in V according to a total order
on the vertices in V, and direct all remaining edges from vertices in V toward vertices in X. The
resulting digraph has no directed cycles and each character has a unique archetype. Therefore,
it is a phyloDAG. The rest of the proof is the same as the proof of Theorem 3.1. 0

As already noted, the natural greedy algorithm does not work well for phyloDAGs: the
phyloDAG problem seems to be more difficult because the prohibition of cycles means that it
is possible for the greedy algorithm to add a “bad” edge which prevents other “good” edges
from being added later. In the remainder of this section, we give an example of a species set
for which various natural greedy approaches for constructing a phyloDAG lead to an R(n) ratio
between the size (number of edges) of the constructed phyloDAG and the size of the optimal

9

phyloDAG. A randomized strategy has an n(n) expected ratio and has a ratio of O(n/logn)
with high probability.

We construct a species set as follows. There are n species SI,. . . , sn, and two distinguished
species s' and s". Now we add

0 2n characters shared by s' and s";
0 2 characters shared by s' and s i , for i = 1, ..., n
0 1 character shared by s", si and sj, for 1 5 i, j 5 n,i # j.

Duplicating characters forces the order in which a greedy algorithm connects species. We hide.
this duplication from an algorithm that checks for it by adding a set s d of dummy species, where
lSdl = pog(4n)l. There are 2pog(4n)l > - 4n distinct subsets of sd. We add one such subset to
each of the 4n nonunique charactem6 An optimal solution has O(n) edges, consisting of an edge
from s' to s", edges from s' and s" to each of the S i , and edges from s' to each species in Sd.

A phyloDAG has exactly one archetype for each character. A greedy algorithm begins with
each species an isolated node, thus an archetype for each character it contains. A natural edge
to add in a greedy fashion is one that maximally reduces the number of archetypes (over all
characters). Of course, we may not introduce directed cycles.

There may be times where we can choose the direction of the edge to be introduced (for
example at the first iteration) and we show that the algorithm performs badly for any of the
following strategies:

0 The direction is chosen arbitrarily.
0 The direction is chosen uniformly at random. (The expected performance of the al-

gorithm is bad for this example, and the example can be modified so that the bad
performance occurs with high probability.)

0 The edge is directed out from the node with the larger number of characters. (This a
natural way of breaking ties, since we expect ancestral nodes to have many &aracters.)

A greedy algorithm starts by putting an edge between s' and s", and an edge between s' (or
possibly s") and each species in s d . Then it adds edges between s' and the si. If directions are
chosen arbitrarily we may assume that these edges are from s' to s", and from each of the S i to
s'. Hence it is now impossible to add edges from s" to any of the si, since they would create
directed cycles. This means that in order to prevent thkre being two archetypes for a character
shared by s", si and Sj, species s; must be connected to Sj by an edge. This results in (i) edges.

Now consider the variant where the direction of an edge is chosen uniformly at random
whenever it is equally good to direct it either way. With high probability (i.e. with complement
probability that is exponentially small in n), there will be at least n/4 edges directed from the
Si's to s'. If the edge between s' and s" is directed the wrong way (i.e. from s' to s") then
these s; nodes will have to be connected in a clique, resulting in a quadratic number of edges. If
we now consider a species set consisting of alog(n) copies of the species set as described (for a
positive constant a), we see that the optimal solution has O(n1og n) nodes and edges, and with
probability at least 1 - n-a, at least one of those copies will have the edge between s' and s"
directed the wrong way, resulting in O(n2) edges.

If edges are directed away from nodes with higher numbers of characters, then the algorithm
can be forced to take the "wrong" direction for the edges by adding dummy characters at the
nodes from which we want the edges to be directed.

An algorithm may also check for domination, where Sd contains a subset of the characters contained by s. We
can remove the dominated species Sd from the instance and later direct an edge from s to Sd in the phylogeny for
the reduced set. To avoid this situation here, we add a character { S d (i) , S d (i + 1)) for i = 1,. . . , [4nl, which chains
the dummies together. This does not change the asymptotic size of the optimal solution.

10

REFERENCES

[l] M. Bellare, S. Goldwasser, C. Lund and A. Russell, Efficient Probabilistically Checkable Proofs and Ap-
plications to Approximation, Proceedings of the 25th ACM Symposium on the Theory of Computing,

[2] C. Benham, S. Kannan, M. Paterson and T. Warnow, Hen’s Teeth and Whale’s Feet: Generalized Characters
and their Compatibility, to appear in Journal of Mathematical Biology.

[3] H. Bodlaender, M. Fellows, and T. Warnow, Two strikes againstperfect phylogeny, in Proceedings of the 19th
International Colloquium on Automata, Languages, and Programming, Springer Verlag, Lecture Notes
in Computer Science (1992), pp. 273-283.

[4] C.J. Colbourn, W.J. Myrvold, and E. Neufeld, “Two algorithms for unranking arborescences”, Journal of
Algorithms, to appear.

[5] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions” , Journal of Symbolic
Computation, Vol. 9, 1990, pp. 2511280.

[6] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, 1994.
[7] R. Dulbecco, H:S. Ginsberg, Virology (2nd Ed), J.B. Lippincott Company, Philadelphia, 1988.
[8] P. Ferragina and R. Grossi, “Optimal on-line search and sublinear time update in string matching”, Proceed-

ings of the 36th IEEE Symposium on Foundations of Computer Science, pp. 604-612, 1995.
[9] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985.

pp. 294-304, 1993.

[lo] L.A. Goldberg, P.W. Goldberg, C.A. Phillips, E. Sweedyk, and T. Warnow, “Computing the phylogenetic
number to find good evolutionary trees”, Proceedings of the 6th Symposium on Combinatorial Pattern
Matching, July 1995.

[ll] D. Gusfield, “Efficient algorithms for inferring evolutionary trees” , Networks, Vol. 21, 1991, pp. 19-28.
[12] D.R. Karger, P.N. Klein and R.E. Tarjan, A randomized linear-time algorithm to find minimum spanning

trees, JACM, Vol. 42(2), 1995.
[13] J.O. Kephart and W.C. Arnold, “Automatic extraction of computer virus signatures”, Proceedings of the 4th

Virus Bulletin International Conference, R. Ford, ed., Virus Bulletin Ltd., Abingdon, England, 1994,

[14] C. Lund and M. Yannakakis, “On the hardness of approximating minimization problems”, Proceedings of the

[15] A. Nijenhuis and H.S. Wilf, Combinatorial Algorithms for Computers and Calculators, Second Ed., Academic

[16] R.C. Prim, Shortest connection networks and some generalizations, BeZl System Tech. J., Vol. 36, 1957,

[17] M.A. Steel, The complezity of reconstructing trees from qualitative characters and subtrees, Journal of Clas-

[18] D.B: Wilson, “Generating random spanning trees more quickly than the cover time” , 1995, submitted.

pp. 179-194.

25th ACM Symposium on the Theory of Computing, pp. 286-293, 1993.

Press, 1978.

pp. 1389-1401.

sification, Vol. 9, 1992, pp. 91-116.

Acknowledgements: We thank Phil MacKenzie, Tom Martin, Madhu Sudan, Luca Trevisan,
and David Wilson for useful discussions.

4. Appendix. This appendix contains additional proofs and details to be read at the dis-
cretion of the program committee.

4.1. The greedy phylodag algorithm.
Let i := 0 and EG(O) := 0
While f (E ~ (i)) > 0 do
begin

Let i := i+l
Let e be an edge maximizing AEG(;-l)(e)
Let E G (~) := E G (~ - 1) u {e}

end
Return the set EG = E G (~)

4.2. An O(t)-time algorithm to compute an atomic set. We iteratively reduce a set
of active species until we find an atomic set. Initially all species are active. Initialize a set of b+ 1

11

buckets to be empty. The buckets are numbered 0, 1, . . . , I C , corresponding to characters c1, . . . , ck
and a dummy cg. Keep a variable min which points to the smallest bucket which contains at
least 2 species (equal to 00 at the start of each iteration). Also keep a list touched of nonempty
buckets and a list defining of defining characters (initially empty). We place active species into
buckets according to their “next” (in sorted order) character (initially the first one). When there
are no further characters for a species, its “next” character is cg. We keep a list done of species
that have no further characters to process, and contain all the defining characters. Process the
active species in arbitrary order. To process species s, suppose it’s next character has index c. If
c 5 min, add the species to bucket c. If this is the first entry in this bucket, add c to the touched
list. If min > c, then, if this is the second species in the bucket, update min to c. After all
active species have been processed, if min = w (no two species match in their next character),
then keep this active set, advancing each species to its next character after adding any species in
the 0th bucket to the done list. Otherwise, the species in the min bucket are the new active set.
Add min to the defining set (as long as it is nonzero). If there are exactly 2 active species, then
this active set is an atomic set. If min = 0 , then this active set along with any speciis on the
done list) is an atomic set. Otherwise, empty the done list, empty each bucket on the touched
list (discarding the species), reset touched to empty and min to 00, and repeat the process with
the active list using the next character for each species.

At each iteration, the species in the active set contain all the defining characters. In iterations
where no new defining character is added (ie. when min = w), each species’ next character is
unique to that species. If the species ultimately is part of the atomic set, it will be the owner of
this nondefining character. If min= 0, there are no more characters to process and each species
in the current active set of size at least 2 (along with the done list contains all defining characters
and all other characters are possessed by at most one of the species.
’ The algorithm requires O(t) time. A species is a member of an active list at most once
for each character it contains. Processing a member of the active list requires constant time.
Emptying the buckets after each iteration of the algorithm requires time O(a;) where a; is the
size of the active set on iteration i. But E; a; 5 t. Therefore we can complete all iterations and
find an atomic set in time O(t).

12

