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Abstract

Algorithms are presented for the all-pairs min-cut problem in bounded tree-width, planar

and sparse networks. The approach used is to preprocess the input n-vertex network so that,

afterwards, the value of a min-cut between any two vertices can be e�ciently computed.

A tradeo� is shown between the preprocessing time and the time taken to compute min-

cuts subsequently. In particular, after an O(n logn) preprocessing of a bounded tree-width

network, it is possible to �nd the value of a min-cut between any two vertices in constant

time. This implies that for such networks the all-pairs min-cut problem can be solved in

time O(n2). This algorithm is used in conjunction with a graph decomposition technique of

Frederickson to obtain algorithms for sparse and planar networks. The running times depend

upon a topological property, 
, of the input network. The parameter 
 varies between 1 and

�(n); the algorithms perform well when 
 = o(n). The value of a min-cut can be found

in time O(n + 
2 log 
) and all-pairs min-cut can be solved in time O(n2 + 
4 log 
) for

sparse networks. The corresponding running times for planar networks are O(n + 
 log 
)

and O(n2 + 
3 log 
), respectively. The latter bounds depend on a result of independent

interest: outerplanar networks have small \mimicking" networks which are also outerplanar.

�This work was partially supported by the EU ESPRIT LTR Project No. 20244 (ALCOM-IT).
yPart of the work was done while the author was with the Max-Planck-Institut f�ur Informatik, Germany.
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1 Introduction

Network 
ows are of fundamental importance in computer science, engineering and operations

research, to name a few areas. The textbook [1] is an exhaustive reference on the subject. A

central problem in network 
ows is that of computing an s-t min-cut. We are given a (directed)

network, i.e. a directed graph with nonnegative capacities on its edges, and two distinguished

vertices s and t. An s-t cut in this network is a partition of the vertices into two parts, one

containing s and the other containing t. The capacity of the cut is the sum of the capacities of

the edges going from the part containing s to the part containing t. An s-t min-cut is a cut of

minimum capacity among all s-t cuts.

An s-t 
ow in a network is an assignment of a value, less than or equal to the capacity, to

each edge such that the net 
ow out of each node except s and t is zero, where the net 
ow

out of a node is the sum of 
ows on edges leaving the node minus the sum of 
ows on edges

entering the node. It follows that the net 
ows out of s and t sum to zero. An s-t max-
ow is

a 
ow that maximizes the net 
ow out of s, which is called the value of an s-t max-
ow. The

max-
ow min-cut theorem [11] states that the capacity of an s-t min-cut in a network is equal

to the value of an s-t max-
ow.

In this paper, we are concerned with the all-pairs min-cut problem (APMC problem, for

brevity). The problem is to compute the value of an s-t min-cut for each pair of vertices s; t

in the network. This problem has applications in statistical data security [14]. Since the value

of an s-t min-cut can be computed by solving an s-t max-
ow problem, the naive solution to

the APMC problem solves n(n� 1) max-
ow problems on n-vertex networks. It was shown by

Gomory and Hu [16] that in undirected networks, the APMC problem can be solved by solving

n�1 well-chosen max-
ow problems. Thus, the APMC problem on an undirected network takes

O((n � 1)F (n;m)) time, where F (n;m) is the time required to solve a max-
ow problem on

an n-vertex, m-edge network. For directed networks, the method of Gomory and Hu does not

apply and nothing better than the naive solution (taking O(n2F (n;m)) time) is known.

The time taken to compute a max-
ow when nothing is known about the structure of the

input network is O(minfn3= log n; nm logng) [9, 18]. However, one can do better when the struc-

ture of the input network is known. Recently, it was shown that the max-
ow problem in directed

or undirected bounded tree-width networks can be solved in O(n) time [15]. The tree-width is

a parameter that, intuitively, indicates how close the structure of the network is to a tree (see

Section 2.3 for a formal de�nition). The class of bounded tree-width networks includes (among
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others) outerplanar networks, series-parallel networks, and networks with bounded bandwidth

or cutwidth [3, 6]. Thus giving better algorithms for this class of networks is an important

step in the development of better algorithms for sparse networks, i.e. networks with O(n) edges.

For sparse networks, in general, the best max-
ow algorithm runs in time O(n2 log n). For the

APMC problem in the undirected case, substituting the values of F (n;m) yields running times

of O(n3 logn) for sparse networks and O(n2) for bounded tree-width networks. For directed

networks, the corresponding running times are O(n4 log n) and O(n3) respectively. From now

on, we consider only directed networks.

The starting point of this paper is a new algorithm for the APMC problem in bounded tree-

width networks that runs in O(n2) time, improving upon the previous algorithm for directed

networks by a factor of n. The approach used di�ers from previous approaches in that, instead

of computing a number of separate max-
ows from scratch, we preprocess the network so that,

subsequently, the value of an s-t max-
ow can be e�ciently computed for any pair of vertices s

and t. We show a tradeo� between the amount of preprocessing required and the time required

to compute the value of an s-t max-
ow subsequently. The tradeo� is: after O(nIk(n)) prepro-

cessing, the value of an s-t max-
ow can be computed in O(k) time, for any integer k � 1. The

function Ik(n), de�ned formally in Section 2.4, decreases rapidly as k increases; for example,

I1(n) = dlog ne and I2(n) = log� n. If the preprocessing is restricted to O(n), then the value

of an s-t max-
ow can be computed in O(�(n)) time (where �(n) is the inverse-Ackermann

function; see Section 2.4).

We use the algorithm for bounded tree-width networks to develop an algorithm for sparse

networks; the latter algorithm is based on a decomposition of the original network into networks

of bounded tree-width. Frederickson [13] showed how to decompose a sparse graph into a number

of edge-disjoint outerplanar subgraphs, called hammocks. (An outerplanar graph has tree-width

2.) The number of hammocks obtained, 
, depends on the topological properties of the graph

and varies between 1 and �(n). We give an algorithm that computes the value of an s-t max-
ow

in a sparse network in time O(n + 
2 log 
). Thus, this algorithm is always competitive with

the O(n2 log n)-time algorithm [18] and does better if 
 = o(n). This leads to an algorithm that

solves the APMC problem in time O(n2 + 
4 log 
) on a sparse network.

The algorithms use the construction of a small network that \mimics" the 
ow behavior of

a large network. This idea was developed in [15], where it is shown that a network G with q

terminals has a mimicking network of size 22
q
. In the case where G is outerplanar, we show

(Section 4) that it has a mimicking outerplanar network which is a minor of G and which
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has size q22q+2. This leads (along with the above mentioned approach for sparse networks) to

faster algorithms for planar networks. We give an algorithm that computes the value of an s-t

max-
ow in an n-vertex planar network in O(n+ 
 log 
) time, which compares favorably with

the O(n log n)-time algorithm of [20]. We also show that the APMC problem can be solved in

O(n2 + 
3 log 
) time.

The above algorithms output the value of a max-
ow or min-cut. In case the actual min-cut

is desired, we show how to output the edges crossing a min-cut in additional time linear in the

size of the output (Section 6).

Necessary and su�cient conditions (called external 
ow inequalities) for realizable 
ows in

multi-terminal networks are derived in [15]. An important lemma in [15] shows how to combine

the 
ow inequalities of a number of subnetworks to obtain a single set of 
ow inequalities for

the combined network. The proof uses linear programming. We give (Section 7) a simple and

direct proof of the same result which avoids linear programming and leads to a slightly faster

computation of these inequalities.

The structure of the algorithms for bounded tree-width networks is derived from an algorithm

used to solve shortest path queries [7]. The hammock decomposition technique has been used

in shortest path problems (see e.g. [10, 12, 13]). To our knowledge, this is the �rst application

of this technique to a di�erent problem.

2 Preliminaries

2.1 Flows in multi-terminal networks

A network is a directed graph G = (V;E) with a nonnegative real capacity ce associated with

each edge e 2 E. The terminals of G are the elements of a distinguished subset, Q, of its vertices.

A 
ow in G is an assignment of a nonnegative real value fe � ce to each edge e such that the

net 
ow out of each non-terminal vertex is zero, where the net 
ow out of a vertex is the sum

of 
ows on edges leaving the vertex minus the sum of 
ows on edges entering the vertex. An

external 
ow x = (x1; : : : ; xjQj) is an assignment of a real value xp to each terminal ap 2 Q,

1 � p � jQj. A realizable external 
ow is an external 
ow such that there exists a 
ow in which

the net 
ow out of each terminal ap is xp. A cut (S; S) is a partition of the vertices of G into

two subsets S and S = V �S; S is called the de�ning subset of the cut. The capacity of the cut

(S; S) is the sum of capacities of edges going from vertices in S to vertices in S. For a subset R

of Q, an R-separating cut is a cut (S; S) where Q \ S = R. A minimum R-separating cut is an
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R-separating cut of minimum capacity.

The sum of the net 
ows out of the terminals in R is called the R-value of a 
ow. A maximum

R-
ow is a 
ow of maximum R-value. If Q = fs; tg, an s-t max-
ow is a maximum fsg-
ow

and its value is the fsg-value of the 
ow. An s-t min-cut is a minimum fsg-separating cut. The

max-
ow min-cut theorem states that the value of an s-t max-
ow is equal to the capacity of

an s-t min-cut.

In a network that can be decomposed into edge disjoint subnetworks, external 
ows in the

subnetworks can be \added" to yield an external 
ow in the network. Let G be the edge disjoint

union of G1 and G2. Let Q1 and Q2 be the terminal sets of G1 and G2 respectively, and let

the common vertices of G1 and G2 be terminals in both subnetworks, that is V (G1) \ V (G2) =

Q1 \Q2. Let Q = Q1 [Q2 be the terminal set of G. For external 
ows x(1) = fx
(1)

v : v 2 Q1g,

x(2) = fx
(2)

v : v 2 Q2g, de�ne their sum, denoted as x(1) � x(2), to be the external 
ow x =

fxv : v 2 Qg, where xv = x
(1)

v if v 2 Q1 �Q2, xv = x
(2)

v if v 2 Q2 �Q1, and xv = x
(1)

v + x
(2)

v if

v 2 Q1 \Q2. Then we have:

Lemma 2.1 Let G;G1 and G2 be de�ned as above. Then if x(1) and x(2) are realizable external


ows in G1 and G2 respectively, then x(1) � x(2) is a realizable external 
ow in G, and if x is a

realizable external 
ow in G, then there exist realizable external 
ows x(1) in G1 and x(2) in G2

such that x = x(1) � x(2).

Proof. Let f1 and f2 be the 
ows that yield external 
ows x(1) and x(2) in G1 and G2. By

taking the union of these 
ows in G, which is possible since the individual 
ows involve disjoint

edge-sets, we obtain a 
ow in G and the resulting external 
ow is exactly x(1) � x(2). On the

other hand, the 
ow corresponding to any external 
ow x in G induces a 
ow in G1 and a 
ow

in G2, which yield external 
ows x(1) and x(2) such that x = x(1) � x(2).

2.2 Mimicking networks

Let G be a network with terminal set Q. A network M(G) with terminal set Q0 is a mimicking

network for G if there exists a bijection between Q and Q0 such that every realizable external


ow in G is also realizable in M(G), and vice versa.

In [15], it is shown that for any network G, there exists a mimicking network with 22
q

vertices, where q is the number of terminals of G. The mimicking network in [15] is constructed

by �nding 2q cuts in G, namely, a minimum R-separating cut for each R � Q. Those vertices

of G that are on the same side of all these cuts form equivalence classes. Induction on q
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shows that there can be at most 22
q
equivalence classes. The network M(G) is constructed by

replacing each equivalence class with a single vertex. The edge between two vertices of M(G)

in a given direction has capacity equal to the sum of the capacities of the edges in G between

the corresponding equivalence classes, taking direction into account. For a given R � Q, a

minimum R-separating cut (or a maximum R-
ow) can be computed by the standard method

of introducing a new source s�, connected to each vertex in R with edges of in�nite capacity,

and a new sink t� to which each vertex in Q�R is similarly connected, and computing an s�-t�

max-
ow in the transformed network.

However, the standard method for computing minimum R-separating cuts may not preserve

the structural properties of G; for example, the transformed network may not be planar, while

G is planar. We give an alternative method for computing a maximum R-
ow by computing a

number of s-t max-
ows in networks with the same structural properties as G. This will lead to

e�cient algorithms for planar networks in Section 5.

We �rst review some concepts from network 
ows. Let f be a 
ow in a network H =

(VH ; EH). We may assume that if edge (i; j) exists in H, then so does (j; i), since we can always

insert (j; i) with zero capacity, if it does not exist, without changing the topology of H. The

residual capacity re of an edge e = (i; j) is de�ned as re = ce � fe + fe0 , where e
0 = (j; i). The

residual network H(f) of H for the 
ow f is de�ned as H(f) = (VH ; EH), where the capacity

of edge e is re. An i-j augmenting path in the residual network H(f) is a directed path from i

to j consisting of edges with positive capacity. It is well known that f is an s-t max-
ow in H

if and only if there is no s-t augmenting path in H(f) (see e.g., Theorem 6.4 in [1]). A routine

generalization yields:

Fact 2.1 Let H be a network with terminal set Q and let R � Q. Then a 
ow f is a maximum

R-
ow i� there is no a-a0 augmenting path in the residual network H(f) for any a 2 R; a0 2

Q�R.

We wish to �nd a maximum R-
ow in network G with terminal set Q, for some R � Q.

Intuitively, the following procedure should work: select a vertex r of R and compute maximum


ows from r to every terminal in Q � R. Every successive maximum 
ow is computed in the

residual network left by the previous computation. Then, select the next vertex r0 from R and do

the same; the network in which the �rst maximum 
ow for r0 is computed is the residual network

left by the last computation performed for r. In this manner, process each of the vertices in R.

The 
ow obtained by adding up the individual 
ows is a maximum R-
ow.
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While the above is intuitively clear, we have not found a proof in the literature. We include

a proof below.

Formally, let (s1; t1); (s2; t2); : : : ; (sp; tp) be a lexicographic ordering of the pairs in R� (Q�

R). De�ne G0 = G. For i = 1; : : : ; p, compute an si-ti max-
ow f(i) in Gi�1 and de�ne Gi to

be the residual network of Gi�1 for 
ow f(i).

Let fe(i) be the 
ow through edge e in f(i). De�ne ge(i) =
Pi

j=1 fe(j). It is easy to verify

that for each i, fge(i); e 2 Eg speci�es a 
ow g(i), and Gi is the residual network of G for 
ow

g(i). Let g be the 
ow g(p).

Lemma 2.2 The 
ow g is a maximum R-
ow in G.

Proof. By Fact 2.1 we only need to show that in Gp there is no a-a
0 augmenting path, for any

a 2 R; a0 2 Q � R. It actually su�ces to prove the following. Let H be a network and let

s; s0; t; t0 be terminals of H. Let H� be the residual network of H for an s-t max-
ow. Then:

(i) If there is no s-t0 augmenting path in H, then there is no s-t0 or s-t augmenting path in

H�.

(ii) If there are no s0-t0 and s0-t augmenting paths in H, then there are no s0-t0, s0-t or s-t

augmenting paths in H�.

Note that using (i), (ii) and the lexicographic order used, one can easily prove by induction

that there is no si-ti augmenting path in Gj for any i � j, which implies the lemma. We now

prove (i) and (ii).

Clearly, no s-t augmenting path exists in H�. So (i) can only be violated by an s-t0 aug-

menting path P in H�. Then, there is some edge in P which has zero capacity in H but positive

capacity in H�. Let (i; j) be such an edge in P that is closest to t0. Then the j-t0 augmenting

path that is a subpath of P also exists in H. The only way in which (i; j) could have zero

capacity in H and positive capacity in H� is if there is positive 
ow along (j; i) in the max-
ow

computed. But since 
ow reaches j, there must be an s-j augmenting path in H. This, con-

catenated with the j-t0 augmenting path yields an s-t0 augmenting path in H, contradicting the

hypothesis.

Similarly, (ii) can only be violated by an s0-t0 or an s0-t augmenting path P in H�. As before,

let (i; j) be an edge in P with zero capacity in H but positive capacity in H�; however, this time

choose the edge (i; j) that is closest to s0. Then an s0-i augmenting path exists in H. Arguing
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as before, the fact that 
ow reaches t from i implies the existence of an i-t augmenting path in

H. The concatenation of the two paths implies an s0-t augmenting path in H, contradicting the

hypothesis.

We have thus proved that a maximum R-
ow, and hence a minimum R-separating cut, in

network G can be computed by doing at most O(q2) max-
ow computations in G, since there

are at most O(q2) pairs in R� (Q�R). Since there are at most 2q di�erent R's, we have:

Lemma 2.3 A mimicking network of a network G with q terminals can be computed in time

O(q22qF (G)), where F (G) is the time required to compute an s-t max-
ow in G.

Suppose we are given the mimicking networks of a number of networks. A number of pairs

are speci�ed, each pair consisting of two terminals belonging to di�erent networks. We are asked

to combine the di�erent networks by identifying the speci�ed pairs of terminals. Finally, we are

given a subset of all the terminals, and asked to �nd the mimicking network of the combined

network at this new set of terminals. Note that in the combined network, the set of terminals

of each subnetwork is an attachment set for that subnetwork, where an attachment set for a

subnetwork is a set of vertices whose deletion disconnects the subnetwork from the rest of the

network.

Lemma 2.4 Let G =
Sm
i=1Gi, where the Gi's are edge-disjoint, and let Gi have attachment set

Ci. Given the mimicking networks M(Gi) for each Gi at terminals Qi satisfying Ci � Qi, and

a set Q0 � Q =
Sm
i=1Qi, we can compute the mimicking network M(G) for G at terminals Q0

in time O(q22q � (
Pm

i=1 2
2
qi )3), where qi = jQij and q = jQj.

Proof. Let G0 be obtained by combining the appropriate terminals of the mimicking networks

M(Gi). By repeated applications of Lemma 2.1, an external 
ow at terminals Q is realizable in

G0 i� it is the sum of realizable external 
ows in each M(Gi) at Qi. Similarly, an external 
ow

at terminals Q is realizable in G i� it is the sum of realizable external 
ows in each Gi at Qi.

Since the set of realizable 
ows of Gi and M(Gi) at terminals Qi are the same, it follows that

the sets of realizable 
ows of G and G0 at Q are the same. Hence, G0 is a mimicking network

for G at terminals Q.

Now, compute the mimicking network of G0 at terminalsQ0, using Lemma 2.3 and computing

max-
ows with an O(n3) algorithm (see e.g. [1]). This mimicking network is the desired M(G).

The lemma follows.
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2.3 Tree-width

A tree decomposition of a (directed or undirected) graph G = (V (G); E(G)) is a pair (X;T ),

where T = (V (T ); E(T )) is a tree, X is a family fXi : i 2 V (T )g of subsets of V (G) that cover

V (G), and the following conditions hold:

� (edge mapping) 8(v; w) 2 E(G), there exists an i 2 V (T ) with v 2 Xi and w 2 Xi.

� (continuity) 8i; j; k 2 V (T ), if j lies on the path from i to k in T , then Xi \Xk � Xj , or

equivalently: 8v 2 V (G), the nodes fi 2 V (T ) : v 2 Xig induce a connected subtree of T .

The width of the tree decomposition is maxi2V (T ) jXij�1. The tree-width of G is the minimum

width over all possible tree decompositions of G.

Bodlaender [5] gave a linear-time algorithm to compute a constant width tree decomposition

of a graph with constant tree-width. In [4] a linear-time algorithm is given to convert a tree

decomposition of (constant) width t into another one of tree-width 3t + 2, in which the tree is

binary. We call such a tree decomposition a binary tree decomposition.

Let G be an n-vertex graph of constant tree-width and let (X;T ) be its tree decomposition

of constant width. The edge mapping condition ensures that the endpoints of each edge in G

appear together in some set Xi 2 X, belonging to vertex i of T . Thus, in a sense, each edge

is represented in at least one vertex of T . For our purposes, we need to explicitly associate

each edge of G with exactly one vertex of T . We will, therefore, compute an augmenting

function h : E(G) ! V (T ), satisfying the property that both endpoints of an edge are present

in the set belonging to the vertex that the edge is mapped to by h. More precisely, 8(v; w) 2

E(G); fv; wg � Xh(v;w). Any augmenting function will su�ce for our purposes. It is easy to

compute one such function, by doing a traversal of T and assigning h(v; w) = i for each i 2 V (T ),

if fv; wg � Xi, (v; w) 2 E(G) and h(v; w) has not yet been assigned a value. This takes time

proportional to
P

i2V (T ) jXij
2, which is O(n), since the tree decomposition is of constant width.

The resulting tree decomposition with the values h(v; w);8(v; w) 2 E(G), is called an augmented

tree decomposition. The discussion above is summarized as the following result.

Proposition 2.1 Given an n-vertex graph G of constant tree-width t, we can compute in O(n)

time an augmented binary tree decomposition of G of width O(t).
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2.4 Tree products

For a function g let g(1)(n) = g(n); g(i)(n) = g(g(i�1)(n)); i > 1. De�ne I0(n) = dn
2
e and

Ik(n) = minfj j I
(j)

k�1(n) � 1g; k � 1. The functions Ik(n) decrease rapidly as k increases; in

particular, I1(n) = dlog ne and I2(n) = log� n. De�ne �(n) = minfj j Ij(n) � jg.

The following theorem was proved in [2, 8].

Theorem 2.1 Let � be an associative operator de�ned on a set S, such that for q; r 2 S, q � r

can be computed in constant time. Let T be a tree with n vertices such that each edge is labeled

with an element from S. Then: (i) for each integer k � 1, after O(nIk(n)) preprocessing, the

composition of labels along any path in the tree can be computed in O(k) time; and (ii) after O(n)

preprocessing, the composition of labels along any path in the tree can be computed in O(�(n))

time.

3 Bounded tree-width networks

Let G be a network of bounded tree-width and (X;T ) its augmented binary tree decomposition.

For a subtree T 0 of T , we de�ne the subgraph G0 spanned by T 0, as follows. The vertices of

G0 are the vertices in the sets associated with the vertices of T 0, i.e. V (G0) =
S
i2V (T 0)

Xi.

The edges of G0 are those edges that the augmenting function maps to vertices in T 0, i.e.

E(G0) = fe 2 E(G) : h(e) 2 V (T 0)g. It is easy to check that vertex-disjoint subtrees span edge-

disjoint subgraphs. (In fact, it is only to ensure this property that we introduce the augmenting

function.)

For i; j 2 V (T ) let path(i; j) denote the unique path from i to j in T . Deleting the �rst and

last edges on this path breaks up T into three components Ti, Tj , the ones containing i and j

respectively, and the remaining component Tij . If path(i; j) is an edge, then the �rst and last

edges on the path are the same; consequently, the component Tij is empty.

De�ne a set U = fPij = (Mi;Mj ;Mij) : 8i; j 2 V (T ); i 6= jg, where Mi and Mj are the

mimicking networks for the subgraphs spanned by Ti and Tj at terminalsXi andXj respectively,

and Mij is the mimicking network for the subgraph spanned by Tij at terminals Xni [Xnj . If

Tij = ;, then Mij = ;.

De�ne the following operator � on U . For i; j; l; k 2 V (T ),

Pij � Plk =

(
Pik if j = l and path(i; k) includes node j

; otherwise
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Figure 1: Computation of Pij .

It follows easily from the de�nition that � is associative: If a; b; c; d are vertices (appearing in

that order) on a simple path in T , then (Pab�Pbc)�Pcd = Pac�Pcd = Pad and Pab�(Pbc�Pcd) = Pab�

Pbd = Pad. If a; b; c; d are not on a simple path in T , then (Pab �Pbd)�Pcd = Pab � (Pbc �Pcd) = ;.

In general, the product Pi1i2 � Pi2i3 � � � � Pim�1im = Pi1im if i1; : : : ; im is a path in T .

Suppose we have computed Pxy for every x and y such that (x; y) is an edge in T . Let

i; j; k be vertices of T such that j is an internal vertex of path(i; k). Then, given Pij and Pjk,

the computation Pik = Pij � Pjk can be done in O(1) time as the following lemma shows. The

main idea is to combine the mimicking networks of the subgraphs of G spanned by the tree

components incident on j and retain the appropriate set of terminals.

Lemma 3.1 Let G be a network and let (X;T ) be its augmented binary tree decomposition of

constant width. Given Pxy;8(x; y) 2 E(T ), and Pij ; Pjk for some i; j; k 2 V (T ), Pij �Pjk can be

computed in constant time.

Proof. If j is not an internal vertex in path(i; k), there is nothing to prove (since in this case

Pij � Pjk = ;, by de�nition). Therefore, suppose that j is an internal vertex in path(i; k). Since

T is binary, j has at most one neighbor x apart from its neighbors on the path from i to k. Let

Tx be the component of T containing x, obtained by deleting edge (j; x). Let ni and nk be the

neighbors of i and k in path(i; k). (See Figure 1.)

The value Pik consists of the three mimicking networks Mi, Mk and Mik, for the subgraphs

spanned by Ti, Tk and Tik respectively. The former two are already available as part of the

values Pij and Pjk. Hence we need to compute only Mik. The component Tik is the union of

components Tij ; Tjk; Tx, and vertex j, which are pairwise vertex-disjoint. By supposition, we

have the mimicking network for the subgraph spanned by Tx, as part of the value Pjx. The
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mimicking networks for the subgraphs spanned by Tij and Tjk are available in the values Pij

and Pjk. The mimicking network for the subgraph spanned by j can be computed using Lemma

2.3. From the continuity property of tree decompositions, it follows that the set of terminals for

each of the subgraphs is an attachment set for the subgraph and that the �nal set of terminals

desired, namely Xni [ Xnk , is a subset of all the terminals. Combining the above mimicking

networks using Lemma 2.4 yields Mik. Since the total number of terminals is constant, the

claimed result follows.

We now show how to compute Pij for each edge (i; j) in T . Root T at any vertex. For a

vertex i, let Si be the subtree rooted at i. Consider an edge (i; j) such that i is a child of j.

Then Pij consists of two valuesMi andMj , whereMi is the mimicking network for the subgraph

spanned by Si, with terminals Xi, and Mj is the mimicking network for the subgraph spanned

by T �Si, with terminals Xj . We compute Pij in two phases. In the �rst phase we compute Mi

for each edge (i; j) with i a child of j. In the second phase, we compute Mj for each such edge.

During the �rst phase, suppose we are at an edge (i; j), with i a child of j. Suppose also that

we have computed the mimicking networks Ml and Mr for the (at most) two edges connecting

i to its children. Then, to obtain Mi, use Lemma 2.4 to combine the mimicking networks Ml,

Mr and the mimicking network for the subgraph spanned by i, retaining the terminals Xi. A

postorder traversal of T with this operation performed at each edge completes the �rst phase.

During the second phase, suppose we are at edge (i; j), with i a child of j. Let p and c be the

parent of j and the sibling of i respectively (if they exist). Suppose we have already computed

Mp, the mimicking network for the subgraph spanned by T � Sj. In the �rst phase, we have

computed Mc, the mimicking network for the subgraph spanned by the subtree rooted at c.

Then, use Lemma 2.4 to combine Mp;Mc and the mimicking network for the subgraph spanned

by j, retaining terminals Xj . This yields Mj , the mimicking network for the subgraph spanned

by T � Si. A preorder traversal of T with this operation performed at each edge completes the

second phase.

Each time Lemma 2.4 is invoked, it combines a constant number of networks, each with a

constant number of terminals, hence taking constant time. Since the lemma is invoked twice for

each edge, we have proved the following result.

Lemma 3.2 Let G be an n-vertex network and let (X;T ) be its augmented binary tree decom-

position of constant width. Then, in time O(n) we can compute Pab for all edges (a; b) 2 E(T ).

We are now ready for our main lemma.
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Lemma 3.3 Let G be an n-vertex network and let (X;T ) be its augmented binary tree decom-

position of constant width. For each integer k � 1, after O(nIk(n)) preprocessing, we can �nd

the mimicking network for G at terminals Xi [Xj in time O(k), for any i; j 2 V (T ). Further,

after O(n) preprocessing, we can �nd this mimicking network in time O(�(n)).

Proof. For each edge (a; b) of T , compute Pab using Lemma 3.2. Use Theorem 2.1 to preprocess

T , with the Pab values associated with its edges, so that queries asking for the product of P

values along paths in T can be answered. A query for the product on the path from i to j

returns the value Pij = (Mi;Mj ;Mij). Combine these three mimicking networks using Lemma

2.4, with the desired set of terminals being Xi [Xj . This yields the mimicking network for G

with these terminals. The claimed bounds follow easily by those of Theorem 2.1 and Lemma

3.1.

We can now prove the main result of this section.

Theorem 3.1 Let G be an n-vertex network of constant tree-width. For each integer k � 1,

after O(nIk(n)) preprocessing, we can �nd the value of an s-t min-cut (or max-
ow) in time

O(k), for each s; t 2 V (G). Further, after O(n) preprocessing, we can �nd the value of an s-t

min-cut (or max-
ow) in time O(�(n)).

Proof. First, compute a constant-width augmented binary tree decomposition (X;T ) of G using

Proposition 2.1. Preprocess G and (X;T ) using Lemma 3.3.

Let s 2 Xi and t 2 Xj , for some i; j 2 V (T ). By Lemma 3.3, a single query returns the

mimicking network for G at terminals Xi[Xj . Now simply compute the value of an s-t min-cut

(or max-
ow) in this mimicking network. Since the size of the mimicking network is constant,

the entire computation after the query takes constant time, implying the time bounds in the

theorem.

In order to solve the APMC problem in a bounded tree-width network, simply apply Theorem

3.1 with k = 2, i.e. perform O(n log n) preprocessing so that an s-t min-cut can be computed in

constant time. Thus the APMC problem can be solved by querying for s-t min-cuts, for each

pair s; t in the network. This proves the following result.

Corollary 3.1 The all-pairs min-cut problem can be solved for bounded tree-width networks in

time O(n2).
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4 Mimicking networks of outerplanar networks

In Section 2.2, we described the method of [15] to compute a mimicking network with 22
q

vertices for a network with q terminals. In this section we give an algorithm that �nds a

mimicking network of an outerplanar network. The mimicking network constructed has size

q22q+2 (i.e., exponentially smaller than the one constructed using the general approach of [15]),

and it is a minor of the original network (i.e., it can be obtained from the original network by

contracting edges, deleting edges and deleting isolated vertices [17, 19]). The ability to construct

mimicking networks that are minors of the original outerplanar networks permits us to construct

planar mimicking networks for planar networks in Section 5.

We �rst consider the case of biconnected networks. Let G be a biconnected outerplanar

network with terminal set Q. Then, G has an undirected Hamiltonian cycle. Throughout, we

work with a �xed embedding of G, and the boundary of this embedding is the Hamiltonian

cycle. Let 1; 2; : : : ; n be the numbering of vertices of G in clockwise order along the boundary of

this embedding. Let [i; j] denote the interval of vertices in clockwise order along the boundary

from vertex i to vertex j, i.e., [i; j] denotes the set fi; i + 1; : : : ; jg of vertices, if i � j, and it

denotes fi; i + 1; : : : ; n; 1; : : : ; jg, if i > j. A chain is the set of vertices determined by some

interval [i; j].

Any coloring of the vertices of G with green and red colors de�nes a cut, namely, the cut

separating the green vertices from the red ones. For a subset R � Q of terminals, let (S; S)

be a minimum R-separating cut. We color the vertices of S green and those of S red. A green

unit is de�ned to be a maximal chain of green vertices, and a red unit is de�ned analogously.

De�ne the support of a green unit to be a green terminal such that some (and therefore every)

vertex in the unit has an undirected path, consisting only of green vertices, to this terminal.

Similarly, de�ne the support of a red unit. We say a green unit is unsupported if no vertex in

the unit has an undirected path, consisting only of green vertices, to a green terminal. De�ne

an unsupported red unit analogously. A collection of unsupported units is connected if there is

an undirected path, not including a vertex from any supported unit, between any two units of

the collection.

Proposition 4.1 The cut obtained by changing the color of any maximal monochromatic con-

nected collection of unsupported units is also a minimum R-separating cut.

Proof. Assume that the color of the connected collection is green. By the maximality of the

collection, there is no edge from the collection to any other unsupported green unit, and because
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the units are unsupported, there is no edge to any supported green unit. Hence, the capacity

of the cut obtained by changing the color of the collection to red is not more than the capacity

of the minimum R-separating cut (S; S). Interchanging the roles of red and green yields the

proposition.

Proposition 4.2 In any minimum R-separating cut in G in which there are no unsupported

units, the number of units is at most 2q � 2, where q is the number of terminals.

Proof. Construct an undirected graph H from the undirected version of G, by contracting

each edge between two vertices belonging to the same unit, and replacing multiple edges in the

resulting graph by a single edge. These operations preserve the outerplanarity of the graph.

Each unit of G corresponds to a vertex in H and the colors of the units induce a coloring of the

vertices of H. The vertices of H corresponding to the units of G that contain a terminal are

called special. The outerplanar embedding of G naturally induces an embedding of H and we

work with this embedding. The following properties of H are easily veri�ed:

(i) H is outerplanar.

(ii) The outer face of H is a Hamiltonian cycle, and the colors of successive vertices on this

cycle alternate.

(iii) There are at most q special vertices, and at least one special vertex of each color.

(iv) Every vertex of H has a path, consisting only of vertices of the same color, to a special

vertex of the same color.

We claim that any graph with properties (i){(iv) has at most 2q � 2 vertices, for q � 2.

Consider a counterexample to the claim with the minimum value of q. Since the counterexample

has at least 2q� 1 > q vertices, there is a non-special vertex. Without loss of generality, assume

that there is a red non-special vertex. Property (iv) implies that there is a non-special red vertex

that has an edge to a special red vertex. Property (ii) implies that the path between these two

vertices along the Hamiltonian cycle in either direction includes a green vertex. Contracting this

edge splits the Hamiltonian cycle of (ii) into two smaller cycles that share exactly one red vertex.

Designate this vertex as special. Consider the two subgraphs induced by the vertices on the two

cycles. Each of them contains a green vertex and hence must contain a special green vertex. If

not, (i) implies that the corresponding green vertices in H violate (iv). It is now easily veri�ed

that both the subgraphs satisfy (i){(iv) for some smaller values of q. But since the sum of the
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vertices of the two subgraphs is at least 2q � 1, one of the two subgraphs is a counterexample

with a smaller value of q, contradicting the minimality of q. Thus the claim holds.

The proposition follows since the number of units in G is the same as the number of vertices

in H.

We now give an algorithm that �nds a minimum R-separating cut satisfying the hypothesis

of Proposition 4.2. We �rst �nd a minimum R-separating cut using our algorithm given in

Section 2.2 and color the units induced by this cut. Then, for each terminal, we �nd the units

that it supports, using a standard graph traversal algorithm. Consider a maximal contiguous

group of unsupported units, and assume that one of the (supported) units bordering it is green.

Mark each of the units in the group, and also mark every unsupported unit in each maximal

connected collection of unsupported units that includes a unit from the group. Color all of

the marked units green, inducing a new R-separating cut. By Proposition 4.1, this is also a

minimum R-separating cut. The green units become larger by absorbing the neighboring new

green units, and all the marked units are now supported (by the terminal that supports the

bordering green unit). Perform an analogous operation if the bordering units are red. Continue

this process until no unsupported units remain.

The identi�cation of maximal contiguous groups can be done by a walk around the boundary

of the embedding, and the marking of units by a standard graph traversal. Note that an edge

is traversed once, by exactly one traversal. Thus the total time for all traversals is linear. The

time taken by the algorithm is dominated by the q graph traversals done from the q terminals,

and the time taken to �nd a minimum R-separating cut, which is O(q2n), where n is the number

of vertices in G. We can now prove:

Lemma 4.1 For any n-vertex biconnected outerplanar network G with terminal set Q, there

is a mimicking network M(G) of G at terminals Q such that M(G) is outerplanar and has at

most q2q+1 vertices, where q = jQj. M(G) can be constructed in O(q22qn) time. The undirected

version of M(G) is a minor of the undirected version of G.

Proof. Recall the procedure described in Section 2.2 to construct a mimicking network. It �nds

a minimum R-separating cut for each R � Q and then replaces each equivalence class of vertices

that have not been separated by any cut by a single vertex. When we �nd R-separating cuts by

the algorithm above, each cut divides the vertices into at most 2q�2 chains, by Proposition 4.2.

This can be viewed as marking at most 2q � 2 edges on the boundary of the embedding (the

edges that delimit the chains). Doing this for each of the 2q possible subsets R corresponds to
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marking at most (2q � 2)2q edges on the boundary of the embedding. The equivalence classes

of vertices not separated by any cut are exactly the maximal groups of vertices without any

marked edge between two vertices in the same group. Since at most (2q� 2)2q edges have been

marked, there are at most this many equivalence classes.

The mimicking network is constructed by contracting the edges between every two vertices

belonging to the same equivalence class, and replacing multiple edges by a single edge of capacity

equal to the sum of the capacities of the edges it replaces. As before, outerplanarity is preserved.

The running time of the algorithm follows by Lemma 2.3 and Theorem 3.1 (an outerplanar

network has tree-width 2).

We now consider the case of general outerplanar networks. We �rst discuss some structural

properties of the graphs underlying networks. A biconnected component of G is a maximal

induced subgraph with the property that deleting any vertex from the subgraph does not dis-

connect it. It follows that two biconnected components have at most one vertex in common,

called an articulation vertex. It is well known that the biconnected components of a graph have a

\tree" structure, in the sense that any simple path between two �xed vertices must pass through

the same set of articulation vertices in the same order.

Select any biconnected component and call it the root. De�ne the children of the root to

be those components that share an articulation vertex with the root, and de�ne the parent of

these components to be the root. Inductively, de�ne the children of any component B that has

a parent to be those components that share an articulation vertex with B but not with B's

parent (if a component shares an articulation vertex with both B and B's parent, then all three

components share the same articulation vertex). Construct a graph with one vertex for each

biconnected component and an edge between each vertex and its parent. This graph will be

a tree, which we call the tree of biconnected components. A leaf component is a biconnected

component corresponding to a leaf in this tree. The degree of a component is the degree of the

vertex corresponding to it in the tree.

Theorem 4.1 For any n-vertex outerplanar network G with terminal set Q, there is a mimick-

ing network M(G) of G at terminals Q such that M(G) is outerplanar and has at most q22q+2

vertices, where q = jQj. Moreover, M(G) can be constructed in O(q22qn) time. The undirected

version of M(G) is a minor of the undirected version of G.

Proof. We assume G is connected; if not, we simply work with each of the connected components

of G separately. For reasons of clarity of notation, we will refer to the terminals of G as sockets.
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In the following, when we speak of the biconnected components of G, we are referring to the

biconnected components ignoring the direction of the edges. When we speak of 
ows, however,

we take the direction of edges into account.

We transform G into a new graph G0 as follows. Consider the tree of biconnected components

of G. Consider a leaf component that contains no sockets, except for its articulation vertex. We

contract all edges of this leaf component, and its articulation vertex denotes the contracted

component. We repeat this process in the remaining graph until every leaf component in the

tree of biconnected components contains a socket. The resulting graph is the graph G0. We

claim that a mimicking network for G0 is also a mimicking network for G.

Let G00 be the graph obtained from G by removing one such leaf component B with articu-

lation vertex v. To prove that a mimicking network for G00 is also a mimicking network for G, it

su�ces to show that for any subset R of the sockets, the minimum R-separating cuts in G and

G00 have the same capacity, or, equivalently, the maximum R-
ows in G and G00 have the same

value. This is immediate since B � v has no sockets, which implies that the net 
ow into B � v

is always zero. The claim is thus proved.

Partition the vertices of the tree of biconnected components of G0 into groups as follows.

(When we refer to a vertex containing a socket, we mean that the biconnected component

corresponding to it contains a socket.) First assign each socket to exactly one of the vertices

containing it (the reason for this is to assign sockets that are articulation vertices to one of the

components that share it). Now, place each vertex containing a socket into a group by itself.

Place in a group by itself each vertex of degree at least three that is not yet in any group. Finally,

each maximal connected set of vertices that are not yet in any group are put together in a single

group. This last type of group is called a pipe. Thus the vertices of the tree of biconnected

components of G0 are partitioned into two types of groups, namely, singleton groups and pipes.

It is easy to check that if components B1; : : : ; Bp correspond to the vertices in a pipe, one can

label the left and right articulation vertices of component Bi with li and ri such that ri = li+1

for 1 � i < p. Articulation vertices l1 and rp are called the end vertices of the pipe. The only

vertices in these components that could be sockets are the end vertices.

The mimicking network for G0 is obtained by constructing, for each group, the mimicking

network of the corresponding biconnected component, and then joining the mimicking networks

at the corresponding articulation vertices.

The mimicking network of a singleton group is computed by invoking Lemma 4.1 with

terminals as the articulation vertices and sockets contained in the group.
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The mimicking network of a pipe H is computed as follows. The terminals are the end

vertices, where the articulation vertices of the components B1; : : : ; Bp of H are labeled as before.

Fix an embedding for each component Bi, and label the vertices of this component in clockwise

order along the boundary of the embedding, starting with the left articulation vertex li. For

i = 1; : : : ; p� 1, de�ne pred(i) to be the predecessor vertex of the right articulation vertex ri in

component Bi. For i = 2; : : : ; p, de�ne succ(i) to be the successor vertex of the left articulation

vertex li in component Bi. Now, construct a biconnected outerplanar network H� from the

pipe H by introducing new edges (pred(i); succ(i + 1)) of zero capacity. (The embeddings of

some components Bi in H may have to be 
ipped to get an outerplanar embedding of H�,

i.e. interchange the embedding of the vertices in the chain [li; ri] with the embedding of the

vertices in the chain [ri; li], except for li and ri.) Using Lemma 4.1 compute the mimicking

network of H� at terminals l1 and rp. This mimicking network has at most 4 vertices (Lemma 4.1

implies, when q = 2, a bound of 16 on the number of vertices; but it is clear from the proof of

the lemma that the correct bound is 2(2q � 2) = 4, when q = 2). Transform this mimicking

network into a mimicking network of the pipe H as follows. If, for all i, either (a) pred(i)

and succ(i + 1) belong to di�erent equivalence classes, or (b) pred(i) and succ(i + 1) belong

to the same equivalence class and vertex ri also belongs to this class, then we are done by

taking the mimicking network of H� as the mimicking network of H. Otherwise, consider an

equivalence class, corresponding to a vertex of this mimicking network, such that both pred(i)

and succ(i + 1) belong to this class and vertex ri doesn't. Split the equivalence class into

two classes, one containing pred(i) and all the vertices of the class that belong to components

B1; : : : ; Bi, and the other containing succ(i + 1) and the remaining vertices of the class. The

capacities of the edges joining a new class with other classes is de�ned exactly in the same way as

the edge-capacities of the mimicking networks were de�ned. We perform the splitting operation

for all such equivalence classes, and the resulting network is a mimicking network for the pipe

H at the end vertices. The correctness of this procedure follows from the following observation,

whose proof is immediate by the de�nition of equivalence classes: Splitting an equivalence class,

corresponding to a vertex of a mimicking network of any network, still results in a mimicking

network. Consequently, the mimicking network of H thus constructed has at most 8 vertices.

The mimicking network of G0, which is obtained by joining the mimicking networks of single-

ton groups and pipes, is also a mimicking network M(G) of G, as proved earlier. The network

M(G) is outerplanar, since each equivalence class created in its construction is a connected

subgraph of G. Constructing the tree of biconnected components and forming the groups can
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be done in linear time. Observing that the sum of the number of vertices in all components is

O(n), we have the claimed time bound for the construction.

It remains to bound the size ofM(G). Let ` be the number of leaves of the tree of biconnected

components of the graph G0. Then, the number of vertices of degree at least three is at most

` � 2. Consequently, the number of singleton groups formed is at most q + (` � 2), where the

�rst term is the contribution of vertices containing sockets and the second term of vertices of

degree at least three. It is easy to argue that the number of pipes is at most 2`� 3. Since each

leaf contains a distinct socket, the number ` of leaves is at most the number q of sockets. Thus

the number of singleton groups formed is at most 2q � 2, and the number of pipes is at most

2q � 3.

The number of articulation vertices of any component is bounded by its degree, which is

bounded by q � i, where i is the number of sockets it contains, since all edges leaving a vertex

must lead to leaves containing distinct sockets. Thus the number of terminals in the mimicking

network of any group is at most q. The number of vertices in the mimicking network of a

singleton group is at most q2q+1, by Lemma 4.1, and the number of vertices in the mimicking

network of a pipe is at most 8. Hence, the total number of vertices in the mimicking network is

at most (2q � 2)q2q+1 + (2q � 3) � 8 � q22q+2. This completes the proof of the theorem.

5 Sparse and Planar networks

Frederickson [13] shows how to decompose a sparse graph G into 
 outerplanar subgraphs,

called hammocks, each of which is connected to the rest of the graph via at most 4 vertices,

called attachment vertices. The parameter 
 is O(g + p) where g is the genus of G and p is the

minimum number of faces that cover all vertices of G, over all possible cellular embeddings into

an orientable surface of genus g. Note that g+ p is the minimum possible number of hammocks

in such a decomposition. It is known that 
 can vary between 1 and �(n). The algorithm in

[13] runs in linear time and does not require an embedding to be provided with the input. In

this section, we give algorithms whose running times depend on 
, and which perform well when


 = o(n).

Let G be a sparse network which is decomposed into hammocks H1; : : : ;H
 . Let Ai be the

set of (at most 4) attachment vertices of Hi. We now show how to preprocess G so that s-t

min-cuts (or max-
ows) can be e�ciently found. Let s 2 V (Hi) and t 2 V (Hj). De�ne Gij

to be the network obtained by replacing each hammock Hk; k 62 fi; jg, by its (constant size)
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mimicking network at terminals Ak. The terminals of Gij are Ai [Aj . Note that Gij has O(
)

vertices and edges. Construct Gij and �nd the mimicking network for Gij at terminals Ai [Aj .

Find the mimicking network for Hi at terminals fsg [ Ai and Hj at terminals ftg [ Aj , as

described below. (If i = j, then �nd the mimicking network for Hi at terminals fs; tg [ Ai.)

Combining these networks yields a mimicking network for G at terminals fs; tg [Ai [Aj . Now

the value of an s-t min-cut (or max-
ow) can be found using a standard algorithm. Note that

the mimicking network is of constant size. The correctness of the approach follows by Lemma

2.4.

We now show how to �nd the mimicking networks of the hammocks. Preprocess each ham-

mockHi as follows. First, �nd an augmented binary tree decomposition (X 0; T ) ofHi, of constant

width (outerplanar graphs have tree-width 2). Replace each set of X 0
j 2 X 0 by Xj = X 0

j [ Ai,

i.e., add the attachment vertices to each set. Let X be the collection of sets so obtained. Then

(X;T ) is also an augmented binary tree decomposition of Hi of constant width. We will work

with this new tree decomposition. Use Lemma 3.2 to preprocess Hi in O(jHij) time, so that for

each edge (a; b) 2 T , the mimicking network for Hi at terminals Xa [Xb can be found using a

single query.

Now, (i) the mimicking network for Hi at terminals Ai can be found in constant time, and

(ii) for any s; t 2 V (Hi) the mimicking network for Hi at terminals fs; tg [ Ai can be found in

time O(�(n)). The �rst claim follows from the fact that the values Pab, for each edge (a; b) 2 T ,

are computed during preprocessing. Pab = (Ma;Mb; ;), where Ma and Mb are the mimicking

networks for the subgraphs of Hi spanned by the two components of T obtained by deleting

edge (a; b). Recall that Ai � Xa and Ai � Xb. Combining Ma and Mb and retaining terminals

Ai yields the desired mimicking networks. The second claim follows by selecting c; d 2 V (T )

such that s 2 Xc; t 2 Xd, applying Lemma 3.3 and retaining the desired terminals.

To estimate the time complexity, preprocessing the hammocks takes O(n) time. Once the

hammocks have been preprocessed, �nding the mimicking networks for the hammocks takes

O(
 + �(n)) time, since the mimicking network for all except the at most two hammocks con-

taining one of s or t can be found in constant time and the remaining mimicking networks

can be found in O(�(n)) time. Now, constructing Gij takes O(
) time and �nding its mimick-

ing network takes O(
2 log 
) time, when we apply Lemma 2.3 with a max-
ow algorithm for

which F (G) = O(nm logn) on an n-vertex, m-edge network G (see e.g. [1]). The remaining

computation takes constant time. We summarize the above discussion:

Theorem 5.1 The value of an s-t min-cut (or max-
ow) in an n-vertex sparse network G can
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be computed in time O(n+ 
2 log 
), where 
 is the number of hammocks of G.

If G is a planar network, we follow exactly the same procedure except that we use the

outerplanar mimicking networks of Theorem 4.1 to replace the hammocks Hk, k 62 fi; jg, in the

construction of network Gij. This ensures that Gij is a minor of G, and is therefore planar. Now

the time required to compute the mimicking network for Gij is O(
 log 
), by applying Lemma

2.3 with the max-
ow algorithm in [20] (for which, F (G) = O(n logn), for an n-vertex planar

network G). It follows that:

Theorem 5.2 The value of an s-t min-cut (or max-
ow) in an n-vertex planar network G can

be computed in time O(n+ 
 log 
), where 
 is the number of hammocks of G.

To solve the APMC problem, preprocess the Hi's using O(jHij � log jHij) time so that the

mimicking network forHi at the appropriate terminals (as in (ii) above) can be found in constant

time. For each i; j 2 f1; 2; : : : ; 
g, construct Gij and �nd its mimicking network. Now for each

s; t 2 V (G), such that s 2 V (Hi) and t 2 V (Hj), �nd the mimicking network for Hi at terminals

fsg [Ai and for Hj at terminals ftg [Aj. (If i = j, then �nd the mimicking network for Hi at

terminals fs; tg [ Ai.) Combine these mimicking networks with the mimicking network for Gij

and �nd the value of an s-t min-cut, as before. Once the Hi's have been preprocessed and the

mimicking networks for the Gij's found, computing an s-t min-cut takes constant time for each

pair s; t. Hence, the following result has been established.

Theorem 5.3 The all-pairs min-cut problem for an n-vertex planar (resp. sparse) network G

can be solved in O(n2+
3 log 
) (resp. O(n2+
4 log 
)) time, where 
 is the number of hammocks

of G.

6 Outputting the edges crossing an s-t min-cut

In this section we outline an extension of the methods in Sections 2.2, 3, 4 and 5 that allows us

to output the edges crossing an s-t min-cut in time linear in the number of edges in the cut.

The essential feature is the computation of supplementary information when a mimicking

network is computed. Let G be a network and let M(G) be its mimicking network, as computed

by the method described in Section 2.2, or, if G is outerplanar, by the method given in Section 4.

In both constructions, each vertex of M(G) represents a subset of the vertices of G and each

edge (u; v) of M(G) represents a subset of the edges of G, namely, the edges between the subsets
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of vertices of G represented by u and v. During the construction of M(G), for each edge e of

M(G) we compute a value trace(e), which is a list of the edges of G that e represents. It is

easily veri�ed that distinct edges of M(G) represent disjoint subsets of edges of G.

For every mimicking network we compute, we will also compute the trace information asso-

ciated with their edges. For edges of the input network, the trace value of an edge is simply the

edge itself. For reasons of e�ciency, which will become clear later, we have one special condition:

if an edge e of M(G) represents a single edge e0 of G, then trace(e) is de�ned to be the same

as trace(e0). In other words, instead of being a singleton list containing e, trace(e) is the same

list as trace(e0). This condition ensures that except for edges of the original input network, the

trace value of each edge is a list with at least two elements. Regarding the elements in the trace

value of an edge as the children of the edge, we have that each edge e is the root of a tree de�ned

by the trace values, whose leaves are edges of the input network. We call this tree the trace

subtree of e. It is not hard to see that the leaves of the trace subtree are exactly those edges of

the input network that e represents. Further, the condition above ensures that every non-leaf

vertex in the trace subtree has at least two children.

Consider the method used in Section 3 to compute an s-t min-cut in a network G of bounded

tree-width. Then, as in the proof of Theorem 3.1, we compute a mimicking network M(G) of

constant size, whose terminals include s and t, for the input network G. We compute an s-t

min-cut in M(G), which corresponds to an s-t min-cut in G in the natural way. Each edge

crossing the cut in M(G) represents a subset of edges crossing the cut in G, i.e. the leaves of

the trace subtree of the edge. Any standard tree traversal algorithm will output the leaves of

the trace subtree in time linear in the size of the tree, which is linear in the number of leaves,

since each non-leaf vertex has at least two children. Doing this for each edge crossing the cut in

M(G) outputs in linear time all the edges crossing the cut in G. This yields the following result.

Theorem 6.1 Let G be an n-vertex network of constant tree-width. For each integer k � 1,

after O(nIk(n)) preprocessing, we can output the edges crossing an s-t min-cut in time O(k+L),

where L is the number of edges crossing the cut. Further, after O(n) preprocessing, we can output

the edges crossing an s-t min-cut in time O(�(n) + L).

Consider the method used in Section 5 to compute the value of an s-t min-cut in a planar

or sparse network. The �nal step in the method consists of �nding a min-cut in a mimicking

network of constant size. From this, the edges that cross the min-cut in the mimicking network

can be easily found. Now, as above, the trace information associated with each of these edges
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can be output in time linear in the number of edges crossing the min-cut in the original network.

Thus, we have:

Theorem 6.2 Let G be an n-vertex sparse or planar network. Let T be the time taken to

compute an s-t min-cut in G by the appropriate algorithm in Section 5. Then, the edges crossing

the cut can be output in time O(T + L), where L is the number of edges crossing the cut.

7 Characterization of 
ows in multi-terminal networks

In [15] necessary and su�cient conditions are derived for an external 
ow to be realizable:

Lemma 7.1 ([15]) An external 
ow (x1; : : : ; xq) is realizable in a network G with terminals

Q = fa1; : : : ; aqg, i� (i)
P

ap2Q
xp = 0 and (ii)

P
ar2R

xr � bR; 8R � Q, where bR is the

minimum capacity of an R-separating cut.

Thus the realizable external 
ows of a network with q terminals can be characterized by the

above system of 2q linear inequalities, where each inequality is represented by the pair (R; bR).

A system of inequalities for a network G, of the form as in Lemma 7.1, is called the external 
ow

inequalities of G at terminals Q. The external 
ow inequalities can be obtained by computing

the capacities of minimum R-separating cuts in G, for every R � Q.

Suppose we wish to combine several networks by identifying terminals, in a manner similar to

Lemma 2.4. In [15] the following lemma is proved, by combining the external 
ow inequalities

of the given networks using linear programming methods. We give a simpler proof avoiding

linear programming. We note that the proof in [15] results in an algorithm with running time

exponential in the square of the total number of terminals, whereas our proof results in a time

that is exponential in the total number of terminals.

Lemma 7.2 Let G =
Sm
i=1Gi, where the Gi's are edge-disjoint, and let Ci be the attachment

set of Gi. Assume that Ci is a subset of the terminals Qi in Gi, for all i. Given the external


ow inequalities for each Gi at terminals Qi, and a set Q0 � Q =
Sm
i=1Qi of terminals, we can

compute the external 
ow inequalities for G at terminals Q0 in time O(q 2q), where qi = jQij

and q = q1 + � � �+ qm.

Proof. By repeated applications of Lemma 2.1, each realizable external 
ow in G, at terminals

Q, is the sum of realizable external 
ows in each Gi at terminals Qi. Let R � Q, and de�ne

Ri = Qi\R. Let the realizable external 
ow, x, that maximizes
P

r2R xr be the sum of external
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ows x(i), for each i. Then, in Gi, the 
ow x(i) must maximize
P

r2Ri
x
(i)
r and from the external


ow inequalities of Gi, the value of x(i) is bRi
. Hence we have

P
r2R xr =

Pm
i=1

P
r2Ri

x
(i)
r =Pm

i=1 bRi
.

Now, given the external 
ow inequalities for Gi at terminalsQi, the algorithm to compute the

external 
ow inequalities of G at terminals Q is simple. For each R � Q, compute Ri = Qi \R.

Find the m inequalities of the form
P

r2Ri
xr � bRi

, in the 
ow inequalities of the Gi's, and

create an inequality
P

r2R xr �
Pm

i=1 bRi
for G. This yields the external 
ow inequalities for G

at terminals Q. The entire computation can be done using standard methods in time O(q2q).

(The above argument is di�erent from the argument in [15], and results in the better running

time. The rest of the proof is similar to what is done in [15], and is included for completeness.)

To �nd the external 
ow inequalities of G at terminals Q0 � Q, we have to drop some

terminals|this corresponds to setting all variables xi, where ai 2 Q � Q0, to zero, in the

inequalities for G at terminals Q. To see this, observe that the set of all realizable 
ows in G

with terminals Q0 is precisely that subset of all realizable 
ows in G with terminals Q in which

the net 
ow out of any terminal in Q � Q0 is zero. Set the variables corresponding to vertices

in Q�Q0 to zero. The resulting collection of inequalities describes the realizable external 
ows

in G at terminals Q0. We only have to remove the redundant inequalities. Consider a �xed

R � Q0. In the collection of inequalities, there will be an inequality of the form
P

ar2R
xr � : : : ,

for each set P � Q, satisfying P \Q0 = R. From each such set of inequalities we retain only one

inequality with the minimum right hand side, since all the others are redundant. Doing this for

every R � Q0 yields the desired set of inequalities. Once again, using standard methods, this

computation can be done in time O(q2q).

8 Closing Remarks

We presented e�cient algorithms for the all-pairs min-cut problem on bounded tree-width,

planar and sparse networks. The constants in the running time of the algorithms are not small,

since they depend on the size of the mimicking networks. For example, in the algorithm for

networks of tree-width t, the constant is 22
O(t)

. Designing practical algorithms for the APMC

problem on sparse networks remains an important open question.
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