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Optimal Point Placement for Mesh Smoothing

Nina Amenta∗ Marshall Bern† David Eppstein‡

Abstract

We study the problem of moving a vertex in an unstructured mesh of triangular, quadrilateral, or tetrahedral
elements to optimize the shapes of adjacent elements. We show that many such problems can be solved in linear time
using generalized linear programming. We also give efficient algorithms for some mesh smoothing problems that do
not fit into the generalized linear programming paradigm.

1 Introduction

Unstructured mesh generation, a key step in the finite element method, can be divided into two stages. Inpoint
placement, the input domain is augmented bySteiner points(vertices other than those of the original domain) and
a preliminary mesh is formed, typically by Delaunay triangulation. In mesh improvement, local optimizations are
performed, involving the movement of Steiner points and rearrangement of the mesh topology.

Computational geometry has made some inroads into point placement, and methods including Delaunay refine-
ment, quadtrees, and circle packing are now known to generate meshes with guaranteed quality; for surveys of these
results, see [8, 9]. There has been less theoretical progress, however, in mesh improvement, which has remained
largely the domain of practitioners.

Mesh improvement typically combines several kinds of localoptimization:

• Refinement and derefinementsplit and merge triangles, changing the number of Steiner points.

• Topological changessuch asflipping replace sets of elements by other such sets, while preserving the positions
of the Steiner points.

• Mesh smoothingmoves the Steiner points of the mesh while preserving its overall topology.

In this paper we study mesh smoothing algorithms. Our focus is not to determine the best smoothing method,
which is more properly a subject for experiment or numericalanalysis; rather we show that a wide variety of methods
can be performed efficiently.

A commonly used technique,Laplacian smoothing, sweeps over the mesh, successively moving each point to the
centroid of its neighbors. This technique lacks motivationbecause it is not directly connected to any specific mesh
quality criterion; moreover, the result may not even remaina valid triangulation. But in practice Laplacian smoothing
spaces points evenly and gives two-dimensional meshes of reasonable quality. In three dimensions, however, even
spacing does not guarantee good element quality. Asliver tetrahedron is one that has evenly spaced vertices, but very
sharp angles; for instance a sliver can be formed by slightlyperturbing the vertices of a square. (See [7] for a more
detailed classification of tetrahedra in terms of solid and dihedral angles.) Laplacian smoothing sometimes removes
slivers, but in large meshes it often leaves clusters of slivers [21].

Freitag, Jones, and Plassmann [19, 20] proposed an alternative to Laplacian smoothing. Rather than using the cen-
troid, their optimization-based method computes for each Steiner point a new placement that maximizes the minimum
angle in adjacent triangles. Freitag et al. use an iterativesteepest-descent algorithm to solve this optimal placement
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problem. Empirically this algorithm finds the optimum location in an average of 2.5 steps, but Freitag et al. do not
prove their algorithm correct.

The same optimal placement problem was independently considered by Matoušek et al. [29] as an instance of the
paradigm called generalized linear programming. Matoušek et al. show how to solve this problem using an algorithm
related to the dual simplex method. (In retrospect, the steepest-descent algorithm of Freitag et al. can be seen as a
primal simplex method, but its correctness is not directly justified by the work of Matoušek et al.; correctness follows
from our analysis below.)

Minimum angle, however, is not the only measure of mesh quality. Various papers have provided theoretical
justification for other measures including maximum angle [4], maximum edge length [34], minimum height [24], min-
imum containing circle [12], and—most recently—ratio of area to sum of squared edge lengths [6]. Data-dependent
criteria [6, 16, 32, 33] may be used in adaptive meshing, which uses the finite element method’s output to improve the
mesh for another run.

In this paper, we study optimization-based smoothing usingquality criteria such as those mentioned above. We
show that, as in the case of minimum angle, many of these criteria give rise toquasiconvex programsand can be solved
by linear-time dual simplex methods or steepest-descent primal simplex methods. Because of the generality of these
methods, they can also solve mixed-criterion optimizationproblems.

We generalize the theory to quadrilateral meshes and to simplicial meshes in three and higher dimensions. In these
more complicated meshing problems, effective smoothing methods are a more critical need and asymptotic time com-
plexity is more important. We show that again quasiconvex programming often arises; for instance it can maximize the
minimum solid angle. We believe optimization-based three-dimensional mesh smoothing should outperform Lapla-
cian smoothing in practice. Indeed, in very recent experimental work Freitag and Ollivier-Gooch [21] have shown
that optimization-based smoothing for minimum dihedral angle outperforms Laplacian smoothing, both alone and in
conjunction with flipping.

Finally, we show that although several other optimal point placement problems do not form quasiconvex programs,
we can solve them efficiently by other means. This direction may also be relevant in practice; Freitag and Ollivier-
Gooch recommend smoothing for the sine of the dihedral, a non-quasiconvex quality measure.

2 Generalized Linear Programming

Many problems in computational geometry, such as separating points by a hyperplane, can be modeled directly as low
dimensional linear programs. Many other problems, such as the circumcircle of a point set, are not linear programs,
but the same techniques often apply to them. To explain this phenomenon, various authors have formulated a theory
of generalized linear programming[3, 23, 29].

A generalized linear program(GLP, also known as anLP-type problem) consists of a finite setSof constraintsand
anobjective function fmapping subsets ofS to some totally ordered space and satisfying the following properties:

1. For anyA ⊂ B, f (A) ≤ f (B).

2. For anyA, p, andq, if f (A) = f (A∪ {p}) = f (A∪ {q}), thenf (A) = f (A∪ {p, q}).1

The problem is to computef (S) using only evaluations off on small subsets ofS.
For instance, in linear programming,Sis a set of halfspaces andf (S) is the point in the intersection of the halfspaces

at which some linear function takes its minimum value. Another standard example of a GLP is the problem of
computing the minimum radius of a disk containing all of a setof n points; in this example, the finite setS consists
of the points themselves, andf (A) is the minimum disk. It is not hard to see that this system satisfies the properties
by which a GLP was defined above: removing points can only makethe radius shrink or stay the same, and if a disk
contains the additional pointsp andq separately it contains them both together.

A basisof a GLP is a setB such that for anyA ( B, f (A) < f (B). Thedimension dof a GLP is the maximum
cardinality of a basis. With the standard example of the minimum disk problem, the dimension turns out to be three,
because each circle is determined by two or three points. This set of two or three points is the basis.

A number of efficient GLP algorithms are known [1, 3, 10, 15, 23, 29]. Their best running time isO(dnT+
f (d)E logn) wheren is the number of constraints,T measures the time to test a proposed solution against a constraint

1Property 2 is often expressed in the more complicated form that, if A ⊂ B and f (A) = f (B), then, for anyp, f (A) = f (A ∪ {p}) iff
f (B) = f (B∪ {p}). A simple induction shows this to be equivalent to our formulation.
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(typically this is O(d)), f is exponential or subexponential, andE is the time to find a basis of a constant-sized
subproblem. Indeed, these algorithms are straightforwardto implement and have small constant factors, so they
should be practical even for the modest values ofn relevant in our problems. (The number of constraints shouldrange
roughly from 10 to 100 in the planar problems, depending on how complicated a criterion one chooses to optimize and
on the degree of the initial mesh, and may possibly reach several hundred in the three-dimensional problems.)

Our GLPs have the following form, which we call “quasiconvexprogramming”. We wish to minimize some
objective function that is the pointwise maximum of a finite set of functions. Such a problem will be a low-dimensional
GLP if the level sets of the functions (regions in which the function is bounded above by some particular value) are
all convex. Note that this does not necessarily imply that the functions themselves are convex; in convex analysis,
functions with convex level sets are calledquasiconvex.

More formally, define anested convex familyto be a mapκ(t) from the nonnegative real numbers to compact
convex sets inRd such that ifa < b thenκ(a) ⊂ κ(b), and such that for allt, κ(t) =

⋂

t′>t κ(t
′). Any nested convex

family κ determines a functionfκ(x) = inf { t | x ∈ κ(t) } onRd, with level sets that are the boundaries ofκ(t). If fκ
does not take a constant value on any open set, and ifκ(t′) is contained in the interior ofκ(t) for any t′ < t, we say
thatκ is continuously shrinking.

Note that, in our proof of Lemma 2 below, we will consider the restriction of convex families to affine subspaces;
such restrictions do not necessarily preserve the propertyof being continuously shrinking. However, ifκ is continu-
ously shrinking, and its restriction to any affine subspaceA hasfκ = t on some open set inA, then all points of this
open set are on the boundary ofκ(t) andfκ(t′) must have empty intersection withA for anyt′ < t.

Lemma 1. Letκ be a nested convex family, and let t∗ = inf { t | κ(t) is nonempty}. Thenκ(t∗) is nonempty.

Proof: Choose a pointpi in the setκ(t+1/i) for i = 0, 1, 2, . . .. Since all of these points are contained in the compact
setκ(t + 1), they have a limit pointp∗. Then for anyi, κ(t + 1/i) contains all but finitely many of the pointspi, sop∗

is a limit point of the closed setκ(t + 1/i) and must be inκ(t + 1/i). Sincep∗ is in all of the setsκ(t + 1/i) it is in
their intersectionκ(t∗). ✷

If S= {κ1, κ2, . . . κn} is a set of nested convex families, we defineS(t) =
⋂

{ κi(t) }. ThenS(t) is itself a nested
convex family: each setS(t) is the intersection of closed bounded convex sets, hence is itself closed, bounded, and
convex. The further requirement thatS(t) =

⋂

t′>t S(t′) can easily be seen to follow by commutativity of intersections.
If S= {κ1, κ2, . . . κn} is a set of nested convex families, andA ⊂ S, let

f (A) = inf
{

(t, x)
∣

∣ x ∈
⋂

κi∈A
κi(t)

}

where the infimum is taken in the lexicographic ordering, first by t and then by the coordinates ofx. Note that the
values oft are bounded below by zero (becauseκi(t) is only defined for nonnegativet), so the infimum oft exists. The
rest of this lexicographic infimum is also well defined since Lemma 1 shows that, ift∗ is the value determined by the
infimum,A(t∗) is a nonempty compact set, andx is simply the lexicographic minimum of this set. We use this same
lexicographic ordering to compare the values off on different subsets ofS.

Recall Helly’s theorem (e.g., see [3]): If a family of compact convex sets inRd (or a finite family of non-compact
convex sets) has an empty intersection, then some(d + 1)-tuple of those sets also has an empty intrsection.

We define aquasiconvex programto be a finite setS of nested convex families, with the objective functionf
described above.

Lemma 2. Any quasiconvex program forms a GLP of dimension at most2d + 1. If eachκi in the set S is either
constant or continuously shrinking, the dimension is at most d + 1.

Proof: Property 1 of GLPs is obvious. Property 2 follows from the observation that, if(t∗, x∗) = f (A), then
f (A) = f (A∪ {κj}) if and only if x∗ ∈ κj(t∗). It remains only to show the stated bounds on the dimension.

First consider the general case, where we do not assume continuous shrinking of the families inS. Let (t∗, x∗) =
f (S). For anyt < t∗, S(t) =

⋂

κi(t) = ∅ so by Helly’s theorem some(d+1)-tuple of setsκi(t) has empty intersection.
Since there are only finitely many(d + 1)-tuples, we can choose a tupleB− that has an empty intersection for all
t < t∗. Thenf (B−) = (t∗, x) for somex, so the presence ofB− forces the GLP solution to have the correct value oft.
By Lemma 1,S(t∗) 6= ∅, sox∗ is the minimal point inS(t∗), and is determined by somed-tupleB+ of the setsκi(t∗).
Thenf (B− ∪ B+) = f (S), so some basis ofS is a subset ofB− ∪ B+ and has cardinality at most 2d+ 1.
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Figure 1. (a) Steiner point may move within kernel of star-shaped region formed by its removal; (b) For size-based criteria such as
length the optimal placement may be on the kernel boundary.

Finally, suppose eachκi in S is constant or continuously shrinking. Our strategy will beto again find a tupleB−

that determinest∗, and a tupleB+ that determinesx∗, but we will use continuity to make the sizes of these two tuples
add to at mostd+ 1.

S(t∗) has empty interior: otherwise, we could find an open regionX within S(t∗), and a familyκi such that
κi(t) ∩ X = ∅ for any t < t∗, violating the assumption thatκi is constant or continuously shrinking. If the interior
of someκi(t∗) contains a point of the affine hull ofS(t∗), we say thatκi is “slack”; otherwise we say thatκi is
“tight”. The boundary of a slackκi intersectsS(t∗) in a subset of measure zero (relative to the affine hull ofS(t∗)),
so we can find a valuex in the relative interior ofS(t∗) and not on the boundary of any slackκi . Form the projection
π : Rd 7→ Rd−dimS(t∗) perpendicular toS(t∗).

For any rayr in Rd−dimS(t∗) starting at the pointπ(S(t∗)), we can lift that ray to a ray ˆr in Rd starting atx, and
find a hyperplane containingS(t∗) and separating the interior of someκi(t∗) from r̂ \ {x}. This separatedκi must be
tight (because it hasx on its boundary as the origin of the ray) so the separating hyperplane must contain the affine
hull of S(t∗) (otherwise some point inS(t∗) within a small neighborhood ofx would be interior toκi). Therefore the
hyperplane is projected byπ to a lower dimensional hyperplane separatingπ(κi(t∗)) from π(S(t∗)). Since one can
find such a separation for any ray,

⋂

tight κi
π(κi(t∗)) can not contain any points of any such ray and must consist of

the single pointπ(S(t∗)).
At least one tightκj must be continuously shrinking (rather than constant), since otherwiseS(t) would be nonempty

for somet < t∗. The intersection of the interior ofπ(κj(t∗)) with the remaining projected tight constraintsπ(κi(t∗)) is
empty, so by Helly’s theorem, we can find a(d−dimS(t∗)+1)-tupleB− of these convex sets having empty intersection,
and the presence ofB− forces the GLP solution to have the correct value oft. Similarly, we can reduce the size of the
setB+ determiningx∗ from d to dimS(t∗), so the total size of a basis is at most(d−dimS(t∗)+1)+dimS(t∗) = d+1.
✷

The first part of this lemma is similar to [3, Theorem 8.1]. Note that we only used the assumption of convexity
to prove the dimension bound; similar nested families of non-convex sets still produce GLP problems, but could have
arbitrarily large dimension.

By Lemma 2 we can solve quasiconvex programs using GLP algorithms. We can also perform a more direct local
optimization procedure to find(t, x): sinceS(t) is a nested convex family we can findf (S) by applying steepest descent,
nested binary search, or other local optimization techniques to find the point minimizing the associated functionfS(x).
Thus we can justify the correctness of the local optimization mesh smoothing procedure used by Freitag et al. In
practice, it may be appropriate to combine this approach with the dual simplex methods coming from GLP theory by
using steepest descent to perform the basis exchange operations needed in GLP algorithms.

3 Quasiconvex Mesh Smoothing in R2

Let q(∆) measure the quality of a triangulation element∆. We are given a triangulation, and wish to move one of its
Steiner points in such a way as to minimize maxq(∆i), where the maximization occurs over elements incident to the
moving point.

4



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Feasible regions for planar mesh smoothing quality criteria: (a) minimizing maximum area or external altitude; (b)
maximizing minimum area, external altitude, or external aspect ratio; (c) minimizing maximum external angle; (d) maximizing
minimum external angle, or maximizing minimum internal altitude; (e) maximizing minimum internal angle; (f) maximizing inter-
nal aspect ratio; (g) minimizing maximum perimeter; (h) minimizing maximum edge length (a similar but larger lune occurs when
minimizing diameter); (i) minimizing containing circle.

In this section we describe ways of formulating such problems as quasiconvex programs. We can assume without
loss of generality (e.g. by appropriate change of variables) thatq(∆) ≥ 0 for any∆. The basic idea is to construct for
each∆i a nested convex familyκi(t) = { x | q(∆i(x)) ≤ t }, where∆i(x) indicates the triangle formed by moving the
Steiner point to positionx. In other words, if we are given a boundt on the triangulation quality,κi(t) is thefeasible
region in which placement of the Steiner point will allow∆i to meet the quality bound. Finding the optimal Steiner
point placement is equivalent to finding the optimal qualitybound that allows a feasible placement.

The familiesκi(t) are clearly nested and closed, and they satisfy the intersection property used in the definition of
nested convex families, but they may not be convex or bounded. Convexity will need to be proven using the detailed
properties of the quality measureq. Continuous shrinking may or may not hold depending on the quality measure
q. Boundedness can be imposed (while preserving continuous shrinking) by intersectingκi(t) with the set of points
within distance exp(t) of a bounding ball of the triangulation.

One can then find the optimal placementx by solving the quasiconvex program associated with this collection of
nested convex families. To make sure that the result is a valid triangulation, we add additional halfspace constraints
to our collection, forming constant nested families, to forcex into the kernel of the star-shaped polygon formed by
removing the Steiner point from the triangulation (Figure 1(a)).

It remains to show convexity of the feasible regionsκi(t) for various quality measures. In the remainder of this
section, we describe these measures and their corresponding feasible regions. As shown in Figure 2, many different
criteria have identical feasible regions; however they do not necessarily lead to the same Steiner point placement as
the parametrization of the nested families could differ.

Area. The feasible regions for maximizing minimum triangle area are strips parallel to the fixed (external) sides of
the triangles. In the presence of the halfspace constraintsforcing the Steiner point into the kernel of its polygon,
we can simplify these strips to halfspaces. The intersection of one such halfspace and the corresponding kernel
constraint is shown in Figure 2(a). One can also maximize minimum area, using a halfspace with the same
boundary but opposite orientation (Figure 2(b)).

Altitude. The external altitudeof ∆i (the altitude having the fixed side of∆i as its base) can be minimized or
maximized using halfspace feasible regions identical to those for area (Figure 2(a,b)). The feasible regions
in which the other two altitudes are at leasth are the intersections of pairs of halfspaces through one fixed point,
passing at distanceh from the other point; one such halfspace is shown in Figure 2(d) and the other is its vertical
reflection. The feasible regions for minimizing the maximuminternal altitude are not convex.
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Angle. As noted by Matoušek et al. [29], one can maximize the minimum angle by using constraints of two types.
For the internal angles at the Steiner points, the region in which the angle is at leastθ forms either the union
or intersection of two congruent circles (asθ is acute or obtuse respectively) having the fixed side of∆i as
a chord. In the former case this may not be convex, but in the presence of the kernel constraints we can
simplify the feasible region to circles (Figure 2(e)). The regions in which the external angles are at leastθ form
wedges bounded by rays through a fixed vertex of∆i , which can again be simplified in the presence of the
kernel constraints to halfspaces (Figure 2(d)). It is also natural to minimize the maximum angle; unfortunately
the feasible regions for the internal angles are non-convex(complements of circles). However one can still
minimize the maximum angle at external vertices, using halfspace regions (Figures 2(c)).

Edge length. The feasible region for minimizing the length of the internal edges of∆i is an intersection of two circles
of the given radius, centered on the fixed vertices of∆i (Figure 2(h)). We can use the same two-circle constraints
(with larger radii than depicted in the figure) to minimize the maximum element diameter.

Aspect ratio. Theaspect ratioof a triangle is the ratio of its longest side length to its shortest altitude. We consider
separately the ratios of the three sides to their corresponding altitudes; the maximum of these three will give
the overall aspect ratio. The ratio of external sides to altitude has a feasible region (after taking into account
the kernel constraints) forming a halfspace parallel to theexternal side, like that in Figure 2(b). To determine
the aspect ratio on one of the other two sides of a triangle∆i , normalize the triangle coordinates so that the
moving point has coordinates(x, y) and the other two have coordinates(0, 0) and(1, 0). The side length is then
√

x2 + y2, and the altitude isy/
√

x2 + y2, so the overall aspect ratio has the simple formula(x2 + y2)/y. The
locus of points for which this is a constantb is given byx2+y2 = by, or equivalentlyx2+(y−(b/2))2 = (b/2)2.
Thus the feasible region is a circle tangent to the fixed side of ∆i at one of its two endpoints (Figure 2(f)).

Perimeter. The feasible region for minimizing the maximum perimeter isan ellipse (Figure 2(g)).

Circumradius and containing circle. The feasible regions for minimizing the maximum circumradius are noncon-
vex lunes bounded by pairs of circular arcs. However, minimizing the maximumcontaining circle(the smallest
circle containing the given triangle, without necessarilyhaving the vertices on its boundary) produces convex
feasible regions, formed by using the same region as the circumcircle within a vertical slab perpendicular to
the fixed segment of the triangle, and a lune similar to that for edge length or diameter outside the slab. These
regions’ boundaries are three circular arcs, meeting at common tangents, with the radius of the middle arc equal
to half that of the arcs on either side (Figure 2(i)).

Inradius. The feasible region for maximizing the minimum inradius of any triangle can be found as follows. Assume
without loss of generality that the two fixed points have coordinates(0, 0) and (0, 1), the moving point has
coordinates(x, y), and the inradius bound isr. We can then place the incenter at a point(a, r) and solve
simultaneous equations stating that lines from(0, 0) to (x, y) and from(1, 0) to (x, y) are at distance r from this
point. The solution to these equations was simplified inMathematicato

−8r3x+ 8r3x2 + 4r2y− 4r4y+ 4r2xy− 4r2x2y− 4ry2 + 8r3y2 + y3 − 4r2y3 = 0.

Affine transformation of the coordinates further simplifiesthis to

−8r5 + r2y− 20r4y− x2y+ 2ry2 − 16r3y2 + y3 − 4r2y3 = 0,

which has only one term involvingx, letting us solve this asx = f (y) for a functionf in the form of the square
root of a rational function:

x = ±f (y) = ±
√

(r + y)2(y(1− 4r2)− 8r3)/y.

To show that this bounds a convex region, we need only show that f has nonpositive second derivative within
the range of valuesy leading to a feasible solution. We usedMathematicato compute this derivative:

f ′′(y) =
8r4(r + y)3(6r3 − y+ 2r2y)

y5/2(r + y)3(y(1− 4r2)− 8r3)3/2
.
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Most of the terms in this formula clearly have a consistent sign. The final polynomial in the denominator has a
root aty = 8r3/(1− 4r2), which turns out to be the point at whichy is minimum, corresponding (in the original
coordinate system prior to our affine transformation) tox = 1/2; smaller values ofy are infeasible. The final
polynomial in the numerator has a root aty = 6r3/(1−2r2), which is always below this minimum feasible value
of y. Thereforef ′′ has a consistent sign throughout the interval of interest, and the feasible region for inradius is
convex.

Area over squared edge length. Bank and Smith [6] define yet another measure of the quality ofa triangle, computed
by dividing the triangle’s area by the sum of the squares of its edge lengths. This gives a dimensionless quantity
which Bank and Smith normalize to be one for the equilateral triangle (and less than one for any other triangle).
They then use this quality measure as the basis for a local improvement method for mesh smoothing. As Bank
and Smith show, the feasible region for this measure forms a circle centered on the perpendicular bisector of the
two fixed points, so our methods offer an alternative way to find the optimum point placement.

Mixtures of criteria. We have described the various optimization criteria above as if only one is to be used in the
actual mesh smoothing algorithm. But clearly, the same formulation applies to problems in which we combine
various criteria, for instance some measuring element shape and others measuring element size, with the overall
quality of an element equal to the weighted maximum of these criteria. Indeed, this idea can alleviate a problem
with criteria such as edge length, perimeter, etc., which depend more strongly on the size of an element than
on its shape: if one optimizes such a criterion on its own, theoptimal point placement may lie on the boundary
of the kernel, giving rise to a degenerate triangulation (Figure 1(b)). If one combines these criteria with scale-
invariant criteria such as angles or aspect ratio, this complication cannot occur. We define the quality of a
mixture of criteriaqi to be maxwiqi , where the weightswi may be chosen arbitrarily. (Even more generally we
could replace the linear functionwiqi with any monotonic function ofqi .) To solve such a mixed problem, we
simply include constraints for each different criterion inthe combination.

Theorem 1. The Steiner point placement optimizing the criteria described above, or a weighted maximum of criteria,
can be computed in linear time by quasiconvex programming.

Proof: By Lemma 2 we can solve these problems using any algorithm forGLP-type problems. As noted earlier, a
number of algorithms are known for solving such problems in alinear number of operations, where each operation
involves testing a potential solution against one of the constraints (which in our case amounts to computing the quality
of a single element) or finding the solution of a subproblem ofconstant size. These constant-size subproblems can be
solved in constant time in the algebraic decision tree modelstandard for geometric algorithms.✷

4 Quadrilateral Mesh Smoothing

Much of the same theory we have outlined above applies equally well to quadrilateral meshes, meshes consisting of
planar straight-line graphs in which all faces are convex quadrilaterals. In this case, to preserve element convexity,
the Steiner point must not only stay within the kernel of the star-shaped polygon formed by adjacent elements, it must
also avoid crossing any element diagonal. Also, some of the quality measures outlined above do not make as much
sense when applied to quadrilaterals, and others have feasible regions differing somewhat from those for triangular
elements. We outline below some possible quality criteria for quadrilateral meshes and the changes needed to adapt
our triangular-mesh smoothing methods to these criteria.

Area, angle, edge length, perimeter. The feasible regions for placing a Steiner point according to these criteria are
essentially the same as for triangular meshes.

Width. This corresponds to the altitude of a triangle. The width is the minimum distance between a point and one
of the two opposite edges, and the minimum width can be maximized by a feasible region formed by the
intersection of six halfspaces, one for each vertex-edge pair involving the moving point.

Containing circle. The minimum containing circle for a quadrilateral is the same as the largest of the four circles
formed by choosing three of the four points (in each of four possible ways) and considering the containing
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circle of that triple of points. Therefore, the feasible regions for minimizing the maximum containing circle are
the intersections of three of the regions arising in the triangular case, one for each of the three triples involving
the moving point. Since each of these regions is convex, the overall feasible region is convex.

Diameter. The diameter of a quadrilateral is either its longest edge orits longest diagonal. Hence the feasible region
for diameter is an intersection of circles, similar to that for edge length, but with the difference that we include
a third circle centered on the vertex opposite the moving point.

Inradius. Our proof that the triangle inradius function has convex feasible regions does not immediately generalize
to quadrilaterals. We conjecture that quadrilateral inradii also give convex feasible regions.

Theorem 2. The Steiner point placement optimizing the quadrilateral mesh criteria described above (except possibly
inradius), or a weighted maximum of criteria, can be computed in linear time by quasiconvex programming.

Some other natural quality measures for quadrilaterals, such as cross ratio (ratio of products of opposite side
lengths) and sums of opposite pairs of angles, do not have convex feasible regions, but (since their feasible regions are
bounded by circular arcs) can be optimized using the techniques described below in Theorem 5.

5 Mesh Smoothing in Higher Dimensions

Many of the two-dimensional quality criteria discussed above have higher-dimensional generalizations that also have
convex feasible regions.

Volume and altitude. Just as the area of a triangle with a fixed base is proportionalto its height, the volume of a
simplex with a fixed base is proportional to its altitude. Thetriangulation minimizing the maximum volume, or
maximizing the minimum volume, can be found using feasible regions in the form of halfspaces parallel to the
fixed face of the simplex. The same type of feasible region canbe used to optimize the altitude at the moving
Steiner point. The feasible regions for maximizing the minimum of the other altitudes are the intersections of
pairs of halfspaces throughd− 1 of the fixed points.

Boundary measure. The measure of any boundary face of a simplex is proportionalto the distance of the moving
Steiner point from the affine hull of the remaining fixed points on the facet, so one can minimize the maximum
face measure using “generalized cylinders” formed by taking a cartesian product of a sphere with this affine hull.
In particular the Steiner point placement minimizing the maximum edge length can be found by using spherical
feasible regions centered on each fixed point, and inR3 the placement minimizing the maximum triangle area
can be found using cylindrical feasible regions centered oneach fixed edge. These face measures are convex
functions, so their sums are also convex, implying that the level sets for total surface area of all triangles in a
tetrahedron, or total length of all edges in a tetrahedron, again form convex feasible regions.

Containing sphere. As inR2, the feasible regions for the minimum containing sphere arebounded by 2d−1 algebraic
patches, in which the containing sphere has some fixed set of vertices on its boundary. These patches meet
the plane of the fixed vertices perpendicularly, and are locally convex (they are figures of rotation of lower
dimensional feasible regions, except for the one corresponding to the region in which the containing sphere
equals the circumsphere, which is a portion of that sphere).In R3, these patches are portions of spheres and tori.
Further, they meet at a continuous boundary (since the containing sphere radius is a continuous function of the
moving point’s location) and are continuously differentiable where they meet (at each point where two patches
meet, they share tangent planes with the containing sphere itself). Thus these patches combine to form a convex
region.

Dihedrals. The dihedral angles of a simplex are formed where two faces meet along anaxisdetermined by somed−1
points. If these axis points are all fixed, one of the two facesis itself fixed, and the feasible region is a halfspace
forming the given angle with this fixed face. However, if the axis includes the moving point, the feasible regions
are in general non-convex.

Solid Angles. As we show in the next section, the feasible regions for maximizing the minimum solid angle (measured
at the fixed points of each tetrahedron, for three-dimensional problems, or at the moving point in any dimension)
are convex.
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Theorem 3. In any constant dimension, the Steiner point placement optimizing each of the criteria described above
except exterior solid angle, or a weighted maximum of criteria, can be computed in linear time by quasiconvex pro-
gramming. The exterior solid angles as well can be optimizedin three dimensions.

6 Feasible Regions for Solid Angles

We now prove that the feasible regions for maximizing the minimum solid angles of the mesh elements are convex, for
the angles at the moving point, in any dimension, and for the angles at fixed points of tetrahedra inR3 only. Convexity
of the feasible regions for solid angles at fixed points in higher dimensions remains open.

We start with the simpler case, in which we are interested in the solid angle at one of the fixed vertices of a
tetrahedron inR3. This angle can be measured by projecting the other three vertices onto a unit sphere centered on
the fixed vertex, and measuring the area of the spherical triangle formed by these three projected points. If the three
projected points are represented by three-dimensional unit vectorsa, b, andc (with a representing the moving point
andb, c, and the origin representing the three fixed points) then thesolid angleE at the origin satisfies the equation

tan(E/2) =
a · (b× c)

1+ b · c+ c · a+ a · b

[18]. Therefore, the boundary of the feasible region (on theunit sphere) is given by an equation of the form

a · (b× c) = k(1+ b · c+ c · a+ a · b),

which is linear ina and therefore forms a circle on the unit sphere. (Note that unlike in the planar case, this circle does
not pass throughb andc, but instead passes through their diametric opposites.) Interms of the original unprojected
points, the feasible region is therefore a convex circular cone.

To prove that the feasible regions for the interior solid angles are also convex, we use some facts from convex
analysis [13]. A functionf (v) from some convex subset of a vector spaceV to R is said to beconvexif, for any
x, y ∈ V, and any 0≤ t ≤ 1,

f (t · x+ (1− t) · y) ≤ t · f (x) + (1− t) · f (y).

A function f (v) is said to bequasiconcaveif its level sets{v | f (v) ≥ k} are convex. A function iss-concave iff (v)s is
convex; in the cases of interest to usswill always be negative. Iff is quasiconcave we also say that it is(−∞)-concave
(and if f is logconcave, i.e. if logf is convex, we also say that it is 0-concave).

The next result appears as [13, Theorem 3.21]. The “usual conventions” from that source imply that, ifs= −1/n,
the integral is(−∞)-concave i.e. quasiconcave.

Lemma 3. Let f be s-concave on an open convex set C inRm+n. Let C∗ be the projection of C onRm and for x∈ C∗,
let C(x) be the x-section of C. Define

f ∗(x) =
∫

C(x)
f (x, y)dy, x ∈ C∗.

If −1/n ≤ s≤ ∞, then f∗ is s∗-concave on C∗, where s∗ = s/(1+ ns) with the usual conventions when s= −1/n or
s= ∞.

Corollary 1. Let f : U 7→ R be(−1/k)-concave, and let g: V 7→ {0, 1} be the characteristic function of a convex
setκ in a k-dimensional subspace V of U. Then the convolution of f and g is quasiconcave.

Proof: Let h(u, v) = f (u), defined on the cartesian product ofU with V. Thenh is also(−1/k)-concave, and the
convolution can be computed ash∗(u− v). The result follows from Lemma 3.✷

A special case of Corollary 1, in whichk equals the dimensiond of the domain off , appears (with a different
proof) as [13, Theorem 3.24]. For our application, we are interested in a different case, in whichk = d− 1. The solid
angle of ad-simplex ind-dimensional space, measured at the moving point, can be interpreted as the fraction of the
field of view at that moving point taken up by the convex hullκ of the remaining fixed points. This fraction can be
computed as the convolution of the characteristic functionof κ with a functionf (v) measuring the fraction of field of
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view taken by an infinitesimally small surface patch ofκ. This functionf (v) is inversely proportional to the square
(d − 1 power, for generald) of the distance fromv to the patch, and directly proportional to the sine of the incidence
angle ofv onto the patch. If we translate this patch to the origin,f has the simple form(v · e)/|v|d wheree is a vector
normal to the patch.

Lemma 4. The function f(v) = (v · e)/|v|d, defined on the open halfspace v· e> 0, is−1/(d− 1)-concave.

Proof: Because of the rotational symmetry off , we need only prove this for the two-dimensional functionf (x, y) =
y/(x2 + y2)d/2 in the halfplaney > 0. We usedMathematicato compute the principal determinants of the Hessian of
f s. These are

∂2

∂y2 f (x, y)−1/(d−1) =
d x2y1/(d−1)(x2 + y2)d/(2d−2)(x2 + (d− 1)y2)

(d − 1)2y2(x2 + y2)2

which is always positive (fory > 0, d > 1), and

(

∂2

∂x2

∂2

∂y2 −
∂2

∂x∂y
∂2

∂y∂x

)

f (x, y)−1/(d−1) = 0.

Since both principal determinants are non-negative, the function is convex.✷

Theorem 4. The feasible region for the solid angle at the moving point ofa simplex is convex.

Proof: As described above, we can express the solid angle as the convolution of f (v) with the characteristic function
of the convex hull of the fixed points. By Lemma 4,f is−1/(d− 1)-concave within a halfspace defined by the kernel
constraints. Therefore we can use Corollary 1 to show that the solid angle is quasiconcave and therefore has convex
level sets.✷

Our proof for the interior solid angles generalizes to any dimension, but that for the exterior solid angles does not.
There seems to be some correspondence between the feasible regions of interior solid angles in dimensiond, and the
feasible regions of exterior solid angles in dimensiond+1; perhaps this correspondence can be exploited to show that
the exterior solid angle feasible regions are convex in higher dimensions as well.

7 Non-quasiconvex Mesh Smoothing

We have seen that many mesh smoothing criteria give rise to quasiconvex programming problems; however, other
criteria, including minmax angle, minmax circumradius, and maxmin perimeter, do not have convex feasible regions.

Perhaps this can be seen as evidence that these measures are less appropriate for mesh smoothing applications,
since it means among other things that there may be many localoptima instead of one global optimum. Indeed, it
seems likely that the height and perimeter criteria mentioned above do not lead to good element shapes. However
there is evidence that the maximum angle is an appropriate quality measure for finite element meshes [4], so we now
discuss methods for optimizing this measure. Our results should be seen as preliminary and unready for practical
implementation.

Theorem 5. We can find the placement of a Steiner point in a star-shaped polygon, minimizing the maximum angle,
in time O(n logc n) for some constant c.

Proof: Each feasible region in which some particular angle is at most θ forms either a halfplane or the complement
of a disk. The lifting transformation(x, y) 7→ (x, y, x2 + y2) maps these regions to halfspaces inR3; θ is feasible if
the intersection of all these halfspaces meets the paraboloid z = x2 + y2. The result follows by applying parametric
search [30] to a parallel algorithm that constructs the intersection [2, 25] and tests whether any of its features crosses
the paraboloid.✷
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We can of course combine the maximum angle with the many othercriteria, including circumradius, for which the
feasible regions are bounded by lines and circles.

An alternate approach suggests itself, which may have a better chance of leading to a practical algorithm. Define a
generalized Voronoi diagram the cells of which determine which mesh angle would be worst if the Steiner point were
placed in the cell. Are the cells of this diagram connected? If so it seems likely that generalized Voronoi diagram
algorithms [26, 27, 31] can construct this diagram in timeO(n logn) or perhaps evenO(n). We could then find the
optimal placement by examining the features of this diagram.

Finally, we consider one last criterion, minimum total edgelength. This does not fit into our quasiconvex program-
ming framework, since the overall quality is a sum of terms from each element rather than a minimum or maximum
of such terms; however the corresponding optimal triangulation problem remains a topic of considerable theoretical
interest [14, 28]. A mesh improvement phase might also help reduce the (large) constant factors in known approxi-
mate minimum weight Steiner triangulation algorithms [17]. Without the kernel constraints enforcing that the result
is a valid triangulation, the problem of placing one Steinerpoint to minimize the total distance to all other points is
a facility location problem known as theWeberor Fermat-Weber problem. Although it has no good exact solution
(the solution point is a high degree polynomial in the inputs[5, 11]) one can easily solve it approximately by steepest
descent [35]. The kernel constraints do not change the overall nature of this solution. Thus this version of the mesh
smoothing problem can again be solved efficiently.

8 Conclusions

We have described a general framework for theoretical analysis of mesh smoothing problems, and have shown how
to perform optimal Steiner point placement efficiently for many important quality measures. There remain some open
problems, for instance it is not clear to what extent our results extend to hexahedral meshing (in which one cannot
generally move a single vertex at a time while preserving element convexity). There also remain some quality measures
that may possibly be quasiconvex, but for which a proof of quasiconvexity has eluded us. However we believe the most
important directions for future research are empirical: which of the criteria we have described leads to the best quality
meshes, and to what extent can theoretical generalized linear programming algorithms serve as practical methods for
the solution of these problems?
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