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Optimal Point Placement for Mesh Smoothing

Nina Amenta* Marshall Bernf David Eppsteirt

Abstract

We study the problem of moving a vertex in an unstructuredhadstriangular, quadrilateral, or tetrahedral
elements to optimize the shapes of adjacent elements. Wethhbmany such problems can be solved in linear time
using generalized linear programming. We also give efficdgorithms for some mesh smoothing problems that do
not fit into the generalized linear programming paradigm.

1 Introduction

Unstructured mesh generation, a key step in the finite elemethod, can be divided into two stages. paint
placementthe input domain is augmented Bgeiner pointgvertices other than those of the original domain) and
a preliminary mesh is formed, typically by Delaunay trialagion. In mesh improvementocal optimizations are
performed, involving the movement of Steiner points andreesgement of the mesh topology.

Computational geometry has made some inroads into poineplant, and methods including Delaunay refine-
ment, quadtrees, and circle packing are now known to gemarashes with guaranteed quality; for surveys of these
results, see [8, 9]. There has been less theoretical pmgnesvever, in mesh improvement, which has remained
largely the domain of practitioners.

Mesh improvement typically combines several kinds of laqatimization:

¢ Refinement and derefinemsptit and merge triangles, changing the number of Steiniettfo

¢ Topological changesuch adlippingreplace sets of elements by other such sets, while presgihdpositions
of the Steiner points.

¢ Mesh smoothingoves the Steiner points of the mesh while preserving itsatvepology.

In this paper we study mesh smoothing algorithms. Our fosusot to determine the best smoothing method,
which is more properly a subject for experiment or numericellysis; rather we show that a wide variety of methods
can be performed efficiently.

A commonly used techniquéaplacian smoothingsweeps over the mesh, successively moving each point to the
centroid of its neighbors. This technique lacks motivati@cause it is not directly connected to any specific mesh
quality criterion; moreover, the result may not even renaaialid triangulation. But in practice Laplacian smoothing
spaces points evenly and gives two-dimensional meshesasbnable quality. In three dimensions, however, even
spacing does not guarantee good element qualislivirtetrahedron is one that has evenly spaced vertices, but very
sharp angles; for instance a sliver can be formed by sligighyurbing the vertices of a square. (See [7] for a more
detailed classification of tetrahedra in terms of solid aiédral angles.) Laplacian smoothing sometimes removes
slivers, but in large meshes it often leaves clusters oésdij21].

Freitag, Jones, and Plassmann [19, 20] proposed an altertat aplacian smoothing. Rather than using the cen-
troid, their optimization-based method computes for eaem&r point a new placement that maximizes the minimum
angle in adjacent triangles. Freitag et al. use an iteratwepest-descent algorithm to solve this optimal placémen
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problem. Empirically this algorithm finds the optimum loicatin an average of 2.5 steps, but Freitag et al. do not
prove their algorithm correct.

The same optimal placement problem was independentlyderesi by MatouSek et al. [29] as an instance of the
paradigm called generalized linear programming. Matk@$el. show how to solve this problem using an algorithm
related to the dual simplex method. (In retrospect, thepstgtedescent algorithm of Freitag et al. can be seen as a
primal simplex method, but its correctness is not directbtified by the work of MatouSek et al.; correctness follows
from our analysis below.)

Minimum angle, however, is not the only measure of mesh tyjuaWarious papers have provided theoretical
justification for other measures including maximum anglefaximum edge length [34], minimum height [24], min-
imum containing circle [12], and—maost recently—ratio ofarto sum of squared edge lengths [6]. Data-dependent
criteria [6, 16, 32, 33] may be used in adaptive meshing, wbges the finite element method’s output to improve the
mesh for another run.

In this paper, we study optimization-based smoothing ugumgity criteria such as those mentioned above. We
show that, as in the case of minimum angle, many of theseierg&e rise taquasiconvex progranand can be solved
by linear-time dual simplex methods or steepest-descémipsimplex methods. Because of the generality of these
methods, they can also solve mixed-criterion optimizatimblems.

We generalize the theory to quadrilateral meshes and tdisialpneshes in three and higher dimensions. In these
more complicated meshing problems, effective smoothintpous are a more critical need and asymptotic time com-
plexity is more important. We show that again quasiconveg@mming often arises; for instance it can maximize the
minimum solid angle. We believe optimization-based thdteeensional mesh smoothing should outperform Lapla-
cian smoothing in practice. Indeed, in very recent expemtadenvork Freitag and Ollivier-Gooch [21] have shown
that optimization-based smoothing for minimum dihedrajlaroutperforms Laplacian smoothing, both alone and in
conjunction with flipping.

Finally, we show that although several other optimal polatpment problems do not form quasiconvex programs,
we can solve them efficiently by other means. This directi@y mlso be relevant in practice; Freitag and Ollivier-
Gooch recommend smoothing for the sine of the dihedral, aquasiconvex quality measure.

2 Generalized Linear Programming

Many problems in computational geometry, such as sepgrptimts by a hyperplane, can be modeled directly as low
dimensional linear programs. Many other problems, suchasgitcumcircle of a point set, are not linear programs,
but the same techniques often apply to them. To explain thémpmenon, various authors have formulated a theory
of generalized linear programmin@, 23, 29].

A generalized linear progranfGLP, also known as aoP-type probleficonsists of a finite s& of constraintsand
anobjective function imapping subsets @&to some totally ordered space and satisfying the followirapprties:

1. ForanyA C B,f(A) < f(B).
2. ForanyA, p, andq, if f(A) = f(AU {p}) = f(AU {q}), thenf (A) = f (AU {p,q}).

The problem is to comput&S) using only evaluations df on small subsets &

Forinstance, in linear programmir@jis a set of halfspaces af(b) is the pointin the intersection of the halfspaces
at which some linear function takes its minimum value. Amothtandard example of a GLP is the problem of
computing the minimum radius of a disk containing all of acfen points; in this example, the finite s8tconsists
of the points themselves, afdA) is the minimum disk. It is not hard to see that this systensfiasi the properties
by which a GLP was defined above: removing points can only ntaéeadius shrink or stay the same, and if a disk
contains the additional poinsandq separately it contains them both together.

A basisof a GLP is a seB such that for anA C B, f(A) < f(B). Thedimension dof a GLP is the maximum
cardinality of a basis. With the standard example of the mimh disk problem, the dimension turns out to be three,
because each circle is determined by two or three points. Sétiof two or three points is the basis.

A number of efficient GLP algorithms are known [1, 3, 10, 15, 28]. Their best running time i©(dnT +
f(d)Elogn) wheren is the number of constraints,measures the time to test a proposed solution against aaionst

LProperty 2 is often expressed in the more complicated fomty thA C B andf(A) = f(B), then, for anyp, f(A) = f(A U {p}) iff
f(B) = f(BU {p}). A simple induction shows this to be equivalent to our foratioh.



(typically this is O(d)), f is exponential or subexponential, akdis the time to find a basis of a constant-sized
subproblem. Indeed, these algorithms are straightforw@rdhplement and have small constant factors, so they
should be practical even for the modest values iflevant in our problems. (The number of constraints shoarde
roughly from 10 to 100 in the planar problems, depending am¢mmplicated a criterion one chooses to optimize and
on the degree of the initial mesh, and may possibly reactraevendred in the three-dimensional problems.)

Our GLPs have the following form, which we call “quasiconyarogramming”. We wish to minimize some
objective function that is the pointwise maximum of a fini¢ af functions. Such a problem will be a low-dimensional
GLP if the level sets of the functions (regions in which thadtion is bounded above by some particular value) are
all convex. Note that this does not necessarily imply thatftmctions themselves are convex; in convex analysis,
functions with convex level sets are callgdasiconvex

More formally, define anested convex familp be a maps(t) from the nonnegative real numbers to compact
convex sets ifR? such that ifa < bthenx(a) C (b), and such that for atl x(t) = . x(t'). Any nested convex
family » determines a functiofy,(x) = inf { t | x € x(t) } onRY, with level sets that are the boundaries«f). If f,
does not take a constant value on any open set, and ifis contained in the interior of(t) for anyt’ < t, we say
thatx is continuously shrinking

Note that, in our proof of Lemma 2 below, we will consider tistriction of convex families to affine subspaces;
such restrictions do not necessarily preserve the propétiging continuously shrinking. However,#fis continu-
ously shrinking, and its restriction to any affine subspadesf, = t on some open set iA, then all points of this
open set are on the boundaryxdt) andf, (t') must have empty intersection wigfor anyt’ < t.

Lemmal. Letk be anested convex family, and lett inf {t | x(t) is nonempty. Thenx(t*) is nonempty.

Proof: Choose a poin; in the set<(t+1/i) fori =0, 1,2,.... Since all of these points are contained in the compact
setk(t + 1), they have a limit poinp*. Then for anyi, x(t + 1/i) contains all but finitely many of the poinps, sop*

is a limit point of the closed set(t + 1/i) and must be in(t + 1/i). Sincep* is in all of the setsc(t + 1/i) itis in
their intersection(t*). O

If S= {k1, k2, ...kn} is a set of nested convex families, we def8{e = () { i(t) }. ThenS(t) is itself a nested
convex family: each sef(t) is the intersection of closed bounded convex sets, hentsei$ ¢closed, bounded, and
convex. The further requirement tHs(t) = (", S(t’') can easily be seen to follow by commutativity of interseasio

If S= {k1, k2,...kn} is a set of nested convex families, ahd S, let

f(A) = inf { tx |xe N m(t)}
K €A

where the infimum is taken in the lexicographic orderingt tingt and then by the coordinates xf Note that the
values oft are bounded below by zero (becausg) is only defined for nonnegativg so the infimum of exists. The
rest of this lexicographic infimum is also well defined sine@rima 1 shows that, tf is the value determined by the
infimum, A(t*) is a nonempty compact set, arés simply the lexicographic minimum of this set. We use tlime
lexicographic ordering to compare the value$ oh different subsets &

Recall Helly’s theorem (e.g., see [3]): If a family of compaonvex sets ifRY (or a finite family of non-compact
convex sets) has an empty intersection, then s@ne 1)-tuple of those sets also has an empty intrsection.

We define aquasiconvex prograrto be a finite se of nested convex families, with the objective functibn
described above.

Lemma 2. Any quasiconvex program forms a GLP of dimension at rAdst 1. If eachk; in the set S is either
constant or continuously shrinking, the dimension is attrdos 1.

Proof: Property 1 of GLPs is obvious. Property 2 follows from the efvation that, if(t*,x*) = f(A), then
f(A) =f(AU{x;}) ifand only if x* € xj(t*). It remains only to show the stated bounds on the dimension.

First consider the general case, where we do not assuma&gons shrinking of the families i8. Let (t*,x*) =
f(S). Foranyt < t*, S(t) = () «i(t) = 0 so by Helly’s theorem som@ + 1)-tuple of setss;(t) has empty intersection.
Since there are only finitely many + 1)-tuples, we can choose a tuie that has an empty intersection for all
t < t*. Thenf(B~) = (t*, x) for somex, so the presence & forces the GLP solution to have the correct valué of
By Lemma 1,3(t*) # (), sox* is the minimal point inS(t*), and is determined by songetuple B* of the setss; (t*).
Thenf (B~ UB™) = f(S), so some basis &is a subset oB~ U B* and has cardinality at most2- 1.



Figure 1. (a) Steiner point may move within kernel of staaysd region formed by its removal; (b) For size-based ¢aigrch as
length the optimal placement may be on the kernel boundary.

Finally, suppose each in Sis constant or continuously shrinking. Our strategy willtbeagain find a tupl&~
that determinet', and a tupleB™ that determines*, but we will use continuity to make the sizes of these twoeapl
add to at mostl + 1.

S(t*) has empty interior: otherwise, we could find an open regfowithin S(t*), and a familyx; such that
ki(t) N X = () for anyt < t*, violating the assumption tha is constant or continuously shrinking. If the interior
of somek;(t*) contains a point of the affine hull &(t*), we say that; is “slack”; otherwise we say that; is
“tight”. The boundary of a slack; intersectsS(t*) in a subset of measure zero (relative to the affine hu(tf)),
so we can find a valuein the relative interior o5(t*) and not on the boundary of any slagk Form the projection
7 : RY s RI-AMSE) perpendicular t&(t*).

For any rayr in R4-4mSt") starting at the point(S(t*)), we can lift that ray to a ray in RY starting atx, and
find a hyperplane containir§(t*) and separating the interior of somgt*) from  \ {x}. This separated; must be
tight (because it has on its boundary as the origin of the ray) so the separatingiplane must contain the affine
hull of S(t*) (otherwise some point i§(t*) within a small neighborhood of would be interior tax;). Therefore the
hyperplane is projected by to a lower dimensional hyperplane separatirig;(t*)) from = (S(t*)). Since one can
find such a separation for any r@tight i 7(ki(t*)) can not contain any points of any such ray and must consist of
the single pointr(S(t*)).

At least one tighk; must be continuously shrinking (rather than constantfesotherwises(t) would be nonempty
for somet < t*. The intersection of the interior af( x; (t*)) with the remaining projected tight constraintss;(t*)) is
empty, so by Helly’s theorem, we can finddx-dim S(t*)+1)-tupleB~ of these convex sets having empty intersection,
and the presence & forces the GLP solution to have the correct valué &imilarly, we can reduce the size of the
setBT determiningc* fromd to dimS(t*), so the total size of a basis is at mst-dim S(t*) + 1) +dim S(t*) = d+ 1.

O

The first part of this lemma is similar to [3, Theorem 8.1]. dlthat we only used the assumption of convexity
to prove the dimension bound; similar nested families of-nonvex sets still produce GLP problems, but could have
arbitrarily large dimension.

By Lemma 2 we can solve quasiconvex programs using GLP #tgosi We can also perform a more direct local
optimization procedure to find, x): sinceS(t) is a nested convex family we can fifig6) by applying steepest descent,
nested binary search, or other local optimization techesduo find the point minimizing the associated funcfigx).
Thus we can justify the correctness of the local optimizatitesh smoothing procedure used by Freitag et al. In
practice, it may be appropriate to combine this approach thigé dual simplex methods coming from GLP theory by
using steepest descent to perform the basis exchangeiopsnateded in GLP algorithms.

3 Quasiconvex Mesh Smoothing in R?

Letg(A) measure the quality of a triangulation eleméntWe are given a triangulation, and wish to move one of its
Steiner points in such a way as to minimize ngé&;), where the maximization occurs over elements incidenteo th
moving point.
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Figure 2. Feasible regions for planar mesh smoothing quatiteria: (a) minimizing maximum area or external altiéudb)
maximizing minimum area, external altitude, or externgdeas ratio; (c) minimizing maximum external angle; (d) nmaiing
minimum external angle, or maximizing minimum internaltalie; (€) maximizing minimum internal angle; (f) maximigi inter-
nal aspect ratio; (g) minimizing maximum perimeter; (h) mmizing maximum edge length (a similar but larger lune osauhen
minimizing diameter); (i) minimizing containing circle.

In this section we describe ways of formulating such prolsl@nquasiconvex programs. We can assume without
loss of generality (e.g. by appropriate change of varightegq(A) > 0 for anyA. The basic idea is to construct for
eachA; a nested convex family;(t) = { x| q(Ai(x)) <t }, whereAj(x) indicates the triangle formed by moving the
Steiner point to position. In other words, if we are given a bouhdn the triangulation quality;;(t) is thefeasible
regionin which placement of the Steiner point will allody; to meet the quality bound. Finding the optimal Steiner
point placement is equivalent to finding the optimal qualibund that allows a feasible placement.

The familiesk;(t) are clearly nested and closed, and they satisfy the intésagmroperty used in the definition of
nested convex families, but they may not be convex or boun@edvexity will need to be proven using the detailed
properties of the quality measuge Continuous shrinking may or may not hold depending on theityumeasure
g. Boundedness can be imposed (while preserving contindourgkag) by intersecting;(t) with the set of points
within distance exft) of a bounding ball of the triangulation.

One can then find the optimal placemerty solving the quasiconvex program associated with thiectbn of
nested convex families. To make sure that the result is d #adingulation, we add additional halfspace constraints
to our collection, forming constant nested families, tocox into the kernel of the star-shaped polygon formed by
removing the Steiner point from the triangulation (Figu(a)L

It remains to show convexity of the feasible region&) for various quality measures. In the remainder of this
section, we describe these measures and their correspoiedisible regions. As shown in Figure 2, many different
criteria have identical feasible regions; however they dormecessarily lead to the same Steiner point placement as
the parametrization of the nested families could differ.

Area. The feasible regions for maximizing minimum triangle area strips parallel to the fixed (external) sides of
the triangles. In the presence of the halfspace constrairtisng the Steiner point into the kernel of its polygon,
we can simplify these strips to halfspaces. The intersectfmne such halfspace and the corresponding kernel
constraint is shown in Figure 2(a). One can also maximizérmim area, using a halfspace with the same
boundary but opposite orientation (Figure 2(b)).

Altitude. The external altitudeof A; (the altitude having the fixed side &; as its base) can be minimized or
maximized using halfspace feasible regions identical ts¢hfor area (Figure 2(a,b)). The feasible regions
in which the other two altitudes are at lehsdre the intersections of pairs of halfspaces through ond fixint,
passing at distandefrom the other point; one such halfspace is shown in Figul@ &td the other is its vertical
reflection. The feasible regions for minimizing the maximinternal altitude are not convex.



Angle. As noted by Matousek et al. [29], one can maximize the mimmangle by using constraints of two types.
For the internal angles at the Steiner points, the regionfiichvthe angle is at leagtforms either the union
or intersection of two congruent circles (&ss acute or obtuse respectively) having the fixed sidé\pfas
a chord. In the former case this may not be convex, but in tlesgmce of the kernel constraints we can
simplify the feasible region to circles (Figure 2(e)). Tlegions in which the external angles are at |éastrm
wedges bounded by rays through a fixed vertexAgf which can again be simplified in the presence of the
kernel constraints to halfspaces (Figure 2(d)). It is atural to minimize the maximum angle; unfortunately
the feasible regions for the internal angles are non-cofwemplements of circles). However one can still
minimize the maximum angle at external vertices, usingspai€e regions (Figures 2(c)).

Edgelength. The feasible region for minimizing the length of the intdredges of\; is an intersection of two circles
of the given radius, centered on the fixed verticeApfFigure 2(h)). We can use the same two-circle constraints
(with larger radii than depicted in the figure) to minimize tmaximum element diameter.

Aspect ratio. Theaspect ratioof a triangle is the ratio of its longest side length to itsrébst altitude. We consider
separately the ratios of the three sides to their corredpgrattitudes; the maximum of these three will give
the overall aspect ratio. The ratio of external sides tdualé has a feasible region (after taking into account
the kernel constraints) forming a halfspace parallel toetkternal side, like that in Figure 2(b). To determine
the aspect ratio on one of the other two sides of a triadglenormalize the triangle coordinates so that the
moving point has coordinatés, y) and the other two have coordina{@0) and(1,0). The side length is then
/X2 +y2, and the altitude ig/\/x2 + y2, so the overall aspect ratio has the simple fornufa+- y?)/y. The
locus of points for which this is a constanis given byx?+y? = by, or equivalently? + (y— (b/2))? = (b/2)2.
Thus the feasible region is a circle tangent to the fixed sid&;@t one of its two endpoints (Figure 2(f)).

Perimeter. The feasible region for minimizing the maximum perimetearisellipse (Figure 2(g)).

Circumradiusand containing circle. The feasible regions for minimizing the maximum circumtedare noncon-
vex lunes bounded by pairs of circular arcs. However, miniingi the maximuntontaining circle(the smallest
circle containing the given triangle, without necessahidying the vertices on its boundary) produces convex
feasible regions, formed by using the same region as thamtizcle within a vertical slab perpendicular to
the fixed segment of the triangle, and a lune similar to thaeétye length or diameter outside the slab. These
regions’ boundaries are three circular arcs, meeting atmomtangents, with the radius of the middle arc equal
to half that of the arcs on either side (Figure 2(i)).

Inradius. The feasible region for maximizing the minimum inradius oy &riangle can be found as follows. Assume
without loss of generality that the two fixed points have cimates(0,0) and (0, 1), the moving point has
coordinatesx, y), and the inradius bound is We can then place the incenter at a pdiatr) and solve
simultaneous equations stating that lines fri@y0) to (x,y) and from(1, 0) to (x, y) are at distance r from this
point. The solution to these equations was simplifieMathematicao

—8r3x + 8r3x% + 4r?y — 4ry + 4r’xy — 4r?x%y — Ary? + 832 + vy — 4r?y3 = 0.
Affine transformation of the coordinates further simplifies to
—8r5 4+ r2y — 20r%y — %y + 2ry? — 1632 + y2 — 4r?y3 = 0,

which has only one term involving letting us solve this as = f(y) for a functionf in the form of the square
root of a rational function:

x = £f(y) = £/(r + Y2(y(L - 4r2) - 8r3) y.

To show that this bounds a convex region, we need only showf thas nonpositive second derivative within
the range of valuegleading to a feasible solution. We usgldthematicao compute this derivative:

~eri(r+y)derd —y+ 2r?y)
COY(r +y)3(y(1 - 4r2) — 8r)¥/2’

f(y)



Most of the terms in this formula clearly have a consistegu siThe final polynomial in the denominator has a
root aty = 8r3/(1 — 4r?), which turns out to be the point at whigtis minimum, corresponding (in the original
coordinate system prior to our affine transformationyte 1/2; smaller values of are infeasible. The final
polynomial in the numerator has a rooyat 6r3/(1—2r?), which is always below this minimum feasible value
of y. Thereford” has a consistent sign throughout the interval of interest the feasible region for inradius is
CONvex.

Areaover squared edge length. Bank and Smith [6] define yet another measure of the qualipoéngle, computed
by dividing the triangle’s area by the sum of the squaressaddge lengths. This gives a dimensionless quantity
which Bank and Smith normalize to be one for the equilatei@hgle (and less than one for any other triangle).
They then use this quality measure as the basis for a locabiement method for mesh smoothing. As Bank
and Smith show, the feasible region for this measure fornickecentered on the perpendicular bisector of the
two fixed points, so our methods offer an alternative way td fire optimum point placement.

Mixturesof criteria. We have described the various optimization criteria ab@vé anly one is to be used in the
actual mesh smoothing algorithm. But clearly, the same fdaition applies to problems in which we combine
various criteria, for instance some measuring elementeshag others measuring element size, with the overall
quality of an element equal to the weighted maximum of theiseri@. Indeed, this idea can alleviate a problem
with criteria such as edge length, perimeter, etc., whigiedd more strongly on the size of an element than
on its shape: if one optimizes such a criterion on its ownpgbtEmal point placement may lie on the boundary
of the kernel, giving rise to a degenerate triangulatiogFé 1(b)). If one combines these criteria with scale-
invariant criteria such as angles or aspect ratio, this disatjpn cannot occur. We define the quality of a
mixture of criteriag; to be maxw; i, where the weighta; may be chosen arbitrarily. (Even more generally we
could replace the linear functiomg; with any monotonic function of;.) To solve such a mixed problem, we
simply include constraints for each different criteriorttie combination.

Theorem 1. The Steiner point placement optimizing the criteria désliabove, or a weighted maximum of criteria,
can be computed in linear time by quasiconvex programming.

Proof: By Lemma 2 we can solve these problems using any algorithrsfd?-type problems. As noted earlier, a
number of algorithms are known for solving such problems imear number of operations, where each operation
involves testing a potential solution against one of thestr@ints (which in our case amounts to computing the quality
of a single element) or finding the solution of a subprobleroafstant size. These constant-size subproblems can be
solved in constant time in the algebraic decision tree msideldard for geometric algorithms)

4 Quadrilateral Mesh Smoothing

Much of the same theory we have outlined above applies gqwall to quadrilateral mesheaneshes consisting of
planar straight-line graphs in which all faces are convexdyilaterals. In this case, to preserve element convexity,
the Steiner point must not only stay within the kernel of ttze-shaped polygon formed by adjacent elements, it must
also avoid crossing any element diagonal. Also, some of tiadity measures outlined above do not make as much
sense when applied to quadrilaterals, and others havébfeaegions differing somewhat from those for triangular
elements. We outline below some possible quality critestaguadrilateral meshes and the changes needed to adapt
our triangular-mesh smoothing methods to these criteria.

Area, angle, edge length, perimeter. The feasible regions for placing a Steiner point accordinthése criteria are
essentially the same as for triangular meshes.

Width. This corresponds to the altitude of a triangle. The widthés minimum distance between a point and one
of the two opposite edges, and the minimum width can be maeidhby a feasible region formed by the
intersection of six halfspaces, one for each vertex-edgémalving the moving point.

Containing circle. The minimum containing circle for a quadrilateral is the saas the largest of the four circles
formed by choosing three of the four points (in each of fousgilole ways) and considering the containing



circle of that triple of points. Therefore, the feasibleicgts for minimizing the maximum containing circle are
the intersections of three of the regions arising in thenggidar case, one for each of the three triples involving
the moving point. Since each of these regions is convex,theadl feasible region is convex.

Diameter. The diameter of a quadrilateral is either its longest edgesdongest diagonal. Hence the feasible region
for diameter is an intersection of circles, similar to th@tédge length, but with the difference that we include
a third circle centered on the vertex opposite the movingtpoi

Inradius. Our proof that the triangle inradius function has convessilgie regions does not immediately generalize
to quadrilaterals. We conjecture that quadrilateral in@do give convex feasible regions.

Theorem 2. The Steiner point placement optimizing the quadrilaterasimcriteria described above (except possibly
inradius), or a weighted maximum of criteria, can be comguitelinear time by quasiconvex programming.

Some other natural quality measures for quadrilateralsh si$ cross ratio (ratio of products of opposite side
lengths) and sums of opposite pairs of angles, do not hawegdeaasible regions, but (since their feasible regions are
bounded by circular arcs) can be optimized using the teciesigescribed below in Theorem 5.

5 Mesh Smoothing in Higher Dimensions

Many of the two-dimensional quality criteria discussedwabbave higher-dimensional generalizations that also have
convex feasible regions.

Volume and altitude. Just as the area of a triangle with a fixed base is proportioniéd height, the volume of a
simplex with a fixed base is proportional to its altitude. Th@ngulation minimizing the maximum volume, or
maximizing the minimum volume, can be found using feasibtgans in the form of halfspaces parallel to the
fixed face of the simplex. The same type of feasible regionbeansed to optimize the altitude at the moving
Steiner point. The feasible regions for maximizing the minm of the other altitudes are the intersections of
pairs of halfspaces through— 1 of the fixed points.

Boundary measure. The measure of any boundary face of a simplex is proportintie distance of the moving
Steiner point from the affine hull of the remaining fixed psioh the facet, so one can minimize the maximum
face measure using “generalized cylinders” formed by @kinartesian product of a sphere with this affine hull.
In particular the Steiner point placement minimizing theximaum edge length can be found by using spherical
feasible regions centered on each fixed point, arigdithe placement minimizing the maximum triangle area
can be found using cylindrical feasible regions centereeawh fixed edge. These face measures are convex
functions, so their sums are also convex, implying that ¢évellsets for total surface area of all triangles in a
tetrahedron, or total length of all edges in a tetrahedrgaireform convex feasible regions.

Containing sphere. AsinR?, the feasible regions for the minimum containing spheréatmded by 32— 1 algebraic
patches, in which the containing sphere has some fixed segrti€es on its boundary. These patches meet
the plane of the fixed vertices perpendicularly, and arellpcanvex (they are figures of rotation of lower
dimensional feasible regions, except for the one corredipgrto the region in which the containing sphere
equals the circumsphere, which is a portion of that sph&r@®?2, these patches are portions of spheres and tori.
Further, they meet at a continuous boundary (since the icamgesphere radius is a continuous function of the
moving point’s location) and are continuously differebtewhere they meet (at each point where two patches
meet, they share tangent planes with the containing sptsetf).i Thus these patches combine to form a convex
region.

Dihedrals. The dihedral angles of a simplex are formed where two faces aleng araxisdetermined by somag— 1
points. If these axis points are all fixed, one of the two faséself fixed, and the feasible region is a halfspace
forming the given angle with this fixed face. However, if thésancludes the moving point, the feasible regions
are in general non-convex.

Solid Angles. As we show in the next section, the feasible regions for meiing the minimum solid angle (measured
at the fixed points of each tetrahedron, for three-dimeradijomoblems, or at the moving point in any dimension)
are convex.



Theorem 3. In any constant dimension, the Steiner point placementopitig each of the criteria described above
except exterior solid angle, or a weighted maximum of datezan be computed in linear time by quasiconvex pro-
gramming. The exterior solid angles as well can be optimiaedree dimensions.

6 Feasible Regionsfor Solid Angles

We now prove that the feasible regions for maximizing theiminm solid angles of the mesh elements are convex, for
the angles at the moving point, in any dimension, and for titdes at fixed points of tetrahedralk? only. Convexity
of the feasible regions for solid angles at fixed points irhkigdimensions remains open.

We start with the simpler case, in which we are interestechénsolid angle at one of the fixed vertices of a
tetrahedron irfR3. This angle can be measured by projecting the other thréEe®gonto a unit sphere centered on
the fixed vertex, and measuring the area of the sphericabieaormed by these three projected points. If the three
projected points are represented by three-dimensionalaoforsa, b, andc (with a representing the moving point
andb, ¢, and the origin representing the three fixed points) thesdfid angleE at the origin satisfies the equation

a-(bxc)

tan(E/2) = l1+b-c+c-a+a-b

[18]. Therefore, the boundary of the feasible region (onuthi¢ sphere) is given by an equation of the form
a-(bxc)=k(l+b-c+c-a+a-b),

which is linear ina and therefore forms a circle on the unit sphere. (Note thiiteim the planar case, this circle does
not pass through andc, but instead passes through their diametric oppositestgrins of the original unprojected
points, the feasible region is therefore a convex circubarec
To prove that the feasible regions for the interior solidlaagre also convex, we use some facts from convex
analysis [13]. A functiorf(v) from some convex subset of a vector sp&c® R is said to beconvexif, for any
x,yeV,andany <t <1,
ft-x+(1—-t)-y)<t-f(x)+(1-1t) f(y).

A functionf (v) is said to beyuasiconcavé its level sets{v | f (v) > k} are convex. A function is-concave iff (v)%is
convex; in the cases of interest tosusill always be negative. If is quasiconcave we also say that it4s>c)-concave
(andiff is logconcave, i.e. if lofj is convex, we also say that it is 0-concave).

The next result appears as [13, Theorem 3.21]. The “usuaketions” from that source imply that,$f= —1/n,
the integral i —oo)-concave i.e. quasiconcave.

Lemma 3. Letf be s-concave on an open convex set R". Let C* be the projection of C oR™ and for xe C*,
let C(x) be the x-section of C. Define

f*(x):/ f(x,y)dy, xeC".
C)

If —1/n < s< oo, then f* is s*-concave on C, where § = s/(1 + ns) with the usual conventions wher=s—1/n or
S = 0.

Corollary 1. Letf: U — R be(—1/k)-concave, and let gV — {0, 1} be the characteristic function of a convex
setk in a k-dimensional subspace V of U. Then the convolution off gais quasiconcave.

Proof: Leth(u,v) = f(u), defined on the cartesian productldfwith V. Thenh is also(—1/k)-concave, and the
convolution can be computed BS(u — v). The result follows from Lemma 30

A special case of Corollary 1, in whidhequals the dimensiod of the domain off, appears (with a different
proof) as [13, Theorem 3.24]. For our application, we areristed in a different case, in whikk= d — 1. The solid
angle of ad-simplex ind-dimensional space, measured at the moving point, can bpneted as the fraction of the
field of view at that moving point taken up by the convex hubf the remaining fixed points. This fraction can be
computed as the convolution of the characteristic funatibr with a functionf (v) measuring the fraction of field of



view taken by an infinitesimally small surface patch«ofThis functionf (v) is inversely proportional to the square
(d — 1 power, for generad) of the distance fronv to the patch, and directly proportional to the sine of thedance
angle ofv onto the patch. If we translate this patch to the orifjihas the simple fornv - €)/|v|¢ wheree s a vector
normal to the patch.

Lemma4. The function fv) = (v-e)/|v|¢, defined on the open halfspacee/> 0, is —1/(d — 1)-concave.

Proof: Because of the rotational symmetryfofwe need only prove this for the two-dimensional functiox y) =
y/ (X% +y?)92 in the halfplang/ > 0. We usedMathematicao compute the principal determinants of the Hessian of
fS. These are

Pt g2/ _ DO 4 I E20¢ 4 (d - 1))
B2 Y = (d— 1)2y2(x2 + y?)2
which is always positive (foy > 0,d > 1), and

9% 92 9%  0? 1
e — ) f(xy) YV =0,
OX2 9y?  Oxdy 0yox

Since both principal determinants are non-negative, thetfon is convex.O

Theorem 4. The feasible region for the solid angle at the moving poira simplex is convex.

Proof: As described above, we can express the solid angle as thelation off (v) with the characteristic function

of the convex hull of the fixed points. By Lemmafdis —1/(d — 1)-concave within a halfspace defined by the kernel
constraints. Therefore we can use Corollary 1 to show tleastitid angle is quasiconcave and therefore has convex
level sets.O

Our proof for the interior solid angles generalizes to amgetision, but that for the exterior solid angles does not.
There seems to be some correspondence between the feagiblesrof interior solid angles in dimensidnand the
feasible regions of exterior solid angles in dimensien 1; perhaps this correspondence can be exploited to show that
the exterior solid angle feasible regions are convex inédiglimensions as well.

7 Non-quasiconvex Mesh Smoothing

We have seen that many mesh smoothing criteria give rise dsicpnvex programming problems; however, other
criteria, including minmax angle, minmax circumradiusg amaxmin perimeter, do not have convex feasible regions.

Perhaps this can be seen as evidence that these measuressaapgropriate for mesh smoothing applications,
since it means among other things that there may be many dptmha instead of one global optimum. Indeed, it
seems likely that the height and perimeter criteria mesetibabove do not lead to good element shapes. However
there is evidence that the maximum angle is an appropriaktygmeasure for finite element meshes [4], so we now
discuss methods for optimizing this measure. Our resultsilshbe seen as preliminary and unready for practical
implementation.

Theorem 5. We can find the placement of a Steiner point in a star-shapbapo, minimizing the maximum angle,
in time Q(nlog® n) for some constant c.

Proof: Each feasible region in which some particular angle is attdsrms either a halfplane or the complement
of a disk. The lifting transformatiofx,y) — (x,y,x* + y?) maps these regions to halfspace®ih ¢ is feasible if
the intersection of all these halfspaces meets the parakole x? + y?. The result follows by applying parametric
search [30] to a parallel algorithm that constructs therggetion [2, 25] and tests whether any of its features ceosse
the paraboloid.O
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We can of course combine the maximum angle with the many afiteria, including circumradius, for which the
feasible regions are bounded by lines and circles.

An alternate approach suggests itself, which may have arltance of leading to a practical algorithm. Define a
generalized Voronoi diagram the cells of which determiné&tvimesh angle would be worst if the Steiner point were
placed in the cell. Are the cells of this diagram connecteid§olit seems likely that generalized Voronoi diagram
algorithms [26, 27, 31] can construct this diagram in ti@@logn) or perhaps eve®(n). We could then find the
optimal placement by examining the features of this diagram

Finally, we consider one last criterion, minimum total etiyggth. This does not fit into our quasiconvex program-
ming framework, since the overall quality is a sum of ternmsrfreach element rather than a minimum or maximum
of such terms; however the corresponding optimal triartgarigoroblem remains a topic of considerable theoretical
interest [14, 28]. A mesh improvement phase might also hedjpice the (large) constant factors in known approxi-
mate minimum weight Steiner triangulation algorithms [1Without the kernel constraints enforcing that the result
is a valid triangulation, the problem of placing one Steipeint to minimize the total distance to all other points is
a facility location problem known as th&eberor Fermat-Weber problemAlthough it has no good exact solution
(the solution point is a high degree polynomial in the ind6tsl1]) one can easily solve it approximately by steepest
descent [35]. The kernel constraints do not change the bvetaire of this solution. Thus this version of the mesh
smoothing problem can again be solved efficiently.

8 Conclusions

We have described a general framework for theoretical aisabf mesh smoothing problems, and have shown how
to perform optimal Steiner point placement efficiently foamy important quality measures. There remain some open
problems, for instance it is not clear to what extent our ltesextend to hexahedral meshing (in which one cannot
generally move a single vertex at a time while preservingela convexity). There also remain some quality measures
that may possibly be quasiconvex, but for which a proof okiganvexity has eluded us. However we believe the most
important directions for future research are empiricalicllof the criteria we have described leads to the best gualit
meshes, and to what extent can theoretical generalizeat [pregramming algorithms serve as practical methods for
the solution of these problems?
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