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1. INTRODUCTION

Mergesort is one of the very first sorting algorithms in computer science
Žand is usually the method of choice for sorting linked lists like in

.MAPLE . It is a typical example solved by divide-and-conquer paradigm
and admits several variants according to different underlying dividing

Žrules: top-down mergesort, bottom-up mergesort, and queue-mergesort cf.
w x.10, Section 5.2.4; 14, Chap. 8; 2; 12; 5 . The number of comparisons used
by these alternatives for sorting n elements is expressed by the recurrence
f [ 0 and1

f s f q f q g , n G 2 ,Ž .n t Žn. nyt Žn. n

where g is the merging cost andn

Ž . ? @ Ž . Ž} t n s nr2 half]half rule in top-down mergesort TDM;
w x.cf. 2 ;

Ž . u log 2 n r2 v Ž .} t n s 2 max power-of-2 rule in bottom-up mergesort
Ž w x.BUM; cf. 12 , and

Ž . ? log 2 2 n r3@ Ž .} t n s 2 balanced power-of-2 rule in queue-mergesort
Ž w x.QM; cf. 5 .

Note that 2 ? log 2 2 n r3@ is the unique power-of-2 lying between nr3 and 2nr3
2and that the choice of rationals other than is not more balanced. For3

Ž . ? log 2 n r2 @ Ž . ? log 2 5n r9 @example, if t n s 2 or t n s 2 , then the sizes of two
Ž .subproblems are 2, 5 for n s 7, while the balanced power-of-2 gives

Ž .3, 4 .
Ž .Among these dividing rules not restricted to mergesort , the half]half

rule is undoubtedly the most widely used one; it is almost the synonym of
divide-and-conquer in several problems. On the other hand, the balanced
power-of-2 rule appeared in considerably fewer problems, its usefulness
being usually neglected. We briefly indicate some of the major problems in
which this rule appeared. The associated recurrence is essentially the heap

Ž w x .recurrence see 9 or next section for details ,

f s f ? log 2 n r3 @ q f ? log 2 n r3 @ q g , n G 2 ,Ž .2 2n 2 ny2 n

Ž .with f given because it corresponds modulo shift to the sizes of the left1
Ž .and right subheaps of a heap of size n. The recurrence was first implicitly

w x Ž w x.studied by Knuth 10 cf. 9 . It appeared as the solution to the recurrence
Ž w x.with minimization cf. Hammersley and Grimmett 7 : f [ 0 and for1

n G 2,

f [ min f q f q g , 1� 4 Ž .n j nyj n
1Fj-n
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w xwhere g is increasing and concave; cf. also 1, 14, 16 . Glassey and Karpn
w x4 independently discussed this rule referred to as power-of-2 rule. For

w xreason of distinction, we add the adjective ‘‘balanced.’’ Walsh 16 devel-
oped a mergesort algorithm with the same number of comparisons as

Ž .TDM in the worst case thus optimal . A similar version with different
merging orders named queue-mergesort was introduced by Golin and

w xSedgewick 5 , which is also optimal in the worst case. We show in the next
section that the underlying dividing principle in Walsh’s and Golin and
Sedgewick’s mergesorts is essentially the balanced power-of-2.

This variant of mergesort enjoys several intriguing probabilistic proper-
ties which remain unknown and it is the purpose of this paper to prove
them by suitable analytic tools. For example, we show that the variance of
the number of comparisons used by QM is asymptotically linear, the

Žleading constant being approximately 0.3073 instead of a periodic function
.as in TDM . Furthermore, we show that this constant is also asymptotically

Ž . Ž w x.optimal minimal for mergesorts using two-way linear merge cf. 10, 14
as the underlying merging procedure; see Section 6.2 for details. A general
class of mergesorts with the same property is also characterized. Briefly,
although the mean value of QM is slightly higher in the linear term than
that of TDM, the global ‘‘silhouette’’ of its stochastic behavior is more
smooth than those of TDM and of BUM.

From a practical viewpoint, QM is easily implemented on linked list, its
code being simpler than those of TDM and BUM. Also the size of the
input need not be known in advance and it can be implemented in either a
top-down or a bottom-up manner, making QM an attractive alternative to
TDM and BUM. The price we pay is stability: QM is not stable for equal
keys.

Periodic fluctuation is usually an accompaniment of divide-and-conquer
recurrences, especially when more precise asymptotic approximations are
needed. QM is no exception. Our approach to handling periodicity is based

w xon the exact formula derived in 9 for heap recurrence and on digital
sums. This elementary1 approach is in certain respects simpler than the
analytic one for TDM for which Mellin transform and complex analysis are

w xrequired; cf. 2, 8 . To keep our analyses as uniform as possible, we apply
Žthe same elementary approach to prove the asymptotic normality in the

.sense of convergence in distributions of the cost of QM. This in turn
introduces some technical problems for which new arguments are devel-
oped.

The study of divide-and-conquer recurrences is closely related to the
Ž .solution of recurrence with minimization or maximization or the general-

Ž w x.ized subadditive inequality cf. 1, 7 . For example, Hammersley and

1 In number-theoretic sense, namely, without recourse to complex analysis.
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w x Ž .Grimmett 7 showed that the minimum of the recurrence 1 is attained at
Ž . Ž . ? @i j s 1 if g is decreasing; ii j s nr2 if g is increasing and convex;n n

Ž . ? log 2 2 n r3@and iii j s 2 if g is increasing and concave. Thus TDM andn
QM are natural candidates if one is concerned with optimality of certain
characteristics on divide-and-conquer problems.

In the next section, the link of the cost of QM with the heap recurrence
is first proved. An interesting algorithmic feature of power-of-2 rules is
revealed. We then analyze the cost of QM in the worst, best, average, and
variance cases. A comparative discussion is also given on the costs of
TDM, BUM, and QM. The asymptotic normality of the cost under the
uniform permutation model is established in Section 4. An interesting
invariance principle for the asymptotic linearity of divide-and-conquer
recurrences based on general power-of-2 rule is proved in Section 5. We
then identify, with the aid of the invariance principle, optimal mergesorts
in the average and variance cases in Section 6. For the reader’s conve-
nience, an appendix is also given on the exact solutions of the divide-and-
conquer recurrences discussed in this paper.

ŽNotation. Throughout this paper, all unspecified limits including O,
.; , o will be taken to be n ª `. The binary representation of n will be

Ž . ? @written consistently as 1b ??? b , where L s log n . We also defineLy1 0 2 2
Ž . jŽ � j4.n s 1b ??? b s 2 1 q nr2 for j s 0, . . . , L; so that n s n andj jy1 0 2 L

Ž . � ? log 2 2 n r3@ ? log 2 2 n r3@4n s 1. Write for n G 2 r s r n s min 2 , n y 2 and0
Ž .l s l n s n y r.

2. QUEUE-MERGESORT AND THE HEAP RECURRENCE

In this section, we first describe the QM algorithm and then we prove its
relation with heap recurrence. Briefly, start with n elements each in its
own list and arrange these lists as a queue. Then take the first two lists,
merge them by the linear merge algorithm, and put the new list at the tail
of the queue. Repeat the preceding steps until the single list remains in
the queue. The list will contain all of the elements in sorted order. An
example is given in Fig. 1.

This algorithm is reminiscent of the well-known Huffman coding proce-
dure.

w xWalsh’s mergesort 16 is similar but proceeds in a different order. First
merge the rightmost with the leftmost lists, putting the resulting list in the
leftmost; then merge the remaining lists in adjacent pairs from the second
to leftmost to right. Iterate this procedure until a single sorted list remains.
Obviously, the algorithm is, up to different merging orders, the same as
QM.
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FIG. 1

The following lemma says that QM may also be implemented in a
top-down manner, which is useful for sorting arrays; the dividing strategy is
the balanced power-of-2 rule.

LEMMA 1. The cost of QM is generally described by the heap recurrence,

f s f q f q g , n G 2 , 2Ž . Ž .n l r n

with a suitable f , where g denotes the merging cost.1 n

Proof. The proof follows essentially the Huffman coding argument as
w xthat given in Section 4 of Glassey and Karp 4 by ‘‘describing’’ the list sizes

at each stage. Assume the queue sizes at the ith run are given by
a F a F ??? F a . Initially, we have a s 1 for j s 1, . . . , n, thei, i i, iq1 i, n 1, j

Ž .final state being a s n. At each iteration, QM transforms a , . . . , an, n i, i i, n
Ž .into a , . . . , a , where a s a for j s i q 1, . . . , n y 1iq1, iq1 iq1, n iq1, j i, jq1

� 4and a s a q a . By induction, the sequences a satisfy theiq1, n i, i i, iq1 i, j
following properties:

} There exists an integer k such that 2 k F a F 2 kq1 for j si, j
i, . . . , n;

1} F a ra F 1 for j s i, . . . , n y 1;i, j i, jq12

Ž .} At most one a i fixed is not a power-of-2.i, j

These properties are preserved by the merging transformation. It follows
that a s r and a s l.ny1, ny1 ny1, n

Ž .Note that the recurrence 2 can be written in the following form,

f Ly 1 q f Ly 1 q g L , if 0 F j - 2 Ly1 ,2 2 qj 2 qj
Lf s2 qj Ly1 L½ L Lf q f q g , if 2 F j - 2 .2 j 2 qj
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Ž . w xThe recurrence 2 has been studied in 9 where an exact solution is
given.

Ž .LEMMA 2 Hwang and Steyaert . The solution f of the heap recurrencen
Ž .2 with f s g is gï en by1 1

n n
jf s y y 1 g q g , n G 1 , 3Ž . Ž .Ý Ýn 2 njy1 jž / j2 21FjFL 0FjFL

� 4for any gï en sequence g .n

w xFor completeness, we give an alternative proof. The proof in 9 is
w x‘‘combinatorial’’ and relies on a counting argument from 10 ; our proof is

‘‘computational’’ and can be applied to max and other power-of-2 rules
Ž .see Section 5 .

Ž .Proof. First, the recurrence 2 can be written in the following form,

f s f q f Ly 1 q g q b f Ly 1 q g L .Ž .n n 2 n Ly1 2 2Ly 1 L

Iterating once yields

f s f q f Ly 2 q f Ly 1 q g q g q b f Ly 2 q g Ly 1Ž .n n 2 2 n n Ly2 2 2Ly 2 Ly1 L

q b f Ly 1 q g L .Ž .Ly1 2 2

Thus by induction,

f s 1 q b f j q b g j q g .Ž .Ý Ý Ýn j 2 jy1 2 n j
0FjFLy1 1FjFL 0FjFL

? j @ ? jq1 @Using the explicit expressions b s nr2 y 2 nr2 ,j

my i iyj j
m if s 2 g , 1 q b 2 s nr2 y 1, 4Ž . Ž .Ý Ý2 2 i

0FiFm jFiFLy1

Ž .we obtain exactly 3 .

In certain cases the use of the following formula is preferable,

n
jq 1 j jq1f s g y g q g y g q g n. 5Ž . Ž .Ž .Ý Ýn 2 2 n 2 1j j20FjFL 0FjFL

For example, taking g s 0 and g s an q c for n G 2, we obtain1 n

f s anL y 2 Lq1a q 2 an q c n y 1 , n G 2 . 6Ž . Ž . Ž .n
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Ž . Ž .LEMMA 3. Assume that f satisfies 2 . Then f rn ª l - ` iff g s o nn n n
and Ý g jr2 j s l.jG 0 2

Ž w x.Proof. The ‘‘if’’ part is easy cf. 9 . We prove the ‘‘only if’’ part.
Assume that f rn ª l. Then by definition,n

g s f y f y f s o n .Ž .n n r l

Ž .It follows from 3 that

n n
jy g s ln q o n .Ž .Ý 2jy1 jž /2 21FjFL

j
jFrom this we deduce that Ý g r2 ª l.0 F jF L 2

Ž .In particular, when g s O 1 , we have a more precise error term.n

Ž . Ž . Ž .LEMMA 4. If f satisfies 2 and g s O 1 , then f s ln q O log n ,n n n
where l s Ý g jr2 j.jG 0 2

Similar results hold for very general power-of-2 rules; see Section 5.
Note that the leading constant is never periodic when f is linear, inn

Ž w x.contrast to the half]half recurrence cf. 2, 8, 12 .
These lemmas also reveal, in a decidedly way, another advantage of

power-of-2 rules over the half]half rule: the cost may remain linear e¨en
when the cost of half]half rule is superlinear. For example, if g sn
Ž . L Ž L 1q« .LQ nrlog n for n / 2 and g s O 2 rL , then f is linear by the2 n

Ž .previous lemmas. But the same g gives rise to O n log log n bound forn
the half]half recurrence, which is tight for almost all values of n. This
leads to the following important algorithmic implication. Assume that the

Ž .‘‘merging’’ cost is of order o n . Then the total cost will be linear if we can
L Ž . j

jimprove problems of sizes 2 and these only! so that Ý g r2 - `.jG 0 2
No such simple improvement is available for the half]half rule as is easily

Ž .seen from its solution 17 . Note that the power-of-2 rules discussed in this
paper all satisfy the property that they evenly divide into two when n s 2 L.

3. THE ANALYSIS OF QUEUE-MERGESORT

Ž .In this section we study the cost i.e., the number of comparisons of
QM in most cases of interests: the worst, the best, the average, and the
variance cases. We also compare the results with those of TDM and BUM.
A summary of these comparisons is given in Table 1.



CHEN, HWANG, AND CHEN430

TABLE I
Asymptotic Behaviors of the Three Mergesorts; the Best Case is

athe Same and Thus not Shown Here.

Asymptotic
Ž .Worst case Average case Variance normality ?

QM n log n y 0.943n n log n y 1.207n 0.307n Yes2 2
TDM n log n y 0.943n n log n y 1.248n 0.345n Yes2 2

2Ž .BUM n log n y 0.701n n log n y 0.965n O n No2 2

a The constants of the linear terms in the first two columns and the variance of TDM are
mean values of certain periodic functions.

We need the following expressions for the costs of the two-way linear
Ž w x.merge for merging two sorted files of sizes x and y cf. 2, 10 :

� 4} Best case: min x, y ;
} Worst case: x q y y 1;
} Average case,

x y
u x , y [ x q y y y ; 7Ž . Ž .

y q 1 x q 1

} Variance case,

2x 2 x q y y 2 y q x x yŽ . Ž .
¨ x , y s q y q .Ž . ž /y q 1 y q 2 x q 1 x q 2 y q 1 x q 1Ž . Ž . Ž . Ž .

8Ž .

x q yŽ .We assume in the last two formulae that each of the possiblex

orderings is equally likely.

3.1. Worst Case

The number of comparisons used by QM is optimal in the worst case
Ž w x.cf. 5 . It is given by W s 0, and1

W s W q W q n y 1, n G 2 ,Ž .n r l

Ž . Ž w x.By 6 , W satisfies cf. 2, 5 ,n

W s n log n q nA log n q 1, n G 1 , 9Ž . Ž . Ž .n 2 2
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Ž .where A t is a continuous periodic function of period 1,

� 4 1y �t4A t s 1 y t y 2 , 10Ž . Ž .
1whose mean value is y 1rlog 2.2

w xActually, from Hammersley and Grimmett’s result in 7 and the sum
Ž w x. u vexpression cf. 2, 10 W s Ý log j , we deduce that any mergesortn 1F jF n 2

Ž Ž ..using two-way linear merge such that the dividing rule n ¬ j, n y j
? @satisfies r F j F nr2 at each recursive stage is worst case optimal. Thus

we have a spectrum of optimal mergesorts of which TDM and QM are the
w x‘‘boundaries.’’ BUM is however not optimal for general values of n; see 5

for a modification.

3.2. Best Case

Ž .The best case cost B of QM satisfies the recurrence 2 withn

¡ Ly12 , if b s 0,Ly1~ ng s min l, r s r sŽ .n L L2 s n y 2 , if b s 1,¢ Ly1½ 5L2

Ž . Ž .By 2 and 3 , it can be verified that B s 0 and for n G 1,1

B s 2 B q n ,2 n n½ B s B q B q n;2 nq1 n nq1

Ž . Ž .so we obtain B s Ý n j , where n j denotes the sum-of-digitsn 0 F j- n
function of the binary representation of n. Its asymptotic behavior is well

Ž w x .known cf. 3 and the references therein : The cost function B of QM inn
the best case satisfies

1
B s n log n q nD log n ,Ž .n 2 22

Ž .where D u is a continuous, nowhere differentiable, periodic function of
period 1.

The best case costs of the three mergesorts are the same. This implies
Ž w x.that the recurrence C [ 0 and cf. 6, Section 2.2.1 ,1

� 4C s max C q C q min j, n y j , n G 2Ž .Ž .n j nyj
0Fj-n

has at least three generally different indices at which the maximum is
? @ u log 2 n r2 v ? log 2 2 n r3@ Ž .attained: j s nr2 , j s 2 , and j s 2 because C s B .n n

A complete description of the indices attaining the maximum is an inter-
esting problem but lies outside the scope of this paper.
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3.3. A¨erage Case

Henceforth, we assume that each of the n! permutations of n elements
is equally likely. Denote by X the number of comparisons used by QM ton
sort a random permutation.

THEOREM 1. The a¨erage number of comparisons used by QM to sort a
random permutation of n elements satisfies

U w q x [ E X s n log n q A log n y a n q 4Ã log n q O 1 ,Ž . Ž . Ž . Ž .Ž .n n 2 2 1 2

Ž j . Ž . Ž .where a s Ý 1r 2 q 1 y 1 f 0.26449978. A t is defined in 10 andjG 0
Ž . Ž . Ž .Ã u is oscillating between O u and V 1 defined by1

2uyj uyjy1� 4 � 42 y 2Ž .
Ã u s , u G 1 .Ž . Ž .Ý1 uyj uyj uyjy1� 4 � 4 � 41 q 2 1 y 2 q 2 2Ž . Ž .? @0FjF u

Ž . w q x Ž .Proof. By 7 , U satisfies 2 withn

r l
g s u r , l s n y y .Ž .n l q 1 r q 1

It is evident that

r l
q s O 1 ,Ž .

l q 1 r q 1

Ž .By 6 and Lemma 4, we obtain

U w q x [ E X s n log n q A log n y a n q O log n .Ž . Ž . Ž .Ž .n n 2 2

Ž . Ž .To make explicit the O log n term, we start from 5 and proceed as
follows. Observe that the first sum will not contribute any term of
logarithmic order. It suffices to investigate the sum,

g j y g ,Ž .Ý 2 n j
0FjFL

Ž . Ž .when g s lr r q 1 q rr l q 1 . By considering the value of b , wen jy1
Ž Ž . jŽ � j4..have recall that n s 1b ??? b s 2 1 q nr2 ,j jy1 0 2

n 2 j 1 q bŽ .j j
g s qn jjq 1 n q 12 1 q b q 1Ž . jj

1 q nr2 j 1 q b� 4 j yjs q q O 2 .Ž .j1 q b 1 q nr2� 4j
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� jq14 � j4From the expression b s 2 nr2 y nr2 , it follows thatj

2j jq1nr2 y nr2� 4 � 4Ž . yjg s 2 y 4 q O 2 .Ž .n j j jq1jq 1 1 q nr2 1 y nr2 q 2 nr2� 4 � 4 � 4Ž . Ž .

Consequently,

g j y gŽ .Ý 2 n j
0FjFL

2j jq1nr2 y nr2� 4 � 4Ž .
s 4 q O 1 .Ž .Ý j j jq11 q nr2 1 y nr2 q 2 nr2� 4 � 4 � 4Ž . Ž .0FjFL

Ž .The upper bound for Ã log n is tight as is seen by the integer sequence1 2
4 k� Ž .44 y 1 .k3

Ž . Ž . Ž .Note that Ã 1 q log n s Ã log n . A graphical rendering of Ã u1 2 1 2 1
is given in Fig. 2.

Ž . Ž .FIG. 2. Periodic fluctuations of the function Ã log n versus log n r18 in logarithmic1 2 2
scale.



CHEN, HWANG, AND CHEN434

w x Ž Ž . Ž ..Comparing the foregoing result with those in 2, 12 cf. 17 and 18 ,
we conclude that the average cost of QM lies between that of TDM and of
BUM and that the average difference between that of TDM and QM is
about 0.039n.

3.4. Variance

In this subsection, we consider the variance of X .n

THEOREM 2. The ¨ariance of the number of comparisons used by QM to
sort a random permutation of n elements satisfies

V w q x [ Var X s b n q 4Ã log n q O 1 ,Ž . Ž . Ž .n n 2 2

w jŽ j . Ž j .2Ž j .x Ž .where b s Ý 2 2 y 1 r 2 q 1 2 q 2 f 0.3073049590 and Ã ujG 0 2
Ž . Ž .is oscillating between O u and V 1 defined by

Ã uŽ .2

2 2uyj uyjy1 uyjy1� 4 � 4 � 42 y 2 5 2 q1Ž . Ž .ž
2uyj uyjy1� 4 � 4y 2 y 2Ž . /

s = .Ý 2 2uyj uyj uyjy1� 4 � 4 � 41q 2 1y 2 q2 2? @ Ž . Ž .0FjF u

for u G 1.

Ž . w q x Ž . Ž Ž ..Proof. Sketch . The variance V satisfies 2 with cf. 8 ,n

g s ¨ r , lŽ .n

2r 2 r q l l 2l q r r lŽ . Ž .
s q y q .ž /l q 1 l q 2 r q 1 r q 2 l q 1 r q 1Ž . Ž . Ž . Ž .

We then apply mutatis mutandis the method of proof of Theorem 1.

Note that

1
b s y2a q 2 .Ý 2j2 q 1Ž .jG0

w xUnlike TDM analyzed in 2 , the variance of X is not oscillating in then
Ždominant term; it is smaller than that of TDM for large enough n with

k .exceptions at 2 " 2, 3, 4 for k G 7 . On the other hand, the variance of
Ž 2 .the cost of BUM is O n as is easily seen by considering the case

k Ž . Ž . wn s 2 q c, where 1 F c s O 1 ; see 18 . Actually, it oscillates between
Ž 2 . Ž . xO n and V n .
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Higher cumulants of X can be considered in a similar way and are alln
asymptotically linear. This suggests that the distribution of X is asymptot-n
ically normal as we prove in the next section. In particular, we can show

jŽ j .that the third cumulant is asymptotic to yhn with hsÝ 2 3?2 y1jG1
Ž j .2 wŽ j .3Ž j .Ž j .x2 y 1 r 2 q 1 2 q 2 2 q 3 ) 0, implying that the distribution is
skew to the left.

4. ASYMPTOTIC NORMALITY

In this section we prove the asymptotic normality of the cost of QM. Let
Ž . Ž .P z denote the probability generating function of X . Then P z satis-n n n

fies the recurrence,

P z s P z P z Q z , n G 2 ,Ž . Ž . Ž . Ž . Ž .n l r n
11Ž .½ P z s 1,Ž .1

Ž .where Q z is the probability generating function of Y , the number ofn n
comparisons used by the two-way linear merge algorithm for merging two

w x w xsorted files of sizes r and l. From 10, Exercise 5.2.4.2 or 2 , we have
Ž .Q z s 1 and1

nyky1 nyky1q ž /ž /ry1 ly1Y nyknQ z sE z s z , nG2 .Ž . Ž . Ž .Ýn n1FkFl ž /l

Ž .'Define m [ W y a n and s [ b n , where W is defined in 9 , an n n n
and b are given as in Theorems 1 and 2. Let

X y mn n
F x s P - x andŽ .n ½ 5sn

x1 2yt r2F x s e dt , x g R .Ž . Ž .H'2p y`

THEOREM 3. The distribution function of the random ¨ariable X isn
asymptotically normal,

log n
F x s F x q O , n ª ` ,Ž . Ž . Ž .n ž /'n

uniformly in x.
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To prove the asymptotic normality of X , we need an asymptoticn
Ž .estimate of P z for z lying near the unity. We give a uniform treatmentn

Ž .of this problem by taking logarithms on both sides of 11 and then
applying again Lemma 4. This in turn introduces two problems: the

Ž . Ž .location of the nonzero region of P z and the boundedness of log Q zn n
Ž .y n y 1 log z. The first problem is resolved by a similar argument used
w x Ž .in 8 Enestrom]Kakeya theorem ; the second is handled by a new¨

inequality for characteristic functions which is also of some independent
interest per se.

Ž i t.Once an asymptotic estimate of P e is available, we consider then
Ž .characteristic function of the random variable X y m rs and then wen n n

Ž w x.apply the Berry]Esseen inequality cf. 13 which reduces the estimation
of the discrepancy of two distributions to a certain average of the associ-
ated characteristic functions. But another problem arises when we apply
the Berry]Esseen inequality: Lemma 4 is not precise enough for use

Ž .because it stops at O log n term and this is in the exponent! We
Ž .overcome this difficulty by arguments based on the analyticity of P z andn

properties of analytic characteristic functions. Thus this part is no more
elementary but analytic in nature.

We first state and prove three lemmas and then we proceed to the proof
of the theorem. For the rest of the paper, d represents always a small
positive quantity whose value may vary from one occurrence to another
Ž .but independent of n and other asymptotic parameters .

4.1. Lemmas

The first lemma says that the probability distribution of Y is roughlyn
Žmajorized by a geometric distribution the probabilities decrease geometri-

.cally .

Ž . nykLEMMA 5. Write Q z s Ý p z for n G 2, wheren 1F k F l n, k

n y k y 1 n y k y 1q ž /ž /r y 1 l y 1
p s , 1 F k F l .Ž .n , k nž /l

Then for 1 F k F l,

2p F p , n G 2 .Ž .n , k n , ky13
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Proof. We have

n y k y 1 n y k y 1q ž /ž /2 r y 1 l y 1
p y p sn , k n , ky13 nž /l

n y k n y kq ž /ž /2 r y 1 l y 1
y

3 nž /l

n y k y 1 ! n y k y 3 r y 1Ž . Ž .
s ž r y 1 ! n y k y r q 1 !n Ž . Ž .3 ž /l

n y k y 3 l y 1Ž .
q /l y 1 ! n y k y l q 1 !Ž . Ž .

F 0.

for k G 3. But for k s 2,

2 n y 3 !l! n y l !Ž . Ž .
p y p s y2n q 2 F 0, n G 2 .Ž . Ž .n , 2 n , 13 3 ? n! l y 1 ! r y 1 !Ž . Ž .

Ž .The nonzero region of Q z can now be located.n

Ž .LEMMA 6. For n G 1 the polynomials Q z ha¨e no zero with modulusn
2larger than .3

Ž w x.Proof. Apply Lemma 5 and the Enestrom]Kakeya theorem cf. 11 :¨
Ž . jLet P x s Ý a x , where m ) 1 and a ) 0 for j s 0, . . . , m. Then0 F jF m j j

Ž . Ž .the moduli of the zeros of P x all lie between including
min a ra and max a ra .1F jF m jy1 j 1F jF m jy1 j

� 4nLEMMA 7. Let a be a sequence of nonnegatï e real numbers suchk ks0
that a ) 0. Assume that a F « a for k s 1, . . . , n, where 0 - « - 1.0 k ky1

< <Then for any complex z F 1,

1 y «
ka z G a .Ý Ýk k1 q «0FkFn 0FkFn
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Proof. Let c s a r« k y a r« kq1 for k s 0, . . . , n y 1 and c sk k kq1 n
a r« n. Then c G 0. Nown k

k k ka z s « z cÝ Ý Ýk j
0FkFn 0FkFn kFjFn

k ks c « zÝ Ýj
0FjFn 0FkFj

1 jq1jq1 < <G c 1 y « zŽ .Ý j1 q « 0FjFn

1
jq1G c 1 y «Ž .Ý j1 q « 0FjFn

1 y «
s a .Ý k1 q « 0FkFn

� 4nCOROLLARY 1. Let a be a probability distribution satisfying a Fk ks0 k
« a for 1 F k F n, where 0 - « - 1. Then the associated characteristicky1
function satisfies

1 y «
i k ta e G ,Ý k 1 q «0FkFn

for all real t.

4.2. Proof of Theorem 3

Ž .Taking logarithms on both sides of 11 , we obtain

p z [ log P z s p z q p z q q z q n y 1 log z ,Ž . Ž . Ž . Ž . Ž . Ž .n n l r n

2< < Ž . Ž . Ž . wfor z G q d , where q z [ log Q z y n y 1 log z. The nonzeron n3
Ž . Ž . Ž . xproperty of P z follows from that of Q z and 11 .n n

< <yk Ž . Ž .From Lemmas 5 and 7 with a s p z , we deduce that q z s O 1k n, k n
2 3< <uniformly for q d F z F y d . By linearity of recurrence and Lemma3 2

4, we have

2 3< <p z s W log z q h z n q R z , q d F z F y d ,Ž . Ž . Ž . Ž .n n n 3 2
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Ž . Ž . k Ž . Ž .kwhere h z s Ý q z r2 and R z s O log n , uniformly in z. Ob-k G1 2 n
Ž . Ž .serve that h 1 s 0, R 1 s 0 and thatn

h9 1 s ya , h0 1 q h9 1 s b .Ž . Ž . Ž .

Ž . ym n i trs n Ž i trs n. Ž i tŽ X nym n.rs n.Let w t s e P e s E e . By Taylor expansion,n n
< <we have, for t F ds ,n

it it
log w t s y W y a n q WŽ . Ž .n n ns sn n

it h9 1 q h0 1Ž . Ž . 32 y3< <q h9 1 y t q O t s nŽ . Ž .n2ž /s 2sn n

q R eitrs n .Ž .n

Ž .Because R 1 s 0, we have, by analyticity and Cauchy’s integral formula,n

R eiu s R eiu y R 1Ž . Ž . Ž .n n n

eiu y 1 R wŽ .ns dwH iu2p i w y e w y 1Ž . Ž .< <wy1 s2 d

< <s O u log n ,Ž .

< <for u F d . It follows that

log n
itrs n < < < <R e s O t , t F ds .Ž . Ž .n nž /sn

Thus,

2 < < 3t t log n
< < < <w t s exp y q O q t , t F ds . 12Ž . Ž .Ž .n nž /ž /2 s sn n

< Ž . yt 2 r2 < < <We now show that w t y e r t is uniformly small by dividing then
range of t into two parts.

Ž . < < 1r4 < < 3 Ž . Ž . < < Ž .i When t - s , we have t rs s o 1 and log n t rs s o 1 .n n n
Thus,

< yt 2 r2 < yt 2 r2 < OŽ < t < 3 rs nqŽl og n rs n. < t <. <w t y e s e e y 1Ž .n

< < 3t log n2yt r4 < <s O e q t .ž /ž /s sn n
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Ž . 1r4 < < Ž . Ž . yt 2 r2qEnŽ t .ii When s F t F ds , we rewrite 12 as w t s e ,n n n
Ž .where K ) 0 ,

< < 3 2t log n t sn
< < < < < <E t F K q K t F , t F .Ž .n ž /s s 4 4Kn n

w Ž . x < Ž . <So it suffices to take d s 1r 4K . Note that w t F 1, implying thatn
< Ž . < 2 < z < < < < z <E t F t r2. Now using e y 1 F z e for complex z, we obtainn

< yt 2 r2 < yt 2 r2 < EnŽ t . <w t y e s e e y 1Ž .n

< < 3t log n2yt r4 < <s O e q t ,ž /ž /s sn n

< <for t F ds .n

Ž w x.By the Berry]Esseen smoothing inequality cf. 13 , we have

2yt r2w t y e 1Ž .T n
< <sup F x y F x s O dt q .Ž . Ž . Hn ž /t TyTx

Taking T s ds , we obtainn

2yt r2 2
`w t y e t log nŽ .T 2n yt r4dt s O e q dtH H ž /ž /t s syT y` n n

log n
s O ,ž /'n

from which Theorem 3 follows.

Figure 3 shows that the cost of QM satisfies actually a local limit
w xtheorem. This can be proved along a similar line of arguments as in 8 and

the proof techniques of Theorem 3; details are omitted here. Note that the
cost of BUM is not asymptotically normal as is easily seen by the case

k Ž .n s 2 q 1; cf. 18 .

5. AN INVARIANCE PRINCIPLE FOR POWER-
OF-2 RECURRENCES

We discuss the generality of Lemmas 3 and 4 in this section; the results
are needed when studying optimal variance of the cost of mergesorts. We
show that the results of Lemmas 3 and 4 are invariant for the more
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FIG. 3. The cost distribution of QM for n s 10, 12, . . . , 50.

general recurrence f s g and1 1

f s f ? log u n @ q f ? log u n @ q g , n G 2 , 13Ž . Ž .2 2n 2 ny2 n

1 2provided that F u - 1 is a fixed constant. Thus u s is not a ‘‘magic2 3

number.’’

Ž .THEOREM 4 Invariance Principle . Assume that f satisfies the recur-n
1Ž . Ž .rence 13 with F u - 1. Then f rn ª l - ` iff g s o n andn n2

Ý g jr2 j s l.jG 0 2

The same result subsists for the corresponding recurrence with the floor
function replaced by the ceiling function: f s g and1 1

f s f u log u n v q f u log u n v q g , n G 2 , 14Ž . Ž .2 2n 2 ny2 n

1 1 wwhere - u F is a fixed constant. This generalizes the max power-of-24 2
xrule. Because the proof of this result is similar, we omit the details.

Also the same algorithmic interpretation as that given in the final
paragraph of Section 2 applies.

Ž .For the proof of Theorem 4, it suffices cf. the proof of Lemma 3 to
derive the following exact formula generalizing Lemma 2.
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Ž .PROPOSITION 1. The solution f to the recurrence 13 satisfiesn

n
jf s y 1 g q gÝn 2 njž / jž /20FjFL

q z g jq 1 q b y z g j , n G 1 , 15Ž . Ž .Ž .Ý ž /j 2 j j n qb 2j j
0FjFLy1

where

n
z s u 1 q , j s 0, 1, . . . , L y 1 .Ž .j ½ 5jq1ž /2

Proof. Observe first that

0, if 2 Ly1 F u n - 2 L ;
z sLy1 ½ L Lq11, if 2 F u n - 2 ;

? @ Ly1 ? @ Lthus log u n s 2 if z s 0 and log u n s 2 if z s 1. Like-2 Ly1 2 Ly1
? @ j ? @wise, z is either 0 or 1 according as log u n s 2 or log u n sj 2 jq1 2 jq1

2 jq1, respectively. Note that

f L s 2 f Ly 1 q g L s 2 Ly j g j .Ý2 2 2 2
0FjFL

We divide the discussions into four cases.

Ž . Ž .1. b , z s 0, 0 . ThenLy1 Ly1

f s f q f Ly 1 q g .n n 2 nLy 1

Ž . Ž .2. b , z s 0, 1 . ThenLy1 Ly1

f s f L q f L q gn 2 ny2 n

s f Ly 1 q f Ly 1 q f L q g q g L2 2 ny2 n 2

s f q f Ly 1 q g q g L y g ,n 2 n 2 nLy 1 Ly1

because z s 1, for z s 1 implies that u n G 2 L. Thus,Ly2 Ly1

n
y1 yLqju F s 1 q b 2Ý jL2 0FjFLy2

n
yLqjq1F 1 q b 2 s 1 q ,Ý j ½ 5Ly120FjFLy2
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which in turn yields u n G 2 Ly1.Ly1

Ž . Ž .3. b , z s 1, 0 . Using the inequalities,Ly1 Ly1

2 Ly1 F u n y 2 Ly1 - 2 L ,Ž .
we obtain

f s f Ly 1 q f Ly 1 q gn 2 ny2 n

s f q f Ly 1 q f Ly 1 q g q g Ly 1 .n 2 2 n ny2Ly 1

Ž . Ž .4. b , z s 1, 1 . ThenLy1 Ly1

f s f L q f L q gn 2 ny2 n

s f q f Ly 1 q f Ly 1 q g q g L .n 2 2 n 2Ly 1

The previous four equations for f can be encapsulated into one,n

f s f s f q 1 q b f Ly 1 q g q z g LŽ .n n n Ly1 2 n Ly1 2L Ly1 L

q b y z g Ly 1 .Ž .Ly1 Ly1 n qb 2Ly 1 Ly1

Ž . Ž .Iterating and simplifying this equation using 4 , we obtain 15 .
2Ž .An interesting by-product of 15 is that when u s ,3

2 n
b s z s 1 q ,j j ½ 5jq1ž /3 2

for j s 0, 1, . . . , L.
Lemma 4 bears the following general form.

Ž . Ž .LEMMA 8. If g s O 1 then the solution to the recurrence 13 satisfiesn
Ž . j

jf s ln q O log n , where l s Ý g r2 .n jG 0 2

This result has an important application to the variance of the cost of
mergesort; see the next section.

1Ž .The invariance principle fails or takes different forms if u - . For2
1 LŽ .example, if u s , then 13 reduces for n s 2 to4

f L s f Ly 1 q f Ly 2 q g L y g Ly 1 q g Ly 1 Ly2 ,2 2 2 2 2 2 q2

Žwhich implies that the asymptotic nature is similar linear difference
.equation but the technicalities are much more complicated. Roughly, the

expression of the leading constant will be different. In particular, the
discrepancy of the sizes of the two subproblems increases when u becomes
smaller. Consequently, the total cost is nondecreasing, rendering these
divide-and-conquer variants less attractive from a practical point of view.
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6. OPTIMAL MERGESORTS

In this section we consider optimal mergesorts in the average and
variance cases. Our model is restricted to those mergesorts merging two
subfiles at each stage and using linear merge as the unï ersal merging scheme.

ŽOur main results state that TDM is average-case optimal it uses the least
.number of comparisons in the average case and that QM is asymptotically

Ž .optimal actually for n G 28 with obvious modifications for small n as far
as the variance is concerned. Also we show that QM is not the unique
mergesort with this latter property: every mergesort whose underlying

1? log u n@ ? log u n@2 2Ž .dividing rule satisfies n ¬ 2 , n y 2 with F u - 1 enjoys2

the same property!

6.1. A¨erage Case

Our problem here is to find the indices achieving the minimum of the
Ž .recurrence: U 1 s 0 and

U n s min U j q U n y j q u j, n y j , n G 2 ,� 4Ž . Ž . Ž . Ž . Ž .
1FjFny1

Ž . Ž .where u x, y is defined in 7 .
? @ Ž .We show that j s nr2 TDM is the optimal choice.

THEOREM 5. The a¨erage-case optimal mergesort is to dï ide as e¨enly as
possible at each recursï e stage.

Proof. By induction on n. The result is obvious for n s 2, 3. Assume
? @n G 4. We show that for 1 F j - nr2 ,

n n
D [ U j q U n y j q u j, n y j y U y UŽ . Ž . Ž . ž / ž /2 2

n n
yu , )0.ž /2 2

? @By induction, we have for 1 F j - nr2 ,

U j q U n y j q u j, n y jŽ . Ž . Ž .
j j j j n y j

s U q U q u , q Už / ž / ž / ž /2 2 2 2 2

n y j n y j n y j
qU q u , q u j, n y j . 16Ž . Ž .ž / ž /2 2 2
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1. If one of j or n y j is even, then

j n y j n j n y j n
q s and q s .

2 2 2 2 2 2

Ž . ? @Thus, by 16 , we have, for 1 F j - nr2 ,

j j n y j n y j j n y j
D s u , q u , y u ,ž / ž / ž /2 2 2 2 2 2

j n y j n n
y u , q u j, n y j y u , .Ž . ž /ž /2 2 2 2

By straightforward computations,

u x , y q u z , w y u x , z y u y , w q u x q y , z q wŽ . Ž . Ž . Ž . Ž .
yu x q z , y q wŽ .

s z y y w y xŽ . Ž .
1 1

= q½ y q 1 z q 1 x q 1 w q 1Ž . Ž . Ž . Ž .

x q y q z q w q 2 x q y q z q w q 1Ž . Ž .
y ,5x q y q 1 x q z q 1 y q w q 1 z q w q 1Ž . Ž . Ž . Ž .

� 4and the terms in can be shown to contain only positive terms of x, y, z,
w. Thus D ) 0.

2. If both j and n y j are odd, then

j n y j n j n q j n
q s and q s .

2 2 2 2 2 2

Thus,

j j n y j n y j j n y j
D s u , q u , y u ,ž / ž / ž /2 2 2 2 2 2

j n y j n n
y u , q u j, n y j y u , .Ž . ž /ž /2 2 2 2

Proceeding in a similar way as in the previous text, we can show that
D ) 0.
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This completes the proof.

6.2. Variance

The first problem here is to find the indices minimizing the recurrence:
Ž .V 1 s 0 and

V n s min V j q V n y j q ¨ j, n y j , n G 2 ,� 4Ž . Ž . Ž . Ž . Ž .
1FjFny1

Ž . Ž .where ¨ x, y is defined in 8 .
Ž . Ž .We show that V n s b n q O log n , implying that the variance of QM

Ž Ž ..j s r n is asymptotically minimal. Numerical data show that the mini-
Ž .mum is attained at j s r n for n / 6, 10, 11, 12, 13, 21, . . . , 27.

THEOREM 6. The ¨ariance of QM is asymptotically optimal in the sense
Ž . w q x Ž .that V n s V q O log n .n

Proof. Obviously,

V n F V w q x s b n q O log n .Ž . Ž .n

On the other hand,

V n G min V j q V n y j q min ¨ j, n y j .� 4Ž . Ž . Ž . Ž .
1Fj-n 1Fj-n

Ž .Because j ¬ ¨ j, n y j is convex and symmetric for fixed n, we have

2n n 2n n y 2Ž .
min ¨ j, n y j s ¨ , G g n [ ,Ž . Ž . 2ž /2 21Fj-n n q 2 n q 4Ž . Ž .

n G 2 .Ž .

Ž .But g n is increasing and strictly concave for n G 2. By the Hammersley
Ž w x.and Grimmett result cf. 7 , we deduce that the minimum of the recur-

Ž .rence f 1 s 0 and

f n s min f j q f n y j q g n , n G 2� 4Ž . Ž . Ž . Ž . Ž .
1Fj-n

Ž .is attained at j s r n . Thus,

f n s f r q f l q g n , n G 2 .Ž . Ž . Ž . Ž . Ž .

Now applying Lemma 4, we obtain

f n s b n q O log n ,Ž . Ž .

This completes the proof.
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Ž .Now let MM u denote the set of mergesorts whose costs are described by
Ž . Ž .the recurrence 13 , where g denotes the cost of linearly merging twon

sorted subfiles of sizes 2 ? log 2 u n@ and n y 2 ? log 2 u n@.

Ž .THEOREM 7. The ¨ariance of the cost of any mergesort belonging to MM u
1is asymptotically optimal for any fixed u , F u F 1 y d , d ) 0.2

Proof. Because

n u
? log u n@2F n - 2 F u n F 1 y d n ,Ž .

4 2

the theorem follows from the boundedness of g ,n

g s ¨ 2 ? log 2 u n@ , n y 2 ? log 2 u n@ s O 1 ,Ž . Ž .n d

Lemma 8 and the preceding theorem.
1Ž .Similarly, mergesorts whose costs are described by 14 with - u F4

1 1y d possess the same property. But the case u s has to be excluded as2 2

discussed earlier.

APPENDIX

For completeness and for convenience of the reader, we list the exact
solutions of the divide-and-conquer recurrences based on half]half and
max power-of-2 rules.

The solution to the recurrence f s g and1 1

f s f q f q g , n G 2Ž .n ? n r2 @ u n r2 v n

Ž w x.is given by cf. 8 ,

n n
j

j jf s 2 1 y g q g , n G 1 . 17Ž . Ž .Ýn ? n r2 @ ? n r2 @q1½ 5 ½ 5j jž /2 20FjFL

The solution to the recurrence f s g and1 1

f s f u log n r2 v q f u log n r2 v q g , n G 2Ž .2 2n 2 ny2 n

Ž w x .satisfies cf. 12 or the proof technique of Lemma 2 ,

n
j 1r2Žn.f s g q b g y g , n G 1 , 18Ž . Ž .Ýn 2 j n 2jž /j20FjFL
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Ž . jwhere ¨ n is the dyadic valuation of n, namely, the largest j for which 22
divides n.
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