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Improving Minimum Cost Spanning Trees by Upgrading 
Nodes? 

S. 0. Krumket M. V. Marathel H. Noltemeiert R. Ravis 
R. SundaramlI H.-C. Wirtht 

S. S. Ravia 

Abstract 
We study budget constrained network upgrading problems. We are given an undirected 

edge weighted graph G = (V, E) where node v E V can be upgraded at a cost of c(v). 
This upgrade reduces the weight of each edge incident on v. The goal is to find a min- 
imum cost set of nodes to be upgraded so that the resulting network has a minimum 
spanning tree of weight no more than a given budget D. The results obtained in the 
paper include the following: 

1. On the positive side, we provide a polynomial time approximation algorithm for 
the above upgrading problem when the difference between the maximum and 
minimm edge weights is bounded by a polynomial in n, the number of nodes in 
the graph. The solution produced by the algorithm satisfies the budget constraint, 
and the cost of the upgrading set produced by the algorithm is O(log n) times the 
minimum upgrading cost needed to obtain a spanning tree of weight at most D. 

2. In contrast, we show that, unless NP C: DTIME(no[log'ogn)), there can be no poly- 
nomial time approximation algorithm for the problem that produces a solution 
with upgrading cost at most 01 < Inn times the optimal upgrading cost even if 
the budget can be violated by a factor f (n), for any polynomial time computable 
function f (n). This result continues to hold, with f (n) = nk being any polynomial, 
even when the difference between the maximum and minimum edge weights is 
bounded by a polynomial in n. 

3. Finally we show that using a simple binary search over the set of admissible val- 
ues, the dual problem can be solved with an appropriate performance guarantee. 
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1 Introduction and Problem Formulation 
1.1 Motivation 

Several problems arising in areas such as communication networks and VLSI design can 
be expressed in the following general form: Enhance the performance of a given network 
by upgrading a suitable subset of nodes. In communication networks, upgrading a node 
corresponds to installing faster communication equipment at that node. Such an upgrade 
reduces the communication delay along each edge emanating from the node. In signal 
flow networks used in VLSI design, upgrading a node corresponds to replacing a circuit 
module at the node by a functionally equivalent module containing suitable drivers. Such 
an upgrade decreases the signal transmission delay along the wires connected to the module 
[PS95]. Usually, there is a cost associated with upgrading a node, and this motivates the 
study of problems of the following type: find an upgrading set of minimum cost so that the 
resulting network satisfies certain performance requirements. 

The performance of the upgraded network can be quantified in a number of ways. In 
this paper, we consider the weight of a minimum spanning tree in the upgraded network 
as the performance measure. We show that this network problem is NP-hard. So, the focus 
of the paper is on the design of efficient approximation algorithms. 

1.2 Preliminary Definitions 

1.2.1 Node upgrade model 

The node based upgrading model discussed in this paper can be formally described as follows. 
Let G = (V, E)  be a connected undirected graph. For each edge e E E, we are given three 
integers do(e) 2 d1 (e) 2 d2(e) 2 0. The value di(e) represents the length or delay of the 
edge e if exactly i of its endpoints are upgraded. 

Thus, the upgrade of a node v reduces the delay of each edge incident on v. The (integral) 
value c(v) specifies how expensive it is to upgrade the node v. The cost of upgrading all 
vertices in W C V, denoted by c(W),is equal to xv,wc(v).  

V of vertices, denote by dw the edge weight function resulting from 
the upgrade of the vertices in W; that is, for an edge (u, v) E E 

Given a set W 

d w ( u , v )  := di (u ,v)  where i = /W n {u,v}/. 

Our model is a generalization of the node upgrade model introduced by Paik and Sahni 
in [PS95]. In their model, the reduction in edge weight resulting from an upgrade of nodes 
is determined by a constant 0 < a < 1 in the following way: if exactly one endpoint of an 
edge is upgraded, then its weight is reduced by the factor K; if both endpoints are upgraded, 
the weight is reduced by the factor a2. Clearly, the Paik-Sahni model is a special case of the 
node upgrade model used in this paper. 

1.2.2 Background Bicriteria Problems and Approximation 

The problem considered in this paper involves two optimization objectives, namely, the 
upgrading cost and the weight of a minimum spanning tree in the upgraded network. 
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A framework for such bicriteria problems has been developed in [MR+95]. Since this frame- 
work is used throughout this paper, we briefly review the relevant definitions from [MRS95]. 

A generic bicriteria problem can be specified as a triple (f ,  g ,  r )  where f and g are two 
objectives and r specifies a class of subgraphs. An instance of a bicriteria problem specifies 
a budget on the objective g. A subgraph in the class r is a valid solution if it satisfies this 
budget constraint. The goal is to find a valid solution that minimizes the objective f. 

Using this notation, the problem treated in this paper can be expressed as (NODE UP- 
GRADING COST, TOTAL WEIGHT, SPANNING TREE). The interpretation of this notation is 
that the budgeted objective is the weight of a minimum spanning tree in the upgraded net- 
work, and the goal is to minimize the upgrade cost. 

Definition 1 (Approximation Algorithm) A (polynomial time) algorithm for a bicvitevia prob- 
lem (f, g ,  r )  is said to have performance (a,  @), f i t  has thefollowing property: For any instance o f  
( f ,  g ,  T),  the algorithm 

I .  either produces a solutionfiom the subgraph class r for which the value o f  objective g is at 
most @ times the specified budget and the value ofobjective f is at most a times the minimum 
value o f a  solutionfrom r that sati$ies the budget constraint, or 

2. correctly provides the i@rmation that there is no subgraphfiom r which satisfies the budget 
constraint on g .  

1.3 Problem Definition 
We denote the total length of a minimum spanning tree (MST) in G with respect to the 
weight function dw by MST( G ,  dw). 

Definition 2 (Upgrading MST Problem) Given an edge and node weighted graph G = (V, E) 
as above and a bound D, the upgrading minimum spanning tree problem, denoted by (NODE 
UPGRADING COST, TOTAL WEIGHT, SPANNING TREE), is to upgrade a set W C V $nodes 
such that MST(G, dw) 5 D and c(W) is minimized. 

The problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE) is formu- 
lated by specifying a budget on the weight of a tree while the upgrading cost is to be mini- 
mized. We will refer to this problem as the primal problem. It is also meaningful to consider 
the corresponding dual problem, denoted by (TOTAL WEIGHT, NODE UPGRADING COST, 
SPANNING TREE), where we are given a budget on the upgrading cost and the goal is to 
minimize the weight of a spanning tree in the resulting graph. 

Definition 3 (Dual Upgrading MST Problem) Given an edge and node weighted graph G = 
(V, E)  us above and a bound B on the upgrading cost, the problem (TOTAL WEIGHT, NODE UP- 
GRADING COST, SPANNING TREE), is to upgrade a set W C V @nodes such that c(W) < B and 
MST( G , dw) is minimized. 

There is a close relationship between the approximabilities of the primal and the dual 
problems. We will show in Section 3 that a good bicriteria approximation algorithm for one 
of the problems can be used to design a good approximation algorithm for the other one in 
a generic way; that is, given an (a, 0)-approximation algorithm for the problem (NODE UP- 
GRADING COST, TOTAL WEIGHT, SPANNING TREE), one can obtain a (6, a)-approximation 
algorithm for the problem (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE). 
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2.1 Summary of Results 
We derive our approximation results under the following assumption: 

Assumption 4 There is a polynomial p such that Do - D2 5 p(n),  where Do := maxeEE do(e) 
and D2 := mineEE dz(e) are the maximum and minimum edge weight respectively, and n denotes 
the number $nodes in the graph. 

Summary of Results and Related Work 

The main results of this paper are as follows. 

1. 

2. 

3. 

We present a polynomial time approximation algorithm, which for any fixed E > 0, 
provides a performance guarantee of (( 1 + E)20(logn), 1) for any instance of (NODE 
UPGRADING COST, TOTAL WEIGHT, SPANNING TREE) satisfying Assumption 4. 

In contrast, we show that Unless NP C DTIME(n"(loglOgn)), there can be no polyno- 
mial time approximation algorithm for (NODE UPGRADING COST, TOTAL WEIGHT, 
SPANNING TREE) with a performance of (a, f (n)) for any a < Inn and any polyno- 
mial time computable function f. This result continues to hold, with f(n) = nk being 
any polynomial, even when Assumption 4 holds. 

We also show that using a simple binary search over the set of admissible values, an 
approximation algorithm with a performance guarantee of ( 1 ) (1 + &)28(log n) ) can be 
obtained for any instance of the dual problem (TOTAL WEIGHT, NODE UPGRADING 
COST, SPANNING TREE) satisfying Assumption 4. 

It should be noted that our approximation algorithm for the problem (NODE UPGRADING 
COST, TOTAL WEIGHT, SPANNING TREE) produces solutions in which the budget constraint 
is strictly satisfied. This is unlike many bicriteria network design problems where it is nec- 
essary to violate the budget constraint to obtain a solution that is near-optimal with respect 
to the objective function [MR+95]. 

2.2 Related Work 

As mentioned earlier, a simpler node upgrading model has been considered by Paik and 
Sahni [PS95]. Under their model, Paik and Sahni studied the upgrading problem for several 
performance measures including the maximum delay on an edge and the diameter of the 
network. They presented NP-hardness results for several problems. Their focus was on 
the development of polynomial time algorithms for special classes of networks (eg. trees, 
series-parallel graphs) rather than on the development of approximation algorithms. Our 
constructions can be modified to show that all the problems considered here remain NP- 
hard even under the Paik-Sahni model. 

While in this paper we choose the total weight of a minimum spanning tree as a measure 
of the performance of the upgraded network, there are other useful performance measures. 
One of these measures, namely the bottleneck weight of a minimum bottleneck spanning 
tree, leads to the problem (NODE UPGRADING COST, BOTTLENECK WEIGHT, SPANNING 
TREE). This bottleneck problem has been investigated in [KMs97]. 
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Edge-based network upgrading problems have also been considered in the literature 
[Ber92, KNf96b, KN+96a]. There, each edge has a current weight and a minimum weight 
(below which the edge weight cannot be decreased). Upgrading an edge corresponds to 
decreasing the weight of that particular edge, and there is a cost associated with such an up- 
grade. The goal is to obtain an upgraded network with the best performance. In [KNf96bl 
the authors consider the problem of edge-based upgrading to obtain the best possible MST 
subject to a budget constraint on the upgrading cost and present a (1 + E ,  1 +l /&)-approxima- 
tion algorithm. Generalized versions where there are other constraints (e.g. bound on maxi- 
mum node degree) and the goal is to obtain a good Steiner tree, are considered in [KN+96a]. 
Other references addressing problems that can be interpreted as edge-based improvement 
problems include [FS096, HT97, Phi931. 

3 Dual Problems and Approximability 
In this section we formally state and prove our claim from Section 1.3 that the dual problems 
defined in this paper are closely related with respect to their approximability. 

Lemma 5 If there exists an approximation algorithm for the problem (NODE UPGRADING COST, 
TOTAL WEIGHT, SPANNING TREE) with a pe$ormance 4 (a, @), then there is an approximation 
algorithm for the problem (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) with 
peformance of (6 , a). 

Proof. Let A be an ( a, 6)-approximation algorithm for (NODE UPGRADING COST, TOTAL 
WEIGHT, SPANNING TREE). We will show how to use A to construct a (6, a)-approximation 
algorithm for the dual problem. 

An instance of (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) is spec- 
ified by a graph G = (V, E), the node cost function c, the weight functions di, i = 0,1, 2, 
on the edges and the bound B on the node upgrading cost. We denote by OPT the opti- 
mum weight of an MST after upgrading a vertex set of cost at most B. Observe that OPT 
is an integer such that (n - 1)Dz 5 OPT 5 (n - 1)Do where D2 := mineE~ dz(e) and 
Do := maxeEE do(e). 

We use binary search to find the minimum integer D such that (n- 1 ) D2 5 D 5 (n- 1 )Do 
and algorithm A applied to the instance of (NODE UPGRADING COST, TOTAL WEIGHT, 
SPANNING TREE) given by the weighted graph G as above and the bound D on the weight of 
an MST after the upgrade, outputs an upgrading set of cost at most aB. It is easy to see that 
this binary search indeed works and terminates with a value D 5 OPT. The corresponding 

0 upgrading set W then satisfies MST(G, dw) 5 PD 5 @OPT and c(W) 5 aB. 
Using a similar technique, one can also establish the following result: 

Lemma 6 If there exists an approximation algorithm for fhe problem (TOTAL WEIGHT, NODE 
UPGRADING COST, SPANNING TREE) with a peformance of (a, 6)/ then there is an approxima- 
tion algorithm for the problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE) 

0 

In view of Lemma 5, the next section focuses on the development of an approximation 

with peformance of ( f i ,  a). 

algorithm for the problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE). 
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4 The Algorithm 
In this section we develop our approximation algorithm for the (NODE UPGRADING COST, 
TOTAL WEIGHT, SPANNING TREE) problem. Without loss of generality, we assume that 
for a given instance of (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE), the 
bound D on the weight of the minimum spanning tree after the upgrade satisfies D 2 
MST( G ,  dz), since no upgrade strategy can shorten an edge e E E below dz(e), and therefore 
it is impossible to obtain a minimum spanning tree of weight strictly lower than MST( G , d2) 
in our upgrading model. Thus, we can assume that there always exists a subset of the nodes 
which, when upgraded, leads to an MST of weight at most D. We remind the reader that 
our algorithm also uses Assumption 4 (stated in Section 2) regarding the edge weights in 
the given instance. 

4.1 Overview of the Algorithm 

Our approximation algorithm can be thought of as a local improvement type algorithm. To 
begin with, we compute an MST in the given graph with edge weights given by do (e). This 
value equals dw( e) for the initial case W = 0, where W C V is the set of upgraded nodes 
maintained by the algorithm. During each iteration, we select a node and a subset of its 
neighbors and upgrade them by adding them to the set W. The policy used in the selection 
process is that of finding a set which gives us the best ratio improvement, which is defined 
as the ratio of the improvement in the total weight of the spanning tree to the total cost 
spent for upgrading the chosen nodes. Having selected such a set, we recompute the MST 
and repeat our procedure. The procedure is halted when the weight of the MST is at most 
the required bound D. To find a subset of nodes with the best ratio improvement in each 
iteration, we use an approximate solution to the Two Cost Spanning Tree Problem defined 
below. 

Definition 7 (Two Cost Spanning Tree Problem) Given a connected undirected graph G = (V, E), 
two edge weightfunctions, c and 1, and a bound B,find a spanning tree T 4 G such that the total 
cost c(T) is at most B and the total cost L(T) is a minimum among all spanning trees that obey the 
budget constraint. 

In the framework of bicriteria problems, the above problem can be expressed as (1- 
TOTAL WEIGHT, C-TOTAL WEIGHT, SPANNING TREE). This problem has been addressed 
by Ravi and Goemans [RG96] who obtained the following result. 

Theorem 8 For all E > 0, there is a polynomial time approximation algorithm for the Two Cost 
Spanning Tree problem with a performance 4 ( 1 ,  I + E ) .  0 

4.2 Algorithm and Performance Guarantee 

The remainder of Section 4 is devoted to a proof of the following theorem. 

Theorem 9 For anyfixed E > 0, there is a polynomial time approximation algorithm that provides 
a performance guarantee 4 ( ( I  + &)20(logn), 1 ) f i r  any instance 4 (NODE UPGRADING COST, 
TOTAL WEIGHT, SPANNING TREE) satifiing Assumption 4. 
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ALGORITHM UPGRADE MST(R) 
0 Input: A graph G = (V,E), three edge weight functions do 2 dl 2 d2, a node weight 
function c, and a number D, which is a bound on the weight of an MST in the upgraded 
graph; a “guess value” R for the optimal upgrading cost. 

1. 
2. 
3. 
4. 

Initialize the set of upgraded nodes: WO := 0. 
Let To := MST(G, dwo). 
Initialize the iteration count: i := 1. 
Repeat the followhg steps until the current tree Ti-1 and the weight function dwi-, 
satisfy the condition dwi-, (Ti-1) 5 D: 

Output: 

Let Ti-, := MST( G ,  dW,-,) be an MST w.r.t. the weight function dw,-, . 
Call Procedure COMPUTE QC to find a marked claw C with ”good” quotient cost 
q (C). Procedure COMPUTE QC is called with the graph G, the current MST Ti-,! 
the current weight function dwi-, and the bound n. 
If Procedure COMPUTE QC reports failure, then report failure and stop. 
Upgrade the marked vertices M( C) in C: Wi := Wi-1 U M( C). 
Increment the iteration count: i := i + 1. 

A spanning tree with weight at most D, such that total cost of upgrading the 
nodes is no more than (1 + &)a - O(logn), provided 0 2 OPT. Here, OPT denotes the 
optimal upgrading cost to reduce the weight of an MST to be at most D. 

Figure 1: Approximation algorithm for node upgrading under total weight constraint. 

The algorithm referred to Theorem 9 is obtained by executing ALGORITHM UPGRADE MST 
(shown in Figure 1) for a polynomial number of values of the parameter !2. (Details re- 
garding the values of R used by the algorithm appear in Section 4.5.) ALGORITHM UP- 
GRADE MST uses Procedure COMPUTE QC whose description appears in Figure 2. 

Before we embark on a proof of the performance guarantee stated in Theorem 9, we 
give the overall idea behind the proof. Recall that each basic step of the algorithm consists 
of finding a node and a subset of neighbors to upgrade. 

Definition 10 (Claw) A graph C = (V, E) is called a claw, tf E is 4 the form E = { (v, w) : w E 
V \ {v}} for some node v E V. The node v is said to be the center $the claw. A claw with at least 
two nodes is called R nontrivial claw. 

Notice that a claw’s center is not uniquely determined if the claw contains less than three 
nodes. 

Let W be a subset of the nodes upgraded so far and let T be an MST with respect to dw; 
that is, T = MST(G, dw). For a claw C with nodes M(C) C C marked, we define its quotient 
cost q(C) to be 

In other words, q (C)  is the cost of the vertices in M( C) divided by the decrease in the weight 
of the MST when the vertices in M( C) are also upgraded and edges in the current tree T can 
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be exchanged for edges in the claw C. Notice that this way the real profit of upgrading the 
vertices M( C) is underestimated, since the weight of edges outside of C might also decrease. 

Our analysis shows that in each iteration, there exists a claw of quotient cost at most 
dw(T)-D’ where T is an MST at the beginning of the iteration and W are the nodes upgraded OPT 

so far. Essentially this means, that in each iteration there is a claw whose quotient cost is 
bounded by the ratio of twice the optimum cost and the remaining effort. We can then use a 
potential function argument to show that this yields a logarithmic performance guarantee. 

4.3 Bounded Claw Decompositions 
Definition 11 Let G = (V, E) be a graph and W 5 V a subset of marked vertices. Let K 2 1 be 
an integer constant. A K-bounded claw decomposition of G with respect to W is a collection 
C1, . . . , C, nontrivial claws, which are all subgraphs o f  G,  with the following properties: 

1. Ui=:=, V(Ci) = V and U:=:=, E( Ci) = E. 
2. No nodeporn W appears in more than K claws. 
3. The claws are edge-disjoint. 
4. I f a  claw Ci contains nodeseom W, then its center also belongs to W. 

Lemma 12 Let F be aforest in G = (V, E)  and let W G V be a set @marked nodes. Then there is a 
2-bounded claw decomposition @F with respect to W. 

Proof. We show how to decompose each tree T in the forest F to get a 2-bounded decom- 
position. 

If each node in T has degree one, then T consists of a single edge which is a nontrivial 
claw. Otherwise, let v be an arbitrary vertex of degree at least two where at least one of its 
neighbors is of degree one. If all neighbors of v are of degree one, then T is again already a 
nontrivial claw and we are done. 

Let N, be the neighbors of v in T which are of degree one. Construct a claw C, by 
selecting as its vertex set N, U {v}. Remove the vertices in N, from T. Call the resulting tree 
T’. Observe that T’ consists of at least two vertices. 

Repeat the above procedure with T’ until we end up with a single claw. Add this claw 
to the collection of claws. Since each vertex appears in at least one and in at most two of the 
claws C,, the claim now follows. 0 

In the sequel we will make heavy use of the following simple lemma. 

Lemma 13 Let TH be a minimum spanning tree o f a  graph H with edge weights given by d. For any 
additional edge e to be added to H, ifT’ = MST(TH U {e}) is a minimum spanning tree in TH u {e}, 

0 then T‘ is also a minimum spanning tree in H U {e}. 

Lemma 14 Let H be a spanning subgraph @ a  graph G = (V, E) with edge weights given by d. Let 
S C E be a set $edges, and let f $4 H U S be an additional edge. Then, 

MST(H U S) - MST(H U S U f )  5 MST(H) - MST(H U f), (1) 

that is, the net projitfiom using an edge f in terms @decreasing the weight $an MST can never be 
increased with the help @a set S @edges added together with f. 
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PROCEDURE COMPUTE QC (n) 
0 Input: A graph G = (V, E), a spanning tree T and a weight function d on E; W C V is the 
set of upgraded nodes; a ”guess” for the optimal upgrading cost. 

1. Let s := [log,+, nl. 
2. For eachnodev @Wand allK E {1,(1 + ~ ) , ( 1  + E ) ~  ,... , ( 1   do 

(a) Set up an instance I,,K of the Two Cost Spanning Tree ProbEem as follows: 
0 The vertex set of the graph G, contains all the vertices in G and an additional 

”dummynode”x. 
0 There is an edge (v, x) joining v to the dummy node x of length L(v, x) = 0 
and cost c(v,x) = c(v) thus modeling the upgrading cost of v. 

0 For each edge (v, w) E E, G, contains two parallel edges h and hup. The 
edge h models the situation where w is not upgraded, while hup models an 
upgrade of w: 

c(h)  := 0 c(hup) := 0, if w E W 
L(h) := d2(v,w), ifw E W c(hUp) := c(w),  ifw @ W 
L(h) := dl(v,w), ifw $- W L(hup) := ~ z ( v , w ) .  

0 For each edge (u,w) E T, there is one edge (u,w) E E which has length 

0 The bound B on the c-cost of the tree is set to K. 
L(u, W )  = d(u,w) and cost C(U, W )  = 0. 

(b) Using the algorithm mentioned in Theorem 8, find a tree of c-cost at most (1 + E)K 
and L-cost no more than that of a minimum budget K bounded spanning tree (if 
one exists). Let T V , ~  be the tree produced by the algorithm. 

3. If the algorithm fails for all instances I V , ~  then report failure and stop. 
4. Among all the trees T V , ~  find a tree T,*,K* which minimizes the ratio c(T,-,K*)/( d(T) - 

5. Construct a marked claw C from TV*,~* as follows: 
0 The center of C is v* and v* is marked. 
0 The edge (v* , w) is in the claw C if T,*,K* contains an edge between vx and w. The 

node w is marked if and only if the edge in TV* ,~*  between v* and w has c-cost 
greater than zero. 

L(Tv*,K* 1. 

0 Output: A marked claw C (with its center also marked) with quotient cost q (C)  satisfying 
4(C) I2(1 + E )  ’ OPT and cost c(M(C)) 5 (1 + E)O. 

Figure 2: Algorithm for computing a good claw. 
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c = c(v) 
0 

1 = 0  Dummy x 

Figure 3: Example of an instance I V , ~  of Two Cost Spanning Tree Problem constructed by Pro- 
cedure COMPUTE QC. Edges in the current MST are indicated by thick lines. The vertex w 
is not contained in the current upgrading set. 

Proof. We show the claim by induction on ISI. The claim is trivial if S is empty. Now let 
IS1 = k + 1, S = S’ U {e}, and let the claim hold for all sets of cardinality k. 

By induction hypothesis, we have for the set S’ that 

MST(H U S’) - MST(H U S’ U f )  5 MST(H) - MST(H U f ) .  (2) 

Thus it suffices to show that MST(H U S) - MST(H u S u f) is bounded by the left hand side 
of (2). 

Let Ts/ := MST(H U S’) and TS := MST(H u S). Notice that by Lemma 13 we can also 
write Ts as Ts = MST(Ts/ U e). Hence TS differs from Ts/ by at most one edge swap; that 
is, we can obtain TS from Tsl by inserting edge e and removing a heaviest edge e’ on the 
cycle CL induced by e in Tsl. (Here, we explicitly allow the possibility that e = e‘, in which 
case TS = Tst). 

We now estimate the weight difference between TS I and MST( H U S ‘ U f ) = MST( Ts I U f ) . 
Let C i  be the cycle induced by the additional edge f in Tsl. If e’ is not on Ci, then C i  is also 
exactly that cycle which edge f induces in Ts. Thus, in this case we get that 

(3) MST(H U S) - MST(H U S U f) = MST(H U S’) - MST(H U S’ U f) 

since the weights of both T s ~  and TS decrease by the difference of the weight of the heaviest 
edge on Cf and d(f). 

In the other case, the edge e’ swapped out of Tsl in exchange for e is on Ci.  Clearly, e’ 
must be a heaviest edge on the cycle CL that is induced by e in TS,. Thus, all edges on CL 
have weight at most that of e’. 

The cycle which f induces in TS contains only edges from CL u Ci.  Since all the edges 
on CL have weight at most d(e‘), this implies that the edge f can only replace edges in TS of 
weight at most that of a heaviest edge in CL. But this means that 

d(Ts) - MST(Ts U f )  5 max d(h )  - d(f)  = d(T4) - MST(Ts U f ) .  
hECL 

In other words, we have that 

MST(H U S) - MST(H U S U f )  5 MST(T U S’) - MST(T U S‘ U f ) .  (4) 
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Now using (3) or (4), respectively, together with the induction hypothesis stated in (2) yields 
the lemma. 0 

Lemma 15 Let T be a spanning tree qf G and let T' be an MST with respect to some weightfinc- 
tion d on the edges. Let A := T' \ T be the edge dflerence set $the trees. Then there is a nonnegative 
function e H u(e), e E A, with thefollowing properties: 

1. xeEA u(e)  = d(T) - d(T'). 

2. For any subset A A, 

d(T) - MST(T U A) 2 u(e) .  
eEA 

Proof. Let A = {el, . . . ) ek), and define function u by 
u(ej)  := MST(T U {el,.  . . , ej-i}) - MST(T U {el,. . . , ej}), j = 1,. . . , k. 

The first claim of the lemma is now obvious. Thus, we need to consider only the second 
claim. 

Let A = {ei,, . . . ) ei,) C A, with i.1 5 . .. 5 &. Write Aj := {ei E A 1 i 5 ij} and 
Aj := Aj n A. Notice that A0 = 0 and A, = A. With these definitions, we have 

u(ei j )  = MST(T U (Aj \ ei j ) )  - MST(T U Aj). 

Furthermore, 
d(T)  - MST(T U AT) 

= 2 (MST(T U Aj-1) - MST(T U Aj)) 
j=l 

= (MST(T U Aj-1) - MST(T U Aj-1 U e+)) 
j=l  

and by Lemma 14 applied to H := T U Aj-1, S := (Aj \ ei,) and f := ei, 

2 (MST(T U Aj-1 U (Aj \ ei,)) - MST(T U Aj-1 U (Aj \ eij)  U eij))  
j=l  
r 

= (MST(T U (Aj \ ei,)) - MST(T U Ai)) 
j=l 
r 

= U(eij 1, 
j= l  

which is what we wanted to show. 0 

Lemma 16 Let T := Ti-l be an MST at the beginning $iteration i, i.e., T = MST( G, dw), where 
W := Wi-1 is the upgrading set constructed so far. Then there is a marked claw C (where its center 
v is also marked and v W) with quotient cost 4 ( C )  satifiing 

and c(M(C)) 5 OPT. 2 OPT 
dw(T)-  D 4(C) 5 
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Proof. Let T’ = MST( G ,  dwuom) be an MST after the additional upgrade of the vertices in 
OPT. Clearly, dwuorr(T’) 5 D. Apply Lemma 12 to T‘ with the vertices in Z := OPT \ W 
marked. The lemma shows that there is a 2-bounded claw decomposition of T’ with respect 
to 2. Let the claws be C1,. . . , C,. In each claw Cj, the corresponding nodes M( Cj) := Cj n Z 
from Z are marked. Since the decomposition is 2-bounded with respect to Z, it follows that 

r 

c(M(Cj))  5 2 .  OPT. 
j=l  

(5) 

Moreover, the cost c(M(Cj)) of the marked nodes in each single claw Cj does not exceed 
OPT, since we have marked only nodes from Z. 

Let H be the graph obtained from G by inserting each edge e twice, on the one hand with 
weight dw(e) and on the other hand with the new weight dwuom(e). Then, T is a spanning 
tree of H and T’ can be identified with a minimum spanning tree of H. 

Let A := T‘ \ T be the edge difference set of trees T‘ and T in H, where we consider two 
parallel edges with different weights as different edges. By Lemma 15, there exist numbers 
u(e), e E A, such that 

Moreover, for any edge subset of A, and in particular, for any claw Cj, we have 

dw(T) - MST(T U Cj 1 ~ W U O P T )  2 ~ ( e )  + 

eECj 
(7) 

In fact, Lemma 15 provides the stronger result that the difference of dw(T) and the mini- 
mum spanning tree in T u Cj where each edge e of T still considered to have the old weight 
dw(e) is at least the right hand side of (7). 

Now, since the weight of edges in claw Cj is only affected by the upgrade of the vertices 
in M( Cj) = Z n Cj, we obtain from (7) 

that is, the decrease in the weight of the MST obtained by upgrading the vertices in M (  Cj) 
and possibly exchanging edges from the current MST for edges from Cj is at least the sum 

Therefore, for each of the claws Cj with M(Cj) # 8 in the 2-bounded decomposition of 
Z e E C j  u(e)* 

T’, the quotient cost q (Cj ) satisfies 

Let C be a claw among all the claws Cj with minimum q (C). Then, 

q(C) - u(e) 5 c(M(Cj))  for j = l , . .  . ,r.  
eECj 

Notice that the above inequality holds, regardless of whether M(Cj) is empty or not. Sum- 
ming the inequalities in (10) over j = 1 ) . . . , r, and using Equations (51, (61, and (8), it can be 
seen that C is a claw with the desired properties. 
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4.4 Finding a good claw in each iteration 

L e m a  16 implies the existence of a marked claw with the required properties. We will 
now deal with the problem of finding such a claw. 

Lemma 17 Suppose that the bound 0 given to Algorithm UPGRADE MST sati$es 0 2 OPT. 
Then, during each iteration i, the algorithm chooses a marked claw C' such that 

and 

where T := Ti-1 is an MST at the beginning o f  iteration i and W := Wi-1 is the set o f  nodes 
upgraded sofar. 

Proof. By Lemma 16, there is a marked claw C with quotient cost q (  C) at most 2 dwy&. 
Let v be the center of this claw. By Lemma 16, v is marked. Let c(C) := c(M(C)) be the 
cost of the marked nodes in C and L := MST(T U C, dWuM(C)) be the weight of the MST in 
T u C resulting from the upgrade of the marked vertices in C. Then, by the definition of the 
quotient cost q (C) we have 

C(C) OPT 
= < 2  dw(T)  - L - dw(T) - D '  

Consider the iteration of Procedure COMPUTE QC when it processes the instance I,,K of 
Two Cost Spanning Tree Problem with graph G ,  and c ( C )  5 K < (1 + E )  c(C). The tree 
MST(T U C, dwuM(c)) induces a spanning tree in G, of total c-cost at most c(C) (which is at 
most K) and of total L-length no more than L. Thus, the algorithm from Theorem 8 will find 
a tree T,,K such that its total c-cost c(Tv,~)  is bounded from above by (1 + E)K 5 (1 + E ) ~ c (  C) 
and of total 1-length L(Tv,~) no more than L. 

By construction, the marked claw C' computed by PROCEDURE COMPUTE QC from T,,K 
has quotient cost at most c(T,,K) / (dw (T ) -L( Tv,K) ), which is at most (1 + E ) ~ c (  C)/( dw (T) -L) . 

0 The lemma now follows from (11). 

4.5 Guessing an Upper Bound on the Improvement Cost 

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of 

0 E { 1 , ( 1 + E ) ,  ( 1 + E ) ~ ,  . . . , ( 1 + E)~},  where t := [log, + E  c( V)] . 

We then choose the best solution among all the solutions produced. Our analysis shows 
that when OPT 5 n < (1 + E) . OPT, the algorithm will indeed produce a solution. In 
the sequel, we estimate the quality of this solution. Assume that the algorithm uses f + 1 
iterations and denote by C1 , . . . , Cf,  Cf+l the claws chosen in Step 4b of the algorithm. Let 
ci := c( M( Ci)) denote the cost of the vertices upgraded in iteration i. Then, by construction 

(12) ci 5 (l .+ ~ ) 0  5 ( 1  + E)'OPT fori = 1 , .  . . , f  + 1. 
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4.6 Potential Function Argument 
We are now ready to complete the proof of the performance stated in Theorem 9. Let MSTi 
denote the weight of the MST at the end of iteration i, i.e., MSTi := dwi(Ti). Define & := 
MSTi -D. Since we have assumed that the algorithm uses f + 1 iterations, we have +i 2 1 
for i = 0,. . . ,f and &+I 5 0. AS before, let Ci := C(M(Ci)) denote the cost of the vertices 
upgraded in iteration i. Then 

where a := 2(1 + E ) ~ .  We now use an analysis technique due to Leighton and Rao [LR88]. 
The recurrence (13) and the estimate In( 1 - T) 5 -T give us 

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum x:?; ci. 
By (14) and (12) we have 

f+l f 

We will now show how to bound In g. Notice that @f = MSTf -D 2 1 , since the algorithm 
uses f + 1 iterations and does not stop after the fth iteration. We have $0 = MSTo -D 5 
(n - 1)(Do - Dz), where Do and D2 denote the maximum and the minimum edge weight 
in the graph. It now follows from Assumption 4 that InQo E O(log(np(n))) C: O(1ogn). 
Using this result in (15) yields 

f+l 

ZCi 5 (1 + ~ ) ~ . 0 P T + 2 ( 1  +~)~0(logn).OPT 
i=l  

E (1 + E)20(logn) * OPT. 

This completes the proof. 0 

5 Hardness Result 
In this section we prove the hardness result stated in Section 2. The proof relies on the 
following lemma. 

Lemma 18 Let a and f be two polynomial time computablefinctions. Let a be nondecreasing, 
and let there be constants c > 1 and N E N such that a(n + 1 )  5 c . a(n) for all n > - N .  
Then the existence 4 an (a(n), f (n))-approximation algorithm for (NODE UPGRADING COST, 
TOTAL WEIGHT, SPANNING TREE) implies the existence qf a c . a(n)-approximation algorithm 
for MINIMUM DOMINATING SET. Here, n denotes the number $.vertices in the input graphs. 

Note that requiring the existence of c is not a serious restriction, since we can always 
assume a(n) 1. n. 
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Proof. We perform a reduction from MINIMUM DOMINATING SET [GJ79, Problem GT21. 
An instance of MINIMUM DOMINATING SET is given by a undirected graph G = (V, E). A 
node set D C V is a minimum dominating set, if each node in V \ D is incident to a node 
in D, and D is of minimum cardinality among all node sets with the domination property. 

Given an instance G = (V, E) of MINIMUM DOMINATING SET, add a new node r (the 
root) to the graph and connect T to all the nodes in V. Let n' = IVI+1 be the resulting number 
of nodes. For all edges, set the initial weights to lo := n . f(n') + 1, and the weights in the 
upgrading case to 11 := 12 := 1. The upgrade cost of the root is set to c(r) := In- c .  a(n)l+ 1, 
all remaining nodes have upgrading cost 1. The constraint on the total weight is n := IV/. 

Now suppose there is an (a(n'), f (n'))-approximation algorithm for (NODE UPGRAD- 
ING COST, TOTAL WEIGHT, SPANNING TREE). Observe that for the instance of this problem 
constructed above, there is always a feasible solution, namely, the upgrading set consisting 
of all vertices in the graph. Thus, if applied to this instance, the algorithm must output 
an upgrading set of cost at most a(n') times the optimum upgrading cost such that the 
upgraded network contains an MST of weight at most f (n') . n. 

It is easy to see that upgrading a dominating set of size u in G yields a minimum span- 
ning tree in G' which fulfills the weight constraint and has upgrade costs equal to u. Thus 
the optimum upgrading cost OPT is at most the size of the minimum dominating set. 

Conversely, each upgrading set in G' not containing the root and resulting in an MST 
of weight at most n is also a dominating set in G. Now observe that any spanning tree of 
weight more than n has weight at least 20 = n.f(n')+l > n.f(n'). Thus, to satisfy the weight 
constraint within a factor of f(n'), the algorithm must output a spanning tree consisting of 
edges of weight 1 only. Moreover, due to the high cost of upgrading the root, the algorithm 
can never choose the root for upgrading: let u be the size of a smallest dominating set, then 
OPT 5 u by our observations from above. The algorithm produces a solution of cost at 
most a(n') - OPT 5 a(n') u 5 c - a(n) . u < c(r). 

Thus, an (a(n'), f(n'))-approximation algorithm can be used to obtain a dominating set 
in the original graph G whose size is at most c . a(n) times the cardinality of an optimum 
dominating set. 0 

Corollary 19 (Non-Approximability) Let f be any (polynomial time computable) function, and 
a(n) < (1 - E )  Innforfixed E > 0. Unless NP C_ DTIME(no('o~'o~n)), there can be no polyno- 
mial time approximation algorithm for  (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING 
TREE) with peformance guarantee (a(n) , f (n)), where n denotes the number 4 vertices in the 
input graph. 

Proof. Feige [Fei96] has shown that, unless NP C DTIME(no(loglogn)), there can be no 
a(n)-approximation algorithm for MINIMUM DOMINATING SET when a(n)  < Inn. 

For some E > 0, assume that there is a ((1 - E )  Inn, f(n))-approximation algorithm for 
(NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE). Then there are constants E ' ,  

c, and N, such that for n 2 N 

1 - € '  
In(n+l) 5 c . I n n  and (1 -&)Inn< __ Inn. 

C 

With help of Lemma 18 we can conclude that there exists a ( (  1 - E ' )  In n)-approximation 
algorithm for MINIMUM DOMINATING SET, which contradicts Feige's result. 0 
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