
J
I .

Los Alamos National Laboratow is operated bv the Universitv of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE:

AUTHOR(S1:

SUBMITTED TO:

IMPROVING MINIMUM COST SPANNING TREES BY UPGRADING
NODES

M.V. Marathe, S.O. Krumke, H. Noltemeier, R Ravi, S.S. Ravi,
R. Sundaram, H.C. Wirth

External Distribution - Hard Copy

By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the US. Department of Energy.

Los Alamos National Laboratory
Los Alamos New Mexico 87545

DISCLAIMER

T’his report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employes, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, m m -
mendation. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect thosc of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

.

Improving Minimum Cost Spanning Trees by Upgrading
Nodes?

S. 0. Krumket M. V. Marathel H. Noltemeiert R. Ravis
R. SundaramlI H.-C. Wirtht

S. S. Ravia

Abstract
We study budget constrained network upgrading problems. We are given an undirected

edge weighted graph G = (V, E) where node v E V can be upgraded at a cost of c(v).
This upgrade reduces the weight of each edge incident on v. The goal is to find a min-
imum cost set of nodes to be upgraded so that the resulting network has a minimum
spanning tree of weight no more than a given budget D. The results obtained in the
paper include the following:

1. On the positive side, we provide a polynomial time approximation algorithm for
the above upgrading problem when the difference between the maximum and
minimm edge weights is bounded by a polynomial in n, the number of nodes in
the graph. The solution produced by the algorithm satisfies the budget constraint,
and the cost of the upgrading set produced by the algorithm is O(log n) times the
minimum upgrading cost needed to obtain a spanning tree of weight at most D.

2. In contrast, we show that, unless NP C: DTIME(no[log'ogn)), there can be no poly-
nomial time approximation algorithm for the problem that produces a solution
with upgrading cost at most 01 < Inn times the optimal upgrading cost even if
the budget can be violated by a factor f (n), for any polynomial time computable
function f (n). This result continues to hold, with f (n) = nk being any polynomial,
even when the difference between the maximum and minimum edge weights is
bounded by a polynomial in n.

3. Finally we show that using a simple binary search over the set of admissible val-
ues, the dual problem can be solved with an appropriate performance guarantee.

AMS 1980 subject classification. 68R10,68Q15,68Q25

Keywords. Approximation algorithms, Bicriteria problems, Spanning trees,
Network design, Combinatorial algorithms.

*A preliminary version of this paper appeared as [KMi971.
?Dept. of Computer Science, University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany.

tLos Alamos National Laboratory, P.O. Box 1663, MS B265, Los Alamos, NM 87545, USA.

SR. Ravi, GSIA, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Supported by NSF Career Grant

7s. S. Ravi, Dept. of Computer Science, University at Albany - SUNY, Albany, NY 12222, USA. Email:

llR. Sundaram, Delta Global Trading LP, Boston, MA 02111, USA. Work done while at MIT, Cambridge MA

Email:{krumke,noltemei,wirth}@informatik.uni-wuerzburg.de.

marathe@lanl .gov .

CCR-9625297. Email: ravi+@cmu . edu.

r a v i @ c s . a l b a n y . e d u .

02139. Email: koods@del ta - g l o b a l . corn.

1

mailto:Email:{krumke,noltemei,wirth}@informatik.uni-wuerzburg.de
mailto:marathe@lanl.gov
mailto:ravi@cs.albany.edu

1 Introduction and Problem Formulation
1.1 Motivation

Several problems arising in areas such as communication networks and VLSI design can
be expressed in the following general form: Enhance the performance of a given network
by upgrading a suitable subset of nodes. In communication networks, upgrading a node
corresponds to installing faster communication equipment at that node. Such an upgrade
reduces the communication delay along each edge emanating from the node. In signal
flow networks used in VLSI design, upgrading a node corresponds to replacing a circuit
module at the node by a functionally equivalent module containing suitable drivers. Such
an upgrade decreases the signal transmission delay along the wires connected to the module
[PS95]. Usually, there is a cost associated with upgrading a node, and this motivates the
study of problems of the following type: find an upgrading set of minimum cost so that the
resulting network satisfies certain performance requirements.

The performance of the upgraded network can be quantified in a number of ways. In
this paper, we consider the weight of a minimum spanning tree in the upgraded network
as the performance measure. We show that this network problem is NP-hard. So, the focus
of the paper is on the design of efficient approximation algorithms.

1.2 Preliminary Definitions

1.2.1 Node upgrade model

The node based upgrading model discussed in this paper can be formally described as follows.
Let G = (V, E) be a connected undirected graph. For each edge e E E, we are given three
integers do(e) 2 d1 (e) 2 d2(e) 2 0. The value di(e) represents the length or delay of the
edge e if exactly i of its endpoints are upgraded.

Thus, the upgrade of a node v reduces the delay of each edge incident on v. The (integral)
value c(v) specifies how expensive it is to upgrade the node v. The cost of upgrading all
vertices in W C V, denoted by c(W),is equal to xv,wc(v).

V of vertices, denote by dw the edge weight function resulting from
the upgrade of the vertices in W; that is, for an edge (u, v) E E

Given a set W

d w (u , v) := di (u ,v) where i = /W n {u,v}/.

Our model is a generalization of the node upgrade model introduced by Paik and Sahni
in [PS95]. In their model, the reduction in edge weight resulting from an upgrade of nodes
is determined by a constant 0 < a < 1 in the following way: if exactly one endpoint of an
edge is upgraded, then its weight is reduced by the factor K; if both endpoints are upgraded,
the weight is reduced by the factor a2. Clearly, the Paik-Sahni model is a special case of the
node upgrade model used in this paper.

1.2.2 Background Bicriteria Problems and Approximation

The problem considered in this paper involves two optimization objectives, namely, the
upgrading cost and the weight of a minimum spanning tree in the upgraded network.

2

A framework for such bicriteria problems has been developed in [MR+95]. Since this frame-
work is used throughout this paper, we briefly review the relevant definitions from [MRS95].

A generic bicriteria problem can be specified as a triple (f , g , r) where f and g are two
objectives and r specifies a class of subgraphs. An instance of a bicriteria problem specifies
a budget on the objective g. A subgraph in the class r is a valid solution if it satisfies this
budget constraint. The goal is to find a valid solution that minimizes the objective f.

Using this notation, the problem treated in this paper can be expressed as (NODE UP-
GRADING COST, TOTAL WEIGHT, SPANNING TREE). The interpretation of this notation is
that the budgeted objective is the weight of a minimum spanning tree in the upgraded net-
work, and the goal is to minimize the upgrade cost.

Definition 1 (Approximation Algorithm) A (polynomial time) algorithm for a bicvitevia prob-
lem (f, g , r) is said to have performance (a, @), f i t has thefollowing property: For any instance o f
(f , g , T), the algorithm

I . either produces a solutionfiom the subgraph class r for which the value o f objective g is at
most @ times the specified budget and the value ofobjective f is at most a times the minimum
value o f a solutionfrom r that sati$ies the budget constraint, or

2. correctly provides the i@rmation that there is no subgraphfiom r which satisfies the budget
constraint on g .

1.3 Problem Definition
We denote the total length of a minimum spanning tree (MST) in G with respect to the
weight function dw by MST(G , dw).

Definition 2 (Upgrading MST Problem) Given an edge and node weighted graph G = (V, E)
as above and a bound D, the upgrading minimum spanning tree problem, denoted by (NODE
UPGRADING COST, TOTAL WEIGHT, SPANNING TREE), is to upgrade a set W C V $nodes
such that MST(G, dw) 5 D and c(W) is minimized.

The problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE) is formu-
lated by specifying a budget on the weight of a tree while the upgrading cost is to be mini-
mized. We will refer to this problem as the primal problem. It is also meaningful to consider
the corresponding dual problem, denoted by (TOTAL WEIGHT, NODE UPGRADING COST,
SPANNING TREE), where we are given a budget on the upgrading cost and the goal is to
minimize the weight of a spanning tree in the resulting graph.

Definition 3 (Dual Upgrading MST Problem) Given an edge and node weighted graph G =
(V, E) us above and a bound B on the upgrading cost, the problem (TOTAL WEIGHT, NODE UP-
GRADING COST, SPANNING TREE), is to upgrade a set W C V @nodes such that c(W) < B and
MST(G , dw) is minimized.

There is a close relationship between the approximabilities of the primal and the dual
problems. We will show in Section 3 that a good bicriteria approximation algorithm for one
of the problems can be used to design a good approximation algorithm for the other one in
a generic way; that is, given an (a, 0)-approximation algorithm for the problem (NODE UP-
GRADING COST, TOTAL WEIGHT, SPANNING TREE), one can obtain a (6, a)-approximation
algorithm for the problem (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE).

3

c

2

2.1 Summary of Results
We derive our approximation results under the following assumption:

Assumption 4 There is a polynomial p such that Do - D2 5 p(n), where Do := maxeEE do(e)
and D2 := mineEE dz(e) are the maximum and minimum edge weight respectively, and n denotes
the number $nodes in the graph.

Summary of Results and Related Work

The main results of this paper are as follows.

1.

2.

3.

We present a polynomial time approximation algorithm, which for any fixed E > 0,
provides a performance guarantee of ((1 + E)20(logn), 1) for any instance of (NODE
UPGRADING COST, TOTAL WEIGHT, SPANNING TREE) satisfying Assumption 4.

In contrast, we show that Unless NP C DTIME(n"(loglOgn)), there can be no polyno-
mial time approximation algorithm for (NODE UPGRADING COST, TOTAL WEIGHT,
SPANNING TREE) with a performance of (a, f (n)) for any a < Inn and any polyno-
mial time computable function f. This result continues to hold, with f(n) = nk being
any polynomial, even when Assumption 4 holds.

We also show that using a simple binary search over the set of admissible values, an
approximation algorithm with a performance guarantee of (1) (1 + &)28(log n)) can be
obtained for any instance of the dual problem (TOTAL WEIGHT, NODE UPGRADING
COST, SPANNING TREE) satisfying Assumption 4.

It should be noted that our approximation algorithm for the problem (NODE UPGRADING
COST, TOTAL WEIGHT, SPANNING TREE) produces solutions in which the budget constraint
is strictly satisfied. This is unlike many bicriteria network design problems where it is nec-
essary to violate the budget constraint to obtain a solution that is near-optimal with respect
to the objective function [MR+95].

2.2 Related Work

As mentioned earlier, a simpler node upgrading model has been considered by Paik and
Sahni [PS95]. Under their model, Paik and Sahni studied the upgrading problem for several
performance measures including the maximum delay on an edge and the diameter of the
network. They presented NP-hardness results for several problems. Their focus was on
the development of polynomial time algorithms for special classes of networks (eg. trees,
series-parallel graphs) rather than on the development of approximation algorithms. Our
constructions can be modified to show that all the problems considered here remain NP-
hard even under the Paik-Sahni model.

While in this paper we choose the total weight of a minimum spanning tree as a measure
of the performance of the upgraded network, there are other useful performance measures.
One of these measures, namely the bottleneck weight of a minimum bottleneck spanning
tree, leads to the problem (NODE UPGRADING COST, BOTTLENECK WEIGHT, SPANNING
TREE). This bottleneck problem has been investigated in [KMs97].

4

t

Edge-based network upgrading problems have also been considered in the literature
[Ber92, KNf96b, KN+96a]. There, each edge has a current weight and a minimum weight
(below which the edge weight cannot be decreased). Upgrading an edge corresponds to
decreasing the weight of that particular edge, and there is a cost associated with such an up-
grade. The goal is to obtain an upgraded network with the best performance. In [KNf96bl
the authors consider the problem of edge-based upgrading to obtain the best possible MST
subject to a budget constraint on the upgrading cost and present a (1 + E , 1 +l /&)-approxima-
tion algorithm. Generalized versions where there are other constraints (e.g. bound on maxi-
mum node degree) and the goal is to obtain a good Steiner tree, are considered in [KN+96a].
Other references addressing problems that can be interpreted as edge-based improvement
problems include [FS096, HT97, Phi931.

3 Dual Problems and Approximability
In this section we formally state and prove our claim from Section 1.3 that the dual problems
defined in this paper are closely related with respect to their approximability.

Lemma 5 If there exists an approximation algorithm for the problem (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) with a pe$ormance 4 (a, @), then there is an approximation
algorithm for the problem (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) with
peformance of (6 , a).

Proof. Let A be an (a, 6)-approximation algorithm for (NODE UPGRADING COST, TOTAL
WEIGHT, SPANNING TREE). We will show how to use A to construct a (6, a)-approximation
algorithm for the dual problem.

An instance of (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) is spec-
ified by a graph G = (V, E), the node cost function c, the weight functions di, i = 0,1, 2,
on the edges and the bound B on the node upgrading cost. We denote by OPT the opti-
mum weight of an MST after upgrading a vertex set of cost at most B. Observe that OPT
is an integer such that (n - 1)Dz 5 OPT 5 (n - 1)Do where D2 := mineE~ dz(e) and
Do := maxeEE do(e).

We use binary search to find the minimum integer D such that (n- 1) D2 5 D 5 (n- 1)Do
and algorithm A applied to the instance of (NODE UPGRADING COST, TOTAL WEIGHT,
SPANNING TREE) given by the weighted graph G as above and the bound D on the weight of
an MST after the upgrade, outputs an upgrading set of cost at most aB. It is easy to see that
this binary search indeed works and terminates with a value D 5 OPT. The corresponding

0 upgrading set W then satisfies MST(G, dw) 5 PD 5 @OPT and c(W) 5 aB.
Using a similar technique, one can also establish the following result:

Lemma 6 If there exists an approximation algorithm for fhe problem (TOTAL WEIGHT, NODE
UPGRADING COST, SPANNING TREE) with a peformance of (a, 6)/ then there is an approxima-
tion algorithm for the problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE)

0

In view of Lemma 5, the next section focuses on the development of an approximation

with peformance of (f i , a).

algorithm for the problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE).

5

I "

I '
I .

4 The Algorithm
In this section we develop our approximation algorithm for the (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) problem. Without loss of generality, we assume that
for a given instance of (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE), the
bound D on the weight of the minimum spanning tree after the upgrade satisfies D 2
MST(G , dz), since no upgrade strategy can shorten an edge e E E below dz(e), and therefore
it is impossible to obtain a minimum spanning tree of weight strictly lower than MST(G , d2)
in our upgrading model. Thus, we can assume that there always exists a subset of the nodes
which, when upgraded, leads to an MST of weight at most D. We remind the reader that
our algorithm also uses Assumption 4 (stated in Section 2) regarding the edge weights in
the given instance.

4.1 Overview of the Algorithm

Our approximation algorithm can be thought of as a local improvement type algorithm. To
begin with, we compute an MST in the given graph with edge weights given by do (e). This
value equals dw(e) for the initial case W = 0, where W C V is the set of upgraded nodes
maintained by the algorithm. During each iteration, we select a node and a subset of its
neighbors and upgrade them by adding them to the set W. The policy used in the selection
process is that of finding a set which gives us the best ratio improvement, which is defined
as the ratio of the improvement in the total weight of the spanning tree to the total cost
spent for upgrading the chosen nodes. Having selected such a set, we recompute the MST
and repeat our procedure. The procedure is halted when the weight of the MST is at most
the required bound D. To find a subset of nodes with the best ratio improvement in each
iteration, we use an approximate solution to the Two Cost Spanning Tree Problem defined
below.

Definition 7 (Two Cost Spanning Tree Problem) Given a connected undirected graph G = (V, E),
two edge weightfunctions, c and 1, and a bound B,find a spanning tree T 4 G such that the total
cost c(T) is at most B and the total cost L(T) is a minimum among all spanning trees that obey the
budget constraint.

In the framework of bicriteria problems, the above problem can be expressed as (1-
TOTAL WEIGHT, C-TOTAL WEIGHT, SPANNING TREE). This problem has been addressed
by Ravi and Goemans [RG96] who obtained the following result.

Theorem 8 For all E > 0, there is a polynomial time approximation algorithm for the Two Cost
Spanning Tree problem with a performance 4 (1 , I + E) . 0

4.2 Algorithm and Performance Guarantee

The remainder of Section 4 is devoted to a proof of the following theorem.

Theorem 9 For anyfixed E > 0, there is a polynomial time approximation algorithm that provides
a performance guarantee 4 ((I + &)20(logn), 1) f i r any instance 4 (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) satifiing Assumption 4.

6

ALGORITHM UPGRADE MST(R)
0 Input: A graph G = (V,E), three edge weight functions do 2 dl 2 d2, a node weight
function c, and a number D, which is a bound on the weight of an MST in the upgraded
graph; a “guess value” R for the optimal upgrading cost.

1.
2.
3.
4.

Initialize the set of upgraded nodes: WO := 0.
Let To := MST(G, dwo).
Initialize the iteration count: i := 1.
Repeat the followhg steps until the current tree Ti-1 and the weight function dwi-,
satisfy the condition dwi-, (Ti-1) 5 D:

Output:

Let Ti-, := MST(G , dW,-,) be an MST w.r.t. the weight function dw,-, .
Call Procedure COMPUTE QC to find a marked claw C with ”good” quotient cost
q (C). Procedure COMPUTE QC is called with the graph G, the current MST Ti-,!
the current weight function dwi-, and the bound n.
If Procedure COMPUTE QC reports failure, then report failure and stop.
Upgrade the marked vertices M(C) in C: Wi := Wi-1 U M(C).
Increment the iteration count: i := i + 1.

A spanning tree with weight at most D, such that total cost of upgrading the
nodes is no more than (1 + &)a - O(logn), provided 0 2 OPT. Here, OPT denotes the
optimal upgrading cost to reduce the weight of an MST to be at most D.

Figure 1: Approximation algorithm for node upgrading under total weight constraint.

The algorithm referred to Theorem 9 is obtained by executing ALGORITHM UPGRADE MST
(shown in Figure 1) for a polynomial number of values of the parameter !2. (Details re-
garding the values of R used by the algorithm appear in Section 4.5.) ALGORITHM UP-
GRADE MST uses Procedure COMPUTE QC whose description appears in Figure 2.

Before we embark on a proof of the performance guarantee stated in Theorem 9, we
give the overall idea behind the proof. Recall that each basic step of the algorithm consists
of finding a node and a subset of neighbors to upgrade.

Definition 10 (Claw) A graph C = (V, E) is called a claw, tf E is 4 the form E = { (v, w) : w E
V \ {v}} for some node v E V. The node v is said to be the center $the claw. A claw with at least
two nodes is called R nontrivial claw.

Notice that a claw’s center is not uniquely determined if the claw contains less than three
nodes.

Let W be a subset of the nodes upgraded so far and let T be an MST with respect to dw;
that is, T = MST(G, dw). For a claw C with nodes M(C) C C marked, we define its quotient
cost q(C) to be

In other words, q (C) is the cost of the vertices in M(C) divided by the decrease in the weight
of the MST when the vertices in M(C) are also upgraded and edges in the current tree T can

7

be exchanged for edges in the claw C. Notice that this way the real profit of upgrading the
vertices M(C) is underestimated, since the weight of edges outside of C might also decrease.

Our analysis shows that in each iteration, there exists a claw of quotient cost at most
dw(T)-D’ where T is an MST at the beginning of the iteration and W are the nodes upgraded OPT

so far. Essentially this means, that in each iteration there is a claw whose quotient cost is
bounded by the ratio of twice the optimum cost and the remaining effort. We can then use a
potential function argument to show that this yields a logarithmic performance guarantee.

4.3 Bounded Claw Decompositions
Definition 11 Let G = (V, E) be a graph and W 5 V a subset of marked vertices. Let K 2 1 be
an integer constant. A K-bounded claw decomposition of G with respect to W is a collection
C1, . . . , C, nontrivial claws, which are all subgraphs o f G, with the following properties:

1. Ui=:=, V(Ci) = V and U:=:=, E(Ci) = E.
2. No nodeporn W appears in more than K claws.
3. The claws are edge-disjoint.
4. I f a claw Ci contains nodeseom W, then its center also belongs to W.

Lemma 12 Let F be aforest in G = (V, E) and let W G V be a set @marked nodes. Then there is a
2-bounded claw decomposition @F with respect to W.

Proof. We show how to decompose each tree T in the forest F to get a 2-bounded decom-
position.

If each node in T has degree one, then T consists of a single edge which is a nontrivial
claw. Otherwise, let v be an arbitrary vertex of degree at least two where at least one of its
neighbors is of degree one. If all neighbors of v are of degree one, then T is again already a
nontrivial claw and we are done.

Let N, be the neighbors of v in T which are of degree one. Construct a claw C, by
selecting as its vertex set N, U {v}. Remove the vertices in N, from T. Call the resulting tree
T’. Observe that T’ consists of at least two vertices.

Repeat the above procedure with T’ until we end up with a single claw. Add this claw
to the collection of claws. Since each vertex appears in at least one and in at most two of the
claws C,, the claim now follows. 0

In the sequel we will make heavy use of the following simple lemma.

Lemma 13 Let TH be a minimum spanning tree o f a graph H with edge weights given by d. For any
additional edge e to be added to H, ifT’ = MST(TH U {e}) is a minimum spanning tree in TH u {e},

0 then T‘ is also a minimum spanning tree in H U {e}.

Lemma 14 Let H be a spanning subgraph @ a graph G = (V, E) with edge weights given by d. Let
S C E be a set $edges, and let f $4 H U S be an additional edge. Then,

MST(H U S) - MST(H U S U f) 5 MST(H) - MST(H U f), (1)

that is, the net projitfiom using an edge f in terms @decreasing the weight $an MST can never be
increased with the help @a set S @edges added together with f.

8

PROCEDURE COMPUTE QC (n)
0 Input: A graph G = (V, E), a spanning tree T and a weight function d on E; W C V is the
set of upgraded nodes; a ”guess” for the optimal upgrading cost.

1. Let s := [log,+, nl.
2. For eachnodev @Wand allK E {1,(1 + ~) , (1 + E) ~ ,... , (1 do

(a) Set up an instance I,,K of the Two Cost Spanning Tree ProbEem as follows:
0 The vertex set of the graph G, contains all the vertices in G and an additional

”dummynode”x.
0 There is an edge (v, x) joining v to the dummy node x of length L(v, x) = 0
and cost c(v,x) = c(v) thus modeling the upgrading cost of v.

0 For each edge (v, w) E E, G, contains two parallel edges h and hup. The
edge h models the situation where w is not upgraded, while hup models an
upgrade of w:

c(h) := 0 c(hup) := 0, if w E W
L(h) := d2(v,w), ifw E W c(hUp) := c(w), ifw @ W
L(h) := dl(v,w), ifw $- W L(hup) := ~ z (v , w) .

0 For each edge (u,w) E T, there is one edge (u,w) E E which has length

0 The bound B on the c-cost of the tree is set to K.
L(u, W) = d(u,w) and cost C(U, W) = 0.

(b) Using the algorithm mentioned in Theorem 8, find a tree of c-cost at most (1 + E)K
and L-cost no more than that of a minimum budget K bounded spanning tree (if
one exists). Let T V , ~ be the tree produced by the algorithm.

3. If the algorithm fails for all instances I V , ~ then report failure and stop.
4. Among all the trees T V , ~ find a tree T,*,K* which minimizes the ratio c(T,-,K*)/(d(T) -

5. Construct a marked claw C from TV*,~* as follows:
0 The center of C is v* and v* is marked.
0 The edge (v* , w) is in the claw C if T,*,K* contains an edge between vx and w. The

node w is marked if and only if the edge in TV* ,~* between v* and w has c-cost
greater than zero.

L(Tv*,K* 1.

0 Output: A marked claw C (with its center also marked) with quotient cost q (C) satisfying
4(C) I2(1 + E) ’ OPT and cost c(M(C)) 5 (1 + E)O.

Figure 2: Algorithm for computing a good claw.

9

c = c(v)
0

1 = 0 Dummy x

Figure 3: Example of an instance I V , ~ of Two Cost Spanning Tree Problem constructed by Pro-
cedure COMPUTE QC. Edges in the current MST are indicated by thick lines. The vertex w
is not contained in the current upgrading set.

Proof. We show the claim by induction on ISI. The claim is trivial if S is empty. Now let
IS1 = k + 1, S = S’ U {e}, and let the claim hold for all sets of cardinality k.

By induction hypothesis, we have for the set S’ that

MST(H U S’) - MST(H U S’ U f) 5 MST(H) - MST(H U f) . (2)

Thus it suffices to show that MST(H U S) - MST(H u S u f) is bounded by the left hand side
of (2).

Let Ts/ := MST(H U S’) and TS := MST(H u S). Notice that by Lemma 13 we can also
write Ts as Ts = MST(Ts/ U e). Hence TS differs from Ts/ by at most one edge swap; that
is, we can obtain TS from Tsl by inserting edge e and removing a heaviest edge e’ on the
cycle CL induced by e in Tsl. (Here, we explicitly allow the possibility that e = e‘, in which
case TS = Tst).

We now estimate the weight difference between TS I and MST(H U S ‘ U f) = MST(Ts I U f) .
Let C i be the cycle induced by the additional edge f in Tsl. If e’ is not on Ci, then C i is also
exactly that cycle which edge f induces in Ts. Thus, in this case we get that

(3) MST(H U S) - MST(H U S U f) = MST(H U S’) - MST(H U S’ U f)

since the weights of both T s ~ and TS decrease by the difference of the weight of the heaviest
edge on Cf and d(f).

In the other case, the edge e’ swapped out of Tsl in exchange for e is on Ci. Clearly, e’
must be a heaviest edge on the cycle CL that is induced by e in TS,. Thus, all edges on CL
have weight at most that of e’.

The cycle which f induces in TS contains only edges from CL u Ci. Since all the edges
on CL have weight at most d(e‘), this implies that the edge f can only replace edges in TS of
weight at most that of a heaviest edge in CL. But this means that

d(Ts) - MST(Ts U f) 5 max d(h) - d(f) = d(T4) - MST(Ts U f) .
hECL

In other words, we have that

MST(H U S) - MST(H U S U f) 5 MST(T U S’) - MST(T U S‘ U f) . (4)

10

Now using (3) or (4), respectively, together with the induction hypothesis stated in (2) yields
the lemma. 0

Lemma 15 Let T be a spanning tree qf G and let T' be an MST with respect to some weightfinc-
tion d on the edges. Let A := T' \ T be the edge dflerence set $the trees. Then there is a nonnegative
function e H u(e), e E A, with thefollowing properties:

1. xeEA u(e) = d(T) - d(T').

2. For any subset A A,

d(T) - MST(T U A) 2 u(e) .
eEA

Proof. Let A = {el, . . .) ek), and define function u by
u(ej) := MST(T U {el,. . . , ej-i}) - MST(T U {el,. . . , ej}), j = 1,. . . , k.

The first claim of the lemma is now obvious. Thus, we need to consider only the second
claim.

Let A = {ei,, . . .) ei,) C A, with i.1 5 . .. 5 &. Write Aj := {ei E A 1 i 5 ij} and
Aj := Aj n A. Notice that A0 = 0 and A, = A. With these definitions, we have

u(ei j) = MST(T U (Aj \ ei j)) - MST(T U Aj).

Furthermore,
d(T) - MST(T U AT)

= 2 (MST(T U Aj-1) - MST(T U Aj))
j=l

= (MST(T U Aj-1) - MST(T U Aj-1 U e+))
j=l

and by Lemma 14 applied to H := T U Aj-1, S := (Aj \ ei,) and f := ei,

2 (MST(T U Aj-1 U (Aj \ ei,)) - MST(T U Aj-1 U (Aj \ eij) U eij))
j=l
r

= (MST(T U (Aj \ ei,)) - MST(T U Ai))
j=l
r

= U(eij 1,
j= l

which is what we wanted to show. 0

Lemma 16 Let T := Ti-l be an MST at the beginning $iteration i, i.e., T = MST(G, dw), where
W := Wi-1 is the upgrading set constructed so far. Then there is a marked claw C (where its center
v is also marked and v W) with quotient cost 4 (C) satifiing

and c(M(C)) 5 OPT. 2 OPT
dw(T)- D 4(C) 5

11

Proof. Let T’ = MST(G , dwuom) be an MST after the additional upgrade of the vertices in
OPT. Clearly, dwuorr(T’) 5 D. Apply Lemma 12 to T‘ with the vertices in Z := OPT \ W
marked. The lemma shows that there is a 2-bounded claw decomposition of T’ with respect
to 2. Let the claws be C1,. . . , C,. In each claw Cj, the corresponding nodes M(Cj) := Cj n Z
from Z are marked. Since the decomposition is 2-bounded with respect to Z, it follows that

r

c(M(Cj)) 5 2 . OPT.
j=l

(5)

Moreover, the cost c(M(Cj)) of the marked nodes in each single claw Cj does not exceed
OPT, since we have marked only nodes from Z.

Let H be the graph obtained from G by inserting each edge e twice, on the one hand with
weight dw(e) and on the other hand with the new weight dwuom(e). Then, T is a spanning
tree of H and T’ can be identified with a minimum spanning tree of H.

Let A := T‘ \ T be the edge difference set of trees T‘ and T in H, where we consider two
parallel edges with different weights as different edges. By Lemma 15, there exist numbers
u(e), e E A, such that

Moreover, for any edge subset of A, and in particular, for any claw Cj, we have

dw(T) - MST(T U Cj 1 ~ W U O P T) 2 ~ (e) +

eECj
(7)

In fact, Lemma 15 provides the stronger result that the difference of dw(T) and the mini-
mum spanning tree in T u Cj where each edge e of T still considered to have the old weight
dw(e) is at least the right hand side of (7).

Now, since the weight of edges in claw Cj is only affected by the upgrade of the vertices
in M(Cj) = Z n Cj, we obtain from (7)

that is, the decrease in the weight of the MST obtained by upgrading the vertices in M (Cj)
and possibly exchanging edges from the current MST for edges from Cj is at least the sum

Therefore, for each of the claws Cj with M(Cj) # 8 in the 2-bounded decomposition of
Z e E C j u(e)*

T’, the quotient cost q (Cj) satisfies

Let C be a claw among all the claws Cj with minimum q (C). Then,

q(C) - u(e) 5 c(M(Cj)) for j = l , . . . ,r.
eECj

Notice that the above inequality holds, regardless of whether M(Cj) is empty or not. Sum-
ming the inequalities in (10) over j = 1) . . . , r, and using Equations (51, (61, and (8), it can be
seen that C is a claw with the desired properties.

12

4.4 Finding a good claw in each iteration

L e m a 16 implies the existence of a marked claw with the required properties. We will
now deal with the problem of finding such a claw.

Lemma 17 Suppose that the bound 0 given to Algorithm UPGRADE MST sati$es 0 2 OPT.
Then, during each iteration i, the algorithm chooses a marked claw C' such that

and

where T := Ti-1 is an MST at the beginning o f iteration i and W := Wi-1 is the set o f nodes
upgraded sofar.

Proof. By Lemma 16, there is a marked claw C with quotient cost q (C) at most 2 dwy&.
Let v be the center of this claw. By Lemma 16, v is marked. Let c(C) := c(M(C)) be the
cost of the marked nodes in C and L := MST(T U C, dWuM(C)) be the weight of the MST in
T u C resulting from the upgrade of the marked vertices in C. Then, by the definition of the
quotient cost q (C) we have

C(C) OPT
= < 2 dw(T) - L - dw(T) - D '

Consider the iteration of Procedure COMPUTE QC when it processes the instance I,,K of
Two Cost Spanning Tree Problem with graph G , and c (C) 5 K < (1 + E) c(C). The tree
MST(T U C, dwuM(c)) induces a spanning tree in G, of total c-cost at most c(C) (which is at
most K) and of total L-length no more than L. Thus, the algorithm from Theorem 8 will find
a tree T,,K such that its total c-cost c(Tv,~) is bounded from above by (1 + E)K 5 (1 + E) ~ c (C)
and of total 1-length L(Tv,~) no more than L.

By construction, the marked claw C' computed by PROCEDURE COMPUTE QC from T,,K
has quotient cost at most c(T,,K) / (dw (T) -L(Tv,K)), which is at most (1 + E) ~ c (C)/(dw (T) -L) .

0 The lemma now follows from (11).

4.5 Guessing an Upper Bound on the Improvement Cost

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of

0 E { 1 , (1 + E) , (1 + E) ~ , . . . , (1 + E)~}, where t := [log, + E c(V)] .

We then choose the best solution among all the solutions produced. Our analysis shows
that when OPT 5 n < (1 + E) . OPT, the algorithm will indeed produce a solution. In
the sequel, we estimate the quality of this solution. Assume that the algorithm uses f + 1
iterations and denote by C1 , . . . , Cf, Cf+l the claws chosen in Step 4b of the algorithm. Let
ci := c(M(Ci)) denote the cost of the vertices upgraded in iteration i. Then, by construction

(12) ci 5 (l .+ ~) 0 5 (1 + E)'OPT fori = 1 , . . . , f + 1.

I 13

c

i

4.6 Potential Function Argument
We are now ready to complete the proof of the performance stated in Theorem 9. Let MSTi
denote the weight of the MST at the end of iteration i, i.e., MSTi := dwi(Ti). Define & :=
MSTi -D. Since we have assumed that the algorithm uses f + 1 iterations, we have +i 2 1
for i = 0,. . . ,f and &+I 5 0. AS before, let Ci := C(M(Ci)) denote the cost of the vertices
upgraded in iteration i. Then

where a := 2(1 + E) ~ . We now use an analysis technique due to Leighton and Rao [LR88].
The recurrence (13) and the estimate In(1 - T) 5 -T give us

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum x:?; ci.
By (14) and (12) we have

f+l f

We will now show how to bound In g. Notice that @f = MSTf -D 2 1 , since the algorithm
uses f + 1 iterations and does not stop after the fth iteration. We have $0 = MSTo -D 5
(n - 1)(Do - Dz), where Do and D2 denote the maximum and the minimum edge weight
in the graph. It now follows from Assumption 4 that InQo E O(log(np(n))) C: O(1ogn).
Using this result in (15) yields

f+l

ZCi 5 (1 + ~) ~ . 0 P T + 2 (1 +~)~0(logn).OPT
i=l

E (1 + E)20(logn) * OPT.

This completes the proof. 0

5 Hardness Result
In this section we prove the hardness result stated in Section 2. The proof relies on the
following lemma.

Lemma 18 Let a and f be two polynomial time computablefinctions. Let a be nondecreasing,
and let there be constants c > 1 and N E N such that a(n + 1) 5 c . a(n) for all n > - N .
Then the existence 4 an (a(n), f (n))-approximation algorithm for (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) implies the existence qf a c . a(n)-approximation algorithm
for MINIMUM DOMINATING SET. Here, n denotes the number $.vertices in the input graphs.

Note that requiring the existence of c is not a serious restriction, since we can always
assume a(n) 1. n.

14

Proof. We perform a reduction from MINIMUM DOMINATING SET [GJ79, Problem GT21.
An instance of MINIMUM DOMINATING SET is given by a undirected graph G = (V, E). A
node set D C V is a minimum dominating set, if each node in V \ D is incident to a node
in D, and D is of minimum cardinality among all node sets with the domination property.

Given an instance G = (V, E) of MINIMUM DOMINATING SET, add a new node r (the
root) to the graph and connect T to all the nodes in V. Let n' = IVI+1 be the resulting number
of nodes. For all edges, set the initial weights to lo := n . f(n') + 1, and the weights in the
upgrading case to 11 := 12 := 1. The upgrade cost of the root is set to c(r) := In- c . a(n)l+ 1,
all remaining nodes have upgrading cost 1. The constraint on the total weight is n := IV/.

Now suppose there is an (a(n'), f (n'))-approximation algorithm for (NODE UPGRAD-
ING COST, TOTAL WEIGHT, SPANNING TREE). Observe that for the instance of this problem
constructed above, there is always a feasible solution, namely, the upgrading set consisting
of all vertices in the graph. Thus, if applied to this instance, the algorithm must output
an upgrading set of cost at most a(n') times the optimum upgrading cost such that the
upgraded network contains an MST of weight at most f (n') . n.

It is easy to see that upgrading a dominating set of size u in G yields a minimum span-
ning tree in G' which fulfills the weight constraint and has upgrade costs equal to u. Thus
the optimum upgrading cost OPT is at most the size of the minimum dominating set.

Conversely, each upgrading set in G' not containing the root and resulting in an MST
of weight at most n is also a dominating set in G. Now observe that any spanning tree of
weight more than n has weight at least 20 = n.f(n')+l > n.f(n'). Thus, to satisfy the weight
constraint within a factor of f(n'), the algorithm must output a spanning tree consisting of
edges of weight 1 only. Moreover, due to the high cost of upgrading the root, the algorithm
can never choose the root for upgrading: let u be the size of a smallest dominating set, then
OPT 5 u by our observations from above. The algorithm produces a solution of cost at
most a(n') - OPT 5 a(n') u 5 c - a(n) . u < c(r).

Thus, an (a(n'), f(n'))-approximation algorithm can be used to obtain a dominating set
in the original graph G whose size is at most c . a(n) times the cardinality of an optimum
dominating set. 0

Corollary 19 (Non-Approximability) Let f be any (polynomial time computable) function, and
a(n) < (1 - E) Innforfixed E > 0. Unless NP C_ DTIME(no('o~'o~n)), there can be no polyno-
mial time approximation algorithm for (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING
TREE) with peformance guarantee (a(n) , f (n)), where n denotes the number 4 vertices in the
input graph.

Proof. Feige [Fei96] has shown that, unless NP C DTIME(no(loglogn)), there can be no
a(n)-approximation algorithm for MINIMUM DOMINATING SET when a(n) < Inn.

For some E > 0, assume that there is a ((1 - E) Inn, f(n))-approximation algorithm for
(NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE). Then there are constants E ' ,

c, and N, such that for n 2 N

1 - € '
In(n+l) 5 c . I n n and (1 -&)Inn< __ Inn.

C

With help of Lemma 18 we can conclude that there exists a ((1 - E ') In n)-approximation
algorithm for MINIMUM DOMINATING SET, which contradicts Feige's result. 0

15

References
[Ber921

[Fei961

[FS0961

[KM+97]

[KW96a]

[KNf96bl

ILR881

[MRf951

[Phi931

[PS95]

[RG961

0. Bennan, Improving the location qf minisum facilities through network mod$cation, Annals
of Operations Research 40 (19921,l-16.
U. Feige, A threshold of Inn for approximating set cover, Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing (STOC‘96), 1996, pp. 314-318.

G. N. Frederickson and R. Solis-Oba, Increasing the weight ofminimum spanning free, Pro-
ceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’96),
March 1996.

M. R. Garey and D. S. Johnson, Computers and intractability (a guide to the theory qf NP-
completeness), W.H. Freeman and Company, New York, 1979.

S. E. Hambrusch and H. Y. Tu, Edge weight reduction problems in acyclic graphs, J. Algo-
rithms 24 (1997), 66-93.

S. 0. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S. S. Ravi, R. Sundaram, and H. C.
Wirth, Improving spanning trees by upgrading nodes, Proceedings of the 24nd International
Colloquium on Automata, Languages and Programming (ICALP’97), Lecture Notes in
Computer Science, vol. 1256,1997, pp. 281-291.

S. 0. Krumke, H. Noltemeier, M. V. Marathe, R. Ravi, and S. S. Ravi, Improving Steinev trees
@a network under multiple constraints, Tech. Report LA-UR 96-1374, Los Alamos National
Laboratory, Los Alamos, New Mexico, USA, 1996.

S. 0. Krumke, H. Noltemeier, S. S. Ravi, M. V. Marathe, and K. U. Drangmeister, Mod-
$ying networks to obtain low cost trees, Proceedings of the 22nd International Workshop
on Graph-Theoretic Concepts in Computer Science, Cadenabbia, Italy., Lecture Notes in
Computer Science., vol. 1197, June 1996, pp. 293-307. A Complete version to appear in
Theoretical Computer Science, 1998.

E T. Leighton and S. Rao, An approximate max-flow min-cut theorem for un$orm multicom-
modity flow problems with application to approximation algorithms, Proceedings of the 29th
Annual IEEE Symposium on the Foundations of Computer Science (FOCS’SS), 1988,

M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt 111,
Bicriteriu network design problems, Proceedings of the 22nd International Colloquium on
Automata, Languages and Programming (ICALP’95), Lecture Notes in Computer Sci-
ence,, vol. 944,1995, pp. 487-498. A complete version to appear in J. Algorithms, 1998.

C. Phillips, The network inhibition problem, Proceedings of the 25th Annual ACM Sympo-
sium on the Theory of Computing (STOC‘93), May 1993, pp. 288-293.

D. Paik and S. Sahni, Network upgrading problems, Nehvorks 26 (1995), 45-58.

R. Ravi and M. X. Goemans, The constrained minimum spanning tree problem, Proceedings
Scandinavian Workshop on Algorithmic Theory (SWAT’961, Reykjavik, Iceland, Lecture
Notes in Computer Science, vol. 1097, July 1996, pp. 66-75.

pp. 422-431.

16

