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The hypercube segmentation problem is the following: Given a set S of m
� 4dvertices of the discrete d-dimensional cube 0, 1 , find k vertices P , . . . , P ,1 k

� 4dP g 0, 1 and a partitions of S into k segments S , . . . , S so as to maximize thei 1 k
sum Ýk Ý P (c, where ( is the overlap operator between two vertices of theis1 cg S ii

d-dimensional cube, defined to be the number of positions they have in common.
Ž .This problem among other ones was considered by Kleinberg, Papadimitriou, and

Raghavan, where the authors designed a deterministic approximation algorithm
that runs in polynomial time for every fixed k and produces a solution whose value
is within 0.828 of the optimum, as well as a randomized algorithm that runs in
linear time for every fixed k and produces a solution whose expected value is
within 0.7 of the optimum. Here we design an improved approximation algorithm;
for every fixed e ) 0 and every fixed k our algorithm produces in linear time a

Ž .solution whose value is within 1 y e of the optimum. Therefore, for every fixed
k, this is a polynomial approximation scheme for the problem. The algorithm is
deterministic, but it is convenient to first describe it as a randomized algorithm and
then to derandomize it using some properties of expander graphs. We also consider
a segmented version of the minimum spanning tree problem, where we show that
no approximation can be achieved in polynomial time, unless P s NP. Q 1999
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1. INTRODUCTION

Motivated by the study of various decision-making procedures arising in
w xdata mining, Kleinberg, Papadimitriou, and Raghavan introduced in 9 a

new class of optimization problems, which they called segmentation prob-
lems. In these problems, a company has some information about a set of

Ž .customers CC, and its objective is to choose and produce a prescribed
number k of policies. The objective is to optimize, over all possible choices
of k policies, the sum, over all customers c g CC, of the value assigned by c
to the best policy among the policies produced, according to his individual
utility function.

Once the k policies are chosen, the set of customers is partitioned into
k segments, where segment number i consists of all customers that pick
policy number i. It turns out that in many cases, even when the optimiza-

Ž .tion task is trivial for the nonsegmented case k s 1 , the corresponding
optimization problem is NP-hard already for k s 2. In the present paper
we study two problems of this type. The first one is the following.

THE HYPERCUBE SEGMENTATION PROBLEM. Given a set S of m cus-
� 4dtomers, each a vertex of the discrete d-dimensional cube 0, 1 , find k

� 4dpolicies P , . . . , P , P g 0, 1 and a partition of S into k segments1 k i
S , . . . , S so as to maximize the sum1 k

k

P (c,Ý Ý i
is1 cgSi

where ( is the overlap operator between two vertices of the d-dimensional
cube, defined to be the number of positions they have in common.

w xThis problem is considered in 9 , where the authors show that its
precise solution is NP-hard even for k s 2. They design two approximation
algorithms for the problem: The first is a deterministic algorithm that runs
in polynomial time for every fixed k and produces a solution whose value

' Ž .is within 2 2 y 2 s 0.828 . . . of the optimum. It is based on the
� 4dinteresting observation that for every set S ; 0, 1 there is some P g S

� 4dso that for every x g 0, 1 ,

'P(c G 2 2 y 2 x(c.Ž .Ý Ý
cgS cgS

The second is a randomized algorithm that runs in linear time for every
fixed k and produces a solution whose expected value is within 0.7 of the
optimum.
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Here we design an improved approximation algorithm; for every fixed
e ) 0 and every fixed k our algorithm produces in linear time a solution

Ž .whose value is within 1 y e of the optimum. Therefore, for every fixed k
this is a polynomial time approximation scheme for the problem. Our
algorithm is deterministic, but it is convenient to first describe it as a
randomized one and then to derandomize it using some properties of
expander graphs. This improves the performance ratio as well as the

w xrunning time of the deterministic algorithm of 9 for all m, d, and k. The
w xrandomized algorithm of 9 is slightly faster than ours for large k, but the

performance ratio of our algorithm is much better.

The second segmentation problem we consider is the following mini-
w xmization problem, which is only mentioned briefly in 9 .

THE MINIMUM SPANNING TREE SEGMENTATION PROBLEM. Given a con-
Ž .nected graph G s V, E and n nonnegative functions f : E ª R, 1 F i Fi

n, find k spanning trees T , . . . , T of G, so as to minimize the sum1 k

n

min f T ,Ž .Ý i j
1FjFkis1

Ž . Ž .where f T s Ý f e .i j eg EŽT . ij

We show that unless P s NP, there is no polynomial time algorithm that
approximates the optimal solution of this problem up to any finite factor,
even if k s 2.

The rest of this paper is organized as follows. In Section 2 we consider
the hypercube segmentation problem, describe our randomized approxi-
mation algorithm, and present is derandomization. In Section 3 we present

Ž .the simple proof that there is no polynomial time approximation algo-
rithm for the minimum spanning tree segmentation problem, unless P s
NP. The final section 4 contains some concluding remarks.

2. THE HYPERCUBE SEGMENTATION PROBLEM

In this section we present a polynomial approximation scheme for the
hypercube segmentation problem. First we describe a randomized algo-
rithm for this problem and then we show how it can be derandomized,
using some properties of random walks on expanders.

2.1. Random Sampling

� 4d Ž .Let S ; 0, 1 be a set of m customers. Denote by f P, S9 s
� 4dÝ P(c the total value of policy P g 0, 1 for the customer setcg S9

S9 ; S, where P(c is the number of coordinates in which P and c agree.
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A family of policies P , . . . , P induces a partition of the entire set S into1 k
k segments S , . . . , S by putting c g S into the set S if P (c G P (c for1 k i i j
all j / i and by breaking ties arbitrarily. It is easy to see that this partition

Ž .maximizes the value of the expression Ý f P , S over all possible parti-i i i
tions of S into k parts S , . . . , S . Therefore the segmentation problem is1 k
equivalent to the problem of finding a family of optimal policies. Note that
the optimal value of the problem is clearly at least mdr2. This value can
be produced without segmentation by picking the majority bit in each of
the d coordinates.

We first describe a simple randomized approximation algorithm for the
hypercube segmentation problem, which for any fixed e ) 0 produces a

Ž .solution whose expected value is within 1 y e from optimal. For any
fixed k and e the running time of this algorithm is linear.

Ž .ALGORITHM A k, e .
� 4dInput: A set S of m customers, each being a vertex of 0, 1 .

Ž 2 .1. Sample l s Q kre customers from S with repetitions, randomly
and independently, according to a uniform distribution.

2. For all possible partitions of the sample set into at most k segments
do:
2.1. For each segment in the partition find an optimal policy: a

� 4dvector from 0, 1 which in each coordinate agrees with the
majority of the elements of the segment. This gives a family of
policies.

2.2. Produce the segmentation of the entire set S according to this
family of policies.

3. Let SU , . . . , SU be the optimal segmentation obtained from all1 k
Ž Upossible partitions of the sample set note that some of the sets Si

. Umay be empty and let P , 1 F i F k, be the corresponding family ofi
policies.
Ž U U .Output: S , P for 1 F i F k.i i

Note that the number of all possible partitions of a set of size l into at
Ž l.most k parts is O k . Therefore, the running time of this algorithm is

Ž lq1 . OŽŽ k re 2 . ln k .O k md s e md. This is linear in the length of the input md
for any fixed k and e and remains polynomial in this length for each k up

Ž Ž . Ž ..to O ln md rln ln md .
To study the performance of the algorithm, let P , . . . , P be the optimal1 k

family of policies and let S , . . . , S be the corresponding segmentation of1 k
S. Denote by X the subset of S obtained by our random sampling. Let
X , . . . , X be the partition of X defined by X s X l S and let PX , . . . , PX

1 k i i 1 k
Žbe the optimal family of policies for this segmentation of X if X isi

X . X Xempty, then P can be any vector . Denote by S , . . . , S the partition of Si 1 k
� X4 Ž .induced by the family P . Since the algorithm A k, e checks all possiblei
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partitions of X, we conclude that the value of its solution satisfies

f PU , SU G f PX , SX G f PX , S .Ž . Ž . Ž .Ý Ý Ýi i i i i i
i i i

Ž X .It thus suffices to prove that the expected value of Ý f P , S is at leasti i i
Ž . Ž .1 y e of the optimum value Ý f P , S .i i i

Ž .Let S be a segment in the optimal partition of S, and let S r , r s 0, 1i i j
be the subset of S of all vectors, whose jth coordinate equals to r. Puti

< < Ž . < < Ž . < < < < Ž .d s S 0 y S 1 r S . By step 2.1 of the algorithm A k, e the jthi j i j i j i
coordinate PX , in the policy vector PX is the majority bit over all the jthi j i
coordinates of the elements from X l S . Thus we obtain that the eventi
PX / P can happen only if the number of elements in X which belong toi j i j

Ž . Ž .S 0 or to S 1 deviates from its expected value by at leasti j i j
Ž .Ž < < . < Ž . <d r2 S lrm . Note that the value X l S r is binomially distributedi j i i j

< Ž . <with parameters l and S r rm. Therefore, using the standard estimatesi j
Ž w x.for binomial distributions see, e.g., 4, Appendix A we obtain that

Pr PX / P F eyV Žd 2
i jŽ < Si < lr m.. .Ž .i j i j

< < Ž . < < Ž . < <Each such event contributes an additive factor of S 0 y S 1 si j i j
< <d S to the total difference between the optimal value and the expectedi j i

result of the algorithm. By the above discussion, this implies that the
expected value of this difference is at most

X < < < < < < < < yV Žd 2
i jŽ < Si < l r m..Pr P / P S 0 y S 1 F d S e .Ž . Ž .Ž .Ý Ýi j i j i j i j i j i

ij ij

Ž . yc t 2 Ž .Consider the function g t s te . It is easy to check that g t attains its
y1r2' Ž .maximum at t s 1r 2c and, hence, g t F c for any real t. By taking

2yV Žd Ž < S < lr m..i j iŽ < < . Ž < < .c to be Q S lrm we obtain that d e F O mr S l .' Ž .i i j i
Therefore the expected value satisfies

k k
2X yV Žd Ž < S < lr m..i j i< <E f P , S G f P , S y d S eŽ . Ž .Ý Ý Ýi i i i i j iž /

is1 is1 ij

k d km
< <G f P , S y O S .'Ž .Ý Ý Ý(i i iž /lis1 js1 is1

k '< < < <By Jensen’s inequality Ý S F k Ý S rk s km . Therefore,' 'is1 i i i

k k d m
X 'E f P , S G f P , S y O kmŽ . Ž .Ý Ý Ý (i i i iž / ž /lis1 is1 js1

k k
s f P , S y O md .Ž . (Ý i i ž /lis1
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Ž 2 .Using the facts that l s Q kre and that the optimal value of the
hypercube segmentation problem is at least mdr2, we conclude that with
the right choice of the constant in the definition of l,

k k e md
XE f P , S G f P , S y G 1 y e f P , S .Ž . Ž . Ž . Ž .Ý Ý Ýi i i i i iž / 2is1 is1 i

This completes the proof that the approximation ratio of the algorithm
Ž . Ž .A k, e is at least 1 y e .

2.2. Derandomization ¨ia random walks

Ž .Let G s V, E be a connected, nonbipartite, d-regular graph on m
vertices. A random walk on G is equivalent to a time reversible Markov
chain. The states of the Markov chain are the vertices of the graph, and
for any two vertices u and ¨ the transition probability from u to ¨ ,

Ž .p s 1rd if u, ¨ is an edge and zero otherwise. Note that by definitionu¨
Ž .the transition probability matrix P s 1rd A, where A is the adjacency

matrix of the graph G, and the uniform distribution is the stationary
Ž w xdistribution of this walk see, e.g., 13 for some basic results about random

.walks on graphs . The eigenvalues of P are reals, and the largest eigen-
Ž . Žvalue in absolute value is 1. We denote the second largest in absolute
. < <value eigenvalue by l and define the eigen¨alue gap to be d s 1 y l .

This quantity is directly related to the expansion properties of the graph G
Ž w x.see, e.g., 2, 3, 14, 15 . Roughly speaking, d is large if and only if G is a
good expander.

Let U be a subset of vertices of G. Consider a random walk on G
starting from a vertex chosen uniformly at random. We denote by t thel
number of times the random walk visits a vertex of U during the first l
steps. The following useful result about the behavior of t was proved byl

w x Ž w x.Gillman 7 following 1, 5, 8 .

w x Ž .THEOREM 2.1 7 . Let G s V, E be a connected, regular graph on m
¨ertices with eigen¨alue gap d . Consider a random walk on G starting from a
¨ertex chosen uniformly at random. Let U be an arbitrary subset of ¨ertices of

< <G, U s cm. Then for any l

< < yg 2 dr20 lPr t y cl G g F 4e .Ž .l

To use the above result for producing efficient deterministic algorithms,
we need an explicit construction of regular graphs with constant degree
and large eigenvalue gap. The best known such constructions were given

w x w xby Lubotzky, Phillips, and Sarnak 11 and independently by Margulis 12 .
For each d s p q 1, where p is a prime congruent to 1 modulo 4, they
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< <constructed an infinite explicit family of d-regular graphs with l F
' Ž2 d y 1 . We note that these graphs will not have exactly m vertices for

any m, but this does not cause any real problem as we can take a graph on
Ž Ž ..n vertices such that m F n F 1 q o 1 m. In this case the number of

< < Ž Ž .. .vertices in the subset U, U s cm is still c q o 1 n . Taking, say, d s 6
' 'Ž .and l s 2 5 we get an eigenvalue gap of 6 y 2 5 r6 ) 0.25 and thus

we can use such a 6-regular expander for our purposes. Using this
construction together with the result of Gillman we obtain the following
corollary.

COROLLARY 2.2. Gï en any set S of size m and any natural number l we
l � 4 < <can construct an explicit family FF of size 6 m of multisets F , F ; S, F s li i i

with the following property. Let F be a multiset, chosen randomly andi
uniformly from FF, then for e¨ery subset U ; S of size cm

< < < < y0 .25g 2 r20 lPr F l U y cl G g F 4e .Ž .i

Proof. Let G be a 6-regular graph on the vertex set S with eigenvalue
'Ž . � 4gap at least 6 y 2 5 r6 ) 0.25. Let FF s F be the family of all possiblei

walks of length l on G. Clearly the size of FF is 6 lm. A random element Fi
of FF corresponds to a random walk of length l on the graph G, which

< <starts in a uniform distribution. Note that by definition F l U s t .i l
Therefore, Theorem 2.1 completes the proof of the corollary.

A family of subsets from Corollary 2.2 is the main ingredient of
the following deterministic algorithm for the hypercube segmentation
problem.

Ž .ALGORITHM B k, e .
� 4dInput: A set S of m customers, each being a vertex of 0, 1 .

� 4 Ž l .1. Construct a family FF s F of size O 6 m of multisubsets of S,i
< < Ž 2 2 .where each F s l s Q k re , satisfying the property in the asser-i

tion of Corollary 2.2.
< <2. For 1 F i F FF and for all possible partitions of F into at most ki

segments do:
2.1. For each segment in the partition find an optimal policy: a

� 4dvector from 0, 1 which in each coordinate agrees with the
majority of the elements of the segment. This gives a family of
policies.

2.2. Produce the segmentation of the entire set S according to this
family of policies.

3. Let SU , . . . , SU be the optimal segmentation obtained from all1 k
< < Žpossible partitions of F for 1 F i F FF note that some of the setsi

U . US may be empty and let P , 1 F i F k be the correspondingi i
family of the best policies.
Ž U U .Output: S , P for 1 F i F k.i i
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Ž lq1 l . OŽŽ k 2 re 2 . ln k .The running time of this algorithm is O k 6 md s e md.
Therefore it is linear in md for any fixed k and e and remains polynomial

ŽŽ Ž . Ž ..1r2 .in md for any k up to O ln md rln ln md . We claim that the above
Ž .algorithm produces a solution of value at least 1 y e of the optimum.

Indeed, consider a multiset X s F chosen randomly and indpendentlyt
from the family FF. Let P , . . . , P be the optimal family of policies and let1 k
S , . . . , S be the corresponding segmentation of S. Let X , . . . , X be the1 k 1 k
partition of X defined by X s X l S and let PX , . . . , PX be the optimali i 1 k

Ž Xfamily of policies for this segmentation of X if X is empty, then P cani i
. X Xbe any vector . Denote by S , . . . , S the partition of S induced by the1 k

� X4family P . As explained in the previous subsection, it suffices to provei
Ž X . Ž .that the expected value of Ý f P , S is at least 1 y e of the optimumi i i

Ž .value Ý f P , S .i i i
Ž .Let S be a segment in the optimal partition of S, and let S r , r s 0, 1i i j

be the subset of S consisting of all vectors whose jth coordinate is r. Puti
< < Ž . < < Ž . < < < < Ž .d s S 0 y S 1 r S . By step 2.1 of the algorithm B k, e the jthi j i j i j i

coordinate PX , in the policy vector PX is the majority bit over all the jthi j i
coordinates of the elements from X l S . Thus we obtain that the eventi
PX / P can happen only if the number of elements in X which belong toi j i j

Ž . Ž .S 0 or to S 1 deviates from its expected value by at leasti j i j
Ž .Ž < < .d r2 S lrm . Note that, by Corollary 2.2, X s F satisfies the propertyi j i t
that

< < < < y0 .25g 2 r20 lPr X l U y cl G g F 4eŽ .
for any subset U ; S of size cm. Therefore, we obtain that

Pr PX / P F eyV Žd 2
i jŽ < Si <

2 lr m2 .. s eyV Ž lŽd i j < Si < r m.2 . .Ž .i j i j

< < Ž . < < Ž . < <Each such event contributes an additive factor of S 0 y S 1 si j i j
< <d S to the total difference between the optimal value and the expectedi j i

result of the algorithm. By the above discussion, this implies that the
expected value of this difference is at most

< <d S 2i j iX yV Ž lŽd < S < r m. .i j i< < < < < <Pr P / P S 0 y S 1 F m e .Ž . Ž .Ž .Ý Ýi j i j i j i j mij ij

Ž . yc t 2 y1r2As mentioned in Subsection 2.1 the function g t s te F c for any
Ž . Ž < < . yV Ž lŽd i j < Si < r m.2 .real t. By taking c to be Q l we obtain that d S rm e Fi j i'Ž .O 1r l . Therefore, the expected value satisfies

k k < <d S 2i j iX yV Ž lŽd < S < r m. .i j iE f P , S G f P , S y m eŽ . Ž .Ý Ý Ýi i i iž / mis1 is1 ij

k mkd
G f P , S y O .Ž .Ý i i ž /'lis1
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Ž 2 2 .Using the facts that l s Q k re and that the optimal value of the
hypercube segmentation problem is at least mdr2, we conclude that with
the right choice of the constant in the definition of l, the expected value
satisfies

k k e md
XE f P , S G f P , S y G 1 y e f P , S .Ž . Ž . Ž . Ž .Ý Ý Ýi i i i i iž / 2is1 is1 i

Thus, there exists a particular t and a partition of X s F which producest
Ž .a segmentation of S whose value is within 1 y e from optimum. But

Ž .then the algorithm B k, e will find it in stage 3. This completes the proof
of the correctness of the algorithm.

3. THE MINIMUM SPANNING TREE
SEGMENTATION PROBLEM

Ž .A hypergraph H is an ordered pair H s V, E , where V is a finite set
Ž . Ž .the ¨ertex set , and E is a family of distinct subsets of V the edge set . A

Ž .hypergraph H s V, E is 3-uniform if all edges of H are of size 3. The
chromatic number of H is the minimum number of colors required to color

w x Ž w x.all its vertices so that no edge is monochromatic. Lovasz 10 see also 6´
showed that it is NP-hard to determine whether a 3-uniform hypergraph is
2-colorable.

In this section we present a construction for reducing the 2-colorability
problem for 3-uniform hypergraphs to the segmented version of the
minimum spanning tree. Using this construction we deduce that unless
P s NP the minimum spanning tree segmentation problem does not have
any polynomial time approximation even for an extremely simple graph}a
path with three parallel edges between each pair of consecutive nodes.

Ž Ž . Ž ..Suppose we are given a 3-uniform hypergraph H s V H , E H with
< Ž . < Ž Ž . Ž ..E H s m edges. Let G s V G , E G be a path of length m with
three parallel edges between each pair of consecutive nodes. Each triple

Ž .e , e , e of parallel edges in G corresponds to an edge u, ¨ , w of theu ¨ w
hypergraph H and each edge in the triple is labeled by a vertex of the edge
Ž . Ž .u, ¨ , w . For every vertex u g V H define a weight function f on theu

Ž . Ž .edges of G with f e , e g E G being one if and only if the edge e isu
Ž .labeled by the vertex u and f e s 0 otherwise. We claim that theu

chromatic number of the hypergraph H is equal to two if and only if there
exists a pair T , T of spanning trees of G such that1 2

min f T s 0.Ž .Ý u i
1FiF2Ž .ugV H
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Ž . � 4To prove this claim assume, first, that c : V H ª 1, 2 is a 2-coloring
of the vertices of H with no monochromatic edges. Denote by G , i s 1, 2,i
the subgraph of G spanned by all edges, corresponding to the vertices of
H with color i. Since no edge of the hypergraph H is monochromatic we
obtain that from every triple of parallel edges in G at least one belongs to
G , i s 1, 2. Therefore each of the subgraphs G and G contains ai 1 2

Ž .spanning tree T of G. Thus, it is enough to prove that for any u g V Hi
Ž .at least one of the values f G , i s 1, 2, is equal to zero. To do so,u i

Ž .consider G for i s 3 y c u . By definition G contains no edges corre-i i
Ž .sponding to u and thus f G s 0. This implies thatu i

0 F min f T F min f G s 0.Ž . Ž .Ý Ýu i u i
1FiF2 1FiF2Ž . Ž .ugV H ugV H

Now assume that there exists a pair T and T of spanning trees of G1 2
Ž . Ž .such that min f T s 0 for every vertex u g V H . Let V , i s 1, 2,1F iF 2 u i i

be the subset of vertices of H which correspond to the labels of the edges
in the tree T . Consider a vertex coloring of the hypergraph H by twoi
colors such that all vertices in V , i s 1, 2, are colored by the color i and alli
the remaining vertices are colored arbitrarily. We need to prove that no
edge of H is monochromatic and no vertex gets two colors simultaneously.
This will imply that the hypergraph H is 2-colorable. Note first, that the
subsets V and V are disjoint. Indeed, assume this is false and let u be a1 2
vertex of H which belongs to V l V . Then the spanning trees T and T1 2 1 2
both contain an edge of G which is labeled by the vertex u. By the

Ž . Ž .definition of the function f it follows that f T , f T ) 0, contradic-u u 1 u 2
tion. Hence each vertex of H gets only one color. Since T is a spanningi
tree of G it has at least one edge from every triple of parallel edges in G.
Therefore V , i s 1, 2, intersects every edge of the hypergraph H in ati
least one vertex. This implies that there are no monochromatic edges.

Applying now the result of Lovasz, we get that if P / NP, then there is´
no polynomial algorithm to decide whether the optimal value in the
minimum spanning tree segmentation problem is strictly positive, even for
the case of two trees. This implies the following.

Ž . < <THEOREM 3.1. Gï en a connected graph G s V, E , V s n, and a
Ž .family f , 1 F i F m, of nonnegatï e weight functions on E G , it is impossiblei

to approximate in polynomial time in m and n the optimal ¨alue of the
Ž .minimum spanning tree segmentation problem for G e¨en for k s 2 within

any finite factor, unless P s NP.

4. CONCLUDING REMARKS

The class of segmentation problems contains several interesting algo-
rithmic questions, and our present paper deals with two of them.
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It is not difficult to extend the problem and results of Section 2 to
hypercubes over a larger fixed alphabet. We omit the simple details.

The hardness result for the minimum spanning tree segmentation prob-
lem holds, as mentioned in Section 3, even if the input graph is the path
with three parallel edges between every two consecutive vertices. Similarly,
it holds for many other graphs, including every n vertex graph that
contains a spanning subgraph which is a subdivision of a graph obtained

Ž d .from any path by replacing each of V n edges by three parallel ones.
This includes the graphs of the d-cubes, as well as many other ones.

Some of our techniques here are useful in the study of other segmenta-
Žtion problems. One of these is the catalog segmentation problem in the

. w xdense case considered in 9 . Suppose that we have a set of n customers
and a set U of m items. For each customer we are given a subset of items
this customer likes. We wish to create a catalog with r items to be sent to
the customers. Our objective is to maximize the sum, over all items, of the
number of customers that like this item. The simple optimal solution is, of
course, to select the r most popular items. However, if instead of one
catalog we can create k different ones, each with r items, sending one of
them to each customer, we can sometimes ensure a much bigger value
than that given by a single catalog. This leads to the catalog segmentation
problem, whose precise formulation is the following.

THE CATALOG SEGMENTATION PROBLEM. Given a set U of size m and a
family S , . . . , S of n subsets of U, find k subsets X , . . . , X of U, each1 n 1 k
of size r, so as to maximize the sum

n

< <max S l X .Ý i j
1FjFkis1

w xThis problem is considered in 9 , where the authors prove that it is
Ž .NP-hard even for k s 2. For fixed k and for the special dense case in

Žwhich each customer likes at least a fraction e of all items that is,
< < < < .S G e U for all i , they design a randomized polynomial time approxima-i
tion scheme. Our technique here can be used to provide a deterministic
polynomial time approximation scheme for this special case. Without the
density assumption, the problem appears to be much more difficult, and as

w xmentioned in 9 , even the problem of improving the trivial 1r2 approxi-
mation for k s 2 in polynomial time seems difficult.
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