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domain [1...n]. In this paper, we give a faster implementation of the tree
contraction scheme which takes O(log n - T(n)) time using P(n) processors on an
arbitrary CRCW PRAM. The current best results of 7(n) and P(n) are O(loglog
log n) and O(n /logloglog n), respectively. To our knowledge, the previously best
known implementation needs O(log? n) time using O(n/log 1) processors on an
EREW PRAM. The faster parallel implementation of the tree contraction scheme
may be of interests by itself. We then show the above scheme can be utilized to
solve problems on distance-hereditary graphs. We provide a data structure to
represent a connected distance-hereditary graph in the form of a rooted tree. By
applying the above tree contraction scheme on our data structure together with
graph theoretical properties, we solve the problems of finding a minimum con-
nected y-dominating set and finding a minimum <y-dominating clique on a
distance-hereditary graph in O(log n - T(n)) time using O(P(n) + (n + m)/T(n))
processors on an arbitrary CRCW PRAM, where n and m are the number of
vertices and edges of the given graph, respectively. The above result implies several
other problems related to the minimum y-dominating clique problem can be solved
with the same parallel complexities. ~ © 2000 Academic Press

1. INTRODUCTION

A graph is distance-hereditary [2, 25] if the distance stays the same
between any of two vertices in every connected induced subgraph contain-
ing both (where the distance between two vertices is the length of a
shortest path connecting them). Distance-hereditary graphs form a sub-
class of perfect graphs [14, 21, 25] that are graphs G in which the
maximum clique size equals the chromatic number for every induced
subgraph of G [3, 20]. Properties of distance-hereditary graphs have been
studied by researchers [2, 7, 14, 16, 21, 25] which resulted in sequential
algorithms to solve quite a few interesting graph-theoretical problems on
this special class of graphs. However, few results [11, 13, 26] are known in
the parallel context. In [11], Dahlhaus gave a cost-optimal parallel algo-
rithm to compute the all-to-all vertices distances for a distance-hereditary
graph. In [26], efficient parallel algorithms were presented to find a
minimum weighted connected dominating set, find a minimum weighted
Steiner tree, and find a maximum weighted clique for a given distance-
hereditary graph. In this paper, we further study properties of distance-
hereditary graphs that will help in designing parallel algorithms in this
special class of graphs, which may be of interest by themselves.

Let G be a distance-hereditary graph in which an integer value y(v) is
assigned to each vertex v. In this paper, we focus on various generaliza-
tions of the y-dominating set problem, where a y-dominating set in G is a
subset of vertices such that for every vertex v € G there is a vertex in the
v-dominating set with its distance within y(v). The concept of dominating
set is used to model many location problems in operations research and
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game theory [6, 8, 24]. We will study the minimum connected y-dominating
set problem, i.e., the problem of finding a minimum cardinality y-dominat-
ing set which induces a connected subgraph, and the minimum y-dominat-
ing clique problem, i.e., the problem of finding a minimum vy-dominating set
which induces a clique. It is easy to see that the minimum connected
y-dominating set problem generalizes the concepts of the well-known
minimum connected dominating set problem with y(v) = 1 for all vertices
and the minimum Steiner tree problem with y(v) = 0 for any terminal
vertex and y(v) = o for other vertices [7, 15]. From solving the y-dominat-
ing clique problem, we show that several related problems can also be
solved efficiently in parallel. The sequential linear time algorithms to solve
the minimum connected y-dominating set problem and the minimum
y-dominating clique problem have been presented in [7, 16].

In this paper, we first give an implementation of a parallel tree contrac-
tion scheme (described in Section 3) which in each contraction phase
removes leaves and nodes in the maximal chains. This scheme was applied
to solve several problems on chordal graphs and reducible flow graphs [12,
29, 32-34]. Given an array of n integers a[l...n], the all nearest smaller
values (ANSV) problem [4, 5] is for each index i to find the largest index j
such that j < i and a[j] < a[i] and to find the smallest index k such that
k > i and a[k] < a[i]. Let T(n) and P(n) denote the time and processor
complexity required to compute the ANSV problem and the minimum of n
values for input elements drawn from the integer domain [1...#n]. Our
implementation takes O(log n - T(n)) time using P(n) processors on an
arbitrary CRCW PRAM (concurrent read and write parallel random
access machine). Currently, the best results for T(n) and P(n) are O(log
loglog n) and O(n/logloglog n), respectively [5]. To our knowledge, the
previously best-known implementation of the above tree contraction
scheme needs O(log? n) time using O(n /log n) processors on an EREW
PRAM [29]. We then show the above scheme can help to solve the
minimum connected y-dominating set problem, the minimum <y-dominat-
ing clique problem and related problems on distance-hereditary graphs.
We provide a data structure to represent a connected distance-hereditary
graph in the form of a rooted tree. By applying the indicated tree
contraction scheme to prune such a tree, the above problems can be solved
in O(log n - T(n)) time using O(P(n) + (n + m)/T(n)) processors on an
arbitrary CRCW PRAM, where n and m are the number of vertices and
edges in the input graph, respectively. The sequential complexity of the
above problems is O(n + m) [7, 16].

The computation model used here is the deterministic PRAM which
permits CRCW in its shared memory. The arbitrary CRCW PRAM allows
an arbitrary processor to succeed [28] when several processors are attempt-
ing to write into the same memory location. The rest of this paper is
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organized as follows. In Section 2, some needed definitions are given. In
Section 3, we provide a new implementation of a tree contraction scheme.
In Section 4, a sequential algorithm using our data structure is presented
for the minimum connected yy-dominating set problem on a distance-
hereditary graph. In Section 5, we present a parallel implementation of our
sequential algorithm. In Section 6, the minimum +-dominating clique
problem is discussed. Extensions to several other problems and the conclu-
sion are given in Section 7.

2. PRELIMINARIES

This paper considers a finite, simple, undirected, and connected graph
G = (V, E), where V and E are the vertex and edge sets of G, respec-
tively. Let n = |V| and m = |E|. For graph-theoretic terminologies and
notations not mentioned here, we refer to [20].

Let v be a vertex of G. We denote the number of edges incident to v by
deg;(v) and let deg(G) = max{deg;(v)lv € G}. We also denote the neigh-
borhood of v, consisting of all vertices adjacent to v, by N;(v), and the
closed neighborhood of v, the set N;(v) U {v}, by N;[v].

Let S be a subset of V. Let N (S) denote the open neighborhood of S,
that is the set of vertices in (G)\ S which are adjacent to any vertex in S.
The closed neighborhood of S is the set N;(§) U S, which is denoted as
Ng[S]. The subscript G in the notations can be omitted when no ambiguity
arises. The subgraph induced by S, denoted by (S, is the subgraph with §
as the vertex set and {(x, y) € E|x, y € S} as the edge set. A vertex subset
S is homogeneous in G if and only if every vertex in I\ § is adjacent to
either all or none of the vertices of S. A homogeneous set S is further said
to be proper homogeneous if 2 <|S| <n — 1. Note that every vertex
v € V' \S has equal distance to the vertices of a homogeneous set S. We
call a family of subsets arboreal if every two subsets of the family are
either disjoint or comparable (by set inclusion).

For any two vertices u and v, let dist(u, v) denote the distance between
u and v in G. Given a vertex u € V, the hanging of a connected graph
G = (V,E) rooted at u, denoted by h,, is the collection of sets
Ly(uw), L(u),..., L (u) (or simply L, L,,..., L, when no ambiguity arises),
where t = max, ., dist(u,v) and L.(u) = {v € Vdist(u,v) =i} for 0 < i
<t. For any vertex v € L, and any vertex set S CL;,, 1 <i<t, let
N'(v) = N(w) N L;_, and N'(§) = N(S) N L,_,. Any two vertices x,y €
L, (1 <i<t—1) are said to be tied if x and y have a common neighbor
in L.

A graph G is y-valued if it is associated with a function y on V to
nonnegative integers. For a +y-valued graph G, a subset D CV is a



54 HSIEH ET AL.

y-dominating set of G if for every v € V\ D, there is a u € D with
dist(u,v) < y(v). For a y-dominating set of G, it is called a connected
v-dominating set of G if (D) is connected and is called a y-dominating
clique of G if D is a clique. The minimum connected y-dominating set
problem (respectively, minimum y-dominating clique problem) is the prob-
lem of finding a minimum cardinality connected y-dominating set (respec-
tively, y-dominating clique) of G.

3. A FASTER IMPLEMENTATION OF A TREE
CONTRACTION SCHEME

The problem of tree contraction involves reducing in parallel a given tree
to its root by a sequence of vertex removals. It has important applications
in dynamic expression evaluation and isomorphism testing, among many
others [1, 10, 12, 18, 19, 22, 23, 29-34].

We first review a tree contraction scheme used in this paper. The
scheme is based upon two abstract parallel tree contraction operations,
namely RAKE and SHRINK. The scheme works in phases: during each
phase, one RAKE and then one SHRINK operation are performed consecu-
tively.

Let T = (V, E) be a rooted tree with n vertices and {v,v,,...,v,} CV,
where k > 2. We say that € = [v,0,,...,0,] is a chain of length k — 1 if
v, is not the root, the degree of v, is 2, v;,, is the only child of v,,
1<i<k, and v, is a leaf. A chain is said to be maximal if it is not
possible to add any vertex to form a longer chain. Further, we say that a
maximal chain & = [v,,v,,...,0,] is reduced if the vertices v,,v;,...,0;
are removed from 7. The following two operations are defined in 7.

1. SHRINK: An operation reduces all the maximal chains of 7. An
example of a SHRINK operation is shown in Fig. 1a.

2. RAKE: An operation removes all the leaves from 7. An example
of a single RAKE operation is shown in Fig. 1b.

We define a contraction phase of the current tree by first applying a
RAKE operation and then applying a SHRINK operation. The above tree
contraction scheme, called R& S for ease of referencing, applies a se-
quence of contraction phases to the original tree until it being reduced to
its root.

The scheme R & S was applied to solve several problems on chordal
graphs and reducible flow graphs [12, 29, 32-34]. In [33, 34], Ramachan-
dran gave an implementation which needs O(log* n) time using polynomial
many processors to solve the minimum feedback vertex set problem on
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(b)

FIG. 1. An example of SHRINK and RAKE operations.

unweighted reducible flow graphs and the minimum feedback arc set on
arc-weighted reducible flow graphs. In [32], the scheme was implemented
in O(log® n) time using O(n?) processors to find a perfect elimination
order and an unweighted maximum independent set of a chordal graph. In
[12], Dahlhaus and Damaschke implemented the scheme in O(log? n) time
using O(n) processors on a CREW PRAM based on the pointer jumping
technique and used it to solve the dominating set problem and the
dominating clique problem on strongly chordal graphs. In [29], Klein
implemented the scheme in O(log? n) time using O(n/log n) processors
on an EREW PRAM based on the Euler tour technique and used it to
solve the maximum independent set problem on chordal graphs.

LEMMA 1[12,29, 32-34].  After O(log n) contraction phases, T is reduced
to a single vertex which is its root.

In what follows, we present a method to implement the tree contraction
scheme R&S in O(log n - logloglog n) time using O(n/logloglog n)
processors on an arbitrary CRCW PRAM. Consider a rooted tree 7' with
root r to be contracted. For a node v in T, let child;(v) denote the
children of v and par;(v) denote the parent of v in 7. Throughput this
section, we also use child(v) and par(v) to denote the children and the
parent of v in the current tree when no ambiguity occurs. We assume that
for each vertex v in T, the children of v are ordered vy, v;,..., 0,
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where I(v) is the number of children of v and each child knows its index.
That is, let index[v;] = i be the index of v; in this ordering of children. For
each vertex v we set aside I(v) locations label[v,i], i = 1,...,I(v) in the
shared memory. Initially each label[v, i] is empty or unmarked. Once v; is
deleted from the current tree using tree contraction, label[v, j] is marked.
We use arg(v) to denote the number of children of v in the current tree.
That is, initially, arg(v) = I(v).

Our method works in O(log n) contraction phases. Assume that the
children of the root r are given by (ug,u,,...,u,,,_,). First of all, we

compute the Euler tour for T which is represented by an array ET = [e,
= (r,up), ey,..., 5,1, = (U, -, 1)l (e, ET[i] records the ith edge in
the tour constructed). This can be achieved in O(log n) time using O(n/
log n) processors on an EREW PRAM by applying the list ranking
technique [27]. For each vertex v, let i, (respectively, ¢,) be the index that
ETIli,]1 = (par;(v),v) (respectively, ET[¢t,] = (v, par;(v))) and let I, de-
note the interval [i,, ¢,]. The index i, (respectively, ¢,) is said to be the left
endpoint (respectively, right endpoint) of I,. For any two intervals I, and
I,, we say I, covers I, if i, <i, and ¢, <t and they are disjoint if

X =7y y — "x?

i <t,<i, <t ori,<t, <i <f,.

LEMMA 2. For any two intervals I, and I, where x, y in V(T), either one
covers the other or they are disjoint.

Proof.  According to the property of trees, if x (respectively, y) is an
ancestor of y (respectively, x), then I, covers I, (respectively, I, covers
I.); otherwise, I, and I, are disjoint. I

By Lemma 2, on any subset .# of {I,|v € V(T)}, we can define a partial
order < that for any I,,/, in .7, I, < I if I, covers I,.

To indicate the status of vertices in the current tree, we construct an
array Dp,l1,...,2(n — 1] with 2(n — 1) entries corresponding to the
2(n — 1) entries of array ET. This array will be updated in each phase as
follows. We set Z7[i,] = 1, or 2, or 3, depending on the degree of v in
the current tree is 1 or 2, or at least 3, respectively. We also set
Dl j1= 0 if either j # i, for any v € V(T) or j =i, for any v € V(T)
not in the current tree.

In a contraction phase, we first show how to implement RAKE. For each
vertex w with arg(w) = 0, it is a leaf of the current tree. So we delete all
the nodes w with arg(w) = 0 (corresponding to a RAKE operation) and
modify 9, as follows. We first set Z[i,] = 0. Assume f = par;(w). We
use the following method to compute Z;[i;] on O(1) time using totally
O(n) processors. Assume each node is assigned with one processor. Using
the arbitrary CRCW PRAM model, we start by setting aside a memory
location argindex[ f1 = nulil. Each processor assigned to an unmarked child
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writes its index into the memory location argindex| f ]. Assume that one of
these children succeeds in writing its index. If argindex| f] = null, we set
Dyrli;] = 1 because all the children of f are deleted by executing a RAKE
operation. To test whether Z;,[i;] = 2, each processor assigned to an
unmarked child reads argindex| f] and if the value is not the same as its
own index, it rewrites its index to argindex] 1. If the value of argindex| f]
does not change, then Zj,[i,] = 2; otherwise Z,[i;] =3. The above
modification can be done in O(1) time using O(n) processors. As with the
aid of Brent’s scheduling principle [28],° we have the following result.

LEMMA 3. In each contraction phase, a RAKE operation can be imple-
mented in T*(n) time using P*(n) processors on an arbitrary CRCW PRAM,
for any T*(n) and P*(n) that T*(n) - P*(n) = O(n).

We then show how to implement SHRINK. Let H denote the current tree
and N,__, = {v € V(H)ldeg,;(v) = w}. To find a maximal chain in the
current tree, we first compute the set Q = {v € N,_,|deg,(pary(v)) > 3
or pary,(v) is the root of H} in O(1) time using O(n) processors. We call
each vertex v € Q chain-leader. According to the definition of a maximal
chain, we have the following lemma.

LEMMA 4. Let #={I,lv € Q) and let .7* denote the set of minimal
elements in (7, <). For each I,, € 7%, the subtree rooted at w in the current
tree forms a maximal chain if and only if max{9lilli, <i <t} < 2.

Proof.  Straightforward. |

Next, we show how to find .#* in .# For the right endpoint ¢, of each I,
in .7, we aim at finding an [, in .# such that ¢, < ¢, and ¢, — ¢, = min{z,
—t,0l, e t, <t} Ifi, <i,then I, & 7* If i, > i, then I, €. 7*.
The above problem can be reduced to the ANSV problem as follows. First,
we build an array B[1,...,2(n — 1)] corresponding to 2(n — 1) entries of
ET so that each B[j] records (1, j) if j = ¢, for some chain-leader v and
records (2, j) otherwise. For any two B[x] = (x, x,) and B[yl = (y,, y,),
we define B[x] < B[y] if either x; <y,, or x; =y, and x, <y, holds. By
solving the ANSV problem on BI[1,...,2(n — 1)], for each B[¢,] = (1,¢,),
v € Q, we can find its nearest smaller value B[j] = (j,, j,). By definition
ji = 1 and j, =j. In other words, j is the right endpoint of some I, in %
which is the closest to ¢, with smaller value. If i, <i, then I, & 7% If
i, >i, then I, € 7% Hence, #* can be computed with the same com-
plexity to solve the ANSV problem. For each I, €.7* we find the
maximum value ¢ among Zy[i,,...,t,] in O(ogloglog n) time using

> For the rest of this paper, all the implementations which take a constant time using linear
number of processors can apply Brent’s scheduling principle to achieve the desired complexi-
ties.
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O(n /logloglog n) processors on a common CRCW PRAM [5]. By Lemma
4, the subtree rooted at v in the current tree forms a maximal chain if
t <2

After the above computation, we may contract each maximal chain to its
chain-leader to complete a contraction phase. At this time, we need to
update &, with the new degree of each vertex after executing a SHRINK
operation. For each chain-leader of a maximal chain w, we set Z,[i,] = 1
because the degree of w in the current tree is 1 and set each 2.,[j] =0,
where i, <j <t, because the vertices in the maximal chain are deleted.
This takes O(1) time using O(n) processors. After completing a contrac-
tion phase and updating &, we then go on executing the next phase.

Let T(n) and P(n) denote the time and processor complexity required
to compute the ANSV problem and the minimum of n values for input
elements drawn from the integer domain [1...n]. The above discussion
leads to the following result.

LEMMA 5. In each contraction phase, a SHRINK operation can be imple-
mented in O(T(n)) time using O(P(n)) processors on a common CRCW
PRAM.

By Lemmas 3 and 5, we obtain the following theorem.

THEOREM 1. Algorithm R & S can be implemented correctly in O(log n -
T(n)) time using P(n) processors on an arbitrary CRCW PRAM.

Since the best results for 7(n) and P(n) are O(logloglogn) and
O(n /logloglog n), respectively [5], we have the following corollary.

COROLLARY 1. Algorithm R & S can be implemented to run in O(log n -
logloglog n) time using O(n /logloglog n) processors on an arbitrary CRCW
PRAM, where n is the number of vertices of the input tree.

4. THE MINIMUM CONNECTED y-DOMINATING
SET PROBLEM

In this section, a sequential algorithm is presented to find a minimum
connected y-dominating set on a distance-hereditary graph. It will be
shown in Section 5 that this algorithm can be efficiently parallelized using
Algorithm R & S. In Section 4.1, we give fundamental results of distance-
hereditary graphs. In Section 4.2, we define a data structure, equivalence-
hanging tree, to represent a distance-hereditary graph. In Section 4.3, we
present a sequential algorithm working on a given equivalence-hanging
tree.
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4.1. Previous Known Properties of Distance-Hereditary Graphs

In the rest of this paper, G denotes a connected distance-hereditary
graph whenever no ambiguity occurs.

Fact 1 [2, 14, 21]. Suppose h, = (L,, L,,...,L,) is a hanging of G
rooted at u. If x,y € L; (1 <i < ¢) are in the same connected component
of (L;) or tied, then N'(x) = N'(y).

Fact 2[2,21]. Suppose h, = (L,, L,,...,L,) is a hanging of G rooted
at u. For any two vertices x,y € L;, i > 1, N'(x) and N'(y) are either
disjoint or one of them is contained in the other.

For a hanging h, = (L,, L,,..., L,), Hammer and Maffary [21] defined
an equivalence relation =; between vertices of L; by x =, y means x and
y are in the same connected component of L; or x and y are tied. Let =,
be defined on V(G) by x =, y means x =; y for some i. The equivalence
relation =, partitions V(G) into equivalence classes. For an equivalence
class R, let Ty = {R} U {S C Rlthere is an equivalence class R with
N'(R) = 8}. Ty is called the upper neighborhood system in R and S
(= N'(R)) in Ty the upper neighborhood of R'.

Fact 3 [21]. Let h, be the hanging of G rooted at u and R be any
equivalence class with respect to &,. I'; is an arboreal family of homoge-
neous subsets of {(R).

For any equivalence class R, we define a partial order =< between two
different sets S, and S, in I by §,<S§, = §,cS§,. S, is called to
immediately succeed S, if §, < S, and there is no §, € I; such that
S, =<8, <8,

4.2. The Equivalence-Hanging Tree

Let & ={R,R,,..., R;} be the set of equivalence classes of G with
respect to /,. We define a graph T, = (V(T,, ), E(T) )), as follows. For
each S in Ui s I, we create a node for T, to represent S. There are
totally X5, [T, | created nodes. For each node w € (T, ), let S, denote
the vertex set represented by . For a, 8 € T, ), (e, B) is an edge of
T, if it satisfies one of the following two conditions: (1) S, S, € Iy for
some R € & and S, immediately succeeds S, in I%; (2) Sa is an equiva-
lence class and S; = N'(S,). An edge satisfies condition (1) (respectively,
condition (2)) is called an abnormal edge (respectively, a normal edge). Let
p be the node in 7, that S, = {u} (u is the root of the given hanging). By
the above definition, there exists no node v € V(Th“) such that (p,v) €
E(T), ), and for any « # p, there exists a unique w such that (a, u) €
E(T), ). Therefore, there are exactly [V(7), )| — 1 edges in T, .
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LEMMA 6. The graph T), is a tree and [V(T), )l = O(n).

Proof.  Since there are exactly |[V(T), )| — 1 edges in T}, , to show T}, is
a tree, it suffices to show it contains no cycle. Suppose, by contrast, that
there is a cycle (@, a,,..., o) in T, . Let S, c L, .Itleadsto ¢; > q2

- >q, =gq,. Thus, g, =g, = - =q,. This 1mphes that §, <S§, =<-
=S, =<8, acontradiction. Thus, 7}, is a tree.

Slnce there are at most n equ1valence classes, [T | + IFR | + - +|I‘Rk|
= O(n). Therefore, IV(Thu)I =0n). 1

We call 7), the equivalence-hanging tree of the given distance-hereditary
graph G with respect to 4,. For the rest of this paper, we assume 7), is a
tree rooted at the node representing {u}, which is an equivalence class. For
a node » in the rooted tree T}, , we denote Nchild(v) = { B € child; (v)l
(B,v) is a normal edge} and Achild(v) = { B € child, (v)l(,B v) is an
abnormal edge}. Figure 2b shows an equivalence- hanglng tree with respect
to the hanging at vertex 1 of the distance-hereditary graph illustrated in
Fig. 2a.

In the following, we consider a process that reduces 7}, to its root node.
In an iteration of the reduction process, a leaf node of the current tree is
removed. Let Th denote the resulted tree after the ith iteration and G'
denote the subgraph of G induced by U, cvary,) S, for i < [V(T;, )I. Note
that by the hereditary property of distance- heredltary graphs, G' is also a

(a) (b)

FIG. 2. An equivalence-hanging tree shown in (b) of a distance-hereditary graph shown in
(a). The bold lines show the normal edges and the dashed lines show the abnormal edges. The
label (a sequence of numbers) of each node v in the equivalence-hanging tree represents S,.
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distance-hereditary graph. For G’ we may consider its hanging rooted at u
(u is the last removed vertex), denoted by #',.

LEMMA 7. For every i <|V(T), ), G' is connected and h;, = (L, N
V(GY,...,L, 0 V(G)).

Proof. We prove the lemma by induction on i. When i = 0, G’ = G is
connected and 4’ = h,. Suppose that G'~! is connected and A ! (LO
NW(G™),...,L, N V(G'~1). Assume that T, is obtained by removing
the leaf node v in T/~ ', Let the parent of v be B.If S, is not in &, since
S,C85 G =G thus, G' is connected and hi, = (L, N V(GY),.
ﬂV(G )) Suppose that S, is in & and S, C L;. Let v be any VerteX in
V(G'™\S, and v € L, n V(G D). It suffices to show that o is of
distance k to u in G'. Moreover, we show that any shortest path from v to
u in G'~ ! is also a shortest path in G*. Let P = [v,(= 0),v;_1,...,0,(= w)]
be any shortest path from v to u. By definition, v, € L, N V(G'~') for
0 < s < k. Suppose the contrary that P contains a vertex w in §,. That is,
k > jand w = v;. It implies that v;,, in L;,, N V(G'"") and (v;, ;,w) €
E(GY). However, Vis1 has to be in S, where (p, v) is a normal edge. It
contradicts that v is a leaf node in T}~ i, '. Hence, G' is connected and
hi, = (L,NWV(G),...,L,nV(G). 1

For any v in V(G'), v € S, for some « € V(Th ). Since par(a) is also
in V(T}, ), N;(v) € V(GY). Let N{Av) denote the upper neighborhood of v
in V(G' ) with respect to 4. By Lemma 7, for any vertex v in V(G"), we
have Nji(v) = N5(v).

For a rooted tree T, let leaf(T) denote the leaves of T and for
v € V(T) let T(v) denote the subtree of T with root v.

LEMMA 8. If v € leaf(T}, ), then S, is a homogeneous set of G'.

Proof. By definition, either S, € & or S, = N'(R) for some R € &.
First, suppose that S, is in &. By Fact 1, for arbitrary two vertices
X,y €8,, No(x) = Ni(y) and thus Nj(x) = N;(y). Since v € leaf(T} ),
NLi(S,) = N;«(S,). By definition, S, is a homogeneous set of G'. Next,
suppose that S, is the upper neighborhood of some equivalence class of G.
Assume that S is a proper subset of a set Q in &. Let € = { BIN'(S,) C
S,}. We have that (Ugce Sp) N V(G') = &. Moreover, S, is a homoge-
neous set in {(Q) by Fact 3, and Nj(x) = N5(y) for any two vertices x
and y in S,. Thus, S, is a homogeneous set of G'. |

LEMMA 9.  Suppose v is a node of T . Let A = Achild; (V) N V(GH). If
A C leaf(T}, ), then S, is a homogeneous set of G'.

Proof.  Similar to the proof of Lemma 8. |
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We next describe a method to construct 7, . We first compute the
equivalence classes with respect to 4, in O(log n) time using O(n + m)
processors on an arbitrary CRCW PRAM [26]. Using Cole’s parallel merge
sorting [9], the upper neighborhoods of the equivalence classes can be
computed in O(log n) time using O(n + m) processors on an EREW
PRAM [26]. Thus, V(T}, ) can be created with the desired complexity. For
each upper neighborhood X in an upper neighborhood system I, a
method shown in [26] can be used to find the upper neighborhood Y € I,
that immediately succeeds X in Ty. This takes O(logn) time using
O(n + m) processors on an arbitrary CRCW PRAM [26]. According to the
above computation, the parent of each node in V(T), ) can be found in
constant time. It is easy to determine the type of each edge in E(T), ).
Applying Brent’s scheduling principle, the following result is obtained.

LEMMA 10.  Given a distance-hereditary graph G, T, ~can be constructed
in O(log n - logloglog n) time using O((n + m) /logloglog n) processors on
an arbitrary CRCW PRAM.

4.3. A Sequential Algorithm

A linear time sequential algorithm is first described in [7]. Here we
present another sequential algorithm used in the next section for paral-
lelization. Let G’ be an induced subgraph of G with a new y value v’
assigned to each of its vertices. Let D(G) and D(G’) denote a minimum
connected y-dominating set of G and a minimum connected y’-dominat-
ing set of G', respectively. Fact 4 shows that by properly choosing G’ and
setting y’ values, we can reduce the problem of computing D(G) to the
problem of computing D(G").

For a vertex x in a homogeneous set & of G, let fag(x) = 1 if there is a
vertex y € V(G)\ € with dist(x, y) > y(y), and let tag(x) = 0 for other-
wise.

Fact 4[7]. Let @ be a vertex subset of the given graph G = (V, E).

(a) Assume that @ C V is a proper homogeneous set of G. Let x be
a vertex of € with y(x) = min{y(y)ly € €}. Alsolet G’ = (V' \ @) U {x})
and y'(v) = y(v) forall v € G'. ) If y(x) = 2, or y(x) = 1 and tag(x) =
1, then D(G) = D(G'). (i) If y(x) =0 and y(w) = 0 for some vertex
w € V\é&, then D(G) = D(G') U {y € @|ly(y) = 0}.

(b) Assume that & contains only one vertex x such that N(x) forms
a homogeneous set in G. Let y be a vertex of N(x) with y(y) =
min{y(z)lz € N(x)}. Also let G’ = (V' \{x}) and v'(v) = y(v) for all
v(#y)e G. () If y(x) =2, or y(x) =1 and tag(x) = 1, then D(G) =
D(G’) with y'(y) = min{y(y), y(x) — 1}. (i) If y(x) = 0 and y(w) = 0 for
some vertex w € V' \ N[x], then D(G) = D(G') U {x} with y'(y) = 0.
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Fact 5 [7]. Suppose x is a vertex of a homogeneous set & with
v(x) = min{y(y)ly € €} = 1 and tag(x) = 0. If there is a vertex w € @
satisfying N[w] 2 {v € @|y(v) = 1}, then D(G) = {w}; otherwise, D(G)
= {x, z}, where z € N(@).

For a given +y-valued distance-hereditary graph G, the sequential algo-
rithm in [7] processes as follows. If there is a vertex u € V(G) whose
y-value is 0, we compute #,; otherwise, we compute a hanging rooted at an
arbitrary vertex u. Let h, = (L, L,,..., L,). The sequential algorithm in
[7] processes G from the bottom layer L, to the top one L, based on Facts
4 and 5. When L, is processed, G is reduced to the induced subgraph
<Uj:0 Lj>. Then, the algorithm finds the connected components Qf (L;>.
Each connected component is a homogeneous set of the graph <U;=0 L /'>'
The reason is explained below. Let H be a connected component of {L;).
According to Fact 1, N'(x) = N'(y) = N'(H) for every two vertices x and
y in H. Therefore, every vertex of N'(H) is adjacent to every vertex of H.
By definition, H is a homogeneous set of the graph (Uj_, L;). Next, the
connected components are ordered increasingly according to the cardinali-
ties of their upper neighborhoods. Then the algorithm removes compo-
nents from G one at a time starting from the one with the smallest order.
According to Facts 4 and 5, the new +y-value is adjusted for the resulting
graph after each removal. If the y-value of the root of the hanging is not 0,
once the y-value of some vertex v is adjusted to 0, the algorithm computes
a hanging rooted at v of the current graph and then continues the process
on the new hanging from the bottom layer of the hanging to the top one as
above. The information of a minimum connected y-dominating set of G is
gathered from the adjusted +y-values.

By Facts 4 and 5, to compute the minimum connected y-dominating set
of G, we may choose any homogeneous set of current graph to reduce in
each iteration of the algorithm. This property facilitates obtaining an
efficient parallel algorithm for the minimum connected y-dominating set
problem. By Lemma 8, the sets represented by the leaves of the equiva-
lence-hanging tree are homogeneous, which can be reduced. For better
understanding of the parallel algorithm implementation, we first describe a
sequential algorithm using the reduction order induced by removing nodes
of the equivalence-hanging tree from leaves to the root.

Let vy, v,,..., v, be any order of vertices of 7}, such that v, is a leaf of
the induced subtree T, ' = (w,,..., ), forall i = 1,2,..., k. Let G' be
the subgraph induced by Uj-‘:,- +15,- By Lemma 8, S, is a homogeneous
set of G'~'. Thus, processing S,--+»8, in order, we can also obtain an
algorithm for the minimum connected y-dominating set problem. In the
ith iteration, the algorithm removes node »; in T,f“_1 as well as S, if it is
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an equivalence class and properly updates the y-values according to Facts
4 and 5. For clarity of algorithm presentation, in the following, for each v
in V(G), we denote its resulted y-value of the ith iteration by y,(v). We
next describe the additional data structures, y(a), 8(a), and A, associ-
ated with node « in the given equivalence-hanging tree, where the former
two variables are integers and the latter one is a set of vertices of V(G).
These three variables associated with « are updated whenever a node in
childy, () is removed in the execution of the algorithm. We also denote
their resulted values of the ith iteration by ya), 6(a), and A,
respectively. For a node « in V(T}, ), let S = S \Us € Achita, (a)S if

a € V(T ) and Sa,i = S, otherwise. Inltlally, for each « € V(Thu) y(a)
= yo(a) = min{y,(0)|v € 37&’0}. For each « € V(T), ), 8(«) is defined to
be min{y,(v)lv € .S:a’i} and A, ; is defined to be {v € S~a,i|%(U) = 8(a)}
for all i. Note that initially y(«) equals 8(a) for all «, but they are not
always equal in the execution of the algorithm.

We now present a high level description of our sequential algorithm,
called Scp, to find a minimum connected y-dominating set D(G). If there
is a vertex u € V(G) whose y-value is 0, we compute the hanging #,;
otherwise, we compute a hanging root at an arbitrary vertex, u. Next, an
equivalence-hanging tree 7, is constructed. Assume that we are in the
(i + Dth iteration. Let a be the leaf to be removed in Th which is not the
root. Also let par(a) = B. Note that S is a homogeneous set of graph G’
by Lemma 8. We process « as follows.

Case 1. vy,(u) > 0, where u is the root of the current hanging.

Case 1.1 vy{a)=0. In this case, there exists a node  in
NchzldTo(a) with y(w) =1. /*  is not in T; . %/ Pick an arbitrary
vertex x in A, ;. Let fag(x) =1 if there is a vertex v € v(G') with
dist(x,v) > yi(v); otherwise, let tag(x) = 0.

Case 1.1.1 tag(x) = 1. Pick a vertex y € A ;. /* Note that
v(y) = 0. %/ Let G denote the subgraph of G induced by
(U,,EV(TT/ Nz (a))S )US,. Let v, (v) = y,(v) for all v € V(G')\S,.

Determine the handlng h, of G'. Construct the equivalence-hanging tree
T, Replace Th with T, and go to the next iteration.

Case 1.1.2. tag(x) = 0. /= x y-dominates all vertices of V(G)\
S, */ If there is a vertex w € S, satisfying N[w] 2 A, ;, output D(G)
= {w} and terminate the execution; otherwise, output D(G) = {x, z},
where z is an arbitrary vertex in N'(S,), and terminate the execution. / *
based on Fact 5. * /
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Case 1.2. y/(a) > 1.

Case 1.2.1. (a, B) is a normal edge. Let v, ,( B) = min{y,(a)
— 1, 7(B)}. Remove « and S, from T} and V(G"), respectively. If « is
the only child of g in 7; and v, ,(B) < §(B), then pick an arbitrary
vertex g in Ay, let v, (g) = v, (B), and then Ag ;. = {g}.

Case 1.2.2. (a, B) is an abnormal edge. Let v, (B) =
min{y,(a), (B} If y,(a) = §(B), then Ay,  =A, , UA, . If y(a)
< 8(p), then let §,,(B) = 8(a) and Ay, = A, ;. Remove & from
T, . 1f « is the only child of B in 7}, and vy;,,(B) < §;, ,(B), then pick an
arbitrary vertex g in Ag ., let v, ,(g) = v, (B), and Ay, = {g}

Case 2. y,(u) = 0. If (e, B) is a normal edge, let vy, ,( B) = max{0,
min{y,(a@) — 1, y,(B)}}; otherwise, let 7, ,(B) = max{0, min{y,(a),
v,( B}, using the same method as Case 1.2 to maintain §,,,(B8), Ag ;. 4,
the current tree, and the current graph.

Algorithm ScD works by repeatedly executing the above two cases until
either D(G) is found or T, is reduced to its root, where 7, is the
equivalence-hanging tree of the rehanging if a rehanging occurs. If no
rehanging occurs and no vertex whose 7y-value becomes 0 during the
execution, then D(G) is the root of the given hanging; otherwise, D(G) =
{wly(w) = 0}

Note that only if Case 1.1.1 is performed, a rehanging occurs. When a
rehanging occurs, the y-value of the root of the rehanging is 0; then only
Case 2 is performed in the following iterations and no more rehanging
occurs.

Before showing the correctness of the algorithm, we define some nota-
tions. If a rehanging occurs, the iterations before (respectively, after) the
rehanging are called valid for the nodes in the equivalence-hanging tree of
the initial hanging (respectively, the rehanging). For a given equivalence-
hanging tree 7), , we say a node B is in a complete state when nodes in
childTh (B) are all deleted and B is in an incomplete state if some but not
all of its children are deleted. The critical value cri( B) for all B € V(T, )is
defined recursively as follows. If B € leaf(T), ), cri( ) = min{y,(v)lv €
SB}' For an arbitrary node 8 not in leaf(Th“), let cri( B) = min{q,r,s — 1}
if y,(w) # 0 and cri( B) = max{0, min{q, r,s — 1}} if y,(u) = 0, where
q = min{y,(V)lv € SB,O}’ r = min{cri(v)|v € AchildT/?“(,B)}, and s =
min{cri(v)|v € NchildT,?“(,B)}. Note that in the case of y(u) # 0, these

nodes with negative critical values will not be processed in the algorithm,
since according to Case 1.1, the minimum connected y-dominating set is
found or a new hanging is created.
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Suppose that following a reduction order, a rehanging occurs in the ith
iteration when processing node « and y is the root of the hanging of G’ as
in Case 1.1.1. Note that since y,, ,(v) is reset to y,(v) for all v € V(G')\ S,,,
Algorithm Scp following the reduction order has done up to the end of the
ith iteration is equivalent to that following a reduction order a;,..., a; =
a, where {aj}jk:, is the set of nodes in the subtree rooted at «. In other
words, in this case, we may assume that Algorithm ScpD reduces the subtree
rooted at « of the initial equivalence-hanging tree 7), to the node «,
creates the hanging tree h,of G, and then reduces the equivalence-hang-
ing tree of the rehanging 7), to its root. With this assumption, no node is
in an incomplete state when the rehanging occurs.

LemmA 11. Let B € V(T, ), where h, is the initial hanging or the
rehanging, and let k be the ﬁrst iteration that B becomes a leaf in T, . Then
v,(B) = cri( B) for all valid iterations j > k for B.

Proof. We will prove the case of the initial hanging. The proof for the
case of the rehanging is the same. Since after 8 becomes a leaf, the
y-value of B will not change any more, it suffices to prove that y,(B) =
cri( B). We prove the lemma by induction on the height of g in T}, . If B is
of height 0, it is a leaf of 7, and thus k = 0. By definition, cri( 8) = v,( 8).
Suppose for all nodes of helght less than 4, the lemma is true. Let 8 be a
node of height / and let « be any child of g in 7}, . Let i, be the first
iteration that o becomes a leaf of Th Thus, i, < k forall o € child 7, (B).
Since the height of « is 4 — 1, by induction, crz(a) = y(a)forall j > i,
Now we assume the kth iteration is valid for 8. Then the lemma is 1mphed
by the y-value updating rules in Cases 1.2 and 2 in the kth iteration, in
which y,_,(«) is actually cri(a). |

As a node o becomes a leaf, the set of vertices in §, with vy-values
equal to cri(a) is called the critical vertex set of a. By Lemma 11, the
critical vertex set of a is exactly A, ; .

THEOREM 2. Algorithm SCD correctly finds a minimum connected vy-
dominating set for a distance-hereditary graph G in O(n + m) time and space.

Proof. If a rehanging occurs, as discussed in the paragraph before
Lemma 11, we make an assumption on the reduction order of Algorithm
Scp that only the nodes in the subtree rooted at « are reduced before the
rehanging, where «a is the node processed in Case 1.1.1.

First, we prove that Algorithm ScpD is correct if it follows a particular
reduction order. It suffices to show that the reduction in each iteration
satisfies Facts 4 and 5 [7]. A reduction order of Th is special if for any
node B in V(T ), any child in Nchild; (,8) is removed after all the

children in Achild; () are removed. It 1s easy to see that there exists a
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special reduction order that satisfies the assumption on the reduction
order of Algorithm Scp. Following a special reduction order, whenever a
node a with §, € & is removed in an iteration, by Lemmas 8 and 9, both
S, and S,,,,, are homogeneous sets in the iteration. The reduction in
Cases 1.2.1 and 2 can be looked as shrinking S, to a vertex first as in Fact
4(a) and then removing the vertex as in Fact 4(b). In Case 1.2.1, the
y-value passed from S, is recorded in y( par(a)), and the vertex in S
to record the passed value is maintained by A ,,,,). Since S, and S, .,
are homogeneous sets, the reduction satisfies Fact 4. Case 1.1.2 satisfies
Fact 5. As Case 1.1.1 is performed, a new hanging is created and in Case
1.2.2, the vertex of minimum vy-value in §,,,,, is maintained. No reduc-
tion is performed in Cases 1.1.1 and 1.2.2. Thus, executing Algorithm ScD
following a special reduction order is correct.

Now consider an arbitrary reduction order that satisfies the assumption
on reduction order of Algorithm Scp. In any iteration a node B is
processed, B is in a complete state (it is a leaf of current equivalence-
hanging tree). By Lemma 11, the y-value of B is the same as that
computed by the algorithm following a special reduction order. In the
meantime, Ag contains a vertex of minimum y-value in Sg. In other words,
when reducing B, the update of y-values in S; is the same as that in the
algorithm following a special reduction order. Therefore, Algorithm Scp
following arbitrary reduction order is correct.

The following reasons assert the time complexity of the algorithm.
Without loss of generality, we assume the y-value of the root of a given
hanging is nonzero. When the algorithm processes a leaf node a with
v(a) =0, tag(x) is first determined in linear time. If tag(x) = 1, then a
new equivalence-hanging tree is constructed in linear time. The following
iterations aim at finding those vertices with +vy-value zero after each
reduction, and the reconstruction of an equivalence-hanging tree cannot
occur. If tag(x) =0, then a minimum connected y-dominating set is
generated and the algorithm is terminated. Note that the tag value is
computed at most once in the whole execution. For the other values of
y(a), the time to process a is O(1). Therefore, the algorithm runs in
linear time and space. |

par(a)

5. FINDING A MINIMUM CONNECTED y-DOMINATING
SET IN PARALLEL

In this section, we show that the utilization of the equivalence-hanging
tree and the tree contraction scheme R & S make the parallelism of
Algorithm ScD possible. Given a distance-hereditary graph G in the form
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of its equivalence-hanging tree 7, , recall that Algorithm Scp removes
leaves of 7), one at a time. After removing a node v, the algorithm either
outputs a minimum connected y-dominating set or updates the y-values
associated with some nodes in current tree and graph. Though the above
process seems to be highly sequential, we observe that some proper subset
Q < (T, ) can be removed simultaneously without affecting the computa-
tion of the y-values associated with VAT, ). In other words, the adjustment
of y-values caused by one node in Q does not affect the adjustment caused
by each of the other nodes of . We further observe that the nodes
removed by a SHRINK or RAKE operation satisfy the above property.

Let v € leaf(T;, ) and childyo (v) = {p;, py, ..., py}. In executing Algo-
rithm Scp, the situation that y(») equals cri(v) occurs after deleting
chzldTu(v) In deleting each w;, we provide »(u;) = cri( ;) as an input
value to update y(v) depending on the type of (,u,], v). Recall that when
nodes in child; (v) are all deleted, we say v is in a complete state.
Moreover, we say v is in an almost complete state without . if cri(v) can be
computed by giving cri( w).

5.1. Algorithms for RAKE and SHRINK

We first briefly describe how our parallel algorithm works as follows. If
there is a vertex u € V(G) with y(u) = 0, we construct 7}, ; otherwise, we
construct an equivalence-hanging tree 7), , where u is an arbitrary vertex.
The initial values and the data structure used to maintain 7}, in the
computation are the same as the ones used in Algorithm Scp. We then
design algorithms executed with RAKE and SHRINK to adjust y-values of
the current tree and graph such that D(G) can be generated consequently
using Algorithm R & S.

5.1.1. Algorithms for RAKE. Suppose W = {«a, a,, ..., a;} is a maximal
set of leaves in Th which have the common parent, denoted by par(W) =
par(a;) = B. We will refer W by a maximal common-parent leaf set for
convenience. Let r = mln{yl(a )Ia € Achildy, (,B) N W} and s =
min{y,(a))la; € NchlldTl (B)n W} Below are twe algorithms applied with
RAKE on W.

ALGORITHM R1. /#* works on W when y,(u) > 0. * /

Case 1. min{r, s} = 0. Find a node @ € W such that y.(a) = 0. Let
o be a node in childyy (a) satisfying y(w) = crilw) = 1 and (o, a) is
normal. Pick an arbitrary vertex x in A, ;. Determine tag(x) as in Case
1.1 of Algorithm Scp. If tag(x) = 1, then execute Case 1.1.1 of Algorithm
Scp; otherwise, execute Case 1.1.2 of Algorithm Scp.
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Case 2. min{r, s} > 1. Let v, ,( 8) = min{y,(B), r,s — 1}. For each
a € W, remove a from T} , and for each « € NchzldTl ( B) N W, remove
S, from V(G'). Let [ = m1n{8(,B) ryand & = {A, Iv € Achild.,; (,8) N
W and y(v)=1}. If 1 <§,(B), then let A = UX&@X otherwise let
A=(Uycsr XU AB 5

Case 2.2.1. = chlldT, (B) and v,,,(B) <[ Select an arbitrary
vertex x from A. Let Yo i) = %, 1(B) and Ag vy = {x}.

Case 2.2.2 W Cchildy; (B) or v;,.((B) = L. Let &,,,(B) =1 and
AB,H—l = A. '

ALGORITHM R2. /s works on W when y(u) = 0. = /

Let v,,,(B) = max{0, min{y,( B),r,s — 1}}. Maintain §,,,(B), Ay,
the current tree, and the current graph as in Case 2 of R1.

5.1.2. Algorithms for SHRINK. Suppose T, is the equivalence-hanging
tree with respect to h, = (Ly, Ly,...,L,). Let € = [a,, ..., a,] be a
maximal chain of Th' , where a, is a leaf Note that «; isin a complete
state and each «;,1 <j <k, is in an almost-complete state without a;, ;.
We define leuel(a)— qgif L,2S,. Anode a; in & is said to be a
jumped 0-node if ‘(;” contains a node a s > j, such that y(a,) — (level(a,)

level(a )) = 0. Note that & may contain more than one jumped 0-node.
We further say «; is the lowest jumped O-node if % contains no other

jumped 0-node a, with s > j.

LEMMA 12.  Suppose & = [a,, @, ..., ;] is a chain. Let d; = level(e;)
—level(a;) and | = min{y(a,) — d,, y(a,) — dy, y(a3) — ds,..., v(a,) —
d,}. Then, criCa,) =l if one of the following two conditions is satisfied: (1)
yw)#0andl>1,2) y(u)=0andl = 0.

Proof. We only consider the situation (1). The other one can be shown
similarly. We show this lemma by induction on length(#), the length of #.
We first consider & = [«, a,] (i.e., length(#) = 1). According to Algo-
rithm Scp, if («,, ;) is normal, then cri(a;) = min{y(a,), y(a,) — 1} =
min{y(a,) — d,, y(a,) — d,}; otherwise, cri(a;) = min{y(a,), y(a,)} =
min{y(a,) — d;, y(a,) — d,}, where d, = level(a,) — level(a;) = 0.
Hence the basis case is true.

Assume the lemma is correct for length(%) < k — 1. Assume that & =
[a), a,,..., a;]. Here we consider (e, a;,_,) to be a normal edge. The
case for (o, a;_,) being abnormal can be proved similarly. Since «,_, is
in an almost-complete state without «,, so cri(a,_,) = min{y(a,_,),
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v(a,) — 1}. Now the length of the resulting chain is less than k — 1. By
the induction hypothesis,

cri( ;) = min{y(a;) —d;, (@) —dy,...,cri(ap_y) —d,_,}
= min{y(a,) —d;,v(a,) —d,,...,
(min{y (1), v( @) — 1}) — d;_,}
=min{y(a;) —d;,y(a,) — d,,...,
V() —dioy(e) — 1= di_y}
=min{y(a;) —d;,y(a,) — d,,...,
V(1) = di_v( ) = dif.

This completes the proof. |

With an argument similar to showing Lemma 12, we can generalize the
above result as follows.

LEMMA 13. Suppose & = [a,, a,,. .., o] is a chain. Given an integer s
such that 1 <s <k, let d; = level(a;) — level(a,) for s <j <k and let
I = min{y(e,) —d,, y(a,. ) —d;,15...,v(e) — d;}. Then, crila,) =1 if
one of the following two conditions is satisfied: (1) y(u) # 0 and | > 1, (2)
y(u)=0andl > 0.

LEMMA 14. Suppose € = [y, a,, ..., a ] is a chain and «, is the lowest
jumped 0-node of €. Then, «, is the largest-index node whose critical value
is 0.

Proof. Let A; = {y(aj), y(aHl) — (level(ajH) - leuel(aj)), e y(ay)
— (level( ) — level( aj))}. Since «, is the lowest jumped 0-node, min{glq
€ A} > 0for t <j <k, and min{glg € A} = 0. By Lemma 13, cri(e,) =
min{glg € A,} = 0 and cri(aj) > 0 for ¢t <j < k. Hence, the result holds.
|

According to Lemma 14 and the computation of Algorithm Scp, we
have the following lemma.

LEMMA 15.  Suppose & = [ay, a, ..., aqlisa chain of T, with 'y(u) =0
and a, being its lowest jumped O—node Then, cri(a;) = crz(az) = =
cri( e, ) =0.

Below are two algorithms applied with SHRINK on & = [a;, a,, ..., a;l.

ALGORITHM S1.  /* works on & when y;(u) > 0, where u is the root of
the current hanging. * /
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Case 1. & contains a jumped 0-node. Find the lowest jumped 0-node
a, and compute its critical vertex set A, ;.. If t # k, (a,,, «,) is normal,

and cri(e,, ;) = 1, then compute the critical vertex set of «,, ;.

Let o be an arbitrary node in Childr,fJu( a,) satisfying y(w) = crilw) = 1
and (w, e,) is normal. Pick an arbitrary vertex x in A, ;. Determine tag(x)
as in Case 1.1 of Algorithm Scp. If tag(x) = 1, let vy, ,(y) = 0 for a vertex
y €A, ;+1 and execute Case 1.1.1 of Algorithm Scp to determine an
equivalence-hanging tree T, otherwise, execute Case 1.1.2 of Algorithm
Scp.

Case 2. & contains no jumped 0 = node. Let d; = level(a;) —
level(a;) for j=1,..., k. Let vy, (a) = crila;) = min{y(a,) — d,,
v(a,) —d,, v(a3) — ds,...,v(a,) — d,} according to Lemma 12. Com-
pute the critical vertex set A . and let v,, (x) = cri(a,) for each
x €A, i if v (x) # criCay).

ap, i+

ALGORITHM S2. /# works on & when y(u) = 0. % /

Case 1. & contains a jumped 0-node. Find the lowest one «,. Let
Yir lay) = ¥ () = =+ = v, ,(a,) = 0 according to Lemma 15. Com-
pute the critical vertex set A, ;. and let y;, (x) = Oforeach x € A, ,,,
if y,(x) # 0. Let Z = {e;1S,, is an equivalence class, 1 <j < 7}. For each
a € Z, compute the critical vertex set A, ,;,, and let v;, (x) = 0 for each
x €A,y if yi(x) # 0.

Case 2. % contains no jumped 0-node. The computation is the same
as Case 2 of S1.

Remark. In Algorithm S2 and Case 2 of S1, we only need to compute
the critical vertex set for the chain-leader «, and for those vertices whose
v-value are 0 (because they belong to a minimum connected y-dominating
set). In Case 1 of S1, we only need to compute the critical vertex sets of «,
and o, (if cri(e,, ) = 1) for reconstructing a new hanging or determin-
ing a new minimum connected y-dominating set. These are the reasons
that Algorithms S1 and S2 do not compute the critical vertex sets for all
the nodes of a maximal chain.

The following lemma provides a method to implement Case 2 of S1 and
Case 2 of S2. The method can be used to implement Case 1 of S1 similarly.

LEMMA 16.  Suppose & = [a,, a,..., a1 is a chain of T;, (not neces-
sary maximal). If cri(a;) > 0, 2 < j < k, the critical vertex set of a; can be
found in O(logloglog k) time using O(k/logloglog k) processors on an
arbitrary CRCW PRAM when % is reduced.
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Proof. There are two cases.

Case 1. (a,, a;) is normal. We first compute

Yirr( @) = cri(ay)
= min{y,(e,), v,(ay) — (level(ay) — level( aty)), ...,
V(o) — (level () — level ()}

in O(logloglog k) time using O(k /logloglog k) processors on a common
CRCW PRAM [5]. If ., (a;) < 8.(a;), then we select a vertex x from

A, ;andlet A, ;. = {x}; otherwise, A, ;,, = A, ;
Case 2. (a,, a;) is abnormal. We first compute the integer f so
that level(a)) = level(a,) = -+ = level(a;) and level(ay, ) = level(a;)

+1. Then, we compute cri(a,) = min{y(e,), y(a;, ) — (level(a;, ) —
level(a)), ..., v(a;,) — (level(ay) — level(a;))}. The above computation
needs O(logloglog k) time using O(k /logloglog k) processors on a com-
mon CRCW PRAM [5]. Here we assume f # k. The case of f =k can be
implemented similarly. According to Lemma 13, we have cri(e;) =
min{y, (@), v(e;;1),..., v(a; ), crile,)}, 1 <j <f. Based on the suffix
minimum finding technique® [5], cri(a;) for all 1 <j < f can be computed
in O(logloglog k) time using O(k/logloglog k) processors on an arbi-
trary CRCW PRAM.

Next, given the chain [y, @, ,..., @], we compute the critical vertex
set A, using the method described in Case 1. Define a binary tree: for
each node @, 1 <j<f—1,let o, represent its right child and A,
represent its left child. For each a;, 1 <j <f— 1, if cri(a;, ) < B(a)
we mark «; . If cri(e;, ) = §,(«a;), we mark A, o, The above operatlons
need O(1) time using O(k) processors. We then find the smallest integer g
between 1 and f so that «, has no marked right child. If f = g, we also
mark A, .Let M(a,b) ={A, IA : is marked, a <j < b} and A(a, b) =
Ux e mea, b)X If there exists no node a;, 1 <j<g, such that y(e)) <
min{cri(e;, ,), §(;)}, then A(1, g) is the crltlcal vertex set of «,; other-
wise, let g’ be the smallest index so that «, satisfies such a condition, and
then {x} U A(1,g" — 1) is the critical vertex set of «;, where x is an
arbitrary vertex in A(g’, g). Since the union operation can be done easily
by maintaining each set with a linked list, the desired parallel complexities
can be achieved. |

% The suffix minimum of array B = (b, b,,...,b,), where b, is an integer, is the clements
of the array (cy, ¢,,...,c,) such that ¢; = min{b;, b, 1,...,b,}, for 1 <i <n.
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We next show how to implement Case 1 of S2 to find the desired critical
vertex sets. Using the method described in the proof of Lemma 16, we first
find the critical vertex sets A, ;. and A, ;. ,, respectively. For each
a; € Z, let a; denote the node in & satisfying level(a;) = level(a;, ) =

= level(a;) # level(a; ). If §(a;) > 0, select an arbitrary vertex x €
Aaj, to be the critical Vertex set of a;; otherwise, A%H = Aaj,i. We next
compute the critical vertex set for each a; € Z as follows. Let & = {Aal |
<1 <j" and §(a;) = 0}. Let the union of the critical vertex set of «; and
the set Uy » X be the critical vertex set of «;. Note that the above
implementation can be done in O(logloglog k) tirne using O(k /loglog
log k) processors on a common CRCW PRAM.

In the rest of this section, we show how to find the lowest jumped
0-node in a maximal chain. We first partition the nodes of & = [«;, a,,

., a;] according to their levels. This can be done by sorting in O(log k)
time using O(k) processors on an EREW PRAM [9]. Let C,,C,,...,C,
denote the partitioned sets. We define function f: {«a;, a,,..., o} = {0, 1}
as follows. For each C; =[e, @, ..., «q, \CI] let f(a, )— 1 and let
f(a ) = 0,2 <j <|C,l. Let A be an array keeping A[r, ] —f(a ) We
perform the parallel prefix sum computation [27] on A w1th O(log k) time
using O(k/log k) processors on an EREW PRAM, and let p; = A[j] for
all 1 <j < k, after this computation. We define a new level function [/
with I( aj) = p;» 1 <j < k. For ease of referencing, we call the above work
the preprocessing of . A node a, € # is a jumped O-node if there is a
node «, for g > p with y(a,) — (I(e,) — I(a,)) = 0. For each «; € &,
let weight(a;) = I(a;) — y(a;). We then compute x = max{weight(a,),
weight(a,), ..., weight(a,)} in O(logloglog k) time using O(k/ loglog
log k) processors on a common CRCW PRAM [5]. If x > 0, then . is

the lowest jumped O-node. If x < 0, then & contains no jumped 0-node.

LEMMA 17. Given a maximal chain € = [ay, a,,..., o] after prepro-
cessing, the lowest jumped 0-node can be computed in O(logloglog k) time
using O(k /logloglog k) processors on a common CRCW PRAM.

5.2. The Complete Parallel Algorithm and Its Implementation

Before preceding to the description of our complete parallel algorithm,
Pcp, we first describe a method to preprocess an equivalence-hanging tree
to make our implementation more efficient. Given 7, , we make a copy of
this tree. We then contract it in ¢ € O(log n) phases using the strategy
described in Section 3. With the help of tree contraction, we find subsets
of the nodes of 7), that are leaves or maximal chains in each contraction
phase of Algonthm R & S. Then, for the nodes deleted by RAKE, we
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further partition them into several common-parent leaf sets according to
their parents. For each subset & corresponding to a maximal chain, we
perform the list raking [27] to number the nodes of & starting from the
chain-leader and preprocess it by the argument to show Lemma 17. Hence,
all the maximal chains and common-parent leaf sets (with respect to the
ith contraction phase for all 1 <i <) can be completely identified in
O(log n - logloglog n) time using O(n logloglog n) processors on an arbi-
trary CRCW PRAM.

For each v € V(T,, ), the initial y(v) and the vertex set A, can be
computed in O(log n) time using O(n) processors on an EREW PRAM
based on Cole’s parallel sorting [9] and minimum finding technique [27].
Throughout this implementation, we assume A, is manipulated with a
linked list. We now present our complete parallel algorithm to solve the
minimum connected y-dominating set problem.

ALGORITHM PcD

INPUT: A connected distance-hereditary graph G = (V, E).
OUTPUT: A minimum connected y-dominating set D(G).
(1) if there is a vertex u € V with y(u) =0

(2)  determine the hanging #,;

3)  flag = 0;

(4) else determine a hanging rooted at an arbitrary vertex, u;
(5)  flag = 1;

(6) endif

(7) construct an equivalence-hanging tree 7), and preprocess it;
(8) While T}, is not a single vertex do

9 et W],Wz, ..., W, be all the maximal common-parent leaf sets of
T,;

(10)  if there is a leaf a € W satisfying Case 1 of R1

an perform R1(W)) to generate D(G) and terminate, or reconstruct

an equivalence-hanging tree (along with preprocessing);

12) if a new equivalence-hanging tree is constructed

13) flag == 0 and goto line (8);

(14) endif

(15)  endif

(16)  else

(17)  for each W, do in parallel

(18) if flag = 1 then perform Rl(%);
(19) else perform RZ(WJT);

20) endif

1 remove W, from Tj, ;

(22)  endfor
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(23) let %,,%,,...,%, be all the maximal chains of Th 5
(24)  if there is a % satisfying the condition of Case 1 of S1

(25) perform Sl(%j) to generate D(G) and terminate, or reconstruct a
new equivalence-hanging tree (along with preprocessing);

(26) if a new equivalence-hanging tree is constructed

()] flag == 0; goto line (8);

(28) endif

(29)  endif

(30)  else

(31)  for each &, do in parallel

(32) if flag = 1 then perform Sl(%j);

(33) else perform S2();

34 endif

(35) reduce %; from Tj; ;

(36)  endfor

(37) endwhile

/# T), Is reduced to its root. * /

(38) if flag = 0, then D(G) = {z € V|y(z) = 0} = U, » A,, Where ¥ =
{alcril(a) = 0 and S, represents an equivalence class};

(39) else D(G) = {u}, where u in the root of the given hanging;

(40) end of the algorithm.

The correctness of PCD can be shown by induction on the number of
contraction phases.

We now show how to implement the algorithm in O(log n - logloglog n)
time using O((n + m)/logloglog n) processors on an arbitrary CRCW
PRAM. By Lemma 10 and the parallel strategy to compute a hanging [13]
and preprocess T, , lines 1-7 can be done in O(log n - logloglog n) time
using O((n + m)/logloglog n) processors on an arbitrary CRCW PRAM.
By Theorem 1, we can preprocess 7), to find all the chains in each tree
contraction stage in O(og n - logloglog n) time using OW(n + m)/
loglog log n) processors on an arbitrary CRCW PRAM.

According to Lemmas 1 and 6, the iteration at lines 9-37 is executed in
O(log n) times. In each iteration, lines 9-22 (corresponding to RAKE) can
be implemented as follows. We first consider the situation that y(u) # 0,
where u is the root of the current hanging. We can decide which case of
R1 to be applied in constant time. Suppose that the condition of Case 1 of
R1 holds, the tag value of vertex x can be determined by computing the
hanging rooted at x. It takes O(log n) time using O(n + m) processors on
an arbitrary CRCW PRAM [13]. If zag(x) = 0, then output D(G). If
tag(x) = 1, then we construct a new equivalence-hanging tree. The above
work can be done by executing line 11 in O(log n) time using O(n + m)
processors on an arbitrary CRCW PRAM by Lemma 10. Now assume the
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condition of Case 2 of R1 holds. Line 18 is performed on each maximal
common-parent leaf set. Note that computing vy-values and union of the
given sets can be done in O(logloglog n) time using O(n/logloglog n)
processors on a common CRCW PRAM [5].

We now consider the case when y(u) = 0, line 19 (corresponding to
Algorithm R2) is executed in O(log log log n) time using O(n /logloglog n)
processors on a common CRCW PRAM. Note that generating D(G),
reconstructing an equivalence-hanging tree, and determining the tag value
is executed at most one time under O(log n) contraction phases. There-
fore, the execution of lines 9-22 totally takes O(log n - logloglog n) time
using O((m + m)/logloglog n) processors on an arbitrary CRCW PRAM
after O(log n) phases.

We now consider the implementation of lines 23-36 in each iteration.
We first consider the case when y(u) # 0. For all the maximal chains &
(after preprocessing) in the current tree, their lowest jumped 0-nodes can
be computed in O(logloglog n) time using O(n /logloglog n) processors
on an arbitrary CRCW PRAM according to Lemma 17. If no maximal
chain contains jumped 0-node, Case 2 of S1 (corresponding to line 32) can
be implemented in O(logloglog n) time using O(n /logloglog n) proces-
sors on an arbitrary CRCW PRAM by Lemmas 16 and 17 and minimum
finding technique [5]; otherwise, we find one maximal chain “5] and its
lowest jumped 0-node to either output D(G) or reconstruct a new equiva-
lence-hanging tree (line 25). It takes O(logn) time using O(n + m)
processors on an arbitrary CRCW PRAM.

Now we consider the case when y(u) = 0. It is not difficult to see that
the desired complexity can be achieved. Hence, lines 23-36 (corresponding
to SHRINK) can be implemented in O(log n - logloglog n) time using
O((n + m) /logloglog n) processors on an arbitrary CRCW PRAM after
O(log n) phases. Note that checking whether the current tree is a single
vertex and setting flag can be done easily. Besides, the implementation of
lines 38 and 39 can be done in constant time. With the aid of Brent’s
scheduling principle, we conclude this section with the following result.

THEOREM 3. The minimum connected <y-dominating set problem on

distance-hereditary graphs can be solved by Algorithm Pcp in O(log n -
log log log n) time using O((n + m)/logloglog n) processors on an arbitrary
CRCW PRAM.

6. THE MINIMUM y-DOMINATING CLIQUE PROBLEM

A linear time sequential algorithm is first described in [16]. Here we
present another sequential algorithm which can help us to design a
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parallel algorithm. We show that the minimum y-dominating clique prob-
lem on distance-hereditary graphs can also be solved using R & S. Let G’
be an induced subgraph of G with a new vy value y’ assigned to each of its
vertices. Let Z(G) and #(G’) denote a minimum y-dominating clique of
G and a minimum 7y’-dominating clique of G’, respectively. The sequential
algorithm for finding a minimum +y-dominating clique on a distance-here-
ditary graph G is also based on a reduction scheme similar to the one
described in Fact 4. That is, we first properly choose G’ and set ', and
then reduce the problem of computing #(G) to the problem of computing
HG).

Fact 6 [16,17]. Let @ be a vertex subset of the graph G = (V, E).

(a) Assume that @ C V is a proper homogeneous set of G. Let x be
a vertex of & such that y(x) = min{y(y)|ly € Q}. Also let G’ = (V' \ &)
U {x}> and y'(v) = y(v) for all v € G". If y(x) > 2, or y(x) =1 and
tag(x) = 1, then FAG) = G").

(b) Assume that & contains only one vertex x such that N(x) forms
a homogeneous set in G. Let y be a vertex of N(x) with y(y) =
min{y(z)lz € N(x)}. Also let G’ = (V' \{x}) and v'(v) = y(v) for all
v(#y) e G.If y(x) = 2,or y(x) = 1 and tag(x) = 1, then Z(G) =#(G")
with y'(y) = min{y(y), y(x) — 1}.

The construction of an equivalence-hanging tree 7), with associated
data structure, and the method to reduce it are the same as Algorithms
Scp in Section 4.3. Let « be an arbitrary leaf of Th which is not the root.
Also let par(a) = B. We consider the following two cases to process a.

Case 1. vy,(u) > 0, where u is the root of the current hanging.

Case 1.1. y,(a)=0. In this case, there exists a node w in
NchlldTo(a) with y(w) = 1. /* o is not in T), . */ Pick an arbitrary
vertex x in A, ,. Let tag(x) =1 if there is a vertex v € V(G') with
dist(x,v) > y,(u) Otherwise, let tag(x) = 0.

Case 1.1.1. rag(x) = 1. Pick a vertex y € A, ,. /#* Note that
v(y) = 0. %/ Let G denote the subgraph of G induced by
(Uer(Th Nz (a))S YU S,. Let v, (v) = y,(v) for all v € VI(G\S,.
Determine the hangmg h, of G'. Construct the equivalence-hanging tree
T, Replace Th with T, , and goto the next iteration.
Case 1.1.2. tag(x) = 0. /% x vy-dominates all vertices of V(G)\
o */ If there is a vertex w € S, satisfying N[w] 2 A, ;, output ZA(G) =
{w} and terminate the execution; otherwise, output Z(G) =

{x, z}, where z is an arbitrary vertex in N'(S_), and terminate the
execution.
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Case 1.2. y/(a) > 1.

Case 1.2.1. (a, ) is a normal edge. Let y,, () = min{y,(a)
— 1,7(B)}. Remove « and S, from 7, and V(G'), respectively. If « is
the only child of g in 7; and v, ,(B) < §(B), then pick an arbitrary
vertex g in Ay, let v, 1(g) = 7,,,(B), and Ay, = {g}.

Case 1.2.2. (a,B) is an abnormal edge. Let v, (B) =
min{y,(a), (B} If y,(a) = §(B), then Ay,  =A, U A, . If y(a)
< 8,(p), then let 5, (B) = 8(a) and Ay, = A, ;. Remove a from
T, . If « is the only child of g in 7, and v;,(B) < &, ( B), then pick an
arbitrary vertex g in Ag ., let v, (g) = v, (B),and Ay, ={g}

Case 2. y,(u) = 0.

If y(a) = 0 and B is not the root, then our algorithm terminates. / *
The current graph contains no y-dominating clique because there are two
vertices x and y satisfying y(x) = y(y) = 0 and dist(x,y) > 1. * / Other-
wise, use the same method as Case 1.2 to maintain vy,, (B), 5, ,(B),
Ag i1, the current tree, and the current graph.

Our sequential algorithm, called SDK, works by applying the above two
cases to 7), until 7}, is reduced to its root or until a minimum <y-dominat-
ing clique is found by executing Case 1.1.2. Suppose 7}, is reduced to its
root. If there is no vertex whose +y-value is adjusted to 0 during the
execution, then the root of the hanging is a minimum y-dominating clique;
otherwise, G contains a minimum <y-dominating clique H = {w € N[u]
v(w) = 0} if (H) forms a complete subgraph. Clearly, the structure of
Algorithm SDK is similar to that of Algorithm Scp. By slightly modifying
Algorithms R1, R2, S1, and S2 developed in Section 5, we can also
parallelize SDK with the desired complexities.

THEOREM 4. The minimum vy-dominating clique problem on distance
hereditary graphs can be solved in O(log n - logloglog n) time using O((n +
m) /logloglog n) processors on an arbitrary CRCW PRAM.

7. DISCUSSION AND CONCLUSION

We have proposed a new implementation of the tree contraction scheme
R & S. Based on this scheme, we have solved the minimum connected
y-dominating set and minimum vy-dominating clique problems in parallel
on distance-hereditary graphs. Furthermore, both y-dominating set prob-
lems can be solved in O(log n - T(n)) time using O(P(n) + (n + m)/T(n))
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processors on an arbitrary CRCW PRAM, where T(n) and P(n) are the
time and processor complexities required to solve the maximum finding
and all the nearest smaller values computing problems. Dragan [16]
showed that the problems of finding a central vertex, finding a central
clique, and computing the radius on distance-hereditary graphs G can be
solved using the algorithm to compute a minimum y-dominating clique
Z(G). The key concept is first to set special y-values on V(G) and then run
the algorithm to compute Z(G). Since the transformation can be easily
parallelized, the above mentioned problems can be solved with the same
time-processor complexity as solving the y-dominating clique problem. Our
results show these problems on distance-hereditary graphs belonging to
NC class, i.e., the class of problems which can be solved by parallel random
access machines in polylogarithmic parallel time with polynomial many
processors [28]. We hope that our general parallel technique can be
applied to other special classes of graphs which are tree-representable.
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