
ar
X

iv
:c

s/
98

09
03

8v
2

 [c
s.

C
G

]
4

M
ay

 2
00

0

Incremental and Decremental Maintenance of Planar Width

David Eppstein∗

Abstract

We present an algorithm for maintaining the width of a planarpoint set dynamically, as points
are inserted or deleted. Our algorithm takes timeO(knǫ) per update, wherek is the amount of
change the update causes in the convex hull,n is the number of points in the set, andǫ > 0 is any
arbitrarily small constant. For incremental or decremental update sequences, the amortized time
per update isO(nǫ).

1 Introduction

Thewidthof a geometric object is the minimum distance between two parallel supporting hyperplanes.
In the case of planar objects, it is the width of the narrowestinfinite strip that completely contains the
object (Figure 1). The width of a planar point set can be foundfrom its convex hull by a simple
linear time “rotating calipers” algorithm that sweeps through all possible slopes, finding the points of
tangency of the two supporting lines for each slope [9,13,16].

Despite several attempts, no satisfactory data structure is known for maintaining this fundamental
geometric quantitydynamically, as the point set undergoes insertions and deletions. The methods of
Janardan, Rote, Schwarz, and Snoeyink [10,14,15] maintainonly an approximation to the true width.
The method of Agarwal and Sharir [3] solves only the decisionproblem (is the width greater or less
than a fixed bound?) and requires the entire update sequence to be known in advance. An algorithm
of Agarwal et al. [1] can maintain the exact width, but requires superlinear time per update (however
note that this algorithm allows the input points to have continuous motions as well as discrete insertion
and deletion events). Finally, the author’s previous paper[8] provides a fully dynamic algorithm for
the exact width, but one that is efficient only in the average case, for random update sequences.

In this paper we present an algorithm for maintaining the exact width dynamically. Our algorithm
takes timeO(knǫ) per update, wherek is the amount of change the update causes in the convex hull,
n is the number of points in the set, andǫ > 0 is any arbitrarily small constant. In particular, for
incrementalupdates (insertions only) ordecrementalupdates (deletions only), the total change to the
convex hull can be at most linear and the algorithm takesO(nǫ) amortized time per update. For the
randomized model of our previous paper, the expected value of k is O(1) and the average case time
per update of our algorithm is againO(nǫ).

∗Dept. of Information and Computer Science, Univ. of California, Irvine, CA 92697-3425, eppstein@ics.uci.edu. Work
supported in part by NSF grant CCR-9258355 and by matching funds from Xerox Corp.

http://arxiv.org/abs/cs/9809038v2

Figure 1: The width of a point set is the minimum width of an infinite strip containing the set.

Figure 2: A corner and an incompatible side of a point set.

Our approach is to define a set of objects (the features of the convex hull), and a bivariate function
on those objects (the distance between parallel supportinglines), such that the width is the minimum
value of this function among all pairs of objects. We could then use a data structure of the author [7]
for maintaining minima of bivariate functions, however in the case of the width this minimum is
more easily maintained directly. To apply this approach, weneed data structures for dynamic nearest
neighbor querying on subsets of features; we build these data structures by combining binary search
trees with a data structure of Agarwal and Matoušek for ray shooting in convex polyhedra [2].

2 Corners and Sides

Given a planar point setS, we define acornerof S to be an infinite wedge, having its apex at a vertex
of the convex hull ofS, and bounded by two rays through the hull edges incident to that vertex. We
define asideof S to be an infinite halfplane, containingS, and bounded by a line through one of the
hull edges. Figure 2 depicts a point set, its convex hull, a corner (at the top of the figure), and a side
(at the bottom of the figure).

We say a corner and a side arecompatibleif they could be translated to be disjoint with one
another, andincompatibleotherwise. Alternatively, a side is compatible with a corner if the boundary

2

line of the side is parallel to a different line that is tangent to the convex hull at the corner’s apex. The
corner and side in the figure are incompatible, because if onetranslates the side’s boundary to pass
through the corner’s apex, it would penetrate the convex hull.

Given a sidesand a compatible cornerc, we define thedistance d(s, c) to be simply the Euclidean
distance between the apex of the corner and the boundary lineof the side. Equivalently, this is the
distance between parallel lines supporting the convex hulland tangent at the two features. However,
if s andc are incompatible, we define their distance to be+∞. Let width(S) denote the width ofS,
sides(S) denote the set of sides ofS, and corners(S) denote the set of corners ofS.

Lemma 1 For any point set S inR2,

width(S) = min
s∈sides(S)

c∈corners(S)

d(s, c).

Proof: Clearly, any compatible pair defines an infinite strip havingwidth equal to the distance
between the pair, so the overall width can be at most the minimum distance. In the other direction, let
X be the infinite strip tangent on both sides to the convex hull and defining the width; then at least one
of the tangencies must be to a convex hull edge, for a strip tangent at two vertices could be rotated to
become narrower. The opposite tangency includes at least one convex hull vertex, and the edge and
opposite vertex form a compatible side-corner pair.✷

Lemma 2 Each side of the convex hull has at most two compatible corners. The sides compatible to
a given corner of the convex hull form a contiguous sequence of the hull edges.

By Lemma 2, there are onlyO(n) compatible side-corner pairs. The known static algorithmsfor
width work by listing all compatible pairs. The dynamic algorithm of our previous paper maintained
a graph, therotating caliper graph, describing all such pairs. However such an approach can notwork
in our worst-case dynamic setting: there exist simple incremental or decremental update sequences
for which the set of compatible pairs changes byΩ(n) pairs after each update. Instead we use more
sophisticated data structures to quickly identify the closest pair without keeping track of all pairs. To
do so, we will need to keep track of the set of convex hull features, as the point set is updated.

Lemma 3 (Overmars and van Leeuwen [12])We can maintain a list of the vertices of the convex
hull of a dynamic point set inR2, and a data structure for performing logarithmic-time binary searches
in the list, in linear space and timeO(log2 n) per point insertion or deletion.

Recently, Chan [5] has improved these bounds to near-logarithmic time, however this improve-
ment does not make a difference to our overall time bound.

Lemma 4 We can maintain a dynamic point set inR2, and keep track of its sets of corners and edges,
in linear space and timeO(log2 n+ k) per update, where k denotes the total number of corners and
edges inserted and deleted as part of the update.

3

Proof: We apply the data structure of Overmars and van Leeuwen from the previous lemma. The
set of features inserted and deleted in each update can be found by a single binary search to find one
such feature, after which each adjacent feature affected bythe update can be found in constant time
by traversing the maintained list of hull vertices.✷

3 Finding the Nearest Feature

In order to apply our closest pair data structure, we need to be able to determine the nearest neighbor
to each feature in a dynamic subset of other features. We firstdescribe the easier case, finding the
nearest corner to a side.

Lemma 5 We can maintain the corners of a point set inR
2, and handle queries asking for the nearest

corner to a given side, in timeO(log2 n) per update andO(log n) per query.

Proof: We use the same dynamic convex hull data structure as in Lemma4. Each query can be
answered by a single binary search in the hull.✷

We next describe how to perform dynamic nearest neighbor queries in the other direction, from
query corners to the nearest side. To begin with, we show how to find the nearest line to a corner,
ignoring whether the line belongs to a compatible side.

Lemma 6 (Agarwal and Matoušek [2]) For anyǫ > 0, we can maintain a dynamic set of halfspaces
in R

3, and answer queries asking for the first halfspace boundary hit by a ray originating within the
intersection of the halfspaces, in timeO(nǫ) per insertion, deletion, or query.

Lemma 7 We can maintain a dynamic set of halfplanes inR
2, and handle queries asking for the

nearest halfplane boundary to a given query point, where thequery is required to be in the intersection
of the halfplanes, in timeO(nǫ) per query, halfplane insertion, or halfplane deletion.

Proof: For a given halfplaneH, let DH(x, y) denote±1 times the distance of point(x, y) to the
boundary ofH, where the factor is+1 for points in the halfplane and−1 for points outside the
halfplane.DH is a linear function and can be used to define a three-dimensional halfspace{(x, y, z) :
DH(x, y) ≥ z}. ThenDH(x, y) is equal to the vertical distance from point(x, y,0) to the boundary of
this halfspace.

Maintain such a three-dimensional halfspace for each of thehalfplanes in the set, along with
the data structure of Lemma 6. A nearest halfplane query frompoint (x, y) can be answered by
performing a vertical ray shooting query from point(x, y,0); the first halfspace boundary hit by this
ray corresponds to the nearest halfplane to the query point.✷

Lemma 8 We can maintain the sides of a point set inR
2, and handle queries asking for the nearest

side to a given corner, in amortized timeO(nǫ) per query, side insertion, or side deletion.

4

Proof: We store the sides in a weight-balanced binary tree [11], according to their positions in cyclic
order around the convex hull. For each node in the tree, we store the data structure of Lemma 7 for
finding nearest boundaries among the sides stored at descendants of that node.

For each query, we use the binary tree to represent the contiguous group of compatible sides (as
determined by Lemma 2) as the set of descendants ofO(log n) tree nodes. We perform the vertical
ray shooting queries of Lemma 7 in the data structures storedat each of these nodes, and take the
nearest of theO(log n) returned sides as the answer to our query.

Each update causesO(log n) insertions and deletions to the data structures stored at the nodes
in the tree, and may also cause certain nodes to become unbalanced, forcing the subtrees rooted at
those nodes to be rebuilt. A rebuild operation on a subtree containingm sides takes timeO(m1+ǫ),
and happens only afterΩ(m) updates have been made in that subtree since the last rebuild, so the
amortized time per update isO(nǫ). ✷

4 Dynamic Width

We are now ready to prove our main result.

Theorem 1 We can maintain the width of a planar point set inR2, as points are inserted and deleted,
in amortized timeO(knǫ) per insertion or deletion, where k denotes the number of convex hull sides
and corners changed by an update.

Proof: We store the data structures described in the previous lemmas, together with a pointer from
each corner of the point set to the nearest side (this pointermay be null if there is no side compatible
to the corner). Finally, we store a priority queue of the corner-side pairs represented by these pointers,
prioritized by distance. By Lemma 1, the minimum distance inthis priority queue must equal the
overall width.

When an update causes a corner to be added to the set of features, we can find its nearest side in
timeO(nǫ) by Lemma 8, and add the pair to the priority queue in timeO(log n).

When an update causes a corner to be removed from the set of features, we need only remove the
corresponding priority queue entry, in timeO(log n) per update.

When an update causes a side to be added to the set of features,at most two corners can be
compatible with it (Lemma 2). We can find these compatible corners by binary search in the dynamic
convex hull data structure used to maintain the set of features, in timeO(log n). For each corner, we
compare the distances to the new side and the side previouslystored in the pointer for that corner, and
if the new distance is smaller we change the pointer and update the priority queue.

Finally, when an update causes a side to be removed, that sidecan be pointed to by at most the
two corners compatible with it. We use the dynamic convex hull data structure to find the compatible
corners, and if they point to the removed side, we recompute their nearest side in timeO(nǫ) by
Lemma 8. ✷

Corollary 1 We can maintain the width of a point set inR2 subject to insertions only, or subject to
deletions only, in amortized timeO(nǫ) per update.

5

Proof: For the incremental version of the problem, each insertion creates at most two new sides and
three new corners, along with deletingh+ 2 corners andh+ 1 sides whereh is the number of input
points that become hidden in the interior of the convex hull as a consequence of the insertion. Each
point can only be hidden once, so the total number of changes to the set of sides and corners over the
course of the algorithm is at most 10n. The argument for deletions is equivalent under time-reversal
symmetry to that for insertions.✷

We note that in the average case model of our previous paper ondynamic width [8], the expected
value ofk per update isO(1), and therefore our algorithm takes expected timeO(nǫ) per update. This
is not an improvement on that paper’sO(log n) bound, but it is interesting that our algorithm here is
versatile enough to perform well simultaneously in the incremental, decremental, and average cases.

5 Conclusions and Open Problems

We have presented an algorithm for maintaining the width of adynamic planar point set. The algo-
rithm can handle arbitrary sequences of both insertions anddeletions, and our analysis shows it to be
efficient for sequences of a single type of operation, whether insertions or deletions. Are there inter-
esting classes of update sequences other than the ones we have studied for which the total amortized
convex hull change is linear? Does there exist an efficient fully dynamic algorithm for planar width?

Another question is to what extent our algorithm can be generalized to higher dimensions. The
same idea of maintaining pairwise distances between hull features seems to apply, but becomes more
complicated. In three dimensions, it is no longer the case that incremental or decremental update
sequences lead to linear bounds on the total change to the convex hull, but it is still true that ran-
dom update sequences have constant expected change. In order to apply our approach to the three-
dimensional width problem, we would need dynamic closest pair data structures for finding the face
nearest a given corner, the corner nearest a given face, and the opposite edge nearest a given edge.
The overall expected time per update would then beO(log2 n) times the time per operation in these
closest pair data structures. Can this approach be made to give an average-case dynamic algorithm for
three dimensional width that is as good as the best known static algorithms [4,6]?

References

[1] P. K. Agarwal, L. J. Guibas, J. Hershberger, and E. Veach.Maintaining the extent of a
moving point set. Proc. 5th Worksh. Algorithms and Data Structures, pp. 21–44. Springer-
Verlag, Lecture Notes in Computer Science 1272, August 1997, http://citeseer.nj.nec.com/
agarwal97maintaining.html.

[2] P. K. Agarwal and J. Matoušek. Dynamic half-space rangereporting and its applications.Algo-
rithmica 13(4):325–345, 1995.

[3] P. K. Agarwal and M. Sharir. Off-line dynamic maintenance of the width of a planar point set.
Computational Geometry Theory & Applications1(2):65–78, 1991.

6

http://citeseer.nj.nec.com/agarwal97maintaining.html

[4] P. K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric optimization
problems.Discrete & Computational Geometry16(4):317–337, 1996.

[5] T. M.-Y. Chan. Dynamic planar convex hull operations in near-logarithmic amortized time.Proc.
40th Symp. Foundations of Computer Science, pp. 92–99. IEEE, October 1999.

[6] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Diameter, width, closest line pair and
parametric searching.Discrete & Computational Geometry10(2):183–196, 1993.

[7] D. Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions.
Discrete & Computational Geometry13(1):111–122, 1995.

[8] D. Eppstein. Average case analysis of dynamic geometricoptimization. Computational Geom-
etry Theory & Applications6(1):45–68, 1996.

[9] M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE Trans. Pattern Analysis &
Machine IntelligencePAMI-10(5):761–765, 1988, http://citeseer.nj.nec.com/houle88computing.
html.

[10] R. Janardan. On maintaining the width and diameter of a planar point-set online.Int. J. Com-
putional Geometry & Applications3(3):331–344, 1993.

[11] J. Nievergelt and E. M. Reingold. Binary search trees ofbounded balance.SIAM J. Computing
2(1):33–43, March 1973.

[12] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.J. Comput.
Sys. Sci.23(2):166–204, 1981.

[13] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag,
1985.

[14] G. Rote, C. Schwarz, and J. Snoeyink. Maintaining the approximate width of a set of points in
the plane.Proc. 5th Canad. Conf. Computional Geometry, pp. 258–263, 1993, http://citeseer.nj.
nec.com/rote93maintaining.html.

[15] C. Schwarz. Semi-dynamic maintenance of the width of a planar point set. Proc. 9th Eur.
Worksh. Computational Geometry, pp. 6–9, 1993.

[16] G. T. Toussaint. Solving geometric problems with the rotating calipers.Proc. Mediterranean
Electrotechnical Conf., pp. 1–4. IEEE, 1983, http://citeseer.nj.nec.com/toussaint83solving.html.

7

http://citeseer.nj.nec.com/houle88computing.html
http://citeseer.nj.nec.com/rote93maintaining.html
http://citeseer.nj.nec.com/toussaint83solving.html

