arXiv:cs/9809038v2 [cs.CG] 4 May 2000

Incremental and Decremental Maintenance of Planar Width

David Eppsteirt

Abstract

We present an algorithm for maintaining the width of a plgr@int set dynamically, as points
are inserted or deleted. Our algorithm takes tithgn*) per update, wherk is the amount of
change the update causes in the convex hudl the number of points in the set, and- 0 is any
arbitrarily small constant. For incremental or decremlampalate sequences, the amortized time
per update i€ (n°).

1 Introduction

Thewidthof a geometric object is the minimum distance between twallghsupporting hyperplanes.
In the case of planar objects, it is the width of the narrovrdatite strip that completely contains the
object (Figuref]l). The width of a planar point set can be fofroth its convex hull by a simple
linear time “rotating calipers” algorithm that sweeps tgb all possible slopes, finding the points of
tangency of the two supporting lines for each sidpé¢ [9, 1B, 16

Despite several attempts, no satisfactory data strucsdgeawn for maintaining this fundamental
geometric quantityynamically as the point set undergoes insertions and deletions. Thwodweof
Janardan, Rote, Schwarz, and Snoeyink[[1d, 14, 15] maiatdynan approximation to the true width.
The method of Agarwal and Sharfq [3] solves only the decigiosblem (is the width greater or less
than a fixed bound?) and requires the entire update sequeibecknown in advance. An algorithm
of Agarwal et al. [[L] can maintain the exact width, but regaisuperlinear time per update (however
note that this algorithm allows the input points to have cwdus motions as well as discrete insertion
and deletion events). Finally, the author’s previous p4feprovides a fully dynamic algorithm for
the exact width, but one that is efficient only in the averaggec for random update sequences.

In this paper we present an algorithm for maintaining theeewédth dynamically. Our algorithm
takes timeO (krf) per update, wherk is the amount of change the update causes in the convex hull,
n is the number of points in the set, aad> 0O is any arbitrarily small constant. In particular, for
incrementalupdates (insertions only) alecrementalipdates (deletions only), the total change to the
convex hull can be at most linear and the algorithm takés®) amortized time per update. For the
randomized model of our previous paper, the expected vdligsoO(1) and the average case time
per update of our algorithm is agai(n®).

*Dept. of Information and Computer Science, Univ. of Califar Irvine, CA 92697-3425, eppstein@ics.uci.edu. Work
supported in part by NSF grant CCR-9258355 and by matchindsffrom Xerox Corp.

http://arxiv.org/abs/cs/9809038v2

Figure 2: A corner and an incompatible side of a point set.

Our approach is to define a set of objects (the features ofaimee hull), and a bivariate function
on those objects (the distance between parallel suppdtieg), such that the width is the minimum
value of this function among all pairs of objects. We coulertluse a data structure of the autHér [7]
for maintaining minima of bivariate functions, however metcase of the width this minimum is
more easily maintained directly. To apply this approachneed data structures for dynamic nearest
neighbor querying on subsets of features; we build thesestaictures by combining binary search
trees with a data structure of Agarwal and Matou$ek for hepging in convex polyhedrd][2].

2 Corners and Sides

Given a planar point s& we define aornerof Sto be an infinite wedge, having its apex at a vertex
of the convex hull ofS, and bounded by two rays through the hull edges incidentabuértex. We
define asideof Sto be an infinite halfplane, containir§§ and bounded by a line through one of the
hull edges. Figurf]2 depicts a point set, its convex hull,rae(at the top of the figure), and a side
(at the bottom of the figure).

We say a corner and a side arempatibleif they could be translated to be disjoint with one
another, andthcompatibleotherwise. Alternatively, a side is compatible with a cariiéhe boundary

line of the side is parallel to a different line that is tanginthe convex hull at the corner’s apex. The
corner and side in the figure are incompatible, because itramslates the side’s boundary to pass
through the corner’s apex, it would penetrate the convelk hul

Given a sidesand a compatible corner we define thelistance d@s, c) to be simply the Euclidean
distance between the apex of the corner and the boundarpflittee side. Equivalently, this is the
distance between parallel lines supporting the convexdndltangent at the two features. However,
if sandc are incompatible, we define their distance tob&. Let width(S) denote the width oS,
sidegS) denote the set of sides 8f and cornertS) denote the set of corners 8&f

Lemma 1 For any point set S ifR?,

width(S)= min_ d(s,c).
scsidegS)
cecornergS)

Proof: Clearly, any compatible pair defines an infinite strip hawwidth equal to the distance
between the pair, so the overall width can be at most the nimimistance. In the other direction, let
X be the infinite strip tangent on both sides to the convex mdldefining the width; then at least one
of the tangencies must be to a convex hull edge, for a strigetairat two vertices could be rotated to
become narrower. The opposite tangency includes at leastamvex hull vertex, and the edge and
opposite vertex form a compatible side-corner pair.

Lemma 2 Each side of the convex hull has at most two compatible cernine sides compatible to
a given corner of the convex hull form a contiguous sequehtgedull edges.

By Lemma[P, there are oni§(n) compatible side-corner pairs. The known static algoritiions
width work by listing all compatible pairs. The dynamic algiom of our previous paper maintained
a graph, theotating caliper graph describing all such pairs. However such an approach camwaorit
in our worst-case dynamic setting: there exist simple imenatal or decremental update sequences
for which the set of compatible pairs changes(by) pairs after each update. Instead we use more
sophisticated data structures to quickly identify the efgpair without keeping track of all pairs. To
do so, we will need to keep track of the set of convex hull festuas the point set is updated.

Lemma 3 (Overmars and van Leeuwen[[12])We can maintain a list of the vertices of the convex
hull of a dynamic point set iR2, and a data structure for performing logarithmic-time bipaearches
in the list, in linear space and tim@(log2 n) per point insertion or deletion.

Recently, Chan[]5] has improved these bounds to near-tbgaic time, however this improve-
ment does not make a difference to our overall time bound.

Lemma 4 We can maintain a dynamic point seti$, and keep track of its sets of corners and edges,
in linear space and timé)(log2 n+ k) per update, where k denotes the total number of corners and
edges inserted and deleted as part of the update.

Proof: We apply the data structure of Overmars and van Leeuwen fnenprtevious lemma. The
set of features inserted and deleted in each update can be fyua single binary search to find one
such feature, after which each adjacent feature affectatidoypdate can be found in constant time
by traversing the maintained list of hull verticesl

3 Finding the Nearest Feature

In order to apply our closest pair data structure, we neee table to determine the nearest neighbor
to each feature in a dynamic subset of other features. Wedtistribe the easier case, finding the
nearest corner to a side.

Lemma 5 We can maintain the corners of a point selif, and handle queries asking for the nearest
corner to a given side, in tim@(log2 n) per update and(log n) per query.

Proof: We use the same dynamic convex hull data structure as in Lefjantgach query can be
answered by a single binary search in the hail.

We next describe how to perform dynamic nearest neighboriegia the other direction, from
query corners to the nearest side. To begin with, we show bdimd the nearest line to a corner,
ignoring whether the line belongs to a compatible side.

Lemma 6 (Agarwal and Matousek [2]) For anye > 0, we can maintain a dynamic set of halfspaces
in R3, and answer queries asking for the first halfspace boundiryyha ray originating within the
intersection of the halfspaces, in tif@¥n°) per insertion, deletion, or query.

Lemma 7 We can maintain a dynamic set of halfplanesRf, and handle queries asking for the
nearest halfplane boundary to a given query point, whergtlezy is required to be in the intersection
of the halfplanes, in timé&(n°) per query, halfplane insertion, or halfplane deletion.

Proof: For a given halfplandd, let Dy(x,y) denote+1 times the distance of poirik,y) to the
boundary ofH, where the factor ist+1 for points in the halfplane and1 for points outside the
halfplane.Dy is a linear function and can be used to define a three-dimegisialfspace (x,y, z) :
Du(x,y) > z}. ThenDy(x,y) is equal to the vertical distance from poit y, 0) to the boundary of
this halfspace.

Maintain such a three-dimensional halfspace for each ohtifplanes in the set, along with
the data structure of Lemnfa 6. A nearest halfplane query fooint (x,y) can be answered by
performing a vertical ray shooting query from po{mty, 0); the first halfspace boundary hit by this
ray corresponds to the nearest halfplane to the query paint.

Lemma 8 We can maintain the sides of a point seffif, and handle queries asking for the nearest
side to a given corner, in amortized tind&n“) per query, side insertion, or side deletion.

4

Proof: We store the sides in a weight-balanced binary [11praaag to their positions in cyclic
order around the convex hull. For each node in the tree, we ¢he data structure of Lemnfip 7 for
finding nearest boundaries among the sides stored at desteraf that node.

For each query, we use the binary tree to represent the consggroup of compatible sides (as
determined by Lemmf 2) as the set of descendané3(fg n) tree nodes. We perform the vertical
ray shooting queries of Lemnj& 7 in the data structures staredch of these nodes, and take the
nearest of th&(log n) returned sides as the answer to our query.

Each update caus&3(log n) insertions and deletions to the data structures storedeatdbes
in the tree, and may also cause certain nodes to become nobd)dorcing the subtrees rooted at
those nodes to be rebuilt. A rebuild operation on a subtre¢éaotng m sides takes time(mi+e),
and happens only afté2(m) updates have been made in that subtree since the last retoittie
amortized time per update @3(n¢). O

4 Dynamic Width

We are now ready to prove our main result.

Theorem 1 We can maintain the width of a planar point sefi, as points are inserted and deleted,
in amortized time) (knf) per insertion or deletion, where k denotes the number of@ohwll sides
and corners changed by an update.

Proof: We store the data structures described in the previous lamiogether with a pointer from
each corner of the point set to the nearest side (this pamagrbe null if there is no side compatible
to the corner). Finally, we store a priority queue of the eorside pairs represented by these pointers,
prioritized by distance. By Lemnfd 1, the minimum distancehiis priority queue must equal the
overall width.

When an update causes a corner to be added to the set of gaterean find its nearest side in
time O(n°) by LemmdB, and add the pair to the priority queue in tithéog n).

When an update causes a corner to be removed from the setwkfgave need only remove the
corresponding priority queue entry, in tifdlog n) per update.

When an update causes a side to be added to the set of feattiragst two corners can be
compatible with it (Lemm@]2). We can find these compatibleveos by binary search in the dynamic
convex hull data structure used to maintain the set of featun timeO(log n). For each corner, we
compare the distances to the new side and the side previstosgd in the pointer for that corner, and
if the new distance is smaller we change the pointer and egtatpriority queue.

Finally, when an update causes a side to be removed, thatadbe pointed to by at most the
two corners compatible with it. We use the dynamic convex dhatia structure to find the compatible
corners, and if they point to the removed side, we recomfhe& hearest side in tim&(n°) by
Lemma[B. O

Corollary 1 We can maintain the width of a point setlt? subject to insertions only, or subject to
deletions only, in amortized tim@(n°) per update.

5

Proof: For the incremental version of the problem, each insertieates at most two new sides and
three new corners, along with deletihg+ 2 corners andh + 1 sides wheré is the number of input
points that become hidden in the interior of the convex hsilhaonsequence of the insertion. Each
point can only be hidden once, so the total number of chargéetset of sides and corners over the
course of the algorithm is at mostrd.0The argument for deletions is equivalent under time-isaler
symmetry to that for insertionsd

We note that in the average case model of our previous papgyramic width [B], the expected
value ofk per update i€)(1), and therefore our algorithm takes expected tifi{ec) per update. This
is not an improvement on that pape€Xlog n) bound, but it is interesting that our algorithm here is
versatile enough to perform well simultaneously in the émeental, decremental, and average cases.

5 Conclusions and Open Problems

We have presented an algorithm for maintaining the width d§@amic planar point set. The algo-
rithm can handle arbitrary sequences of both insertionsdatetions, and our analysis shows it to be
efficient for sequences of a single type of operation, whétisertions or deletions. Are there inter-
esting classes of update sequences other than the ones avsthdied for which the total amortized
convex hull change is linear? Does there exist an efficidiyt lynamic algorithm for planar width?

Another question is to what extent our algorithm can be gdizedd to higher dimensions. The
same idea of maintaining pairwise distances between hatlifes seems to apply, but becomes more
complicated. In three dimensions, it is no longer the caag iticremental or decremental update
sequences lead to linear bounds on the total change to tlwexcomll, but it is still true that ran-
dom update sequences have constant expected change. drncoegply our approach to the three-
dimensional width problem, we would need dynamic closestgata structures for finding the face
nearest a given corner, the corner nearest a given face harmpposite edge nearest a given edge.
The overall expected time per update would therﬂzjh}gz n) times the time per operation in these
closest pair data structures. Can this approach be madegtaigiaverage-case dynamic algorithm for
three dimensional width that is as good as the best knowia sigorithms [}[5]?

References

[1] P. K. Agarwal, L. J. Guibas, J. Hershberger, and E. VeadWaintaining the extent of a
moving point set. Proc. 5th Worksh. Algorithms and Data Structyrggp. 21-44. Springer-
Verlag, Lecture Notes in Computer Science 1272, August 198&fp://citeseer.nj.nec.com/
agarwal97maintaining.html.

[2] P. K. Agarwal and J. Matousek. Dynamic half-space ramgp®rting and its application®\lgo-
rithmica 13(4):325-345, 1995.

[3] P. K. Agarwal and M. Sharir. Off-line dynamic maintenanaf the width of a planar point set.
Computational Geometry Theory & Applicatioh§):65—-78, 1991.

http://citeseer.nj.nec.com/agarwal97maintaining.html

[4] P. K. Agarwal and M. Sharir. Efficient randomized algbnts for some geometric optimization
problems.Discrete & Computational Geometiy6(4):317-337, 1996.

[5] T.M.-Y.Chan. Dynamic planar convex hull operations gan-logarithmic amortized timé&roc.
40th Symp. Foundations of Computer Sciemge 92—-99. IEEE, October 1999.

[6] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sh&iiameter, width, closest line pair and
parametric searchindiscrete & Computational Geometfy0(2):183-196, 1993.

[7] D. Eppstein. Dynamic Euclidean minimum spanning treed aextrema of binary functions.
Discrete & Computational Geomety8(1):111-122, 1995.

[8] D. Eppstein. Average case analysis of dynamic geomepitnization. Computational Geom-
etry Theory & Application$(1):45-68, 1996.

[9] M. E. Houle and G. T. Toussaint. Computing the width of a #EE Trans. Pattern Analysis &
Machine Intelligenc&®AMI-10(5):761-765, 1988, http://citeseer.nj.nec.domaie88computing.
html.

[10] R. Janardan. On maintaining the width and diameter daagy point-set onlinelnt. J. Com-
putional Geometry & Application8(3):331-344, 1993.

[11] J. Nievergelt and E. M. Reingold. Binary search treebmfnded balanceSIAM J. Computing
2(1):33-43, March 1973.

[12] M. H. Overmars and J. van Leeuwen. Maintenance of cordigans in the planeJ. Comput.
Sys. Sci23(2):166-204, 1981.

[13] F. P. Preparata and M. I. Shamd@Somputational Geometry: An Introductiospringer-Verlag,
1985.

[14] G. Rote, C. Schwarz, and J. Snoeyink. Maintaining thereximate width of a set of points in
the plane Proc. 5th Canad. Conf. Computional Geomefp. 258263, 1993, http://citeseer.n;.
nec.com/rote93maintaining.html.

[15] C. Schwarz. Semi-dynamic maintenance of the width ofamgr point set. Proc. 9th Eur.
Worksh. Computational Geometp. 69, 1993.

[16] G. T. Toussaint. Solving geometric problems with th@atiog calipers. Proc. Mediterranean
Electrotechnical Confpp. 1-4. IEEE, 1983, http://citeseer.nj.nec.com/tonsdasolving.html.

http://citeseer.nj.nec.com/houle88computing.html
http://citeseer.nj.nec.com/rote93maintaining.html
http://citeseer.nj.nec.com/toussaint83solving.html

