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Abstract

In this paper we discuss the problem of �nding optimal pre�x�free codes for unequal letter costs�

a variation of the classical Hu�man coding problem� Our problem consists of �nding a minimal

cost pre�x�free code in which the encoding alphabet consists of unequal cost �length� letters�

with lengths � and �� The most e�cient algorithm known previously requires O�n��max������

time to construct such a minimal�cost set of n codewords� provided � and � are integers�

In this paper we provide an O�nmax������ time algorithm� Our improvement comes from the

use of a more sophisticated modeling of the problem� combined with the observation that the

problem possesses a �Monge property	 and that the SMAWK algorithm on monotone matrices

can therefore be applied�

Keywords
 Dynamic Programming� Hu�man Codes� Lopsided Trees� Monge Matrix� Mono�

tone Matrix� Pre�x�Free Codes�



� Introduction

Finding optimal pre�x�free codes for unequal letter costs �and the associated problem of con�

structing optimal lopsided trees� is an old classical problem� It consists of �nding a minimal

cost pre�x�free code in which the encoding alphabet consists of unequal cost �length� letters�

of lengths � and �� � � �� The code is represented by a lopsided tree in the same way that

a Hu�man tree represents a solution for the Hu�man coding problem� Despite this similarity�

the case of unequal letter costs seems much harder to solve than the classical Hu�man problem�

no polynomial time algorithm is known for general letter costs� despite a rich literature on the

problem� �See e�g�� �� for a survey�� However� there are known polynomial time algorithms

when � and � are integer constants ����

The problem of �nding the minimum cost tree in this case was �rst studied in �� by Karp

��� who solved the problem by reduction to integer linear programming� yielding an algorithm

with time complexity exponential in n� Since then there has been much work on variations

of the problem� such as bounding the cost of the optimal tree �Altenkamp and Mehlhorn ����

Kapoor and Reingold ���� and Savari ����� restriction to the special case when all of the weights

are equal �Cot ���� Perl Gary and Even ���� and Choi and Golin ����� and approximating the

optimal solution �Gilbert ����� However� it is still not known whether the basic problem is

polynomial�time solvable� or is NP�hard�

The only published technique other than Karp�s for solving the general problem is due

to Golin and Rote ���� who describe an O�n�����time dynamic programming algorithm that

constructs the tree in a top�down fashion� This is currently the most e�cient known algorithm

for small �� In this paper� we introduce a di�erent dynamic programming approach� obtaining

a bottom�up algorithm� and saving a quadratic factor in time complexity� A straightforward

algorithmic realization of this approach would also run in O�n�����time� but we describe two

techniques which decrease the time complexity� each by a factor of ��n�� The �rst technique

transforms the search space into a larger� but more tractable� one� The second uses monotone�

matrix concepts� i�e�� the Monge property ��� and the SMAWK algorithm ����

Our approach requires a better understanding of the combinatorics of lopsided trees� which�

in turn� requires introducing some de�nitions� Let �� � be positive integers� � � �� A binary

lopsided �� � tree �or just a lopsided tree� if � and � are understood� is a binary tree in which

every non�leaf node u of the tree has two children� where the length of the edge connecting u

to its left child is �� and the length of the edge connecting u to its right child is �� Figure 

shows two ��� lopsided trees�

Let T be a lopsided tree and v � T some node� Then

depth�T� v� � sum of the lengths of the edges connecting root�T � to v
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Figure 
 Two lopsided �� � trees� The trees are labeled with P � f�� �� �� �g�

depth�T � � maxfdepth�T� v� 
 v � Tg

For example� tree T in Figure  has depth � while tree T� has depth ��

Let P � fp�� p�� � � � � png be a sequence of nonnegative weights� Let T be a lopsided tree

with n leaves labeled v�� v�� � � � � vn� The weighted external path length of T is

cost�T� P � �
X
i

pi � depth�T� vi��

Given P � our problem is to construct a lopsided tree T that minimizes cost�T� P �� Returning

to Figure  we �nd that� for P � f�� �� �� �g tree T has

cost�T� P � � � � � � � � � � � � � � � � � � ��

while tree T � has

cost�T �� P � � � � � � � � � � � � � � � � � � ���

With a little more work it is not hard to see that tree T is a minimal cost lopsided �� � tree

for P� As was pointed out quite early ��� �see ��� for a more recent detailed description� this

problem is equivalent to �nding a minimal cost pre�x�free code in which the encoding alphabet

consists of two unequal cost �length� letters� of lengths � and �� If � � � the problem reduces

directly to the standard Hu�man coding problem�

Note that� given any particular tree T � the cost actually depends upon the enumeration of

the leaves of T� the cost being minimized when leaves of greater depth always have smaller or

equal weight� We therefore will assume that the leaves of T are enumerated in nonincreasing

order of their depth� i�e�� depth�T� v�� � depth�T� v�� � � � � � depth�T� vn�� and that p� � p� �

� � � � pn� This assumption will be used implicitly throughout the paper� One consequence of

this assumption is that cost�T� P � is the minimum external path length of T under all possible

permutations of the assignments of the weights in P to the leaves of T�

�
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Figure �
 An ��� tree T with depth�T � � �� and its characteristic sequence

seq�T � � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���

In the next section we will introduce some sequences that are related to trees and introduce

some properties that permit us to restate our problem as a problem about sequences rather

than trees� In Sections � and �� we prove most of those properties� In Section �� we discuss

how to use the Monge property to reduce the running time of the algorithm� In Section � we

prove a key lemma stated in Section �� Section � concludes�

� Three types of sequences related to lopsided trees

Let n and P be �xed� Throughout the paper� we describe a tree only by how many leaves it

has at each level� This description is justi�ed by the fact that cost�T� P � � cost�T �� P �� if T

and T � have the same number of leaves at every level� In what follows we say that node v is

on level i of T if v is i levels from the bottom of T� i�e�� if i � depth�T �� depth�T� v��

We consider three classes of sequences


�



� for a given tree T � the numbers�of�leaves sequence��T �� ����T �� ���T �� � � � � �d���T ���

where �i�T � is the number of leaves which are below or at a given level i�

�� for a given tree T � its characteristic sequence� denoted by seq�T �� which is the sequence

BT � �b�� b�� � � � � bd��� in which bi is the number of right children at or below level i� for

all � � i � d � depth�T �� See Figure ��

�� monotonic sequences B � b�� b�� � � � � bd�� of nonnegative integers which end in the ��

tuple �n� � n� � � � � � n� �� A sequence is monotonic if b��� b� � � � � � bd��� Denote

the set of such monotonic sequences ending in ��tuple �n� � n � � � � � � n � � by Mn�

If T is a tree� we shall see below that seq�T � � Mn� but if B � Mn� there may be no

tree for which B is a characteristic sequence� We say a sequence B � Mn is legal if

B � seq�T � for some tree T �

We now provide some intuition as to how these de�nitions arise� ��T � is introduced because

�i�T � � �i���T � is the number of leaves on level i� and� as mentioned above� these values can

be used to calculate cost�T� P �� In the next section we will see that ��T � can be reconstructed

from seq�T ��

Monotonic sequences are a generalization of characteristic sequences� For any tree T � seq�T �

is monotonic by de�nition� If T is a tree with n leaves then T must have n�  internal nodes

and thus n� right children� The top � levels of T �not counting the root� cannot contain any

right children� Thus� seq�T � terminates in a � tuple �n� � n� � � � � � n� � andMn contains

the set of all legal sequences�

In section � we will introduce a quantity� cost�B�P �� de�ned for monotonic sequences� This

cost will have two important properties� The �rst property is that this new cost function is

e�ectively a generalization of the cost function on trees de�ned above� the second property is

that minimum cost is always achieved on a sequence which is the characteristic sequence of

some tree� Formally� the �rst property is

P� Consistency of the cost function�

cost�seq�T �� P � � cost�T� P �

Thus� the problem of �nding a minimum cost lopsided tree is totally equivalent to that of

�nding a minimum cost legal sequence in Mn� The reason for introducing all of the notation

is the next important property� which will be proven in Lemma ��

P�� Key�property�

For each B � Mn� not necessarily a legal one� and weight set P� jP j � n� a lopsided

�
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Figure �
 Relations between lopsided trees� monotonic sequences and graphs�

tree BuildTree�B� can be constructed such that

cost�BuildTree�B�� P � � cost�B�P ��

Furthermore BuildTree�B� can be constructed in O�n�� time�

� General structure of the algorithm

If B is a min�cost monotonic sequence and T � BuildTree�B�� then by �P� and �P�� we have

cost�seq�T �� P � � cost�T� P � � cost�B�P ��

The minimality of B then implies that cost�seq�T �� P � � cost�B�P � and thus seq�T � is also a

min�cost sequence in Mn� Legal sequences are a subset of Mn so this immediately implies

that seq�T �� by de�nition a legal sequence� is a min�cost legal sequence and� from �P�� that

T is a min�cost lopsided tree�

Our algorithm will therefore be to �nd a min�cost monotonic sequence B � Mn and then

build the min�cost tree T � BuildTree�B��

The nontrivial aspect of our algorithm� and the fact which will save us our �rst ��n� factor

in our running time� is that the above properties permit us to search for an optimum among

all sequences in Mn� not just the legal ones� Essentially they permit us to search in a larger�

but more tractable� search space�

In Section � we show how to actually �nd min�cost monotonic sequences� We construct

a particular edge�weighted graph Gn� with designated source and sink� such that there is a

one�one correspondence between the monotonic sequences in Mn and the source�sink paths

in Gn� This correspondence will have the further property that cost�B�P � will be exactly the

weight of the path corresponding to B� Finding a min�cost sequence is therefore reduced to

�nding a min�cost source�sink path in Gn� We will also see that this optimization problem

�



Algorithm Optimal Tree Construction

� compute a minimum�cost source�sink path � in the special graph

Gn de�ned in Section ��

�� construct a monotonic sequence B �Mn corresponding to ��

�� return BuildTree�B�

Figure �
 Top level view of the optimal tree construction algorithm�

satis�es a Monge property that will enable it to be solved a factor of ��n� faster than it would

normally require�

The relationship between lopsided trees� sequences and paths is sketched in Figure �� The

general structure of the algorithm is given in Figure ��

� De�ning the cost in terms of sequences

The main goal of this section is to de�ne a cost�B�P � for all B � Mn that has the property

that the cost of a tree T and its associated characteristic sequence seq�T � will be the same�

We start by de�ning values


De�nition �

Si �

� P
j�i pj if  � i � n

� otherwise�

With this de�nition it is straightforward to write the cost of T as a function of ��T � �

����T �� ���T �� � � � � �d���T �� where �i�T � is the number of leaves which are below or at a given

level i�

Lemma �

cost�T� P � �
X

��k�depth�T �

S�k�T ��

Proof�

Cost�T� P � �
X
i�n

pi � depth�vi�

�
X

��j�depth�T �

j
X

fvi � depth�vi�	jg

pi

�
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Figure �
 The bottom forest F�� of the tree T from Figure ��

�
X

��j�depth�T �

X
fvi �depth�vi��jg

pi

�
X

��j�depth�T �

X
fvi �height�vi��n�jg

pi

�
X

��k�depth�T �

S�k�T �

�

We now de�ne a cost on monotonic sequences B and then� in the next lemma� see that this

cost is identical to the tree cost on T if the sequence is the legal sequence B � seq�T ��

De�nition � Let B � b�� b�� � � � � bd�� be a monotonic sequence� �� � k � d� set

Nk�B� � bk � bk������ � bk��

where bj � � for all j � �� Now de�ne

cost�B�P � �
X

��k�d

SNk�B�

If B is the sequence for some tree T then Nk�B� � �k�T �� the number of leaves on or below

level k�

Lemma � Let T be a lopsided tree and B � seq�T � � b�� b�� � � � � bd��� Then

� �A� � � � i � d � depth�T ��

�i�T � � Ni�seq�T �� � bi � bi������ � bi��

�



� �B� cost�T� P � � cost�B�P �

Proof� Let Fk � forestk�T � be the forest consisting of all nodes at level k and below �See

Figure ��� From our perspective its most useful property will be the fact that a node u � Fk

is a leaf in Fk if and only if the same node is a leaf in T�

Note that �k�T �� previously de�ned as the the number of leaves on or below level k in T �

is therefore also the exact number of leaves in forestk�T ��

To prove �A�� note that Fi is a forest� hence

Ni�T � � fu � Fi 
 u is a leaf in Fig ��

� Number of internal nodes in Fi �Number of trees in Fi ���

The �rst summand in the last line is easily calculated� A node at height k is internal in Fi if

and only if it is the parent of some right child at level k � �� Thus

Number of internal nodes in Fi � bi�� � ���

The second summand is only slightly more complicated to calculate� The number of trees in

Fi is exactly the same as the number of tree�roots in Fi� Now note that a node in Fi is a

tree�root in Fi if and only if its parent is not in Fi� Thus a right child at height k in Fi is a

tree�root if and only if i� � � k � i and there are exactly bi � bi�� such nodes�

Similarly a left child at height k is a tree�root if and only if i� � � k � i� This may occur

if and only if the left child�s right sibling is at height k� where i � � � k � i � �� � ��� The

number of such nodes is therefore bi������ � bi���

We have therefore just seen that

Number of trees in Fi � �bi � bi��� � �bi������ � bi���� ���

Combining ��� and ��� completes the proof of �A�� �B� follows from Lemma  and �A�� �

� Description of the function BuildTree

Each characteristic sequence describes the unique �shape	 of a lopsided tree� Although intu�

itive� the reconstruction of a tree from its characteristic sequence can be rather technical� The

main goal of this section is to describe a procedure that reconstructs min�cost trees from their

sequences and what happens when we try to reconstruct a sequence corresponding to a non

min�cost tree or even a sequence that corresponds to no tree at all�

�



Our construction is guided by the requirement that it be reversible for min�cost trees� i�e��

if B � seq�T � for some min�cost tree T� then T � BuildTree�B�� If B � seq�T � for some non

min�cost tree it will be possible that T �� BuildTree�B�� if B is not legal then T � BuildTree�B�

will still exist but of course seq�T � �� B�

So� now� assume that B � seq�T � is a legal sequence for some min�cost tree T � The weight

p� is associated with a leaf at level �� and the left sibling of this leaf is associated with some

other weight pk� To de�ne BuildTree�B� so that it works backwards to construct T it must

determine how k can be identi�ed�

Observe that we may assume that this left sibling is a lowest leaf in the tree which is a left�

child� i�e�� a lowest left node in T� Such a node appears on level ��� �see tree T in Figure ���

The number of leaves below this level is b������ Thus� since we list items consecutively with

respect to increasing levels� a lowest left�child leaf has index k � FirstLeft�B�� where

FirstLeft�B� � b����� � 

We state� without proof� the intuitive fact� that� if T is an optimal tree in which p�� pk

label sibling leaves� then the tree T � that results by �i� removing those leaves and �ii� la�

beling their parent �now a leaf� with p� � pk will also be an optimal tree for the leaf set

P � � P 	 fp� � pkg � fp�� pkg� �See tree T
� in Figure ��� Calculation shows that

cost�T� P � � cost�T �� P �� � � � p� � � � pk� ���

If the leaves with weights p�� pk are siblings in a tree T then denote by T � � merge�T� � k�

the tree in which those leaves are removed and their parent is replaced by a leaf� �see Figure ���

For the sequence B � �b�� b�� � � � bd� denote

dec�B� � B� � �b� � � b� � � b� � � � � � bd � ��

Note that �after any leading zeros are deleted� this sequence is the characteristic sequence of

T � � merge�T� � k��

Assume � is a sorted sequence of positive integers� x is a positive integer� and insert��� x�

is the sorted sequence obtained by inserting x into � in the correct position� Now denote by

delete�P� p�� pk� the sequence P with elements p� and pk deleted� and de�ne

P � � package merge�P� � k� � insert�delete�P� p�� pk�� p� � pk��

�This fact is not needed for later proofs� it is only given to help provide some intuition as to why the algorithm

is de�ned the way it is�

�
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Figure �
 The correspondence between trees T � T � and their sequences
 T � � merge�T� � ��

and seq�T � � B � �� �� �� �� �� �� �� �� �� ��� seq�T �� � dec�B� � B� � ��� � � �� �� �� �� �� �� ���

FirstLeft�B� � b����� �  � b
���� �  � � and cost�T � � cost�T �� � �p� � �p��

For example if P � f�� �� �� �� �g then

P � � delete�P� �� �� � f�� �� �g�

insert�P �� �� � f�� �� �� �g�

package merge�P� � �� � f�� �� �� �g�

The reason for introducing this notation is that P � will be the weights that T � � merge�T� � k�

will be labelled with�

The observations above lead us to the algorithm BuildTree�B� in Figure � which� for B �

Mn and P with jP j � n� builds a lopsided tree with n leaves�

As an example of how the algorithm works suppose that �� � � �� �� B � �� �� �� �� �� �� �� �� �� ��

and P � f� � � � g� Set B
 � B and P
 � P� We will run BuildTree�B
� for P
 �

f� � � � g� For i � �� �� �� let Bi be dec�Bi��� with leading zeros deleted� i�e�� the two

smaller sequences on which BuildTree is recursively called� and let Pi be the P with which

Bi is called� The table in Figure � collects the values generated by the algorithm� Note that

k � FirstLeft�B� � b�
������ � b��� The pk column contains the value of pk in the current

Pi� Figure � shows the trees Ti � BuildTree�Bi� �for Pi� that are generated� Note that T
� the

tree that is the �nal result� satis�es seq�T
� � B
� i�e��

Buildtree�B
� � B
�

It is not di�cult to show that T
 is a min�cost tree for P
� This is a special case of a general

�



function BuildTree�B�� given weights P

� If n � � note that P � fp�� p�g for some p� � p��

�� k � FirstLeft�B�

�� P � � package merge�P� � k�

�� B� � dec�B�

�� Delete leading zeros from B�

�� T � � BuildTree�B�� using weights P � �recursive step�

�� Let u�� u�� � � � � un�� be the leaves of T
� enumerated so that

depth�T� u�� � depth�T� u�� � � � � � depth�T� un���

Let p�� � p�� � � � � � p�n�� be the weights in P ��

Let j be an index such that p�j � p� � pk�

�� Replace uj � T � by an internal node with two children�

Call the resulting new tree� T

�� Return T �

Figure �
 Procedure BuildTree�B��

rule� if B � seq�T � where T is a min�cost tree for P then BuildTree�B� will construct a tree

whose shape� i�e�� the number of nodes per level� is exactly the same as that of T� The proof

of this fact is a straightforward induction on n using the de�nition of FirstLeft�B� and the

fact that if T is minimal for P then T � is minimal for P �� We do not include it here because it

is not needed for the algorithm�

We also note that the algorithm is well de�ned for all B � Mn and jP j � n 
 the proof

is by induction� It is obviously well de�ned for B � M� and jP j � �� If n � � then k �

FirstLeft�B� � b����� �  � n so pk exists and P � � package merge�P� � k� is well de�ned

so steps �� are well de�ned� Since B� � dec�B� � Mn�� and jP �j � n �  this means that

when the algorithm recursively calls BuildTree�B�� using P � it receives a well de�ned result

and step � is well de�ned as well� Finally� from the de�nition of P � � package merge�P� � k�

we know that there exists some j with p�j � p� � pk� Thus step � is also well de�ned�

To bound the running time note that the recursion only goes to a depth of n�  and each

step requires at most O�n� time so the entire procedure only needs O�n�� time�





i Bi k � FirstLeft�Bi� � b� �  Pi pk p� � pk

� �� �� �� �� �� �� �� �� �� �� � f� � � � g  �

� �� � �� �� �� �� �� �� �� � f� � � �g  �

� �� � �� �� �� �� �� � f� �� �g � �

� �� � � � � �� f�� �g �� ��

Figure �
 The values generated by Buildtree�B
� on P
 and its recursive calls
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Figure �
 Trees generated by BuildTree�B
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As an example of the algorithm run on a legal sequence corresponding to a non�minimal

tree we refer back to tree T � in Figure  which was not min�cost for P � f�� �� �� �g� Set

B� � seq�T ��� We will run BuildTree�B�� for P� � P� For i � �� �� let Bi be dec�Bi���

with leading zeros deleted� i�e�� the two smaller sequences on which BuildTree is recursively

called� and let Pi be the P with which Bi is called� The table in Figure � collects the values

generated by the algorithm� Figure  shows the trees Ti � BuildTree�Bi� �for Pi� that are

generated� Note that BuildTree�B�� generates tree T� in the diagram which is not T �� i�e��

BuildTree�seq�T ��� �� T �� Referring back to Figure  we see that T� actually is the other tree�

T� in that �gure�

The most important property of the operation BuildTree is stated by the following lemma

�whose somewhat technical proof is postponed to Section ���

Lemma � For all B �Mn�

cost�BuildTree�B�� P � � cost�B�P ��

As mentioned previously if B � seq�T � for some min�cost tree T� then BuildTree�B� will have

the same shape as T so� from Lemma ��

cost�BuildTree�B�� P � � cost�T� P � � cost�B�P �

and the inequality in the lemma reduces to an equality�

The inequality in the lemma can be strict� though� For example� referring back to the

�



construction in Figures � and  we have

cost�BuildTree�B��� P�� � cost�T�� P�� � �� � �� � cost�B�� P���

For an example starting with a non�legal B� suppose that �� � � �� �� B � ��� �� �� �� �� ��

and P � �� � � with n � �� �It is not di�cult to see that B is not legal�� Then N��B� �

b� � b� � � � � � � � n so SN��B� �� and cost�B�P � ��� On the other hand BuildTree�B�

is a well de�ned tree so cost�BuildTree�B�� P � ��� Thus� trivially

cost�BuildTree�B�� P � � cost�B�P ��

A direct corollary of Lemma � is the correctness theorem�

Theorem � �correctness theorem�

If B �Mn is of minimal cost then BuildTree�B� is an optimal lopsided tree�

The cost of the optimal tree equals the cost of the optimal monotonic sequence�

Proof� Let B be a min�cost sequence� T � seq�B� and T � be a min�cost tree� By Lemma ��

Lemma �� and the fact that cost�T �� P � � cost�T� P � we have

cost�seq�T ��� P � � cost�T �� P � � cost�T� P � � cost�B�P ��

From the minimality ofB we have that cost�seq�T ��� P � � cost�B�P � so cost�T� P � � cost�B�P � �

cost�T �� P � and T is an optimal lopsided tree with the cost of T equaling the cost of B� �

� The shortest path computation and the Monge property

In this section we �rst how to �nd a minimum cost monotonic sequence by performing a

shortest path calculation in a special weighted graph Gn� We then show that the structure of

this graph is special enough that the problem we are trying to solve has a Monge property�

enabling us to use the SMAWK algorithm to get a better running time�

We will use the weighted directed graph Gn � �Vn� En� where

Vn � f�i�� i�� � � � � i���� 
 � � i� � ii � � � � � i��� � n� g�

of all non�increasing ��tuples of nonnegative integers in the range �� � � � n � �� Two vertices

u� v � Vn will be connected by an edge in En if and only they �overlap	 in a �� � ��tuple


De�nition � Let u� v� u �� v be any two vertices in Vn such that u � �i�� i�� i�� � � � � i�����

v � �i�� i�� � � � � i���� i�� where

� � i� � i� � i� � � � � i��� � i� � n� �

�



Then �u� v� � En� En contains no other edges�

Furthermore� for u� v as above with �u� v� � En we de�ne Weight and EdgeCost by

Weight�u� v� � EdgeCost�i�� i�� � � � � i�� � Si��i��i�

Note that the structure of Gn is only dependent upon n and not upon P � P is only used

to de�ne the Si and thus the edge weights�

A ��tuple i�� i�� � � � � i��� is lexicographically smaller than another ��tuple j�� j�� � � � � j��� if


k � � �  such that �a� �t � k� it � jt and �b� ik � jk� Observe that if �u� v� is an edge

in En� then the fact that �� � j � �� ij�� � ij in �i�� i�� i�� � � � � i���� i�� guarantees that u

is lexicographically smaller �as a ��tuple� than v� In other words the lexicographic ordering

on the nodes is a topological ordering of the nodes of Vn� the existence of such a topological

ordering implies that Gn is acyclic� Note that the ��tuple of zeros� ��� � � � ��� is a source� We

refer to this node as the initial node �or the source� of the graph� Note also that the ��tuple

�n� � � � � � n� � is a sink� which we call the �nal node �or the sink� of the graph�

As we shall now see there is a cost�preserving one�to�one correspondence between source�

sink paths in Gn and monotonic sequences in Mn�

First suppose B � b�� b�� � � � � bd�� is any monotonic sequence terminating in the ��tuple

�n� � n� � � � � � n� �� De�ne u�� � ��� �� � � � � �� and �� � k � d�  set

uk � �bk��� bk����� � � � � bk�

where bi � � when i � �� Then u�� is the initial node and ud�� the �nal node� thus

u�� u� u� u� � � � ud��

is a path from the initial to the �nal node� This will be the path corresponding to B�

Now note that for k � �

Weight�uk��� uk� � Sbk�bk�������bk�� �

Thus� the cost of the path is exactly cost�B�P � �
P

��k�d Sbk�bk�������bk�� � Note that if B�

and B� are two di�erent monotonic sequence starting with ��� �� � � � � �� and terminating in

�n� � n� � � � � � n� � then the paths associated with them are di�erent� Thus� this mapping

from monotonic sequences to paths is one�one�

Next suppose that

u�� u� u� u� � � � ud��

is some path connecting the initial and �nal nodes� For � � k � d� let bk be the �
th element

of the ��tuple uk� i�e�� if uk � �i�� i�� � � � � i���� then bk � i���� Then B � b�� b�� � � � � bd�� is the
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sequence associated with the path� It is not di�cult to see that B is monotonic and terminates

in the �nal node� i�e�� the ��tuple �n� � n� � � � � � n� � and that the path corresponding to

� is just the original path we started from�

Combining the above constructions we obtain a cost preserving bijection between monotonic

sequences in Mn and paths in Gn connecting the initial and �nal nodes� As an aside� note

that given a path �sequence�� its corresponding sequence �path� can be read o� quite simply

in O�d� � O�n� time�

The path�sequence correspondence together with Lemma � implies that given a tree T and

B � seq�T �� the cost of the path corresponding to B equals cost�T ��

Example�

The tree T
 in Figure � has B � seq�T � � �� �� �� �� �� �� �� �� �� �� and its corresponding path

in the graph G
 is


��� �� �� �� ��
S��� ��� �� �� �� �

S��� ��� �� �� � ��

S��� ��� �� � �� ��
S��� ��� � �� �� ��

S��� �� �� �� �� ��
S��� ��� �� �� �� ��

S��� ��� �� �� �� ��
S��� ��� �� �� �� ��

S��� ��� �� �� �� ��
S��� ��� �� �� �� ��

where the notation �i�� i�� i�� i�� i��
Si��i��i��� �i�� i�� i�� i�� i
� denotes an edge from �i�� i�� i�� i�� i��

to �i�� i�� i�� i�� i
� with cost Si��i��i� �

The cost of this path� and also of the tree T
 is

S� � � � S� � S� � � � S
�

The above observations can be restated as

Observation � Assume T is a tree and B � seq�T �� Then cost�T � � cost�B� equals the cost

of the path in G corresponding to B�

Combining this with the correctness theorem �Theorem � gives

Observation � The cost of a shortest path from the initial node to the �nal node is the same

as the cost of a minimum cost tree� Furthermore� given a minimum cost path� a minimum�cost

tree can be reconstructed from it in O�n�� time�

Note that G is acyclic and has O�n���� edges� The standard dynamic�programming short�

est path algorithm would therefore �nd a shortest path from the source to the sink� and hence

a minimum cost tree� in O�n���� time� This improves upon the best known algorithm for
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�nding min�cost trees� which runs in O�n���� time ���� We now discuss how to improve by

another factor of ��n� to �nd such a path� and thus a min�cost tree� in O�n�� time�

Our algorithm cannot construct the entire graph since it is too large� Instead we use the

fact that the graph has a Monge property�

A ��dimensional k � r matrix A is de�ned to be a Monge matrix ��� if for all  � i � k�

 � j � r�

A�i� j� �A�i� � j � � � A�i� j � � �A�i� � j� ���

To use this de�nition we need to de�ne appropriate matrices�

For any vertex u in the graph Gn� de�ne cost�u� to be the least weight �cost� of any path

in Gn from the initial node to u�

Now let � � �i�� i�� � � � � i���� be any monotonic �� � ��tuple of integers� For � � i � i�

and i��� � j � n� � de�ne

EdgeCost��i� j� � EdgeCost�i� i�� � � � � i���� j� � Sj�i��i

A��i� j� � cost�i� i�� � � � � i���� � EdgeCost��i� j��

Theorem � �Monge�property theorem�

For �xed �� the matrix A� is a two�dimensional Monge matrix�

Proof� Let � � �i�� i�� � � � � i����� We prove Equation ���� where A � A�� If the right hand side

of Equation ��� is in�nite� we are done� Otherwise� by the de�nitions of the Sk� and of A��

cancelling terms when possible� we have

A��i� j � � �A��i� � j� �A��i� j� �A��i� � j � � � pj�i��i�� � pj�i��i � �

which completes the proof� �

A � � � matrix A is de�ned to be monotone if either A�� � A�� or A�� � A��� An

n�m matrix A is de�ned to be totally monotone if every �� � submatrix of A is monotone�

The SMAWK algorithm ��� takes as its input a function which computes the entries of an

n � m totally monotone matrix A and gives as output a non�decreasing function f � where

 � f�i� � m for  � i � n� such that Ai�f�i� is the minimum value of row i of A� The time

complexity of the SMAWK algorithm is O�n�m�� provided that each computation of an Aij

takes constant time� Note that every Monge matrix is totally monotone so the matrices A�

are totally monotone� This fact permits us to prove


Theorem � �Shortest�path theorem�

For � �  a shortest path from a source node to the sink node in G can be constructed in O�n��

time�

�



Proof� We note that our proof will actually fail for the case � �  �the Hu�man coding

problem� because then � has to be a � �  � � tuple This case was already proved in ���

though� and we thus assume � � ��

Also note that in this proof we actually only show how to calculate the cost of the shortest

path� Transforming this calculation into construction of the actual path uses standard dynamic

programming backtracking techniques� We leave the details to the reader�

Our approach is to calculate cost�u� for all monotonic ��tuples u� In particular� this will

calculate the cost of the shortest path to the �nal node� which is the cost of the optimal tree�

For �xed monotone �����tuple � � �i�� i�� � � � � i����� note that �i� �� and ��� j� are ��tuples�

and thus vertices of Gn for any i � i�� Furthermore for any i��� � j � n�

�j � i���� cost��� j� � minfA��i� j� 
 i � i�g

Also note that A��i� j� can be calculated in constant time provided the values of cost�i� �� are

known� This means that� given a �xed �� if the values of cost�i� �� are already known for all

i� then the values of cost��� j� for all j can be calculated in total time O�n� by the SMAWK

algorithm� We call this O�n� time step� processing ��

Our algorithm to calculate cost�i�� i�� � � � � i���� for all ��tuples is simply to process all of

the �� � � tuples in lexicographic order� Processing in this order ensures that at the time we

process � the values of cost�i� �� are already known for all i�

Using the SMAWK algorithm� each of the O�n���� �� � ��tuples can be processed in linear

time� so the entire algorithm uses O�n�� time� as stated� �

Theorem � �main result�

A minimum cost lopsided tree can be constructed in O�n�� time�

Proof�

If � � � use the basic Hu�man encoding algorithm which runs in O�n� time if the list of

weights is already sorted� Otherwise� apply the algorithm Optimal Tree Construction from the

end of section ��

This tells us to �rst �nd a minimum�cost source�sink path � which Theorem � tells us can

be computed in O�n�� time� It then tells us to construct B � Mn corresponding to �� This

can be done in O�n� time� the B so constructed is a minimum�cost one�

Finally it tells us to apply the algorithm BuildTree�B� from Section �� This takes O�n��

time and Theorem  ensures us that this tree will be a minimum�cost one� �
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� Proof of Lemma �

The main goal of this section is to prove Lemma �� i�e�� to show that

cost�B�P � � cost�BuildTree�B�� P �

for any monotonic sequence B � Mn� The proof is based upon three technical lemmas about

sequences of integers�

If � � x�� x�� � � � � xn is any sorted sequence of positive integers in nondecreasing order� let

Pref Sumt��� �
Pt

i	� xi denote the sum of the �rst t entries of �� The following two lemmas

are straightforward


Lemma � �insertion�sort lemma�

If t � length��� and � is a sorted sequence then

�� Pref Sumt�insert��� x�� � Pref Sumt����

�� Pref Sumt�insert��� x�� � Pref Sumt����� � x�

Proof� Immediate �

Lemma 	

Recall from Section 	 that

package merge�P� � k� � insert�delete�P� p�� pk�� p� � pk��

If j � k and P � � package merge�P� � k� then

�� Pref Sumj���P
�� � Pref Sumj�P �� p� � pk�

�� Pref Sumj���P
�� � Pref Sumj�P ��

Proof� Let � � delete�P� p�� pk�� Observe that for j � k we have

Pref Sumj����� � Pref Sumj�P �� p� � p� ���

To prove ��� apply point �� of Lemma � and Equation ��� to the sequence �� where

P � � insert��� x� with x � p� � pk and t � j � ��

To prove ��� apply point ��� of Lemma � with x � p� � p�� From equation ��� we have

Pref Sumj���P
�� � Pref Sumj���insert��� x�� � Pref Sumj����� � x � Pref Sumj�P ��

This completes the proof� �
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Lemma 
 �key�lemma�

Let k � FirstLeft�B� � b����� � � P � � package merge�P� � k� and B� � dec�B�� Then

cost�B�� P �� � cost�B�P �� � � p� � � � pk�

Proof�

Recall that cost�B�P � �
P

��k�d SNk�B� where Nk�B� � bk � bk������ � bk�� and

Si �

� P
j�i pj if  � i � n

� otherwise�

Observe that

Ni�B
�� �

����
���

Ni�B��  if i � � � �

Ni�B�� � if � � � � i � �

Ni�B��  if � � i � d

In what follows we assume that �i� Ni�B� � n since otherwise SNi�B� ��� cost�B�P � ��

and the lemma is trivially true� Note that Ni�B� � n will also imply that Ni�B
�� � n� �

Now denote the ith term of the cost of B as

term�i� B� � SNi�B� � Pref SumNi�B��P �

and the ith term of the cost of B� as

term�i� B�� � SNi�B�� � Pref SumNi�B���P
��

We now proceed with a case by case analysis�

CASE �� i � � � ��

In this case term�i� B�� term�i� B�� � p�� Summing over all i yields

X
��i����

term�i� B�� �
X

��i����

term�i� B�� �� � ��p�� ���

CASE �� � � � � i � �

In this case term�i� B� � Pref Sumj�P � and term�i� B�� � Pref Sumj���P
�� for some

j � k � FirstLeft�B�� and� by Lemma �� the di�erence between these values is at least

p� � pk� Hence

X
����i��

term�i� B�� �
X

����i��

term�i� B�� ��p� � pk�� ���

��



CASE �� � � i

In this case term�i� B� � Pref Sumj�P � and term�i� B�� � Pref Sumj���P
�� for some

j � k � FirstLeft�B�� By Lemma �� term�i� B�� � term�i� B�� Hence

X
��i

term�i� B�� �
X
��i

term�i� B�� ���

Combining ���� ��� and ��� we obtain the result� �

We can now prove Lemma �� i�e�

�B �Mn� cost�BuildTree�B�� P � � cost�B�P �� ��

The proof will be by induction on n� If n � � then B � �� � � � � � � � M� is a d�tuple with

d � � and P � fp�� p�g for some p� � p�� By de�nition� S� � p� and S� � p� � p��

Working through the calculations we �nd that

Nk�B� �

����
���

bk �  if � � k � � � �

bk � bk������ � � if � � � � k � �

bk � bk������ � �k�� �  if � � k � d

so

cost�B�P � �
X

��k�d

SNk�B�

� �� � ��p� � ��p� � p�� � �d� ��p�

� �p� � dp��

Recall that for n � �� T � BuildTree�B� is a root with two children� Therefore

cost�BuildTree�B�� P � � �p� � �p��

Thus

cost�BuildTree�B�P �� � �p� � �p� � �p� � dp� � cost�B�P �

and �� holds for n � ��

So now suppose that �� holds for n� � we will prove that it also holds for n�

Let B � Mn� jP j � n� Set T � BuildTree�B�� k � FirstLeft�B�� B � dec�B� and P � �

package merge�P� � k�� Let B� be B with all leading zeros �if any exist� deleted and set T � �

BuildTree�B�� �for P ���

�



From the induction hypothesis we know that

cost�BuildTree�B��� P �� � cost�B�� P �� ���

and from Lemma � we have that

cost�B�P �� � cost�B�P �� � � p� � � � pk�

Leading zeros contribute nothing to the cost of a monotonic sequence� though� so cost�B�P � �

cost�B�� P � implying

cost�B�� P �� � cost�B�P �� � � p� � � � pk� ���

Let u�� u�� � � � � un�� be the leaves of T
� enumerated so that

depth�T� u�� � depth�T� u�� � � � � � depth�T� un����

Let p�� � p�� � � � � � p�n�� be the weights in P �� By de�nition cost�T �� P �� �
P

i p
�
i � depth�T� ui��

Let j be an index such that p�j � p��pk� Recall that BuildTree�B� constructs T by starting

with T �� taking leaf uj and replacing it with an internal node with two children� both of which

are leaves� Let vL be the left child of uj and vR be the right one� Then the leaves of T are

fu�� u�� � � � � un��� vL� vRg � fujg�

Label these leaves with the weights in P as follows
 for i �� j label ui with pi� label vL with pk

and vR with p�� Then the external path length of T associated with this labelling is

X
i �	j

p�i � depth�T� ui� � p� � depth�T� vR� � pk � depth�T� vL�

�
X
i�	j

p�i � depth�T� ui� � p� � �depth�T
�� uj� � �� � pk � �depth�T

�� uj� � ��

�
X
i

p�i � depth�T� ui� � p�� � pk�

� cost�T �� P �� � p�� � p�k��

The last thing to notice is that� as discussed at the end of Section � cost�T� P � is the

minimum external path length of T under all possible permutations of the assignments of the

weights in P to the leaves of T� Thus cost�T� P � is upperbounded by the external path length

of T associated with the given labelling and

cost�T� P � � p�� � p��� cost�T �� P ��� ���

��



Combining ���� ��� and ��� gives

cost�T� P � � p�� � p��� cost�T �� P ��

� p�� � p��� cost�B�� P ��

� cost�B�P �

and we have shown that �� is valid for n and thus completed the proof of Lemma � �

� Final remarks

In this paper we revisited the problem of �nding optimal pre�x�free codes for unequal integral

letter costs �� � with � � �� The best previous known algorithm ran in O�n���� time� the

algorithm presented here runs in O�n��� The reduction in running time was achieved in two

ways� The �rst was by noting that it is possible to transform the problem into one of searching

for optimal monotonic sequences �a slightly easier task� and then reconstructing optimal trees�

and thus codes� from an optimal monotonic sequence� The second was by showing that the

monotonic sequence problem possesses a Monge property� permitting the use of the SMAWK

algorithm�

The big open question still remaining for this problem is exhibiting whether or not it is

NP�hard�

We conclude by pointing out� without proof� that the algorithm Optimal Tree Construction

can be straightforwardly extended to the problem of �nding an optimal height�limited lopsided

tree� A height�limited tree is one without nodes of depth greater than L� L a given parameter�

The optimal height�limited tree problem is to �nd a min�cost tree with n leaves for given

weights P with tree height limited by L� This is equivalent to �nding optimal �L� length�

limited Hu�man Codes� In ��� it was shown that these two problems can be solved in O�nL�

time�

The optimal height�limited lopsided tree problem is similar� It is again to �nd a min�cost

tree with n leaves for given weights P with tree height limited by L� The only di�erence here

is that the edges have unequal integral lengths �� � with � � ��

We can prove the following result


Theorem 	 �height limited trees�

We can construct a minimum cost lopsided tree� with height limited by L� in O�n� � L� time�

The idea is to show that a minimum cost lopsided tree� with height limited by L� will

correspond to a sequence B � Mn which is minimum�cost among all sequences with length

��



� L� Such a sequence can in turn be found by �nding the least expensive source�sink path in

Gn that has link length� i�e�� number of edges� � L� Using the Monge property such a path

and thus a min�cost height�L limited lopsided tree� can be found in O�n� � L� time� Because

no new ideas are needed we only state the result and do not provide further details�
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