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Abstract

In this paper we discuss the problem of finding optimal prefix-free codes for unequal letter costs,
a variation of the classical Huffman coding problem. Our problem consists of finding a minimal
cost prefix-free code in which the encoding alphabet consists of unequal cost (length) letters,
with lengths o and 3. The most efficient algorithm known previously requires O(n2tmax(e.5))
time to construct such a minimal-cost set of n codewords, provided a and 8 are integers.
In this paper we provide an O(n™@<(@08)) time algorithm. Our improvement comes from the
use of a more sophisticated modeling of the problem, combined with the observation that the
problem possesses a “Monge property” and that the SMAWK algorithm on monotone matrices

can therefore be applied.

Keywords: Dynamic Programming, Huffman Codes, Lopsided Trees, Monge Matrix, Mono-

tone Matrix, Prefix-Free Codes.



1 Introduction

Finding optimal prefix-free codes for unequal letter costs (and the associated problem of con-
structing optimal lopsided trees) is an old classical problem. It consists of finding a minimal
cost prefix-free code in which the encoding alphabet consists of unequal cost (length) letters,
of lengths « and 3, a < (. The code is represented by a lopsided tree in the same way that
a Huffman tree represents a solution for the Huffman coding problem. Despite this similarity,
the case of unequal letter costs seems much harder to solve than the classical Huffman problem;
no polynomial time algorithm is known for general letter costs, despite a rich literature on the
problem. (See e.g., [1] for a survey.) However, there are known polynomial time algorithms

when o and 3 are integer constants [7].

The problem of finding the minimum cost tree in this case was first studied in 1961 by Karp
[9] who solved the problem by reduction to integer linear programming, yielding an algorithm
with time complexity exponential in n. Since then there has been much work on variations
of the problem, such as bounding the cost of the optimal tree (Altenkamp and Mehlhorn [2],
Kapoor and Reingold [8], and Savari [16]), restriction to the special case when all of the weights
are equal (Cot [5], Perl Gary and Even [15], and Choi and Golin [4]), and approximating the
optimal solution (Gilbert [6]). However, it is still not known whether the basic problem is

polynomial-time solvable, or is N'P-hard.

The only published technique other than Karp’s for solving the general problem is due
to Golin and Rote [7], who describe an O(n*?)-time dynamic programming algorithm that
constructs the tree in a top-down fashion. This is currently the most efficient known algorithm
for small 8. In this paper, we introduce a different dynamic programming approach, obtaining
a bottom-up algorithm, and saving a quadratic factor in time complexity. A straightforward
algorithmic realization of this approach would also run in O(nf*2)-time, but we describe two
techniques which decrease the time complexity, each by a factor of ©(n). The first technique
transforms the search space into a larger, but more tractable, one. The second uses monotone-

matrix concepts, i.e., the Monge property [14] and the SMAWK algorithm [3].

Our approach requires a better understanding of the combinatorics of lopsided trees, which,
in turn, requires introducing some definitions. Let «, 3 be positive integers, a < 3. A binary
lopsided «, 8 tree (or just a lopsided tree, if & and  are understood) is a binary tree in which
every non-leaf node u of the tree has two children, where the length of the edge connecting u
to its left child is «, and the length of the edge connecting u to its right child is 8. Figure 1

shows two 2,5 lopsided trees.

Let T be a lopsided tree and v € T some node. Then

depth(T,v) = sum of the lengths of the edges connecting root(T) to v
1



Figure 1: Two lopsided 2,5 trees. The trees are labeled with P = {2,5,5, 8}.

depth(T') = max{depth(T,v) : v e T}

For example, tree 1" in Figure 1 has depth 10 while tree 7', has depth 9.

Let P = {p1, po2, ..., pn} be a sequence of nonnegative weights. Let T' be a lopsided tree
with n leaves labeled vy, vo, ..., v,. The weighted external path length of T is

cost(T, P) = Zpi - depth(T, v;).

Given P, our problem is to construct a lopsided tree T' that minimizes cost(T, P). Returning
to Figure 1 we find that, for P = {2,5,5,8} tree T has

cost(T,P) =2-10+5-7+5-7+8-4=122

while tree T" has

cost(T',P) =2-9+5-7T+5-6+8-5=123.

With a little more work it is not hard to see that tree 7' is a minimal cost lopsided 2,5 tree
for P. As was pointed out quite early [9] (see [7] for a more recent detailed description) this
problem is equivalent to finding a minimal cost prefix-free code in which the encoding alphabet
consists of two unequal cost (length) letters, of lengths « and 8. If « = 3 the problem reduces

directly to the standard Huffman coding problem.

Note that, given any particular tree T', the cost actually depends upon the enumeration of
the leaves of T', the cost being minimized when leaves of greater depth always have smaller or
equal weight. We therefore will assume that the leaves of T are enumerated in nonincreasing
order of their depth, i.e., depth(T,v1) > depth(T,vq) > --- > depth(T,v,), and that p; < ps <
-+ < pyp. This assumption will be used implicitly throughout the paper. One consequence of
this assumption is that cost(T, P) is the minimum external path length of 7" under all possible

permutations of the assignments of the weights in P to the leaves of T'.
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Figure 2: An 2-5 tree T with depth(T) = 20 and its characteristic sequence

seq(T) = (2,4,6,7,9,9,10,10,12,13,14, 15,16, 16,17,17,17,17,17).

In the next section we will introduce some sequences that are related to trees and introduce
some properties that permit us to restate our problem as a problem about sequences rather
than trees. In Sections 4 and 5, we prove most of those properties. In Section 6, we discuss
how to use the Monge property to reduce the running time of the algorithm. In Section 7 we

prove a key lemma stated in Section 5. Section 8 concludes.

2 Three types of sequences related to lopsided trees

Let n and P be fixed. Throughout the paper, we describe a tree only by how many leaves it
has at each level. This description is justified by the fact that cost(T, P) = cost(T', P), if T
and T" have the same number of leaves at every level. In what follows we say that node v is
on level i of T if v is 7 levels from the bottom of T, i.e., if i = depth(T') — depth(T, v).

We consider three classes of sequences:



1. for a given tree T', the numbers-of-leaves sequence A(T)= (0o(T"), 01(T),...,04-1(T)),

where §;(T') is the number of leaves which are below or at a given level i.

2. for a given tree T', its characteristic sequence, denoted by seq(T'), which is the sequence
Br = (by,b1,...,b4—1) in which b; is the number of right children at or below level i, for
all 0 <i < d = depth(T). See Figure 2.

3. monotonic sequences B = by, by, ..., bg_1 of nonnegative integers which end in the (-
tuple (n—1,n—1,...,n—1). A sequence is monotonic if by, < by < --- < by_1. Denote
the set of such monotonic sequences ending in S-tuple (n —1,n —1,...,n — 1) by M,,.

If T is a tree, we shall see below that seq(T') € M, but if B € M,, there may be no
tree for which B is a characteristic sequence. We say a sequence B € M,, is legal if

B = seq(T) for some tree T'.

We now provide some intuition as to how these definitions arise. A(T") is introduced because
0;(T) — 0;—1(T) is the number of leaves on level i, and, as mentioned above, these values can
be used to calculate cost(T, P). In the next section we will see that A(T) can be reconstructed

from seq(T).

Monotonic sequences are a generalization of characteristic sequences. For any tree T', seq(T)
is monotonic by definition. If T" is a tree with n leaves then 7' must have n — 1 internal nodes
and thus n — 1 right children. The top 3 levels of T' (not counting the root) cannot contain any
right children. Thus, seq(T) terminates in a 3 tuple (n —1,n —1,...,n—1) and M,, contains

the set of all legal sequences.

In section 4 we will introduce a quantity, cost(B, P), defined for monotonic sequences. This
cost will have two important properties. The first property is that this new cost function is
effectively a generalization of the cost function on trees defined above; the second property is
that minimum cost is always achieved on a sequence which is the characteristic sequence of

some tree. Formally, the first property is
P1. Consistency of the cost function:
cost(seq(T'), P) = cost(T, P)

Thus, the problem of finding a minimum cost lopsided tree is totally equivalent to that of
finding a minimum cost legal sequence in M,,. The reason for introducing all of the notation

is the next important property, which will be proven in Lemma 3.
P2. Key-property:

For each B € M,,, not necessarily a legal one, and weight set P, |P| = n, a lopsided
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Figure 3: Relations between lopsided trees, monotonic sequences and graphs.

tree BuildTree(B) can be constructed such that
cost(BuildTree(B), P) < cost(B, P).

Furthermore BuildTree(B) can be constructed in O(n?) time.

3 General structure of the algorithm

If B is a min-cost monotonic sequence and T' = BuildTree(B), then by (P1) and (P2) we have
cost(seq(T), P) = cost(T, P) < cost(B, P).

The minimality of B then implies that cost(seq(T), P) = cost(B, P) and thus seq(T) is also a
min-cost sequence in M,,. Legal sequences are a subset of M, so this immediately implies
that seq(T'), by definition a legal sequence, is a min-cost legal sequence and, from (P1), that

T is a min-cost lopsided tree.

Our algorithm will therefore be to find a min-cost monotonic sequence B € M, and then
build the min-cost tree T' = BuildTree(B).

The nontrivial aspect of our algorithm, and the fact which will save us our first ©(n) factor
in our running time, is that the above properties permit us to search for an optimum among
all sequences in M,,, not just the legal ones. Essentially they permit us to search in a larger,

but more tractable, search space.

In Section 6 we show how to actually find min-cost monotonic sequences. We construct
a particular edge-weighted graph G, with designated source and sink, such that there is a
one-one correspondence between the monotonic sequences in M, and the source-sink paths
in G,,. This correspondence will have the further property that cost(B, P) will be exactly the
weight of the path corresponding to B. Finding a min-cost sequence is therefore reduced to

finding a min-cost source-sink path in G,. We will also see that this optimization problem
5



Algorithm Optimal_Tree_Construction

1. compute a minimum-cost source-sink path = in the special graph
G, defined in Section 6.

2. construct a monotonic sequence B € M, corresponding to T;

3. return BuildTree(B)

Figure 4: Top level view of the optimal tree construction algorithm.

satisfies a Monge property that will enable it to be solved a factor of ©(n) faster than it would

normally require.

The relationship between lopsided trees, sequences and paths is sketched in Figure 3. The

general structure of the algorithm is given in Figure 4.

4 Defining the cost in terms of sequences

The main goal of this section is to define a cost(B, P) for all B € M,, that has the property
that the cost of a tree T' and its associated characteristic sequence seq(T') will be the same.

We start by defining values:

Definition 1
! 00 otherwise.

With this definition it is straightforward to write the cost of 7" as a function of A(T) =
(00(T"),01(T),...,04-1(T)) where §;(T) is the number of leaves which are below or at a given

level 3.

Lemma 1

cost(T, P) = Z S, (1)-
0<k<depth(T)

Proof:

Cost(T,P) = sz- - depth(v;)

i<n

= > J > Di

o<j<depth(T) {vi: depth(vi)=j}
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Figure 5: The bottom forest Fi; of the tree T' from Figure 2.

= > >, b

1<j<depth(T) {v; : depth(v;)>j}

= Z Z Di

1<j<depth(T) {v; : height(v;)<n—j}

= Y Sam

0<k<depth(T)
O

We now define a cost on monotonic sequences B and then, in the next lemma, see that this

cost is identical to the tree cost on T if the sequence is the legal sequence B = seq(T).

Definition 2 Let B = by, by, ..., by_1 be a monotonic sequence. VO < k < d, set
Ni(B) = bk + b (5-a) — bk—p

where bj =0 for all 7 < 0. Now define

cost(B, P) = Z SN, (B)
0<k<d

If B is the sequence for some tree T' then Ni(B) = 0;(T'), the number of leaves on or below
level k.

Lemma 2 Let T be a lopsided tree and B = seq(T) = by, by, ..., bg_1, Then

o (A) V0<i<d=depth(T),



e (B) cost(T, P) = cost(B, P)

Proof: Let F = forest,,(T) be the forest consisting of all nodes at level k and below (See
Figure 2). From our perspective its most useful property will be the fact that a node u € F

is a leaf in Fj, if and only if the same node is a leaf in 7'

Note that dx(T"), previously defined as the the number of leaves on or below level &k in T,

is therefore also the exact number of leaves in forest,(T').
To prove (A), note that F; is a forest, hence
Ni(T) = {u€F;: uisaleafin F;} (1)
= Number of internal nodes in F; + Number of trees in F; (2)

The first summand in the last line is easily calculated. A node at height k is internal in F; if

and only if it is the parent of some right child at level ¥ — 3. Thus
Number of internal nodes in F; = b;_g. (3)

The second summand is only slightly more complicated to calculate. The number of trees in
F; is exactly the same as the number of tree-roots in ;. Now note that a node in F; is a
tree-root in F; if and only if its parent is not in F;. Thus a right child at height £ in F; is a
tree-root if and only if 7 — 3 < k <4 and there are exactly b; — b;_g such nodes.

Similarly a left child at height k is a tree-root if and only if ¢ — @ < k& < 4. This may occur
if and only if the left child’s right sibling is at height k, where i — 8 < k < i — (8 — «). The

number of such nodes is therefore b; _(5_,) — b; 5.

We have therefore just seen that
Number of trees in F; = (b — bi—g) + (bi—(3—a) — bi—p)- (4)

Combining (3) and (4) completes the proof of (A). (B) follows from Lemma 1 and (A). O

5 Description of the function BuildTree

Each characteristic sequence describes the unique “shape” of a lopsided tree. Although intu-
itive, the reconstruction of a tree from its characteristic sequence can be rather technical. The
main goal of this section is to describe a procedure that reconstructs min-cost trees from their
sequences and what happens when we try to reconstruct a sequence corresponding to a non

min-cost tree or even a sequence that corresponds to no tree at all.
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Our construction is guided by the requirement that it be reversible for min-cost trees, i.e.,
if B = seq(T) for some min-cost tree T, then T' = BuildTree(B). If B = seq(T') for some non
min-cost tree it will be possible that T' # Build Tree(B); if B is not legal then T' = Build Tree(B)
will still exist but of course seq(T) # B.

So, now, assume that B = seq(T) is a legal sequence for some min-cost tree T'. The weight
p1 is associated with a leaf at level 0, and the left sibling of this leaf is associated with some
other weight py. To define BuildTree(B) so that it works backwards to construct T it must

determine how k can be identified.

Observe that we may assume that this left sibling is a lowest leaf in the tree which is a left-
child, i.e., a lowest left node in T Such a node appears on level § — « (see tree T in Figure 6).
The number of leaves below this level is bg_,_;. Thus, since we list items consecutively with

respect to increasing levels, a lowest left-child leaf has index k = FirstLeft(B), where

FirstLeft(B) = bg_q—1 + 1

We state, without proof, the intuitive fact! that, if 7' is an optimal tree in which p;, py
label sibling leaves, then the tree T" that results by (i) removing those leaves and (ii) la-
beling their parent (now a leaf) with p; + pg will also be an optimal tree for the leaf set
P'=PU{p1 +pr} — {p1,pr}- (See tree T' in Figure 6.) Calculation shows that

cost(T, P) = cost(T', P') + B - p1 + « - py. (5)

If the leaves with weights p;, py are siblings in a tree T’ then denote by T = merge(T, 1, k)
the tree in which those leaves are removed and their parent is replaced by a leaf. (see Figure 6.)

For the sequence B = (b, by, ...bq) denote
dec(B) = B' = (bg — 1,by — 1,by — 1,...bg — 1).

Note that (after any leading zeros are deleted) this sequence is the characteristic sequence of
T = merge(T, 1,k).

Assume T is a sorted sequence of positive integers, z is a positive integer, and insert(T, z)
is the sorted sequence obtained by inserting x into I' in the correct position. Now denote by

delete( P, p1,pi) the sequence P with elements p; and pjy deleted, and define

P' = package_merge(P, 1,k) = insert(delete( P, p1, pr), p1 + Dk)-

!This fact is not needed for later proofs; it is only given to help provide some intuition as to why the algorithm

is defined the way it is.



bB—cx—l leaves

on these levels

Figure 6: The correspondence between trees T, T' and their sequences: T' = merge(T, 1,3)
and seq(T) = B = (1,2,2,3,3,4,4,4,4,4); seq(T') = dec(B) = B' = (0,1,1,2,2,3,3,3,3,3);
FirstLeft(B) = bg_q—1+ 1 =bs_2_1 + 1 = 3 and cost(T) = cost(T") + 2p4 + 5p1.

For example if P = {2,3,4,5,10} then
P' = delete(P,2,4) = {3,5,10},
insert(P',6) = {3,5,6,10},
package_merge(P,1,3) = {3,5,6,10}.
The reason for introducing this notation is that P’ will be the weights that 7" = merge(T, 1, k)
will be labelled with.

The observations above lead us to the algorithm BuildTree(B) in Figure 7 which, for B €
M,, and P with |P| = n, builds a lopsided tree with n leaves.

As an example of how the algorithm works suppose that o, 5 = 2,5, B = (1,2,2,3,3,4,4,4,4,4)

and P = {1,1,1,1,1}. Set Bs = B and P5 = P. We will run BuildTree(Bs) for P; =
{1,1,1,1,1}. For i = 4,3,2, let B; be dec(Bj;+1) with leading zeros deleted, i.e., the two
smaller sequences on which BuildTree is recursively called, and let P; be the P with which
B; is called. The table in Figure 8 collects the values generated by the algorithm. Note that
k = FirstLeft(B) = bs_g)_1 +1 = by + 1. The py column contains the value of py in the current
P;. Figure 9 shows the trees T; = BuildTree(B;) (for P;) that are generated. Note that T5, the
tree that is the final result, satisfies seq(T5) = Bs, i.e.,

Buildtree(Bs) = Bs.

It is not difficult to show that T5 is a min-cost tree for Ps. This is a special case of a general
10



function BuildTree(B): given weights P
1. If n = 2 note that P = {py,p2} for some p; < ps.
2. k = FirstLeft(B)
3. P' = package_merge(P,1,k)
4. B' = dec(B)
5. Delete leading zeros from B’
6. T" = BuildTree(B') using weights P’ (recursive step)

7. Let ui,us,...,u, 1 be the leaves of T enumerated so that
depth(T,uy) > depth(T,ug) > -+ > depth(T, up—1)
Let p} <p) <--- <pl_, be the weights in P'.
Let j be an index such that p; = p1 + py.

8. Replace u; € T' by an internal node with two children.

Call the resulting new tree, T'

9. Return T

Figure 7: Procedure BuildTree(B).

rule; if B = seq(T') where T is a min-cost tree for P then BuildTree(B) will construct a tree
whose shape, i.e., the number of nodes per level, is exactly the same as that of T. The proof
of this fact is a straightforward induction on n using the definition of FirstLeft(B) and the
fact that if 7' is minimal for P then 7" is minimal for P’. We do not include it here because it

is not needed for the algorithm.

We also note that the algorithm is well defined for all B € M,, and |P| = n : the proof
is by induction. It is obviously well defined for B € My and |P| = 2. If n > 2 then k =
FirstLeft(B) = bg_q—1 + 1 < n so py exists and P' = package_merge(P,1,k) is well defined
so steps 1-5 are well defined. Since B’ = dec(B) € M,,_1 and |P'| = n — 1 this means that
when the algorithm recursively calls Build Tree(B') using P’ it receives a well defined result
and step 6 is well defined as well. Finally, from the definition of P’ = package_merge(P,1,k)
we know that there exists some 7 with pg- = p1 + pk. Thus step 8 is also well defined.

To bound the running time note that the recursion only goes to a depth of n — 1 and each

step requires at most O(n) time so the entire procedure only needs O(n?) time.
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1 B; k = FirstLeft(B;) = by + 1 P, pe | P1+ PR
51 (1,2,2,3,3,4,4,4,4, 4) 3 1,1,1,1,1} | 1 2

4] (1,1,2,2,3,3,3,3,3) 3 (1,1,1,2) |1 2

3 (1,1,2,2,2,2,2) 3 1,22 |2 3

2 (1,1,1,1,1) — 2,30 | —| ——

Figure 8: The values generated by Buildtree(Bs) on Ps and its recursive calls

Figure 9: Trees generated by BuildTree(Bs) and its recursive calls. Tree T; is labelled by F;.
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1 B; k = FirstLeft(B;) = by + 1 P, Pk | p1+ Pk
4](1,1,2,2,3,3,3,3,3) 3 12,5,5,8) | 5 7

3 (1,1,2,2,2,2,2) 3 {(5,7,8} |8 13

2 (1,1,1,1,1) — 713y |——| ——

Figure 10: The values generated by Buildtree(B,) on P, and its recursive calls

Figure 11: Trees generated by BuildTree(By) and its recursive calls. Tree T; is labelled by P;.

As an example of the algorithm run on a legal sequence corresponding to a non-minimal
tree we refer back to tree 7" in Figure 1 which was not min-cost for P = {2,5,5,8}. Set
By = seq(T"). We will run BuildTree(By) for P, = P. For i = 3,2, let B; be dec(B;11)
with leading zeros deleted, i.e., the two smaller sequences on which BuildTree is recursively
called, and let F; be the P with which B; is called. The table in Figure 10 collects the values
generated by the algorithm. Figure 11 shows the trees T; = BuildTree(B;) (for P;) that are
generated. Note that BuildTree(B4) generates tree Ty in the diagram which is not 77, i.e.,
BuildTree(seq(T")) # T'. Referring back to Figure 1 we see that Ty actually is the other tree,
T, in that figure.

The most important property of the operation BuildTree is stated by the following lemma

(whose somewhat technical proof is postponed to Section 7).

Lemma 3 For all B € M,,

cost(BuildTree(B), P) < cost(B, P).

As mentioned previously if B = seq(T') for some min-cost tree T, then BuildTree(B) will have

the same shape as T' so, from Lemma 2,
cost(BuildTree(B), P) = cost(T, P) = cost(B, P)

and the inequality in the lemma reduces to an equality.

The inequality in the lemma can be strict, though. For example, referring back to the
13



construction in Figures 10 and 11 we have

cost(BuildTree(By), Py) = cost(Ty, Py) = 122 < 123 = cost(By, Py).

For an example starting with a non-legal B, suppose that «, 5 = 2,5, B = (2,2,2,2,2,2)
and P = (1,1,1) with n = 3. (It is not difficult to see that B is not legal.) Then N3(B) =
b3 +bp=2+2=4>nso Sy,p) = oo and cost(B, P) = co. On the other hand BuildTree(B)
is a well defined tree so cost(BuildTree(B), P) < co. Thus, trivially

cost(BuildTree(B), P) < cost(B, P).

A direct corollary of Lemma, 3 is the correctness theorem.

Theorem 1 (correctness theorem)
If B € My, is of minimal cost then BuildTree(B) is an optimal lopsided tree.

The cost of the optimal tree equals the cost of the optimal monotonic sequence.

Proof: Let B be a min-cost sequence, T = seq(B) and T" be a min-cost tree. By Lemma 2,
Lemma 3, and the fact that cost(T', P) < cost(T, P) we have

cost(seq(T"), P) < cost(T', P) < cost(T, P) < cost(B, P).

From the minimality of B we have that cost(seq(T"), P) > cost(B, P) so cost(T, P) = cost(B, P) =
cost(T', P) and T is an optimal lopsided tree with the cost of T' equaling the cost of B. a

6 The shortest path computation and the Monge property

In this section we first how to find a minimum cost monotonic sequence by performing a
shortest path calculation in a special weighted graph G,,. We then show that the structure of
this graph is special enough that the problem we are trying to solve has a Monge property,
enabling us to use the SMAWK algorithm to get a better running time.

We will use the weighted directed graph G,, = (V,,, E;,) where
Vi =A{(i0,01,...,ig-1) : 0<ip <4 <--- <igy <n-—1},

of all non-increasing [-tuples of nonnegative integers in the range [0...n — 1]. Two vertices

u,v € V,, will be connected by an edge in E,, if and only they “overlap” in a (8 — 1)-tuple:

Definition 3 Let u,v, u # v be any two vertices in V;, such that u = (ig,11,12,...,15-1),

v = (i1,%2,...,93-1,1g) where

0<ip<iy <ir<...ig i <ig<n-—L
14



Then (u,v) € Ey,. E, contains no other edges.

Furthermore, for u,v as above with (u,v) € E,, we define Weight and EdgeCost by

Weight(u,v) = EdgeCost(io, i1, .- .,ig) = Sigtia—io

Note that the structure of GG, is only dependent upon n and not upon P; P is only used
to define the S; and thus the edge weights.

A p-tuple g, i1,...,1i5_1 is lexicographically smaller than another B-tuple jo,71,...,755-1 if
Jk < § — 1 such that (a) Vt < k, iy = j; and (b) ix < jk. Observe that if (u,v) is an edge
in E,, then the fact that VO < j < 3, i;_1 < ¢; in (ig,41,%2,...,i8—1,%3) guarantees that u
is lexicographically smaller (as a (-tuple) than v. In other words the lexicographic ordering
on the nodes is a topological ordering of the nodes of V,;; the existence of such a topological
ordering implies that G,, is acyclic. Note that the S-tuple of zeros, (0,...0), is a source. We
refer to this node as the initial node (or the source) of the graph. Note also that the (-tuple
(n—1,...,n—1) is a sink, which we call the final node (or the sink) of the graph.

As we shall now see there is a cost-preserving one-to-one correspondence between source-

sink paths in G, and monotonic sequences in M,,.
First suppose B = by, b1, ..., bg_1 is any monotonic sequence terminating in the g-tuple
(n—1,n—1,...,n—1). Define u_; = (0,0,...,0) and VO < k < d — 1 set
up = (bg—p,bkr1-85- -, bk)
where b; = 0 when 7 < 0. Then u_q is the initial node and ug4_; the final node, thus
U] U UL U - .. Ug 1
is a path from the initial to the final node. This will be the path corresponding to B.

Now note that for &£ > 0
Weight(ug—1,uk) = Sty 5 0)—bi_s-

Thus, the cost of the path is exactly cost(B, P) = > y<jq Sbi+bi_(5—ay—bi_5- Note that if By
and By are two different monotonic sequence starting with (0,0,...,0) and terminating in
(n—1,n—1,...,n—1) then the paths associated with them are different. Thus, this mapping

from monotonic sequences to paths is one-one.

Next suppose that

U_1UpULUY ... Ud—1

is some path connecting the initial and final nodes. For 0 < k < d —1 let by, be the " element
of the -tuple uy, i.e., if uy, = (40,%1,...,93-1) then by =ig_;. Then B = by, b1, ..., by is the
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sequence associated with the path. It is not difficult to see that B is monotonic and terminates
in the final node, i.e., the S-tuple (n —1,n —1,...,n — 1) and that the path corresponding to

0 is just the original path we started from.

Combining the above constructions we obtain a cost preserving bijection between monotonic
sequences in M,, and paths in G,, connecting the initial and final nodes. As an aside, note

that given a path (sequence), its corresponding sequence (path) can be read off quite simply
in O(d) = O(n) time.

The path/sequence correspondence together with Lemma 2 implies that given a tree 7" and

B = seq(T), the cost of the path corresponding to B equals cost(T).

Example.

The tree T5 in Figure 9 has B = seq(T) = (1,2,2,3,3,4,4,4,4,4) and its corresponding path
in the graph Gy is:

(0,0,0,0,0) =% (0,0,0,0,1) -2 (0,0,0,1,2)

22 (0,0,1,2,2) 25 (0,1,2,2,3) 5 (1,2,2,3,3) 25 (2,2,3,3,4)

2 (2,3,3,4,4) 2 (3,3,4,4,4) 2 (3,4,4,4,4) D (4,4,4,4,4)
where the notation (g, i1, 12, i3, 14) AL (i1,142,13,14,1%5) denotes an edge from (ig, 11, 92,13, %4)
to (il,ig,ig,i4,i5) with cost Sz'5+i27i0-

The cost of this path, and also of the tree T3 is

S1+2-5+84+6-5s5.

The above observations can be restated as

Observation 1 Assume T is a tree and B = seq(T'). Then cost(T) = cost(B) equals the cost
of the path in G corresponding to B.

Combining this with the correctness theorem (Theorem 1) gives

Observation 2 The cost of a shortest path from the initial node to the final node is the same
as the cost of a minimum cost tree. Furthermore, given a minimum cost path, a minimum-cost

tree can be reconstructed from it in O(n?) time.

Note that G is acyclic and has O(nf*!) edges. The standard dynamic-programming short-
est path algorithm would therefore find a shortest path from the source to the sink, and hence
a minimum cost tree, in O(n®*!) time. This improves upon the best known algorithm for
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finding min-cost trees, which runs in O(n®*2) time [7]. We now discuss how to improve by

another factor of ©(n) to find such a path, and thus a min-cost tree, in O(n”) time.

Our algorithm cannot construct the entire graph since it is too large. Instead we use the

fact that the graph has a Monge property.

A 2-dimensional k£ x r matrix A is defined to be a Monge matriz [14] if for all 1 < i < k,
1<5<r,
Aty ) + A+ 1,5 +1) S A(6, 5 +1) + A(i + 1, 5) (6)

To use this definition we need to define appropriate matrices.

For any vertex u in the graph G, define cost(u) to be the least weight (cost) of any path

in GG, from the initial node to wu.

Now let 0 = (i1,42,...,73—1) be any monotonic (£ — 1)-tuple of integers. For 0 < i <44
and ig_; < j <n — 1, define

EdgeCosts(i,j) = EdgeCost(i,i1,...,i8-1,7) = Sjtio—i

As(i,j) = cost(iyi,. .., i5-1) + EdgeCosts(i, 7).

Theorem 2 (Monge-property theorem)

For fized 6, the matriz As is a two-dimensional Monge matriz.

Proof: Let 6 = (i1,1%2,...,i3-1). We prove Equation (6), where A = A;. If the right hand side
of Equation (6) is infinite, we are done. Otherwise, by the definitions of the Sk, and of A,

cancelling terms when possible, we have
As(i,j +1) + As(i +1,5) — As(i,5) — As(E + 1,5+ 1) = Pjia—it1 — Pjtia—i = 0
which completes the proof. O

A 2 x 2 matrix A is defined to be monotone if either A;7 < Ajg or A9y > Ase. An
n X m matrix A is defined to be totally monotone if every 2 x 2 submatrix of A is monotone.
The SMAWK algorithm [3] takes as its input a function which computes the entries of an
n X m totally monotone matrix A and gives as output a non-decreasing function f, where
1 < f(i) <m for 1 <4 < n, such that A; j(; is the minimum value of row 7 of A. The time
complexity of the SMAWK algorithm is O(n +m), provided that each computation of an A;;
takes constant time. Note that every Monge matrix is totally monotone so the matrices As

are totally monotone. This fact permits us to prove:

Theorem 3 (Shortest-path theorem)
For 3 > 1 a shortest path from a source node to the sink node in G can be constructed in O(n?)

time.
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Proof: We note that our proof will actually fail for the case § = 1 (the Huffman coding
problem) because then § has to be a § — 1 = 0 tuple This case was already proved in [11],
though, and we thus assume § > 2.

Also note that in this proof we actually only show how to calculate the cost of the shortest
path. Transforming this calculation into construction of the actual path uses standard dynamic

programming backtracking techniques. We leave the details to the reader.

Our approach is to calculate cost(u) for all monotonic S-tuples u. In particular, this will

calculate the cost of the shortest path to the final node, which is the cost of the optimal tree.

For fixed monotone (f—1)-tuple § = (i1, 42,...,i3-1), note that (¢, ) and (6, j) are B-tuples,

and thus vertices of G, for any ¢ <4y. Furthermore for any ig_1 < j <n.
Vj >ig_1, cost(d,j) = min{As(i,j) : i <4}

Also note that Ags(i,7) can be calculated in constant time provided the values of cost(i,d) are
known. This means that, given a fixed 4, if the values of cost(i,d) are already known for all
i, then the values of cost(d, j) for all j can be calculated in total time O(n) by the SMAWK
algorithm. We call this O(n) time step, processing 9.

Our algorithm to calculate cost(ig,1,...,i3_1) for all S-tuples is simply to process all of
the (8 — 1) tuples in lexicographic order. Processing in this order ensures that at the time we

process 0 the values of cost(i, ) are already known for all i.

Using the SMAWK algorithm, each of the O(n®~!) (3 — 1)-tuples can be processed in linear

time, so the entire algorithm uses O(n®) time, as stated. O

Theorem 4 (main result)

A minimum cost lopsided tree can be constructed in O(n®) time.

Proof:
If 5 = 1, use the basic Huffman encoding algorithm which runs in O(n) time if the list of
weights is already sorted. Otherwise, apply the algorithm Optimal_Tree_Construction from the

end of section 3.

This tells us to first find a minimum-cost source-sink path 7 which Theorem 3 tells us can
be computed in O(n®) time. It then tells us to construct B € M,, corresponding to 7. This

can be done in O(n) time; the B so constructed is a minimum-cost one.

Finally it tells us to apply the algorithm BuildTree(B) from Section 5. This takes O(n?)

time and Theorem 1 ensures us that this tree will be a minimum-cost one. O
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7 Proof of Lemma 3

The main goal of this section is to prove Lemma 3, i.e., to show that
cost(B, P) < cost(BuildTree(B), P)

for any monotonic sequence B € M,,. The proof is based upon three technical lemmas about

sequences of integers.

Il =x,29,...,z, is any sorted sequence of positive integers in nondecreasing order, let
Pref Sum,(T') = t_, x; denote the sum of the first ¢ entries of I'. The following two lemmas

are straightforward:

Lemma 4 (insertion-sort lemma)
If t < length(I') and T is a sorted sequence then

1. Pref_Sum,(insert(I',z)) < Pref-Sum, (L),

2. Pref_Sum,(insert(T', z)) < Pref.Sum, {(T') + z.

Proof: Immediate O

Lemma 5
Recall from Section 5 that

package_merge(P, 1, k) = insert(delete(P, p1,pk),p1 + Pk)-

If 7 > k and P' = package_merge(P, 1,k) then

1. Pref Sum;_o(P') < Pref-Sum;(P) — p1 — px,

2. Pref-Sum;_,(P') < Pref Sum,;(P).
Proof: Let T = delete(P, p1,pr). Observe that for j > k we have

Pref-Sum;_o(T') = Pref-Sum;(P) — p1 — p2 (7)

To prove (1) apply point (1) of Lemma 4 and Equation (7) to the sequence I', where
P' = insert(T,z) with z =p; + pr and t = j — 2.

To prove (2) apply point (2) of Lemma 4 with z = p; 4+ p2. From equation (7) we have

Pref_Sum;_,(P') = Pref_-Sum;_; (insert(T', z)) < Pref-Sum,; o(T) + x = Pref-Sum;(P).

This completes the proof. O
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Lemma 6 (key-lemma)
Let k = FirstLeft(B) = bg_q—1 + 1, P' = package_merge(P,1,k) and B' = dec(B). Then

cost(B', P') < cost(B,P) — 3+ p1 — o - py.

Proof:
Recall that cost(B, P) = Y g<j<qSn,(B) where Ng(B) = b + by_(3_q) — br—p and

00 otherwise.

s-:{ Yij<ipj Hl<i<n

Observe that
Ni(B)—1 ifi<f—-«
N;(B")={ Ni(B)—-2 iff—-a<i<p
Ni(B)—1 ifpg<i<d

In what follows we assume that Vi, N;(B) < n since otherwise Sy, gy = 00, cost(B, P) = oo
and the lemma is trivially true. Note that N;(B) < n will also imply that N;(B') <n — 1.

Now denote the it" term of the cost of B as
term(i, B) = Sy, () = Pref-Sumy;,p)(P)
and the i'" term of the cost of B’ as

term(i, B') = Sn,(pry = Pref-Sumy, ) (P')
We now proceed with a case by case analysis.

CASE 1: i < f—qa.
In this case term(i, B) — term(i, B') = p1. Summing over all 7 yields

Z term(i, B') = Z term(i, B) — (6 — a)p1. (8)

0<i<f—a 0<i<f—a

CASE 2: f—a<i<pf

In this case term(i, B) = Pref-Sum;(P) and term(i,B') = Pref -Sum,;_,(P') for some
j > k = FirstLeft(B), and, by Lemma 5, the difference between these values is at least
p1 + pr. Hence

Z term(i, B') < Z term(i, B) — a(p1 + pg)- 9)
B—a<i<f B—a<i<p
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CASE 3: 8 <

In this case term(i, B) = Pref-Sum;(P) and term(i, B') = Pref-Sum,_,(P') for some
j >k = FirstLeft(B). By Lemma 5, term(i, B') < term(i, B). Hence

Z term(i, B') < Z term(i, B). (10)
p<i B<i
Combining (8), (9) and (10) we obtain the result. 0

We can now prove Lemma 3, i.e.
VB € M,,, cost(BuildTree(B), P) < cost(B, P). (11)

The proof will be by induction on n. If n = 2 then B = (1,1,...,1) € My is a d-tuple with
d > (B and P = {p1,ps} for some p; < py. By definition, S; = p; and So = p; + po.

Working through the calculations we find that

b = 1 if0<k<fB-a
Ni(B) =4 br 4 bp—(g—a) =2 if -—a<k<p
by +bk—(ﬁ—a) —Br—pg=1 if B<k<d
S0
cost(B,P) = Z SN,.(B)
0<k<d
= (B—a)p1 +alp1 +p2) + (d— B)p1
= apz +dp;.

Recall that for n = 2, T' = BuildTree(B) is a root with two children. Therefore

cost(BuildTree(B), P) = aps + Bp1.

Thus
cost(BuildTree(B, P)) = aps + Bp1 < aps + dpy = cost(B, P)

and (11) holds for n = 2.
So now suppose that (11) holds for n — 1; we will prove that it also holds for n.

Let B € M,, |P| = n. Set T = BuildTree(B), k = FirstLeft(B), B = dec(B) and P’ =
package_merge(P,1,k). Let B' be B with all leading zeros (if any exist) deleted and set 7" =
Build Tree(B') (for P').
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From the induction hypothesis we know that
cost( Build Tree(B'), P') < cost(B', P') (12)
and from Lemma 6 we have that
cost(B,P') < cost(B,P) — B-p1 — - py.

Leading zeros contribute nothing to the cost of a monotonic sequence, though, so cost(B, P) =
cost(B’, P) implying
cost(B', P') < cost(B,P) — B+ p1 — o - py. (13)

Let wi,us,...,u, 1 be the leaves of T' enumerated so that
depth(T,u1) > depth(T,uz) > -+ > depth(T, un—1).

Let pj <ph <--- <pl _, be the weights in P’. By definition cost(T", P') = %, p’ - depth(T, u;).

Let j be an index such that p} = p1+pg-. Recall that BuildTree(B) constructs T by starting
with 7", taking leaf u; and replacing it with an internal node with two children, both of which

are leaves. Let vy, be the left child of u; and vg be the right one. Then the leaves of T' are

{’U,l,’U,Q, s ,Un—lavLavR} - {u]}

Label these leaves with the weights in P as follows: for ¢ # j label u; with p;; label vz, with py
and vg with p;. Then the external path length of T' associated with this labelling is

> i depth(T,u;) + py- depth(T,vg) + py, - depth(T,vy)
i£]
= Zp; - depth(T, w;) + p1 - (depth(T',uj) + B) + pi - (depth(T", uj) + )
i#]
= > pj- depth(T, u;) + p18 + prov

2

= cost(T', P") + p1B + p1ka.

The last thing to notice is that, as discussed at the end of Section 1, cost(T, P) is the
minimum external path length of T' under all possible permutations of the assignments of the
weights in P to the leaves of T. Thus cost(T, P) is upperbounded by the external path length
of T associated with the given labelling and

cost(T, P) < p13 + pra + cost(T", P'). (14)
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Combining (12), (13) and (14) gives

cost(T,P) < p1B+pia+ cost(T', P')
p1B + pra + cost(B', P')
< cost(B,P)

IN

and we have shown that (11) is valid for n and thus completed the proof of Lemma 3 .

8 Final remarks

In this paper we revisited the problem of finding optimal prefix-free codes for unequal integral
letter costs «, 3 with a < (. The best previous known algorithm ran in O(n®*t?) time; the
algorithm presented here runs in O(n”). The reduction in running time was achieved in two
ways. The first was by noting that it is possible to transform the problem into one of searching
for optimal monotonic sequences (a slightly easier task) and then reconstructing optimal trees,
and thus codes, from an optimal monotonic sequence. The second was by showing that the
monotonic sequence problem possesses a Monge property, permitting the use of the SMAWK

algorithm.

The big open question still remaining for this problem is exhibiting whether or not it is
NP-hard.

We conclude by pointing out, without proof, that the algorithm Optimal_Tree_Construction
can be straightforwardly extended to the problem of finding an optimal height-limited lopsided
tree. A height-limited tree is one without nodes of depth greater than L, L a given parameter.
The optimal height-limited tree problem is to find a min-cost tree with n leaves for given
weights P with tree height limited by L. This is equivalent to finding optimal (L) length-
limited Huffman Codes. In [10] it was shown that these two problems can be solved in O(nL)

time.

The optimal height-limited lopsided tree problem is similar. It is again to find a min-cost
tree with n leaves for given weights P with tree height limited by L. The only difference here
is that the edges have unequal integral lengths «, 8 with « < (.

We can prove the following result:

Theorem 5 (height limited trees)

We can construct a minimum cost lopsided tree, with height limited by L, in O(nﬂ - L) time.

The idea is to show that a minimum cost lopsided tree, with height limited by L, will

correspond to a sequence B € M, which is minimum-cost among all sequences with length
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< L. Such a sequence can in turn be found by finding the least expensive source-sink path in

G, that has link length, i.e., number of edges, < L. Using the Monge property such a path

and thus a min-cost height-L limited lopsided tree, can be found in O(n” - L) time. Because

no new ideas are needed we only state the result and do not provide further details.

References

[1]
[2]

3]

[10]

[11]

[12]

[13]

[14]

Julia Abrahams, “Code and Parse Trees for Lossless Source Encoding,” Sequences’97, (1997).

Doris Altenkamp and Kurt Mehlhorn, “Codes: Unequal Probabilities, Unequal Letter Costs,” J.
Assoc. Comput. Machinery, 27 (3) (July 1980), 412-427.

A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a matrix-
searching algorithm, Algorithmica, 2 (1987), 195-208.

Siu-Ngan Choi and M. Golin, “Lopsided trees: Algorithms, Analyses and Applications,” Proceed-
ings of the 23rd International Colloguium on Automata, Languages, and Programming (ICALP 96),
(1996), 538-549.

N. Cot, “A linear-time ordering procedure with applications to variable length encoding,” Proc.
8th Annual Princeton Conference on Information Sciences and Systems, (1974), 460-463.

E. N. Gilbert, “Coding with Digits of Unequal Costs,” IEEE Trans. Inform. Theory, 41 (1995),
596-600

M. Golin and G. Rote, “A Dynamic Programming Algorithm for Constructing Optimal Prefix-Free
Codes for Unequal Letter Costs,” IEEE Transactions on Information Theory, 44(5) (September
1998), 1770-1781

Sanjiv Kapoor and Edward Reingold, “Optimum Lopsided Binary Trees,” Journal of the Associ-
ation for Computing Machinery 36 (3) (July 1989), 573-590.

R. M. Karp, “Minimum-Redundancy Coding for the Discrete Noiseless Channel,” IRFE Transactions
on Information Theory, 7 (1961), 27-39.

L. L. Larmore and D. S. Hirschberg, “A Fast Algorithm for Optimal Length-Limited Huffman
Codes,” Journal of the Association for Computing Machinery, 37(3) (July 1990) 464-473.

L. L. Larmore, T. Przytycka, W. Rytter, “Parallel computation of optimal alphabetic trees,”
SPAA9S.

Abraham Lempel, Shimon Even, and Martin Cohen, “An Algorithm for Optimal Prefix Parsing
of a Noiseless and Memoryless Channel,” IEEE Transactions on Information Theory, IT-19(2)
(March 1973), 208-214.

K. Mehlhorn, “An Efficient Algorithm for Constructing Optimal Prefix Codes,” IEEE Trans.
Inform. Theory , IT-26 (1980) 513-517.

G. Monge, Déblai et remblai, Mémoires de I’ Académie des Sciences, Paris, (1781) 666-704.
24



[15] Y. Perl, M. R. Garey, and S. Even, “Efficient generation of optimal prefix code: Equiprobable

words using unequal cost letters,” Journal of the Association for Computing Machinery, 22 (2)
(April 1975), 202214,

[16] Serap A. Savari, “Some Notes on Varn Coding,” IEEE Transactions on Information Theory, 40
(1) (Jan. 1994), 181-186.

[17] Robert Sedgewick, Algorithms, Addison-Wesley, Reading, Mass.. (1984).

25



