
Disjoint directed cycles

Noga Alon ∗

Abstract

It is shown that there exists a positive ε so that for any integer k, every directed graph with
minimum outdegree at least k contains at least εk vertex disjoint cycles. On the other hand, for
every k there is a digraph with minimum outdegree k which does not contain two vertex or edge
disjoint cycles of the same length.

1 Introduction

All graphs and digraphs considered here contain no parallel edges, unless otherwise specified, but
may have loops. Throughout the paper, a cycle in a directed graph always means a directed cycle.
For a positive integer k, let f(k) denote the smallest integer so that every digraph of minimum
outdegree at least f(k) contains k vertex disjoint cycles. Bermond and Thomassen [6] conjectured
that f(k) = 2k − 1 for all k ≥ 1. Thomassen [9] showed that this is the case for k ≤ 2, and proved
that for every k ≥ 2

f(k + 1) ≤ (k + 1)(f(k) + k),

thus concluding that f(k) is finite for every k and that f(k) ≤ (k+1)!. Here we improve this estimate
and show that f(k) is bounded by a linear function of k.

Theorem 1.1 There exists an absolute constant C so that f(k) ≤ Ck for all k. In particular,
C = 64 will do.

An easy corollary of this theorem is the following.

Corollary 1.2 There exists a positive ε > 0 so that for any r, every digraph with minimum outdegree
at least r contains at least εr2 edge disjoint cycles. In particular, ε = 1/128 will do.
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This strengthens a result in [4] where the above is proved for r-regular digraphs.
Thomassen [9] conjectured that for every integer k ≥ 1 there is a (smallest) finite integer g(k)

such that any digraph with minimum outdegree at least g(k) contains k pairwise disjoint cycles of
the same length. Here we observe that this is false in the following strong sense.

Proposition 1.3 For every integer r there exists a digraph with minimum outdegree r which contains
no two edge disjoint cycles of the same length (and hence, of course, no two vertex disjoint cycles of
the same length).

For undirected graphs, it has been proved by Häggkvist [7] that for every integer k ≥ 1 there is a
(smallest) finite h(k) such that every undirected graph with minimum degree at least h(k) contains
k vertex disjoint cycles of the same length. The results in [7] imply that h(k) ≤ 2O(k). Thomassen
[10] refined the arguments in [7] and his results imply that h(k) ≤ O(k2). Here we show that in fact
h(k) is bounded by a linear function of k and conjecture that h(k) = 3k − 1.

The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.1 by combining
one of the ideas of Thomassen [9] with the probabilistic approach in [2], [4], together with some
additional arguments. In Section 3 we consider the problem of finding disjoint cycles of the same
length. The final section 4 contains some concluding remarks and open problems.

2 Disjoint cycles

In this section we prove Theorem 1.1. We make no attempt to optimize the constant C obtained in
our proof, or optimize any of the other absolute constants that appear in the course of the proof.
It is, in fact, not too difficult to improve the constant we get here considerably, but since it seems
hopeless to apply our method to get the right value of C (conjectured to be 2 in [6]), we merely
prove here that f(k) ≤ 64k for every k.

Note that this certainly holds for k = 1. Assuming it is not true for all k, let k+1 be the smallest
integer violating the inequality. Then, clearly,

f(k + 1) > f(k) + 64. (1)

Put r = f(k+ 1)− 1 and let D = (V,E) be a directed graph with minimum outdegree r which does
not contain k+ 1 vertex disjoint cycles. Assume, further, that D has the minimum possible number
of vertices among all digraphs as above, and subject to having these properties and this number of
vertices assume it has the minimum possible number of edges. Clearly, in this case, every outdegree
in D is precisely r. By the minimality of D, the indegree of each of its vertices is positive. Moreover,
D contains no loops, since otherwise the digraph obtained from D by deleting a vertex incident with
a loop cannot have k disjoint cycles, showing that f(k+ 1)− 2 = r− 1 ≤ f(k)− 1, contradicting (1).

For a vertex v of D, let N−(v) = {u, u ∈ V : uv ∈ E} denote the set of all in-neighbors of v in
D. The following claim is proved in [9]. For completeness we repeat its simple proof.
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Claim 1: For every vertex v of D, the induced subgraph of D on N−(v) contains a cycle.
Proof: It suffices to show that the minimum indegree in this induced subgraph is at least 1. Assume
it is 0, then there is a vertex u with uv ∈ E so that no other vertex of D dominates both u and
v. But in this case, the digraph D′ obtained from D by deleting all edges emanating from u except
the edge uv and by contracting the edge uv has minimum outdegree r. By the minimality of D it
contains k + 1 disjoint cycles which easily supply k + 1 disjoint cycles in D as well, a contradiction.
This proves the claim. 2

We next show that the number of vertices of D is not too large.
Claim 2: |V | ≤ k(r2 − r + 1).
Proof: Put n = |V | and let G be the undirected graph on the set of vertices V in which two distinct
vertices u and w are adjacent iff there is a vertex of D that dominates both. Define m = n

(r
2

)
and

note that the number of edges of G is at most m. Therefore, as is well known (see e.g., [5] p. 282) it
contains an independent set of size at least n2/(2m+ n). If this number is greater than k there are
k + 1 vertices u1, . . . , uk+1 ∈ V which are independent in G, that is, the sets N−(ui) are pairwise
disjoint. However, each of these sets contains a cycle, by Claim 1, and thus there are k + 1 disjoint
cycles in D, contradicting the assumption. Therefore

n2

nr(r − 1) + n
=

n2

2m+ n
≤ k,

showing that n ≤ k(r2 − r + 1), as needed. 2

We can now prove a nearly linear upper bound for f(k). Although this is not essential for the proof of
the linear bound we include this proof in the next claim, as it enables us to obtain a better constant
C in the proof of Theorem 1.1, and as it illustrates the basic probabilistic approach we apply later.
Claim 3:

k(r2 − r + 2)(1− 1
k + 1

)r ≥ 1.

Proof: Assume this is false and

k(r2 − r + 2)(1− 1
k + 1

)r < 1.

Assign to each vertex v ∈ V randomly and independently, a color i, 1 ≤ i ≤ k+ 1, where each of the
k + 1 choices are equally likely. Let Vi be the set of all vertices colored i and let Di be the induced
subgraph of D on the vertex set Vi. For each vertex v, let Av denote the event that no out-neighbor
of v has the same color as v. Clearly Prob[Av] = (1 − 1

k+1)r. Let Bi denote the event that Vi = ∅.
Then Prob[Bi] = (1− 1

k+1)n ≤ (1− 1
k+1)r+1. Therefore, by Claim 2

∑
v∈V

Prob[Av] +
k+1∑
i=1

Prob[Bi] ≤ n(1− 1
k + 1

)r + (k + 1)(1− 1
k + 1

)r+1

≤ k(r2 − r + 1)(1− 1
k + 1

)r + k(1− 1
k + 1

)r = k(r2 − r + 2)(1− 1
k + 1

)r < 1.
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It follows that with positive probability each Di is nonempty and has a positive minimum outdegree,
and hence contains a cycle. Thus, there is such a choice for the graphs Di, and this gives k + 1
disjoint cycles in D, contradicting the assumption, and proving the claim. 2

Note that the above claim already supplies a nearly linear upper bound for f(k) as it implies that

k(r2 − r + 2) ≥ er/(k+1),

showing that for large k,
f(k + 1)− 1 = r ≤ (3 + o(1))k loge k,

(where the o(1) term here tends to 0 as k tends to infinity.) It also implies the following.

Corollary 2.1 For every positive integer h ≤ 29, f(h) ≤ 32h.

Proof: Otherwise, there is some h = k + 1 ≤ 29 so that r = f(k + 1) − 1 ≥ 32(k + 1). Define
b = r/(k + 1) ( ≥ 32). Then, by Claim 3,

b2227 ≥ b2(k + 1)3 ≥ kr2 ≥ k(r2 − r + 2) ≥ er/(k+1) = eb.

Thus 227 ≥ eb/b2 and this is trivially false for all b ≥ 32. 2

The final ingredient needed for the proof of Theorem 1.1 is the following.
Claim 4: If r ≥ 212, then one can split the vertex set V of D into two nonempty disjoint subsets
V1 and V2 so that the minimum outdegrees of the induced subgraphs of D on V1 and on V2 are both
at least r

2 − r
2/3.

Proof: Color each vertex of D either red or blue, choosing each color independently and uniformly
at random. For each vertex v ∈ V let Av denote the event that v has less than r/2−r2/3 outneighbors
with its own color. By the standard estimate of Chernoff for the distribution of binomial random
variables (c.f., e.g., [1], Appendix A), for every v

Prob[Av] ≤ e−2r1/3
.

Since there are |V | vertices in D, where r < |V | < r3, and since 2 · 2−|V | + r3e−2r1/3
< 1 for r ≥ 212,

we conclude that with positive probability both colors red and blue appear and none of the events
Av occurs. Given such a coloring, let V1 be the set of vertices colored red and let V2 be the set of
vertices colored blue, completing the proof. 2

Corollary 2.2 If h is even and f(h) > 212 then

f(h)− 2(f(h))2/3 ≤ 2f(h/2).

Proof: Let h = k + 1, put r = f(k + 1) − 1 and let D = (V,E) be as above. By the last claim
D contains two vertex disjoint subgraphs D1 and D2, where the minimum outdegree of each Di is
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at least d r2 − r
2/3e. If this number is at least f((k + 1)/2) then each Di contains (k + 1)/2 disjoint

cycles giving a total of k + 1 disjoint cycles in D, contradiction. Thus

f(h)− 1
2

− (f(h))2/3 ≤ f(h)− 1
2

− (f(h)− 1)2/3 =
r

2
− r2/3 ≤ dr

2
− r2/3e ≤ f(h/2)− 1,

implying the desired result. 2

Corollary 2.3 For every h ≥ 26, f(h) ≤ 64h− 128h2/3.

Proof: We apply induction on h. For h satisfying 26 ≤ h ≤ 29 the desired result holds, since by
Corollary 2.1

f(h) ≤ 32h ≤ 64h− 128h2/3.

For h > 29, if f(h) ≤ 212 then f(h) ≤ 8h < 64h − 128h2/3. Thus, we may and will assume that
f(h) > 212. Hence, if h is even then, by Corollary 2.2 and by the induction hypothesis applied to
h/2 (for which we already know the result)

f(h)− 2(f(h))2/3 ≤ 2f(h/2) ≤ 2(64
h

2
− 128(

h

2
)2/3) = 64h− 21/3128h2/3.

If the desired result fails for h and f(h) > 64h− 128h2/3, then, as z− 2z2/3 is an increasing function
for z ≥ 212, we conclude that

f(h)−2(f(h))2/3 > 64h−128h2/3−2(64h−128h2/3)2/3 > 64h−128h2/3−2(64h)2/3 = 64h−160h2/3.

It follows that
64h− 160h2/3 < 64h− 21/3128h2/3

implying that 21/3 < 160/128 = 5/4, which is false. Therefore the assumption that f(h) > 64h −
128h2/3 is incorrect, completing the proof of the induction step for even h. If h is odd then, by
Corollary 2.2 and by the induction hypothesis applied to (h+ 1)/2,

f(h+ 1)− 2(f(h+ 1))2/3 ≤ 2f((h+ 1)/2) ≤ 64(h+ 1)− 21/3128(h+ 1)2/3 ≤ 64h+ 64− 21/3128h2/3.

Since f(h) ≤ f(h+ 1) and z − 2z2/3 is increasing for z ≥ 212, we conclude that

f(h)− 2(f(h))2/3 ≤ 64h+ 64− 21/3128h2/3.

Thus, if we assume that f(h) > 64h− 128h2/3 it follows, as before, that

64h− 160h2/3 < f(h)− 2(f(h))2/3 ≤ 64h+ 64− 21/3128h2/3,

implying that

213(21/3 − 5
4

) < 128(21/3 − 5
4

)h2/3 < 64,
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i.e., that

21/3 <
5
4

+
1

128
=

161
128

,

which is false. Therefore, f(h) ≤ 64h− 128h2/3, completing the proof. 2

Proof of Theorem 1.1: By Corollaries 2.1 and 2.3, for every positive integer k, f(k) ≤ 64k. 2

Proof of Corollary 1.2: By Theorem 1.1 and its proof above, every digraph D = D0 with minimum
outdegree at least r contains at least r/64 vertex disjoint cycles. Omit the edges of these cycles from
D to get a digraph D1 whose minimum outdegree is at least r−1. This digraph contains, by Theorem
1.1, at least (r−1)/64 vertex disjoint cycles, whose edges may be omitted, yielding a graph D2, with
minimum outdegree r − 2 at least. Repeating in this manner we obtain a collection of at least

r

64
+
r − 1

64
+
r − 2

64
+ . . .+

1
64
≥ r2

128

edge disjoint cycles in D, completing the proof. 2

3 Equicardinal disjoint cycles

3.1 Directed graphs

Proof of Proposition 1.3: For a positive integer r, construct a digraph D = (V,E) on a set of
2r

2
r vertices as follows. Let V1, . . . , V2r

2 be pairwise disjoint sets of vertices, each of cardinality r,
and put V = V1 ∪ . . . ∪ V2r

2 . For each i satisfying 1 < i ≤ 2r
2

every vertex of Vi is joined by a
directed edge to every vertex of Vi−1. The resulting digraph is acyclic, and D is obtained from it by
adding to it r2 edges, which we call special edges, as follows. Put V1 = {u1, u2, . . . , ur}. For each j,
1 ≤ j ≤ r, there are r special edges ej,1, ej,2, . . . , ej,r emanating from uj , where ej,s joins uj to an
arbitrarily chosen member of V2(j−1)r+s . This completes the description of D. Define the length of
ej,s to be 2(j−1)r+s and note that the lengths of the r2 special edges are distinct powers of 2.

Every outdegree in D is precisely r. Moreover, every cycle in D must contain at least one special
edge and its length is precisely the sum of lengths of all the special edges it contains. Since these
lengths are distinct powers of 2 it follows that two cycles in D have the same length iff they share
exactly the same special edges. Thus there are no two edge (or vertex) disjoint cycles of the same
length in D, completing the proof of Proposition 1.3. 2

3.2 Undirected graphs

Recall that h(k) is the smallest integer for which every undirected graph with minimum degree at
least h(k) contains k vertex-disjoint cycles of the same length. As shown by Häggkvist [7], h(k) is
finite for every integer k. Thomassen [10] refined the methods of Häggkvist and proved that there
is some absolute constant C > 0 such that any undirected graph with at least Ck2 vertices and
minimum degree at least 3k + 1 contains k pairwise disjoint cycles of the same length. This clearly
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implies that h(k) ≤ O(k2). Here we show that in fact h(k) is bounded by a linear function of k.
As in the previous section, we make no attempt to optimize the constant in our estimate and only
show that h(k) ≤ 1024k for every k. The constant 1024 can easily be improved considerably, but our
method does not suffice to determine the precise value of h(k), which we conjecture to be 3k − 1.

Proposition 3.1 Every undirected graph with minimum degree r > 1 contains at least r/1024 vertex-
disjoint cycles of the same length.

Proof: Let G = (V,E) be an undirected graph with minimum degree r. If r ≤ 1024 the required
result is trivial, hence we assume r > 1024. If G = G0 contains a cycle C1 of length at most, say,
20, delete its vertices from G to get a graph G1. Note that the minimum degree in G1 is at least
r− 20. If G1 contains a cycle C2 of length at most 20, delete its vertices from G1 to get a graph G2

whose minimum degree is at least r−40. Proceeding in this manner, if the process continues at least
r−1
40 steps then we have at least r−1

40·20 >
r

1024 cycles of the same length, as needed. Thus the process
terminates before that, ending with a graph G′ whose minimum degree exceeds r−20 r−1

40 = r+1
2 and

whose girth exceeds 20. As the minimum degree in G′ is an integer, it is at least r
2 +1. Thus, for any

fixed vertex v of G′, the number of vertices of distance precisely 10 from v is bigger than (r/2)10. It
follows that the number of vertices of G′, which we denote by n, is at least r10/1024.

Let φ denote the smallest number of vertices of G′ whose deletion leaves a forest. Note that
φ > 1. A well known result of Erdös and Posa (c.f., e.g., [8], Problem 10.18) implies that G′ (and
hence G) contains at least φ

4 log2 φ
vertex disjoint cycles. If, say, φ ≥ n11/20 log n this implies that G′

contains at least n11/20/4 disjoint cycles. Among these, at most n11/20/8 may have length at least
8n9/20 (as the total length of all cycles is at most n), and thus there are at least n11/20/8 cycles of
length at most 8n9/20, implying that at least n1/10/64 ≥ r/128 > r/1024 of them have the same
length.

We may thus assume that φ < n11/20 log n, implying (since n ≥ (r/2)10 ≥ 290) that φ < n2/3 (as
n11/20 log n is (much) smaller than n2/3 for n ≥ 290.) Fix a set S of φ vertices of G′, so that G′−S is a
forest F . The number of vertices of F is at least n−n2/3, and less than 0.1n of them have more than
20 neighbors in F . Therefore, there is a set {u1, u2, . . . , ut} of t ≥ 0.9n − n2/3 > 0.7(φ)3/2 vertices
of F , each of which has at most 20 neighbors in F and hence at least r

2 + 1− 20 > 2 neighbors in S.
Construct an auxiliary multigraph H on the set of vertices S as follows. For each ui, 1 ≤ i ≤ t, pick
arbitrarily two neighbors of ui in S and join them by an edge in H. Note that H may have parallel
edges. H has φ vertices and t ≥ 0.7(φ)3/2 edges. Therefore, by a standard result from extremal
graph theory (see, e.g., [8], Problem 10.36), it has a cycle of length at most 4. But this provides a
cycle of length at most 8 in G′, contradicting the fact that the girth of G′ exceeds 20. Therefore, φ
cannot be smaller than n11/20 log2 n, completing the proof. 2
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4 Concluding remarks and open problems

1. A close look at our proof of Theorem 1.1 shows that it implies the following statement:

For every C > 0 and ε > 0 there is a finite k0 = k0(C, ε) such that if f(k) ≤ Ck for all k ≤ k0

then f(k) ≤ (1 + ε)Ck for all k.

2. The conjecture of Bermond and Thomassen that f(k + 1) = 2k + 1 for every k remains open
for all k > 1. Our results imply, however, that if the conjecture is false for some fixed value
of k, then there is a counterexample with at most 4k3 + 2k2 + k vertices. Indeed, if there is
a digraph with minimum outdegree r = 2k + 1 and no k + 1 disjoint cycles then, by taking a
minimum example with these properties it follows from Claim 2 that its number of vertices is
at most k(r2− r+ 1) = 4k3 + 2k2 +k. This improves an estimate of Thomassen [9] who showed
that if the conjecture is false for k then there is a counterexample with at most (2k + 2)k+3

vertices. Note that for the case k = 1 (two disjoint cycles), for which the conjecture has been
proved in [9], our estimate above shows that it suffices to check it for digraphs with at most
7 vertices, and this is not a difficult task. The first open case is k + 1 = 3, where it suffices
to prove that any digraph with at most 42 vertices and minimum outdegree 5 contains three
disjoint cycles. Even this relatively modest size seems to be too large to enable a brute force
attack.

3. Our technique in Section 2 enables one to obtain reasonable upper bounds for f(k) even for
small values of k. We illustrate this fact by trying to estimate f(4) (conjectured to be 7.) By
Claim 3, f(4) < r+ 1 provided 3(r2− r+ 2)(3

4)r < 1. It is not difficult to check that this holds
for r = 27 showing that f(4) ≤ 27. This can be improved, however, using the known result of
[9] that f(2) = 3, as follows. Suppose f(4) > r, and take, as in Section 2, a minimum digraph
D with all outdegrees r and no 4 vertex disjoint cycles. By Claim 2 the number of vertices n
of D is at most 3(r2− r+ 1) (and at least r+ 1, say.) If one can partition the set of vertices of
D into two disjoint parts so that the minimum outdegree of the induced subgraph on each part
is at least 3, then it would follow that D contains 4 disjoint cycles, a contradiction. Therefore,
by applying a random splitting as in Section 2, it follows that if

2 · 2−(r+1) + 3(r2 − r + 1)
1 + r +

(r
2

)
2r

< 1,

then f(4) ≤ r. This inequality holds for r = 17 showing that in fact f(4) ≤ 17.

4. In [4] it is conjectured that every r-regular directed graph contains at least
(r+1

2

)
edge-disjoint

directed cycles (which, if true, is best possible), and it is proved that any such digraph contains
at least 3

219 r
2 edge disjoint cycles. Corollary 1.2 and its proof here show that minimum outde-

gree at least r already ensures the existence of at least r2/128 ( > 3
219 r

2) edge disjoint cycles,
and hence the regularity assumption is not needed to get a quadratic number of edge-disjoint
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cycles. The regularity is crucial, however, if we want to place some conditions on the lengths
of the cycles. By combining the techniques in [4] and in [3] it is not difficult to prove the
following.

Proposition 4.1 For any integer s > 1 there exists some ε(s) > 0 so that any r-regular
digraph contains at least bε(s)r2c edge disjoint cycles, each of length divisible by s.

A similar statement totally fails already for s = 2 for digraphs with large minimum outdegrees
with no regularity assumption, as an example of Thomassen [11] shows that for every r there
is a digraph with minimum outdegree r which does not contain even cycles at all.

5. It would be interesting to decide if for any two positive integers k and s there is a finite number
F = F (k, s) so that for every digraph D = (V,E) with minimum outdegree F there is a
partition of V into k pairwise disjoint subsets V1, . . . , Vk such that the minimum outdegree of
the induced subgraph of D on each Vi is at least s. It is not difficult to see that the finiteness
of the function f(k) considered here and in [9] implies that F (k, 1) is finite for every k. We do
not know if F (2, 2) is finite. The corresponding function for the undirected case is finite for all
admissible values of the parameters, as follows from observations by various researchers.

6. It would be interesting to determine the function h(k) considered in Subsection 3.2 precisely.
As shown by a complete graph on 3k − 1 vertices, h(k) ≥ 3k − 1 for every k, and we suspect
that this is tight. The result of Thomassen [10] that any undirected graph with at least Ck2

vertices and minimum degree at least 3k + 1 contains k pairwise disjoint cycles of the same
length may be useful in trying to prove this estimate.
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