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AGGREGATION IN A MODEL OF PRICE
COMPETITION

Martin Peitz

WP-AD 99-26

A B S T R A C T

In a model of price competition single-product ¯rms compete for consumers.

Consumers purchase a variable quantity of one of the di®erentiated goods. The

paper provides results on equilibrium existence when consumers are heterogeneous

in their evaluation of the di®erentiated goods among each other, their evaluation of

the di®erentiated goods relative to the outside good, and heterogeneous in income.

Furthermore, I provide su±cient conditions for dominance solvability and monotone

comparative statics.

KEYWORDS: Price Competition; Imperfect Competition; Heterogeneous De-

mand; Oligopoly Theory; Product Di®erentiation.
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1 Introduction

Consider a di®erentiated oligopoly with a ¯nite number of one-product ¯rms com-

peting in prices. It is known since the work of Roberts and Sonnenschein (1977)

that there are robust non-existence results of Nash equilibrium in pure strategies.

Suppose that there exists a market with two types of consumers characterized by

their individual demand function. Even if equilibrium existence can be shown in any

market with a single type of consumers non-existence might result in the presence

of two types. The problem of non-existence of equilibrium is due to a lack of restric-

tions derived for market, i.e. aggregate, demand. The lack of restrictions on market

demand can be seen as the most fundamental problem in establishing a general

theory of price competition in partial equilibrium. A foundation of imperfect com-

petition then consists of the analysis of models which go beyond a representative

consumer speci¯cation or particular examples with heterogeneous consumers and

which address and partially resolve the problem. Given the importance of imperfect

competition in ¯elds such as industrial organization, international trade, economic

geography, and regional science such models and the insights they provide might be

of interest to a wide audience.

In order to establish existence of equilibrium previous work has concentrated on

models in which the best response correspondences of the ¯rms are convex-valued.

In the framework of discrete choice with unit demand or unit elastic demand, posi-

tive results have been obtained by Caplin and Nalebu® (1991b), Dierker (1991), and

Peitz (1997). The theme of their and my paper is that distributional assumptions

can generate strong regularities of aggregate demand. The main contribution of this

paper is to avoid functional form assumptions on individual demand and to show

the existence of equilibrium in a heterogeneous population.

Discrete choice means that each consumer chooses only one out of a set of di®er-

entiated goods and is an interesting case which applies to a wide range of consumer

goods, for which consumers do not have a preference for variety (for an exploration

of discrete choice models of product di®erentiation see Anderson, de Palma, and

Thisse, 1992). A consumer in my model buys only one type of good in a market

depending on the relative prices between the goods. The quantity which consumers

buy depends on the relevant price. Consumers are heterogeneous in three respects:
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(1) they have di®erent critical relative prices when one good becomes more valuable

than another, (2) their demand functions for each good conditional on buying the

particular good di®er between consumers and (3) they have di®erent income. To

model demand heterogeneity I take Grandmont's (1993) parametrization of demand.

Demand heterogeneity is split into two parts: consumers have di®erent rescaling pa-

rameters of the units of measurement compared to a base type and there exist

di®erent base types in the population. Grandmont has shown that heterogeneity of

demand behavior with respect to a parameter gives rise to aggregate demand which

is \close" to unit elastic demand, i.e. the price sensitivity of market expenditure is

small. Note that a market in which total expenditure reacts rather insensitive to

price changes makes the partial equilibrium modeling attractive. This regularity of

the aggregate will turn out to be important in my model of price competition.

Since consummers can switch between the di®erentiated goods, total expendi-

ture on a single di®erentiated goods can react very sensitive to price changes. The

heterogeneity in the discrete choice between the di®erentiated goods is character-

ized by a log-concave density over switching points (following Caplin and Nalebu®,

1991b, and Dierker, 1991). This restriction is useful and encompasses a wide range

of density function (see section 2). In the model strengthening the assumption on

the concavity of switching parameters allows for less heterogeneous demand behav-

ior, which means that aggregate demand is further away from the unit-elastic case.

Income heterogeneity in my model will not place restrictions on aggregate demand

but in contrast to models with unit demand does not lead to problems of equilibrium

existence (see Peitz, 1999).

I interpret the model as a model of short-run competition in prices. The property

that the di®erentiated goods are not perfect substitutes in the aggregate is due to

the heterogeneity of switching points of the consumers. This heterogeneity can be

explained by intrinsic di®erences in tastes (as in the literature on product di®erenti-

ation, see e.g. Eaton and Lipsey, 1989), random decision making (or random utility,

see e.g. Anderson, de Palma and Thisse, 1992), which may be due to heterogeneous

information, or previous consumption decisions leading to heterogeneous switching

costs (for other explanations of switching costs see Klemperer, 1995).

In the model, which is described in detail in section 2, I show that there ex-

ists a pure-strategy Nash equilibrium in prices when there is heterogeneity amongst
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consumers (section 3). I present four formalizations: (1) bounded rational ¯rms

("-maximizers), (2) bounded rational consumers (with an error in the decision rule),

(3) pro¯t maximizing ¯rms which have to reach a minimal market share, (4) rational

consumers and ¯rms with the corresponding existence results in Theorems 1 to 4.

The main results of the paper is Theorem 4.

Under an additional distributional assumption the associated game (with bounded

rational consumers) is log-supermodular and dominance solvable (section 4). Quasi-

supermodularity allows me to show existence which is not based on the convex-

valuedness of the best response correspondence (Proposition 2). In addition, section

4 presents results on comparative statics which are implied by the properties of

the pro¯t functions: higher marginal costs and increased sales taxes imply higher

equilibrium prices of all ¯rms. Section 5 concludes.

2 The model

I consider a market with a ¯nite number of di®erentiated goods. The set of goods

is denoted by N = f1; : : : ; ng. Each good i 2 N has a price pi > 0. There are other

goods in the economy but their prices are ¯xed. These other goods are captured

by the composite commodity 0 which has the normalized price index p0 ´ 1. The
existence of other markets is important because market expenditure is allowed to

be price-dependent. For ¯xed total income and no other markets this could not be

the case.

Consumers
A consumer with ¯xed income w > 0 has a utility function with arguments x0; x

where x is the collection of di®erentiated goods x = (xi)i2N 2 <n+. I consider utility
functions according to which discrete choice will result. In particular, I impose that

preferences in the subspace of di®erentiated goods are linear for any given quantity

x0 and the slope is independent of x0.

U(x; x0) = u(
X
i2N

eµi1xi; x0)

where µi1 are parameters with µ11 = 0 (see below).

5



Each consumer maximizes her utility subject to her budget constraint. This can

be interpreted as going through the following program. She ¯rst decides which good

to buy taking only the relative prices pj=pi, i; j 2 N into account. She buys for

instance good 1 and none of the other di®erentiated goods if log pi¡ log p1 ¸ µ1i for
all i > 1. The parameter µij is referred to as a switching point and is the logarithmic

critical price ratio at which a consumer is indi®erent between goods i and j. At prices

p a consumer is going to buy good i0 if i0 = index(maxf¡ log p1; (µ1i ¡ log pi)i>1g).
The set of switching parameters µij , i; j; k 2 N satis¯es µij = ¡µji, µkj+µji = µki, and
µii = 0. Hence, a vector µ1 = (µ12; : : : ; µ1n) determines all µij, which are introduced

in order to make the presentation symmetric for the goods i 6= 1.
At the second step, a consumer chooses according to her utility function u. She

decides on the level of expenditure considering only the price of the good she is

actually buying from.

A consumer is characterized by her utility function u and slopes of the indi®er-

ence curves between the di®erentiated goods fully determined by µ1. Since I want

to work with demand functions which are continuous, I assume that u is contin-

uously di®erentiable. In addition, I assume that consumers always choose in the

interior of the consumption set <2+ when maximizing u. Note that quasi-linear pref-
erences are ruled out by this assumption. Formally, limexi!0(@u(exi; x0)=@xi) = 1
and limex0!0(@u(xi; ex0)=@x0) = 1. This implies that the nonnegativity constraints
x0; xi ¸ 0 are automatically satis¯ed when maximizing the utility function u subject
to pixi + x0 · w.
A consumer's budget constraint reads p¢x+x0 · w where p = (pi)i2N . Consumers

maximize their utility

max
x0;x

U(x; x0) = max
i2N

max
x0;xi

u(eµi1xi; x0):

s.t. p ¢ x+ x0 · w s.t. pixi + x0 · w

Individual demand functions »i(p; w) for each good i 2 N are obtained as

»i(p; w) =

8><>:
arg maxxiu(e

µi1xi; w ¡ pixi) if log pj ¡ log pi ¸ µij for all j > i
and log pj ¡ log pi > µij for all j < i

0 else.
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To avoid correspondences I assumed that the consumer rather buys from the good

with a smaller index at a relative price equal to the switching point µij. As consumers

will be assumed to be di®erent and mass points for a distribution over the switching

points will be excluded, demand can be arbitrary at the switching point without

changing the result.

Consumer choice has been derived from utility maximization. As explained be-

low, the approach is compatible with demand functions which are not derived from

utility maximization.

From Individual to Aggregate Demand
Up to now every consumer was described by a collection of switching points µ1,

an income w > 0, and a utility function u. Along the lines of Grandmont (1987,

1992, 1993) I de¯ne classes or types of consumers by a speci¯c parametrization

of preferences or demand and consider heterogeneity with respect to a parameter

inside such a class.1 Only di®erences within each class will play a role. Demand

functions are parametrized as follows. A consumer is said to be of type a 2 A
if there is a rescaling parameter ¯ 2 < such that u(e¡¯x1; x0) coincides with the
utility function of the base consumer and if the consumer has the same income as

the base consumer. In an abuse of notation I now introduce more arguments into

the utility function. The utility function of a base consumer of type a is written

as u(a; 0; x1; x0). The value of a utility function of a consumer with parameter ¯

is written as u(a; ¯; x1; x0) = u(a; 0; e¡¯x1; x0). Conditional demand functions are
³(a; ¯; p1) ´ arg maxx1 u(a; ¯; x1; w ¡ p1x1). It follows that

³(a; ¯; p1) = e
¯³(a; 0; e¯p1):

Consumers of the same type a have the same conditional demand function ³ up to a

rescaling of the units of measurement. Each consumer of type a can now be described

by a rescaling parameter ¯, a generating demand function ³ , and parameters of

switching µ1. Since I am only working with conditional demand functions ³ it does

not really matter whether they are derived from utility maximization or re°ect, for

1Such a parametrization has been introduced by Mas-Colell and Trockel (1977) and further

used by Dierker, Dierker, and Trockel (1984). See in particular Grandmont (1992) for references

on related literature.
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instance, rules of thumb. Individual demand is

»i(a; ¯; µi; p) = Âi(p; µi)³(a; ¯ ¡ µi1; pi)

where µi = (µi1; : : : ; µi;i¡1; µi;i+1; : : : µi;n) and Âi is an indicator function de¯ned as

Âi(p; µi) =

8><>:
1 if log pj ¡ log pi ¸ µij for all j > i

and log pj ¡ log pi > µij for all j < i
0 else

Consumers of the same income are heterogeneous in two respects. They have

di®erent switching points and their demand functions are di®erent. Assumptions on

the population are formally stated for later reference. (A.1) contains assumptions

on distributions over the switching points (µij)j2N;j 6=i. Denote £i = £j2N;j 6=i[µij ; µij].

² (A.1). For all i 2 N : there exist continuous distribution functions Gi over
µi 2 <n¡1 with Gi(0) = 1=n. Gi has a density gi which is positive and contin-
uously di®erentiable on int £i. gi has bounded support £i, i.e. µij < µij for

some j 2 N; j 6= i implies Gi(µi) = 0, and µij > µij for all j 2 N; j 6= i implies
Gi(µi) = 1. gi and @gi(µi)=@µij , j 6= i, are uniformly bounded from above on

int £i.

For convenience, I assume that Gi(0) = 1=n which is not restrictive because

I am free to choose the units of measurement of the di®erentiated goods. I want

to work with twice continuously di®erentiable pro¯t functions. For this reason the

di®erentiability assumptions are made. The assumption that gi is positive on int

£i implies that (@=@µij)Gi(µi) 6= 0 for all j 6= i. Hence, I will analyze a model of
\global competition", i.e. a price change of a di®erentiated good has an e®ect on

the demand of all other di®erentiated goods.

I assume that gi, i 2 N has a bounded support because I need that mean expen-

diture on a good turns su±ciently fast to zero for its corresponding price turning to

in¯nity while holding the other prices ¯xed. The assumption of a bounded support

says that for given prices p¡i one can always ¯nd a price pi su±ciently large such that
mean expenditure on good i is equal to zero. I make use of this assumption in order
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to establish bounds for the price-sensitivity of mean expenditure and in order to con-

struct compact strategy sets. For the latter it is convenient but not necessary (see

Caplin and Nalebu®, 1991b, for a result with unbounded support). If the intervals

[µij ; µij] degenerated to a single point all consumers would be identical with respect

to the switching point. In such a case also mean expenditure is discontinuous; it is

the Bertrand case with homogeneous goods. On the other hand, if, for all i 2 N , gi
had unbounded support there would be a positive demand left for any price combina-

tion p and each good with its index in N . The assumption of a rectangular support

is made for convenience; it is only important that the support is convex. Note that

for any price vector p,
P

i2N Gi = 1. Denote µi = (µij; µi;¡j). @gi(µij; µi;¡j)=@µij
is de¯ned as limµij&µij @gi(µi)=@µij and @gi(µij ; µi;¡j)=@µij ´ limµij%µij @gi(µi)=@µij.
Partial derivatives of Gi are de¯ned accordingly on the boundary.

Important for the calculations is stochastic independence of the three compo-

nents describing the population of consumers.

² (A.2). a, ¯, and µ1 are stochastically independent.

(A.2) implies that consumers in a particular segment of the di®erentiated mar-

ket, formalized by µ1, do not systematically di®er from the rest of the population in

their expenditure functions in the market. The next assumption is made in order

to integrate over individual demand functions.

² (A.3).
(1) A is a separable metric space of types, ¹ is a probability measure on A.
(2) For each type a there exists a conditional distribution over ¯ with density

f .

(3) Income wa > 0 depends continuously on type a and average income is

¯nite, i.e.

W =

Z
A
wa¹(da) <1:
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Under (A.1)-(A.3) mean demand of good i reads

Xi(p) =

Z
£i

Z
<

Z
A
Âi(p; µi)³(a; ¯ ¡ µi1; pi) ¹(da) f(¯)d¯ gi(µi)dµi

=
1

pi

Z
£j2N;j 6=i[µij ;log pj¡log pi]

B(pi; µi1)gi(µi)dµi

where

B(pi; µi1) ´
Z
<

Z
A
pie

¯¡µi1³(a; 0; e¯¡µi1pi) ¹(da) f(¯)d¯:

denotes conditional mean expenditure of type µ1. It will be important to show

that conditional mean expenditure reacts slowly to a price change. In the work of

Dierker (19991) and Caplin and Nalebu® (1991b, subsection 8.2) it was assumed

that conditional mean expenditure is a constant. In this paper I do not make such

an assumption or any shape assumptions on individual demand functions (for a dis-

cussion see the conclusion).

Remark 1 >From the de¯nition of individual demand it follows that conditional

mean expenditure B(pi; µi1) only depends on log pi ¡ µi1, i.e.
@B(pi; µi1)

@µi1
+
@B(pi; µi1)

@ log pi
= 0:

Firms
Firm behavior is standard: good i, i 2 N , is produced by ¯rm i with constant

marginal costs ci > 0. Each ¯rm faces a mean demand function Xi(p) depending on

the prices in the market. Each ¯rm is a price setter. The strategic variable, price

pi, is chosen as the best response to the prices of the other ¯rms. For prices above

marginal costs ¯rms will satisfy demand. Pro¯ts are given as

¼i(p) = (pi ¡ ci)Xi(p), i 2 N .
Equilibrium

In the paper I look at pure-strategy Nash equilibria in prices. A pure strategy

Bertrand-Nash equilibrium is a vector of prices p¤ 2 <n++ such that for all i 2 N
¼i(p

¤
i ; p

¤
¡i) ¸ ¼i(pi; p¤¡i) for all pi 2 <++

In other words, p¤i is an element of the best response correspondence for p
¤
¡i.
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3 Equilibrium existence and demand heterogene-

ity

The main problem to show existence in models of price competition is to establish

the quasi-concavity of pro¯t functions. I show this property to hold on a compact

set of prices and prove that ¯rms never set prices outside this set. In particular, I

show that heterogeneous demand behavior implies that mean expenditure B(pi; µi1)

does not depend strongly on its price.

Inserting mean demand into the pro¯t functions gives pro¯t functions which

depend on prices and the characteristics of the market. It will be helpful to consider

logarithmic pro¯ts. Denote B0(pi) = B(pi; 0).

log ¼i(p) = log
pi ¡ ci
pi

+ logGi((log pj ¡ log pi)j2N;j 6=i) + logB0(pi)

+ log

R
£j2N;j 6=i[µij ;log pj¡log pi]B(pi; µi1)gi(µi)dµi

B0(pi)Gi((log pj ¡ log pi)j2N;j 6=i) (1)

The pro¯t function consists of four additive terms. The ¯rst existence result shows

that an oligopoly with pro¯t functions consisting of the ¯rst two terms has an

equilibrium and that the last two terms are negligible under su±cient heterogeneity.

The second result interprets pro¯t functions consisting of the ¯rst three additive

terms as the presented model with the only di®erence that consumers are bounded

rational. The third and fourth result show equilibrium existence for pro¯t functions

as stated in equation (1). I will show that the respective pro¯t functions are quasi-

concave on a compact set of prices. In contrast to Dierker (1991) and Caplin and

Nalebu® (1991b), in speci¯cations 2 to 4 I cannot show that pro¯t functions are

quasi-concave for all prices so that the construction of compact strategy spaces is of

particular importance.

The outline of this section then is as follows: the ¯rst theorem establishes equilib-

rium existence with bounded rational ¯rms (subsection 3.1), the second equilibrium

with bounded rational consumers (subsection 3.2), the third existence result holds

for pro¯t maximizing ¯rms which have to satisfy a minimal market share and the

fourth and main result allows for fully rational consumers and ¯rms without re-

strictions (both subsection 3.3). Theorems 1 to 4 say that if the densities over
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switching parameters are log-concave and if demand behavior is heterogeneous then

there exists an equilibrium.

3.1 Bounded rational ¯rms

Considering the four additive terms of the pro¯t function (1) I start with the ¯rst

term which satis¯es the following concavity property:

Remark 2 The ¯rst term log((pi ¡ ci)=pi) is concave in log pi for all pi > ci. The
second derivative with respect to log pi is bounded from above by some negative num-

ber when prices are chosen from a compact strategy space.

The fact of the negative upper bound of the second derivative on a compact

set will be important below. Because of Remark 2 one only has to worry about

the second to fourth term in the pro¯t function (1). In this paper two kinds of

heterogeneity will be important. First, heterogeneity with respect to µi implies that

consumers have di®erent relative prices at which they are indi®erent between a pair

of goods. Second, heterogeneity with respect to u, formalized by a distribution over

¯, will be crucial in making expenditure less price-sensitive in the aggregate than it

is on the individual level.

First, I make an assumption on the heterogeneity of µi in order to take care of

the second term in (1).

² (A.4). gi is log-concave in µi, i 2 N .

In particular Caplin and Nalebu® (1991a) discuss which distributions have log-

concave densities. They also give the relevant references. For example the Normal

and, with parameter restrictions, the multivariate Beta distribution have log-concave

densities. Results carry over to truncations with convex support.

Following the work of Dierker (1991) and Caplin and Nalebu® (1991b) also the

second term is log-concave in logarithmic price if the density has this property. This
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result is stated as Lemma 1 (for the proof see the appendix.). One of the aggregation

theorems of Pr¶ekopa (1973) underlies the result. Dierker (1991) and Caplin and

Nalebu® (1991b)were to my knowledge the ¯rst who applied the aggregation results

of Pr¶ekopa and Borell to models of imperfect competition.

Lemma 1 Assume (A.1),(A.4). Gi((log pj ¡ log pi)j 6=i) is log-concave in log pi.

In this section I analyze pro¯t functions of the form (1) looking for a generalized

version of Nash equilibrium. A pure strategy Bertrand-Nash "-equilibrium is a vector

of prices p¤ 2 <n++ such that for all i 2 N

¼i(p
¤
i ; p

¤
¡i) ¸ ¼i(pi; p¤¡i)

1

1 + "
for all pi 2 <++

Firms are not maximizers but do not bother to change their strategy if such a

deviation increases pro¯ts by a factor " or less. Firms which are "-maximizers can

be labelled bounded rational. The reason for not fully maximizing pro¯ts can be

motivated by measurement errors such as accounting errors (which are proportional

to the level of pro¯t). In the pure Bertrand model Baye and Morgan (1996) obtain

results on "-equilibria (with additive ").

Consequently, equilibrium existence for pro¯t functions, which are the sum of the

¯rst and the second term, implies the existence of "-equilibria if the third and the

fourth term in (1) can be made arbitrarily small. As will be stated by the following

two lemmas this is implied by su±cient heterogeneity with respect to ¯.

Assumption (A.5) says that there is a strict lower bound of expenditure B(pi; µi1)

for all µi1 2 [µi1; µi1]. This means that the aggregate of consumers with a particular
switching parameter spends a positive minimum budget share in the di®erentiated

market. A similar assumption is also made in Grandmont (1992, 1993) and is needed

in the proofs of several lemmata.

² (A.5). There exists ± > 0 such that B(pi; µi1) ¸ ± W for all pi > 0 and

µi1 2 [µi1; µi1], i 2 N , i > 1.
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If there was only one type (a; ¯ = 0) in the market, conditional demand of the

form

³(a; 0; p1) =
±(a)w

p1
+ z(a; 0; p1);

±(a) > 0, z : A£<£<++ ¡! <+, implies under (A.4) that there is a lower bound
on individual expenditure for all switching parameters from £. Given a type space

A (A.5) is satis¯ed if (A.4) holds and if there is a subspace A1 µ A of positive

measure such that the above equation of conditional demand holds.

With (A.6) I assume uniform integrability over ¯. The average slope in absolute

value m1 serves as a measure of heterogeneity, 0 < m1 < 1 for distributions with

unbounded support. A small m1 stands for a \°at" distribution and thus for a large

heterogeneity of demand with respect to the parameter ¯ (see Kneip, 1993).

² (A.6). f is continuously di®erentiable with f 0 uniformly integrable, i.e. there
exists a real number m1 such thatZ

<
jf 0(¯)jd¯ = m1 <1:

The next lemma puts an arbitrarily small bound on the price elasticity of mean

expenditure B0(pi).

Lemma 2 Under (A.1),(A.2),(A.5),(A.6) the following inequality holds

j@ logB0(pi)
@ log pi

j · m1

±
:

Proof.

B0(pi) =

Z
<

Z
A
pie

¯³(a; 0; e¯pi) ¹(da) f(¯)d¯:

Substitute as in Grandmont (1993) r = ¯ + log pi

B0(pi) =

Z
<

Z
A
er³(a; 0; er) ¹(da) f(r ¡ log pi)dr

dB0(pi)

d log pi
= ¡

Z
<

Z
A
er³(a; 0; er) ¹(da) f 0(r ¡ log pi)dr

14



= ¡
Z
<

Z
A
pi³(a; ¯; pi) ¹(da) f

0(¯)dr

jdB0(pi)
d log pi

j · m1W

jd logB0(pi)
d log pi

j · m1
W

B0(pi)
· m1

±
: 2

The lemma implies that j logB0(p0i) ¡ logB0(pi)j can be made arbitrarily small
on a compact set of prices if the average absolute value of the slope of the density

is small, i.e. if m1 is small. When price pi is chosen from a compact strategy set

[ci; z] then, for ¯rm i, deviations from equilibrium pro¯ts are bounded above by the

factor (z ¡ ci)(m1=±) when only the third term is taken into account.

The last term of pro¯t function (1) is rewritten as

log

Ã
1 +

R
£j2N;j 6=i[µij ;log pj¡log pi](B(pi; µi1)¡B0(pi))gi(µi)dµi

B0(pi)Gi((log pj ¡ log pi)j2N;j 6=i)

!
´ log(1 +R)

which implicitly de¯nes R. This term can be made arbitrarily small if R is close to

zero.

Lemma 3 Under (A.1),(A.2),(A.5),(A.6). Then R can be bounded in absolute

value by any positive number if m1 is su±ciently small, in particular, the bound

(µi1 ¡ µi1)m1=± is never broken by ¯rm i.

Proof. Since by (A.5) B0(pi) is bounded from below it is su±cient to show that

jB(pi; µi1) ¡ B0(pi)j can be made arbitrarily small. Because of Remark 1, (A.1),
(A.2), (A.5), and (A.6) imply that

j@ logB(pi; µi1)
@µi1

j · m1W:

Consequently,

jB(pi; µi1)¡B0(pi)j ·
¯̄̄̄Z µi1

0

¯̄̄̄
@ logB(pi; t)

@t

¯̄̄̄
dt

¯̄̄̄
· jµi1jm1W
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Since µi1 has compact support this term can be made arbitrarily small. An explicit

bound depending on the measure of heterogeneity is derived by the following

jRj ·
R
£j2N;j 6=i[µij ;log pj¡log pi] jµi1jm1Wgi(µi)dµi

±WGi((log pj ¡ log pi)j2N;j 6=i)

· m1

±

R
£j2N;j 6=i[µij ;log pj¡log pi](µi1 ¡ µi1)gi(µi)dµi

Gi((log pj ¡ log pi)j2N;j 6=i)
= (µi1 ¡ µi1)

m1

±
: 2

On a compact set of prices Lemma 1 is used to show the existence of an equi-

librium for pro¯t functions consisting of terms 1 and 2. With Lemmas 2 and 3 one

can show that such an equilibrium is an "-equilibrium. In the proof I have to show

that ¯rms will choose from a compact set of prices. In order to show this I use that

the switching parameters have a compact support. I de¯ne

log z ´ max
(µ

µij ¡ µij + log
n

n¡ 1 + log ci
¶
i;j2N;j 6=i

)

Theorem 1 says that under the above assumptions an "-equilibrium exists if

consumers are su±ciently heterogeneous with respect to their conditional demand

functions.

Theorem 1 Assume (A.1)-(A.4). There exists an equilibrium for pro¯t functions

¼i(p) = ((pi ¡ ci)=pi) Gi((log pj ¡ log pi)j 6=i). Assume in addition (A.5) and (A.6).
For any " > 0 there exists a pure-strategy Bertrand-Nash "-equilibrium if m1 is suf-

¯ciently small.

Proof. First, equilibrium existence for pro¯t functions as the sums of the ¯rst

and second additive term of the right-hand side of (1) is shown for given compact

strategy sets. Lemmata 1 and 4 (the latter in the Appendix) then say that these

pro¯t functions are quasi-concave for given compact strategy sets. In Lemma 5

Kakutani's ¯xed point theorem is applied for given compact strategy sets. Lemma

6 shows that ¯rms will always choose out of these strategy sets. Lemmata 4 to 6

are delegated to the appendix. For compact strategy sets Lemma 2 implies that the
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third term of di®erences of logarithmic pro¯t function (1) can be made arbitrarily

small form1 su±ciently small. Lemma 3 implies that di®erences in logarithmic pro¯t

functions of the fourth term are arbitrarily small for m1 su±ciently small. Hence,

by Lemmata 2 and 3 an equilibrium strategy for pro¯t functions as the sums of the

¯rst and second term of (1) are "-maximal, " > 0, for m1 su±ciently small: De-

note equilibrium pro¯ts of ¯rm i with ¼¤i and pro¯ts after a price change ¼
0
i, denote

log z0 = log z ¡maxj 6=i µij. Since p¤i · z a deviation to p0i ¸ z0 cannot be pro¯table.
For p0i < z

0, log ¼0i¡ log ¼¤i · (z0¡ci)(m1=±)¡2 log(1¡(µi1¡µi1)(m1=±)) · log(1+")
for m1 su±ciently small because log(1 + jRj) < jRj < ¡ log(1¡ jRj). 2

3.2 Bounded rational consumers

At this point I present and discuss an alternative formulation of consumer behav-

ior which is not fully rational but may be called bounded rational. Consumers

buy according to the same conditional demand function ³(pi; w) independent of the

switching parameters µ.

Each consumer splits the decision problem into two parts (two stage decision

problem): ¯rst how much to demand of a good in the di®erentiated market and

second to decide which of the di®erentiated goods to buy.2 Ex ante goods are

identical, i.e. consumers maximize u(x0;
Pn

i=1 xi) under their budget constraint.

Their demand without an error is »i(p; w) = ³(pi; w) if pi < pj , for all j 6= i, and

»i(p;w) = 0 if pi > pj , for some j 6= i. Introducing a vector of errors ei, i 2 N ,
which is drawn independently across consumers from a probability distribution with

compact support, generates preferences for a particular di®erentiated good. If the

realization of ei > 0, a consumer is willing to pay a higher price for the good than

without error. Consumers do not make systematic errors if Eei = 0 for all i 2 N .
De¯ne switching points µi1 = e1 ¡ ei. Demand with the error included is assumed
to be of the form »i(p; w) = ³(pi; w) if log pi < log pj ¡ µij, for all j 6= i, and

»i(p;w) = 0 if log pi > log pj¡µij , for some j 6= i. This means that consumers derive
demand for good i conditional on buying none of the other di®erentiated goods from

2Note that this corresponds to the two-stage budgeting in applied demand analysis (see e.g.

Deaton and Muellbauer, 1980).
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maximizing u(xi; x0) s.t. pixi + x0 · w but make an error in the decision which

good to buy, i.e. they do not necessarily buy the cheapest one in the market. This

may be interpreted as a consumer being imperfectly informed about prices when

making the decision which good to buy but once this decision is made (trip to the

¯rm's factory) the consumer observes perfectly the price of the good chosen and

maximizes utility. Errors in the decision rule have been discussed in the literature

e.g. in Tversky (1972). My formulation leads to pro¯t functions

log ¼i = log
pi ¡ ci
pi

+ logB0(pi) + logGi((log pj ¡ log pi)j 6=i): (2)

² (A.7). f is twice continuously di®erentiable with f 0 and f 00 uniformly inte-
grable, i.e. there exists a minimal real number m2 such thatZ

<
jf 0(¯)jd¯ · m2 <1

and

Z
<
jf 00(¯)jd¯ · m2 <1:

Under this assumption which is stronger than (A.6), m2 serves as the measure

of demand heterogeneity. The following lemma provides bounds for the price sen-

sitivity of mean expenditure (expressed as elasticity and sensitivity of the elasticity).

Lemma 7 Assume (A.1)-(A.3),(A.5),(A.7). The following inequalities hold

jd logB0(pi)
d log pi

j · m2

±
;

jd
2 logB0(pi)

(d log pi)2
j · m2

±

³
1 +

m2

±

´
:

Proof. As in the proof of Lemma 2 I substitute r = ¯ + log pi in the expression of

B0(pi). Taking ¯rst and second derivatives as in Grandmont (1993) gives

jdB0(pi)
d log pi

j · m2W

j d
2B0(pi)

(d log pi)2
j =

Z
<

Z
A
er³(a; 0; er) ¹(da) f 00(r ¡ log pi)dr · m2W:
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Consequently,

jd logB0(pi)
d log pi

j · m2

±

jd
2 logB0(pi)

(d log pi)2
j = j 1

B0(pi)

d2B0(pi)

(d log pi)2
¡ 1

B0(pi)2

µ
dB0(pi)

d log pi

¶2
j

· m2

±

³
1 +

m2

±

´
: 2

Theorem 2 Assume (A.1)-(A.5),(A.7). In the model with pro¯t functions (2) there

exists a pure-strategy Bertrand-Nash equilibrium if m2 is su±ciently small.

Sketch of the proof. Again I have to show that ¯rms will choose from a com-

pact set of prices. In order to show this in Lemma 8 in the appendix, I use that

mean expenditure is bounded, that m2 is su±ciently small, and that the switching

parameters have a compact support. I need that m2 is su±ciently small in the

case that there does not exist a price pi above which the mean expenditure func-

tion B0 is monotone. In the case of monotonicity above some price level, I can do

without m2 being small and bound di®erences in mean expenditure due to the con-

vergence of mean expenditure (which follows from the bounds of mean expenditure).

By Remark 2 the second derivative in logarithmic price of the ¯rst term of (2) is

bounded by some negative number. Hence, since by Lemma 7 the second derivative

of the third term can be made arbitrarily small in absolute value one can show the

quasi-concavity of pro¯t functions for m2 su±ciently small and g log-concave on the

compact set of prices from which ¯rms will choose according to Lemma 8 in the

appendix. 2

Note that in the construction of compact strategy sets (Lemma 8) I use the

condition that m2 is small. This allows me to consider the same compact strategy

set as in the previous subsection. From the argument in part (ii) of the proof of

Proposition 2 below it follows that it is not necessary to assume that m2 is small in

order to construct compact strategy sets.

Remark 3 At this point it seems to be appropriate to discuss the trade-o® between

the two di®erent kinds of heterogeneity. As stated in Remark 2 there exists a negative
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number such that @2 log(pi¡ci)=pi)=(@ log pi)2 is bounded from above by that number
on a compact set. Note that this makes it possible to show equilibrium existence even

if Gi is not log-concave. With pro¯t functions (2) one can show equilibrium existence

as long as there exists some · > 0 such that

@2 log pi¡ci
pi

(@ log pi)2
+
@2 logGi
(@ log pi)2

· ¡·

on the compact set £i2N [ci; z] and m2 su±ciently small, i.e.

m2

±

³
1 +

m2

±

´
< ·:

Denote the set of prices P = £i2N [ci; z] \ f(pi)i2N j log pj ¡ log pi · µijg and
denote the Hessian of logGi with Hi ´ (@ijGi) and ¶ ´ (1; : : : ; 1)T 2 <n¡1. Note
that Hi is negative semi-de¯nite if and only if logGi concave. The negative semi-

de¯niteness of Hi implies that
P

i

P
j @ij logGi = ¶

THi¶ · 0. Gi is called ~·¡strict
log-concave if for the Hessian Hi of logGi the inequality ¶

THi¶ · ¡~· holds.

Remark 4 If the second derivative of logGi in log pi is su±ciently negative then

conditional mean expenditure is allowed to react more sensitive on prices, i.e. m2

is not necessarily \small". Hence in order to allow for less demand heterogeneity

(m2 not \small") Gi has to be ~·¡strict log-concave. For ~· big, the inequality cannot
be satis¯ed for densities gi over µi if their supports are \large". Restricting the

support implies that consumers are more homogeneous with respect to their switching

parameters. In addition to the possibility of a big ~·, a smaller support of µi makes

the price setting more competitive and the compact set of prices P smaller. Hence,

also the second derivative of the price-cost margin (in logarithms) can be bounded

from above by a negative number which is greater in absolute value as the support is

reduced.

Remark 5 In a duopoly there exist ~· > 0 such that the assumption of log-concavity

of g1; (A.4), implies that Gi is ~·¡strict log-concave if g1(µ) is bounded from below

on [µ; µ], which is for example satis¯ed if g1 is uniform or truncated Normal. This

is shown in the appendix.
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To conclude this subsection, I summarize the previous Remarks 3 and 4 by a

suggestive statement: in order to show existence of equilibrium a less diverse expen-

diture pattern (m2 bigger) has to go hand in hand with less diversity of errors in the

decision rule (support of gi smaller). An additional result on equilibrium existence

is provided in subsection 4.1 below.

3.3 Rational ¯rms and consumers

In this subsection I ¯rst consider pro¯t functions of the form (1) in which ¯rms

are pro¯t maximizers under the constraint that they sell to a minimal share of

consumers, i.e. Gi ¸ ². Afterwards this restriction on the strategies is no longer

imposed.

It will be useful to rewrite pro¯t function (1).

log ¼i = log
pi ¡ ci
pi

+ log

Z
£j2N;j 6=i[µij ;log pj¡log pi]

B(pi; µi1) gi(µi) dµi

= log
pi ¡ ci
pi

+ logB0(pi) + log

µ
Gi((log pj ¡ log pi)j 6=i) + (3)Z

£j2N;j 6=i[µij ;log pj¡log pi]

B(pi; µi1)¡B0(pi)
B0(pi)

gi(µi)dµi

!

As is known from Lemma 7 the second derivative of the second term can be made

arbitrarily small. Although Gi is log-concave (by Lemma 1) the third additive term

in (3) is not necessarily concave. To save some space let me denote

D(log pi) ´ Gi((log pj ¡ log pi)j 6=i);
E(log pi) ´

Z
£j2N;j 6=i[µij ;log pj¡log pi]

B(pi; µi1)¡B0(pi)
B0(pi)

gi(µi)dµi:

In order to show that pro¯t functions are log-concave on a compact support I

have to show that second derivative of log(D(qi)+E(qi)), qi ´ log pi, can be bounded
from above by some positive number arbitrarily close to 0. Hence it has to be shown
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that for any ² > 0 there exists an m2 such that

1

(D(qi) + E(qi))2

Ãµ
d2D(qi)

dq2i
+
d2E(qi)

dq2i

¶
(D(qi) + E(qi))¡

µ
dD(qi)

dqi
+
dE(qi)

dqi

¶2!
< ²:

(4)

(A.4) implies that (d2D(qi)=dq
2
i )D(qi) ¡ (dD(qi)=dqi)2 · 0. Consequently, under

(A.4) it has to be shown that

d2E(qi)

dq2i
(D(qi) + E(qi)) +

d2D(qi)

dq2i
E(qi)¡ 2dD(qi)

dqi

dE(qi)

dqi
¡
µ
dE(qi)

dqi

¶2
< ²(D(qi) + E(qi))

2: (5)

Without a positive lower bound onD(qi) the right-hand side of this inequality cannot

be bounded from below by some positive number. This implies that without further

assumptions one cannot ¯nd, for all ² > 0, an m2 (depending on ²) such that this

inequality is satis¯ed for all prices in P . As shown in Lemma 9 in the appendix, if

there is a positive lower bound for D(qi) one can make the left-hand side arbitrarily

small and bound the right-hand from below by some positive number.

With a minimal market share I obtain a positive lower bound forD(qi). Imposing

a minimal market share is appropriate in markets in which ¯rms have to have a

critical mass in order to survive. Results are una®ected when instead of consumer

mass, expenditure shares, i.e. piXi=(
P

j pjXj) ¸ ², or demand shares are considered.
One justi¯cation can be that ¯rms are run by managers and managerial incentives

include minimal market share (due to dynamic considerations). Such markets also

include markets with strong network externalities where there exists a critical market

size below which consumers do not ¯nd the product useful.3

If the cost di®erences of the ¯rms are su±ciently similar with respect to the

consumer tastes, there exist minimal market share such that ¯rms can make pro¯t

whatever the prices (above marginal costs) of the competitors are.

3This motivation leads to problems when formalized: the pro¯t function of low price ¯rms

would need modi¯cations because these ¯rms can push a competitor below critical size and thus

discontinuously increase their demand. Hence in order to translate my result into a model with

network externalities the discontinuity must be su±ciently small and su±ciently distant from any

equilibrium price vector.
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² (A.8) There exists a ' > 0 such that

log cj ¡ log ci 2 (µij + '; µij ¡ '); i; j 2 N; i < j

Theorem 3 Assume (A.1)-(A.5),(A.7),(A.8). There exist minimal market shares

such that the model with minimal market shares has a pure-strategy Bertrand-Nash

equilibrium in which all ¯rms are active if m2 is su±ciently small.

Sketch of Proof. Similar to the one of Theorem 2. (A.8) implies that all ¯rms

are active in any candidate equilibrium and can reach some minimal budget shares

²i given prices above marginal costs by the competitors, Gi(log cj ¡ log ci) = ²i ¸
Gi((µij +')j 6=i). Due to Remark 2 and Lemmata 4, 7, and 9 (in the Appendix) one
can show the quasi-concavity of pro¯t function on a compact set of prices if m2 is

su±ciently small. In order to bound the second derivative of log(D(qi) + E(qi)) by

a positive number arbitrarily small on a compact set for m2 su±ciently small I need

the log-concavity of Gi, arbitrarily small bounds on di®erences jB(pi; µi1)¡B0(pi)j,
and ¯rst and second derivatives, and uniform bounds for gi and its partial deriva-

tives. By Lemma 10 in the Appendix there exists such a compact set in which the

prices of pro¯t-maximizing ¯rms stay whatever the price-setting of the competitors.

2

With this result equilibrium existence is proved in a world with rational ¯rms and

consumers. The trade-o® between the di®erent kinds of heterogeneity as pointed out

in Remarks 3 and 4 also holds in this case. I assumed that ¯rms satisfy a minimal

market share. This restriction on the strategy set can be avoided under a stronger

assumption on Gi. Since the distribution function Gi takes any value between 0 and

1 in order to show that pro¯t function ¼i is log-concave in qi it would be su±cient

to show thatµ
d2D(qi)

dq2i
+
d2E(qi)

dq2i

¶
(D(qi) + E(qi))¡

µ
dD(qi)

dqi
+
dE(qi)

dqi

¶2
< 0

This inequality holds for prices such that a ¯rm has a negligible market share

under the following assumption:
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² (A.9). gi is uniformly bounded from below on int £i, i 2 N .

This assumption implies that @Gi((qj ¡ qi)j 6=i)=@qi evaluated at µi 2 fµi 2
£ij9j 6= i : µij = µijg is bounded away from zero and so is dD(qi)=dqi. For ex-

ample, any truncated Normal distribution on £i satis¯es (A.9).

Under the additional assumption (A.9) equilibrium existence can be shown with-

out the restriction of minimal market shares. I now state the main result of the

paper. Like the previous results it formalizes the idea that aggregation reduces the

price sensitivity of market expenditure and log-concave densities imply shape re-

strictions on the demand for each di®erentiated good so that pro¯t functions are

\well-behaved" on a su±ciently large set of prices. It is the last step to show that

this idea is compatible with fully rational consumers and ¯rms without the need to

impose any restrictions on the ¯rms' strategy spaces.

Theorem 4 Assume (A.1)-(A.5),(A.7),(A.9). There exists a pure-strategy Bertrand-

Nash equilibrium if m2 is su±ciently small.

Sketch of Proof. Follows from the proofs of Lemmata 9 and 10, Theorem 3 and

the argument above. 2

To summarize this section, I provide a table which presents the assumptions for

the results in the di®erent speci¯cations.

speci¯cation assumptions

"-maximizing ¯rms (3.1) (A.1)-(A.6), m1 \small"

bounded rational consumers (3.2) (A.1)-(A.5),(A.7), m2 \small"

¯rms with minimal market share (3.3) (A.1)-(A.5),(A.7),(A.8), m2 \small"

rational consumers and ¯rms (3.3) (A.1)-(A.5),(A.7),(A.9), m2 \small"

Table I: existence of equilibrium

4 Further results with bounded rational consumers

In this section I derive further results on existence, uniqueness, and monotone com-

parative statics in which I make use of the properties of market demand. I restrict
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the analysis to the simplest case in which uniqueness can be obtained, i.e. I consider

the case in which consumers are bounded rational and make errors in the decision

making as speci¯ed in subsection 3.2. For the speci¯cations in subsection 3.3 the

analysis is more complicated but possible along the same lines in order to show

uniqueness.

4.1 On equilibrium existence and uniqueness

For more than two ¯rms, I assume in addition that the distribution functions Gi

satisfy the weakly dominant diagonal property de¯ned below. This implies that the

associated game is quasi-supermodular (Proposition 1). Equilibrium existence can

then be shown independent of the demand heterogeneity measured by m2 (Propo-

sition 2). Assuming that di®erences in marginal costs lie in the support of the

distribution over the switching points guarantees that all ¯rms are active and make

pro¯ts in an equilibrium. The uniqueness of the equilibrium (Theorem 5) is then

proved by showing that logarithmic payo® functions satisfy the dominant diagonal

property. The game is dominance solvable.

It is convenient to write the model as the game ¡ = fN;P; (¼i; i 2 N)g where
N is the ¯nite set of ¯rms, ¼i the pro¯t function of ¯rm i, and P is the set of

strategy pro¯les, which was de¯ned as £i2N [ci; z] \ f(pi)i2N j log pj ¡ log pi · µijg.
Denote Pi(p¡i) the strategy set of ¯rm i given p¡i. When prices in P are replaced
by logarithmic prices the set is denoted by Q. The game with log-pro¯ts as payo®

functions and logarithmic strategy sets is denoted by ¡0 = fN;Q; (log ¼i; i 2 N)g.
It will be shown that the model is a particular log-supermodular game.

The game ¡0 is smooth supermodular if Q is a complete lattice and log ¼i is

twice di®erentiable with @2 log ¼i(p)=@ log pi@ log pj ¸ 0, for all i; j 2 N , j 6= i, and
p 2 P (Topkis' Characterization Theorem). The game ¡0 exhibits strong strategic
complementarity if @2 log ¼i=@ log pi@ log pj > 0, for all i; j 2 N , j 6= i and p 2 P .4

4The fruitfulness of the theory of supermodular games for economics has been recognized by

Vives (1990) and Milgrom and Roberts (1990b). One of the standard examples are simple models

of price competition with di®erentiated products. In the present framework strategy sets depend on

the choices of the other players which does not create any problems here (for a de¯nition and some

results see e.g. Milgrom and Roberts, 1990a). For an interpretation of strategic complementarity
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In this section I introduce an additional assumption on the distribution of the

µi, i 2 N . Recall that hikj is an element of the Hessian of logGi.

² (A.10). For all i; j 2 N , j 6= i, Hi has the following weakly dominant diagonal

jhijjj ¸
X
k 6=j

hikj ; i = 1; : : : ; n¡ 1:

By Lemma 1 it follows from (A.4) that Gi log-concave, which implies that h
i
jj ·

0. If the cross derivatives hikj > 0 at some point, then h
i
jj needs to be su±ciently

negative for the weakly dominant diagonal to hold. Note also that in the case of a

duopoly the log-concavity of Gi, n = 1; 2, implies that (A.10) is trivially satis¯ed.

The ¯rst result says that under the additional assumption (A.10) the game ¡ is

quasi-supermodular.

Proposition 1 Assume (A.1)-(A.4),(A.7),(A.10). The game ¡0 is smooth super-
modular on P .

Proof. I check the conditions for smooth supermodularity of ¡0. Given p¡i, each
price is chosen from a compact interval in <+. By construction, Q is a complete

lattice. For i 2 N , log ¼i is twice continuously di®erentiable (by the assumption of
di®erentiability and due to the construction of Q). Cross derivatives are

@2 log ¼i
@ log pi@ log pj

(p) ¸ 0 for i; j 2 N , j 6= i

as
@2 log ¼i

@ log pi@ log pj
(p) =

@2 logGi
@qi@qj

((qj ¡ qi)j 6=i)

= ¡
X
k 6=i

@2 logGi
@qk@qj

((qj ¡ qi)j 6=i)

= ¡hijj ¡
X
k 6=j

hikj ¸ 0

see also Bulow, Geanakoplos and Klemperer (1985).
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by (A.10) and Lemma 11 in the Appendix which says that Gi is log-concave in log pj

on its support. 2

Note that quasi-supermodularity can be shown on any set which is a complete

lattice and which is a subset of £i2N [ci;1) \ fpj log pj ¡ log pi · µijg. Note also
that neither (A.5) nor m2 \small" are assumed. This implies that one can show

equilibrium existence independent of the individual conditional demand functions

in the population although pro¯t functions are not necessarily quasi-concave (even

on a compact set such as P ) if one can ¯nd a compact set of strategy pro¯les. This

is always possible.

Proposition 2 Assume (A.1)-(A.4),(A.7),(A.10). There exists a pure-strategy

Bertrand-Nash equilibrium in the speci¯cation with bounded rational consumers.

The proof is delegated to the appendix and is based on Tarski's ¯xed point theo-

rem. In the duopoly, the result is more general than Theorem 2. For more than two

¯rms (A.10) is not implied by log-concavity of gi and the assumption on switching

parameters (A.10) replaces assumptions on the heterogeneity of conditional demand

functions. Along the same lines equilibrium existence can also be shown in speci¯-

cation 1 with bounded rational ¯rms.

Below I establish the uniqueness of equilibrium. The following assumption says

that marginal costs of the ¯rms are not allowed to be too di®erent.

² (A.11). log cj ¡ log ci 2 (µij; µij), i; j 2 N; i < j.

(A.11) is weaker than (A.8). Under the assumption corner solutions can be ex-

cluded, i.e. all ¯rms i 2 N will have positive market shares in equilibrium charging

prices above there marginal costs and thus make pro¯ts.

Lemma 12 Assume (A.1)-(A.3),(A.11). If there is a pure-strategy Bertrand-Nash

equilibrium all ¯rms are active and make positive pro¯ts in equilibrium.
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Proof. Suppose that exactly one ¯rm is inactive and show that this cannot be an

equilibrium. The same argument applies for more than one inactive ¯rm.

(i) Assume ¯rst that the inactive ¯rm i chooses a price pi above marginal costs such

that the other ¯rms together serve the whole market. They will choose their prices

such that log pj¡ log pi = µij for all j 6= i. Such a price pi cannot be a best response
for ¯rm i because by decreasing its price it can make positive pro¯ts.

(ii) Let ¯rm i choose its price equal to marginal costs so that the competitors can

only serve the whole market by setting some of the prices below marginal costs.

This cannot be a best response of all competitors. They will set their prices above

marginal cost because they still can obtain some share of the market. In such a

situation it cannot be optimal for ¯rm i to charge a price equal to marginal cost.

(iii) Clearly, ¯rms do not set prices below marginal costs in equilibrium because at

least one of these ¯rms has a positive market share and thus makes losses. 2

Consequently, for m2 su±ciently small every equilibrium price p¤ 2 int P and

the analysis can be restricted to prices in P .

Lemma 13 says that if there is su±cient heterogeneity of demand behavior mea-

sured by small m2, log-pro¯ts satisfy the dominant diagonal property. It is the last

step to show uniqueness of the equilibrium. The proof is delegated to the appendix.

Lemma 13 Assume (A.1)-(A.5),(A.7),(A.10),(A.11). If m2 su±ciently small, then

log-pro¯ts satisfy the dominant diagonal property in log-prices on Q, i.e.

¡ @2 log ¼i
(@ log pi)2

(p) >
X

j2N;j 6=i
j @2 log ¼i
@ log pi@ log pj

(p)j for i; j 2 N , j 6= i.

If (A.10) is strengthened by making the left-hand side of the inequality by some

² greater than the right-hand side one can allow for less demand heterogeneity, i.e.

m2 can be greater. Proposition 1 and Lemma 13 put together give the uniqueness

of equilibrium. A game is called dominance solvable if there exists only one serially

undominated strategy pro¯le.
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Theorem 5 Assume (A.1)-(A.5),(A.7),(A.10),(A.11) and m2 su±ciently small.

The pure strategy Bertrand-Nash equilibrium p¤ is unique. The original game ¡
is dominance solvable.

Proof. By Lemmata 8 and 12 there does not exist an equilibrium outside the

interior of P . Furthermore, prices outside P cannot belong to the set of serially

undominated strategy pro¯les. In particular, one can use the proof of Lemma 8

in order to show that any price vector p with some component pi > z, i 2 N , is
serially dominated. On P the dominant diagonal property holds. It implies that

there exists a unique pure-strategy Nash equilibrium p¤ in the game ¡0. Since, in
addition, the game is smooth supermodular it is dominance solvable by Milgrom and

Roberts (1990b, Theorem 5). Since serially undominated strategies are obtained by

ordinal comparison and the transformation of the payo® functions is strictly increas-

ing, the strategy pro¯le p¤ is the unique serially undominated strategy pro¯le of the
game ¡ and, consequently, the unique pure-strategy Bertrand-Nash equilibrium. 2

It is well known that dominance solvability gives a strong prediction of play.

In particular, only serially undominated strategies can be rationalizable (as de¯ned

by Bernheim, 1984) and only serially undominated strategies can be played with

positive probability at a pure-strategy Nash equilibrium, mixed-strategy Nash equi-

librium or correlated equilibrium (see Milgrom and Roberts, 1991, on rationality

requirements for the ¯rms to play the dominance solution see Tan and Werlang,

1988). Hence, p¤ is the unique rationalizable strategy pro¯le and there are no other
mixed-strategy Nash or correlated equilibria.

4.2 Monotone comparative statics

In the second part of this section I provide comparative statics results. Equilibrium

prices are weakly increased as unit costs of one ¯rm rise or as output taxes are

increased. Under strong strategic complementarity they are strongly increased.

To obtain comparative statics results I look at a family of games. Let the payo®
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functions and strategy sets be parametrized by a parameter ¿ 2 <K. Games in this
family di®er only in the value ¿ takes. Denote Qi(q¡i) ¸ Q0i(q¡i) if the maximal and
the minimal element of Qi(q¡i) is larger than or equal to the corresponding element
in Q0i(q¡i):
Suppose that ¡0(¿) = fN;Q(¿ ); (log ¼i(¢; ¿); i 2 N); ¿ 2 <Kg is a family of

smooth supermodular games satisfying @2 log ¼i=@ log pi@¿k ¸ 0 for all i; k and let

Qi(q¡i; ¿ ) be a compact interval in <. If log p¤(¿ ) is the unique pure-strategy Nash
equilibrium of the game then it is easy to show that ¿k ¸ ¿ 0k for all k and Qi(q¡i; ¿) ¸
Qi(q¡i; ¿ 0) for all i imply that p¤(¿ ) ¸ p¤(¿ 0) (by Theorem 5 in Milgrom and Roberts,
1990a, and Theorem 6 in combination with Theorem 5 in Milgrom and Roberts,

1990b, see also Cooper and John, 1988).

A family of games ¡0(¿ ) exhibits multiplier e®ects in the parameter ¿k if the
optimal reaction of each player is larger than its optimal reaction given the strategies

of the other players, i.e. if d log p¤j=d¿k > d log p¤j=d¿kjp¡i ¸ 0 for all ¯rms and

> 0 for at least one ¯rm. It is easy to show the following result: assume that

a family of games ¡(¿ ) has a unique pure-strategy Nash equilibrium for each ¿ ,

is smooth supermodular, exhibits strong strategic complementarity, and satis¯es

@2 log ¼i=@ log pi@¿k ¸ 0 for all i; k with strict inequality for at least one ¯rm and let
all strategy sets be nondecreasing in ¿ then the family of games exhibits multiplier

e®ects. The magnitude of the multiplier e®ect depends on the sensitivity of strategy

choices to shocks and on the strength of strategic complementarities.

The ¯rst comparative statics result is obtained for changes in the marginal

cost cj of ¯rm j. What happens to equilibrium prices p¤ when unit cost cj is
increased for some j 2 N? I look at the family of games ¡0(cj) = fN;Q(cj),
(log ¼i(p; cj); i 2 N); cj 2 [cj ; cj ]g where Qi(q¡i;cj) is the strategy set of ¯rm i. Un-

der the assumptions of Theorem 5 (with (A.10) valid for the range of cost parameters

under consideration), equilibrium prices p¤ are nondecreasing functions of unit cost
cj of ¯rm j 2 N because for cm > c

0
m, Qi(q¡i;cj) ¸ Qi(q¡i;c0j) for all i 2 N and

@2 log ¼i
@ log pi@cj

= 0 , i 6= j;
@2 log ¼j
@ log pj@cj

=
pj

(pj ¡ cj)2 > 0:

30



If, in addition, Hi, i 2 N , has a strict dominant diagonal then the game ¡0 ex-
hibits strong strategic complementarities and the family of games exhibits multiplier

e®ects: a cost shock to one single ¯rm is transmitted into price increases of all ¯rms

in the market.

Suppose that the revenue of ¯rm i is taxed by a tax t per unit of output sold.

Pro¯ts of ¯rm i are

¼i(p; t) =
pi ¡ t¡ ci

pi
B0(pi)G((log pj ¡ log pi)j 6=i)

For ¯rm i the tax simply is an additional cost. If assumption (A.10) is adjusted such

that unit costs including tax satisfy (A.10) for t 2 [0; t], equilibrium prices p¤ are
nondecreasing functions of the tax per unit t, t 2 [0; t]. If one requires in addition
the strict dominant diagonal of Hi, i 2 N , then the family of games ¡(t) exhibits
multiplier e®ects. The result remains unchanged if ¯rms face di®erent taxes. Results

are analogous in the case of revenue taxes.

If pro¯ts are taxed or the mass of consumers changes (i.e., multiplicative change),

equilibrium prices are una®ected. An additive demand shock leads to monotone

comparative statics but it is not clear what this shock means in terms of the variables

at the individual level.

5 Conclusion

In models of imperfect competition the existence of equilibrium is far from guar-

anteed. Previous literature has looked at discrete choice models under particular

functional form assumptions of individual demand. In this paper I replace func-

tional form assumptions by heterogeneity of demand behavior. In particular, I show

that aggregation along the lines of Grandmont is compatible with the discrete choice

setup which is widely used in the theoretical and empirical literature. Future re-

search has to show whether a more general version of aggregation can give rise to

restrictions which are useful for the analysis of markets in which ¯rms strategically

interact. To summarize the main ¯ndings of this paper, aggregation of a heteroge-

neous population of consumers leads to quasi-concave pro¯t functions on a compact

set of prices and this property is used to show existence of equilibrium.
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Some modi¯cations can be accommodated. As remarked in section 2, I analyzed

a model of global competition in which each ¯rm's price change has an e®ect on

the demand of each competitor. The model is easily adjusted to allow for localized

competition in which each ¯rm only competes directly with a strict subset of the set

of all competitors (this set can depend on the price vector p). For instance in a one-

dimensional model of product di®erentiation each ¯rm has at most two neighbors

(under a convexity assumption in the utility function, see e.g. Anderson, de Palma,

and Thisse, 1992). In such a model one can index ¯rms such that ¯rm i competes

directly with ¯rms i ¡ 1 and i + 1 if all ¯rms are active. Some assumptions on
the costs of production imply that all ¯rms are active in any candidate equilibrium.

Consider the hypothetical pro¯t function ~¼i(pi¡1; pi; pi+1) of ¯rm i when it is ignoring
the presence of all other ¯rms other than its direct neighbors. If ¯rm i prices its

good such that ¯rm i¡ 1 or ¯rm i+1 is out of the market ¼i(p) · ~¼i(pi¡1; pi; pi+1).
Hence, the critical part of the proof of equilibrium existence is the quasi-concavity

of pro¯t functions ~¼i(pi¡1; pi; pi+1). Results are analogous to the ones derived in this
paper (see also Peitz, 1998). In environments where vertical elements of product

di®erentiation such as quality play a role one might want to allow for a correlation

between a, ¯, and µ1. Such an extension is possible for particular speci¯cations.

The model allows for unrestricted individual demand functions. Alternatively,

one might want to work with shape restrictions on individual demand which are

preserved under aggregation (this corresponds to assumptions on the third derivative

of the utility function). This has been done by Dierker (1991, Proposition 6) who

provides a more general condition on individual demand than unit elastic demand

which is for instance satis¯ed by CES utility functions. If mean demand of each type

µ1 is log-concave in logarithmic price on a set of consumers of measure 1, i.e. for a

subset of £1 which is of full measure the price elasticity of the mean demand of type

µ1 is nonincreasing, equilibrium existence can be shown without the heterogeneity

assumptions (m1 or m2 small) made in this paper.

In addition to the results on equilibrium existence, a su±cient condition for dom-

inance solvability has been provided, which implies monotone comparative statics

results. It should be pointed out that an initial price vector converges to the unique

equilibrium price vector of the stage-game under a large class of learning rules (see

Milgrom and Roberts, 1991). Suppose for example that learning is \slow", i.e. in
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period t ¯rms deviate with positive probability from the previous price pt¡1i . If this

deviation is the best response to pt¡1¡i , prices will converge to p
¤ in a probabilistic

sense as time goes to in¯nity (this result can be generalized).
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Appendix

Proof of Lemma 1. (see Dierker, 1991). Take i = 1. Analogously for i > 1.

De¯ne the convex sets

C1 = fµ1jµ1j · log pj ¡ log p1; µ1j 2 [µ1j ; µ1j ] for all j 2 N; j 6= 1g;
~C1 = fµ1jµ1j · log pj; µ1j 2 [µ1j; µ1j ] for all j 2 N; j 6= 1g:

De¯ne ~g1(µ12; : : : ; µ1n; log p1) = g1(µ12 + log p1; : : : ; µ1n + log p1). Since log g1 is con-

cave, so is log ~g1. One has

logG1((log pj ¡ log p1)j2N;j 6=1)
=

Z
C1

g1(µ1)dµ1

=

Z
~C1

g1(µ12 + log p1; : : : ; µ1n + log p1)dµ1

=

Z
~C1

~g1(µ12; : : : ; µ1n; log p1)dµ1

By Theorem 6 of Pr¶ekopa (1973) G1 is a log-concave function of log p1. 2

Lemma 4 Assume (A.1)-(A.4). Pro¯ts ((pi ¡ ci)=pi)Gi((log pj ¡ log pi)j 6=i) are
quasi-concave in its own price.

Proof. Let me ¯rst show that pro¯t is strictly log-concave in its logarithmic price

where demand is strictly positive and price larger marginal cost. Consider ¯rm 1.

The proof goes through for all i 2 N . Lemma 1 says that G1 is log-concave in log p1.
log(p1 ¡ c1)¡ log p1 is strictly concave in log p1 (see Remark 1).
Now look at quasi-concavity of pro¯ts for all cases. Quasi-concavity is violated if

there exists a pi0, pi1, and pi¸ with ci · pi0 < pi1and pi¸ = ¸pi0+(1¡¸)pi1, ¸ 2 (0; 1)
such that

(pi0 ¡ ci)Gi((log pj ¡ log pi0)j 6=i) > (pi¸ ¡ ci)Gi((log pj ¡ log pi¸)j 6=i)
and (pi1 ¡ ci)Gi((log pj ¡ log pi1)j 6=i) > (pi¸ ¡ ci)Gi((log pj ¡ log pi¸)j 6=i)
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Two cases remain to be considered.

Case i) pi0 = ci. The ¯rst inequality requires that pi¸ < ci which is a contradiction.

Case ii) pi0 > ci. Keep p¡i ¯xed. For Gi((log pj ¡ log pi1)j 6=i) = 0 the second in-

equality requires pi¸ < ci which is a contradiction. I already showed that pro¯t is

log-concave in its logarithmic price where demand is strictly positive and price larger

marginal cost. As the logarithmic function is monotonic pro¯ts are quasi-concave.

2

De¯nition The best response correspondence R is de¯ned as

R : £i2N [ci; z] ¡! £i2N [ci; z]
(p1; : : : ; pn) 7¡! (r1(p¡1); : : : ; rn(p¡n)) ´ R(p)

where

ri(p¡i) =

(
fp+i j¼(p+i ; p¡i) = maxpi : ¼(pi; p¡i)g \ [ci; z] if 6= ;
fzg else.

Lemma 5 Let pro¯t functions be quasi-concave in their own price. There exists a

pure-strategy Bertrand-Nash equilibrium for ci · pi · z.

Proof. The best response correspondence R is a correspondence with compact

convex domain into itself. Since pro¯t functions are continuous the best response

correspondence is upper-hemicontinuous. The quasi-concavity of the pro¯t func-

tions guarantees that R is convex-valued. Hence, one can make use of Kakutani's

¯xed point theorem which says that there exists a p¤ such that p¤ 2 R(p¤). 2

Lemma 6 Assume (A.1). There is no pi > z, i 2 N , such that ¼i(pi; p
¤
¡i) >

¼i(p
¤
i ; p

¤
¡i) where ¼i(p) = ((pi ¡ ci)=pi)Gi((log pj ¡ log pi)j 6=i).

Proof. Suppose there is pi > z, i 2 N such that ¼i(pi; p
¤
¡i) > ¼i(p

¤
i ; p

¤
¡i).

Case i). If there were a j, j 6= i, with log p¤j · log z + µij then ¼i(pi; p¤¡i) = 0 for all
pi > z contradicting ¼i(pi; p

¤
¡i) > ¼i(p

¤
i ; p

¤
¡i).

Case ii). log z+ µij · log p¤j for all j, j 6= i. pi > z ¸ p¤j leads to a pro¯t for ¯rm i of
pi ¡ ci
pi

Gi((log p
¤
j ¡ log pi)j2N;j 6=i) ·

pi ¡ ci
npi
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because Gi(0) = 1=n ¸ Gi((log p
¤
j ¡ log pi)j2N;j 6=i). For log pi ¸ log p¤j ¡ µij , for

some j, one has Gi((log p
¤
j ¡ log pi)j2N;j 6=i) = 0. Thus one must have, for all j,

log pi < log p
¤
j ¡ µij which is equivalent to pi < p¤j=eµij . Consequently, setting pi > z

gives a payo®

log ¼i(pi; p
¤
¡i) = log

pi ¡ ci
pi

+ logGi((log p
¤
j ¡ log pi)j2N;j 6=i)

< log

µ
1¡ ci

p¤k
eµij
¶
¡ log n

for all j. Set log p0i = minf(log p¤j ¡ µij)jg and denote the index of the minimal
element with k. Pro¯t of ¯rm i setting p0i is

log ¼i(p
0
i; p

¤
¡i) = log

µ
p¤k
eµik

¡ ci
¶
¡ log p

¤
k

eµik
:

It is not in the interest of the ¯rm to set pi > z ¸ p¤k if ¼i(pi; p¤¡i) < ¼i(p0i; p¤¡i).

(= log

µ
1¡ ci

p¤k
eµik
¶
¡ logn < log

µ
1¡ ci

p¤k
eµik
¶

(= e¡µikp¤k >
n

n¡ 1ci
³
eµik ¡ eµik

´
(= log p¤k > log z + µik

Since this inequality is satis¯ed, a deviation from p¤i is not pro¯table and one has
¼i(pi; p

¤
¡i) < ¼i(p

0
i; p

¤
¡i) · ¼i(p¤i ; p¤¡i) for pi > z. This holds for all i 2 N . 2

Lemma 8 Assume (A.1)-(A.3),(A.5). For m2 su±ciently small, there is no pi > z,

i 2 N , such that ¼i(pi; p¤¡i) > ¼i(p¤i ; p¤¡i) in the speci¯cation with bounded rational
consumers.

Proof. Suppose there is pi > z, i 2 N such that ¼i(pi; p
¤
¡i) > ¼i(p

¤
i ; p

¤
¡i).

Case i). As in the proof of Lemma 6.

Case ii). Part (i) following the proof of Lemma 6. log z+ µij · log p¤j for all j, j 6= i.
pi > z ¸ p¤j leads to a pro¯t for ¯rm i of

(pi ¡ ci)B0(pi)
pi

Gi((log p
¤
j ¡ log pi)j2N;j 6=i) · (pi ¡ ci)

B0(pi)

npi
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because 1=n ¸ Gi((log p
¤
j ¡ log pi)j2N;j 6=i). As in the proof of Lemma 6 one must

have, for all j, log pi < log p
¤
j ¡µij which is equivalent to pi < p¤j=eµij . Consequently,

setting pi > z gives a payo®

log ¼i(pi; p
¤
¡i) = log

pi ¡ ci
pi

+ logB0(pi) + logGi((log p
¤
j ¡ log pi)j2N;j 6=i)

< log

µ
1¡ ci

p¤k
eµij
¶
+ logB0(pi)¡ log n

for all j. Set log p0i = minf(log p¤j ¡ µij)jg and denote the index of the minimal
element with k. Pro¯t of ¯rm i setting p0i is

log ¼i(p
0
i; p

¤
¡i) = log

µ
1¡ ci

p¤k
eµik
¶
+ logB0(p

0
i):

It is not in the interest of the ¯rm to set pi > z ¸ p¤k if ¼i(pi; p¤¡i) < ¼i(p0i; p¤¡i).

(= log

µ
1¡ ci

p¤k
eµik
¶
+ logB0(pi)¡ logn

< log

µ
1¡ ci

p¤k
eµik
¶
+ logB0(p

0
i)

Part (ii). First I show that jlogB0(pi)¡ logB0(p0i)j is small.

jlogB0(pi)¡ logB0(p0i)j ·
Z log pi

log p0i

¯̄̄̄
@ logB0(pi)

@ log epi
¯̄̄̄
d log epi · (log pi ¡ log p0i) m2

W

>From the de¯nition of pi and p
0
i it follows that log pi¡ log p0i · µij¡2 µij. Hence, for

any ² > 0 one can ¯nd an m2 su±ciently small such that jlogB0(pi)¡ logB0(p0i)j <
log(1 + ²). It remains to be shown that

log

µ
1¡ ci

p¤k
eµik
¶
+ log(1 + ²) < log

µ
1¡ ci

p¤k
eµik
¶
+ log n

() p¤k >
1

n¡ 1¡ ²ci
³
neµik ¡ (1 + ²)eµik

´
(= log p¤k > log z + µik

for m2 su±ciently small. (From the proof of Lemma 6 it is clear that at two di®erent

steps there is room for eliminating ².) In summary, one has ¼i(pi; p
¤
¡i) < ¼i(p

0
i; p

¤
¡i) ·
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¼i(p
¤
i ; p

¤
¡i) for pi > z. This holds for all i 2 N . 2

Proof of Remark 5.

logG(~µ) = log

Z ~µ

µ

eh(µ)dµ where h(µ) = log g1(µ)

It has to be shown that d2 logG(~µ)=d~µ2 · ¡~· which is implied by

eh(
~µ)

Ã
h0(~µ)

Z ~µ

µ

eh(µ)dµ ¡ eh(~µ)
!
· ¡~·

As h is concave: h0(~µ) · h0(µ), µ 2 [µ; ~µ].

h0(~µ)
Z ~µ

µ

eh(µ)dµ ·
Z ~µ

µ

h0(µ)eh(µ)dµ = eh(
~µ) ¡ eh(µ):

Hence, ¡eh(~µ)eh(µ) = ¡g1(~µ)g1(µ) · ¡~· because g1 is bounded from below on its

support. 2

Lemma 9 Assume (A.1)-(A.5), (A.7). The third additive term on the right-hand

side of equation (3) can be bounded in absolute value by any positive number for m2

su±ciently small.

Proof. (i) As shown in the text, the third additive term on the right-hand side of

equation (3) can be made arbitrarily small in absolute value if for any ² one can ¯nd

an m2 such that inequality (5) is satis¯ed. Since ¯rms have to satisfy a minimal

market share D(qi) ¸ °. This implies that ²(D(qi)+E(qi))2 > ²(D(qi)¡jE(qi)j)2 >e² > 0 if jE(qi)j can be made arbitrarily small.
(ii) jE(qi)j can be made arbitrarily small: for any positive number one can ¯nd

a value for m2 su±ciently small such that jE(qi)j is less than this number.

jE(qi)j =
¯̄̄̄Z

B(pi; µi1)¡B0(pi)
B0(pi)

gi(µi)dµi

¯̄̄̄
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· 1

±W

Z
jB(pi; µi1)¡B0(pi)jgi(µi)dµi

· 1

±W

Z
jµi1jm2Wgi(µi)dµi (by Lemma 3)

· m2

±
(µi1 ¡ µi1)D(qi)

Hence, ²(D(qi)¡ jE(qi)j)2 ¸ ²(1¡ m2

±
(µi1 ¡ µi1))2°2 > e² for m2 su±ciently small.

(iii) It remains to be shown that the left-hand side of inequality (5) can be made

arbitrarily small in absolute value.

¯̄̄̄
¯d2E(qi)dq2i

(D(qi) + E(qi)) +
d2D(qi)

dq2i
E(qi)¡ 2dD(qi)

dqi

dE(qi)

dqi
¡
µ
dE(qi)

dqi

¶2 ¯̄̄̄¯
·

¯̄̄̄
d2E(qi)

dq2i

¯̄̄̄
(D(qi) + jE(qi)j) +

¯̄̄̄
d2D(qi)

dq2i

¯̄̄̄
jE(qi)j+ 2

¯̄̄̄
dD(qi)

dqi

¯̄̄̄ ¯̄̄̄
dE(qi)

dqi

¯̄̄̄
+

µ
dE(qi)

dqi

¶2
Remark that D(qi) · 1. By (A.1) gi and its partial derivatives are uniformly

bounded from above. This implies that jdD(qi)=dqij and jd2D(qi)=dq2i j are uni-
formly bounded from above. It remains to be shown that jE(qi)j, jdE(qi)=dqij, and
jd2E(qi)=dq2i j can be made arbitrarily small. From part (ii) it follows that jE(qi)j
can be made arbitrarily small.

(iv) jdE(qi)=dqij can be made arbitrarily small:

dE(qi)

dqi
=

d

dqi

ÃZ
£j2N;j 6=i[µij ;qj¡qi]

B(eqi; µi1)¡B0(eqi)
B0(eqi)

gi(µi)dµi

!

=

Z
£j2N;j 6=i[µij ;qj¡qi]

d ((B(eqi ; µi1)¡B0(eqi))=B0(eqi))
dqi

gi(µi)dµi

¡
X
j 6=i

Z
£k2N;k 6=i;k 6=j [µik;qk¡qi]

B(eqi ; µi1)¡B0(eqi)
B0(eqi)

gi(µi1; : : : ; µi;j¡1; qj ¡ qi; µi;j+1; : : : ; µin)dµi1 ¢ ¢ ¢ dµi;j¡1dµi;j+1 ¢ ¢ ¢ dµin

As shown in part (ii) of the proof j(B(pi; µi1) ¡ B0(pi))=B0(pi)j can be made arbi-
trarily small. Since by (A.1) gi is uniformly bounded from above it remains to be

shown that the ¯rst additive term can be made arbitrarily small in absolute value.
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¯̄̄̄
d ((B(pi; µi1)¡B0(pi))=B0(pi))

d log pi

¯̄̄̄
=

¯̄̄̄
1

B0(pi)

dB(pi; µi1)

d log pi
¡ B(pi; µi1)

B0(pi)

d logB0(pi)

d log pi

¯̄̄̄
· 1

±W

¯̄̄̄
dB(pi; µi1)

d log pi

¯̄̄̄
+
W

±W

m2

±

With the same argument as for dB0(pi)=d log pi in the proof of Lemma 7 also

dB(pi; µi1)/ d log pi can be bounded in absolute value by m2W . Consequently,¯̄̄̄
d ((B(pi; µi1)¡B0(pi))=B0(pi))

d log pi

¯̄̄̄
· m2

±

³
1 +

m2

±

´
;

which can be made arbitrarily small for m2 su±ciently small.

(v) Finally, also jd2E(qi)=dq2i j can be made arbitrarily small. The analysis

is lengthy and easily carried out along the lines of part (iv) above. Note that

by (A.1) gi and its partial derivatives are uniformly bounded in absolute value.

With the bounds provided in parts (ii) and (iv), it only remains to be shown that

d2 ((B(pi; µi1)¡B0(pi))=B0(pi)) = d(log pi)
2 can be made arbitrarily small in abso-

lute value.

¯̄̄̄
¯d
2 (B(pi;µi1)¡B0(pi))

B0(pi)

d(log pi)2

¯̄̄̄
¯ · 1

B0(pi)

Ã
B(pi; µi1)

Ãµ
d logB0(pi)

d log pi

¶2
+

¯̄̄̄
d2 logB0(pi)

d(log pi)2

¯̄̄̄!

+2

¯̄̄̄
dB(pi; µi1)

d log pi

¯̄̄̄ ¯̄̄̄
d logB0(pi)

d log pi

¯̄̄̄
+

¯̄̄̄
d2B(pi; µi1)

d(log pi)2

¯̄̄̄¶
Each of the additive terms in parentheses can be made arbitrarily small and the

result follows. 2

Lemma 10 Assume (A.1)-(A.3),(A.5). For m2 su±ciently small, there is no pi > z,

i 2 N , such that ¼i(pi; p¤¡i) > ¼i(p¤i ; p¤¡i) in the speci¯cations of subsection 3.3.

Proof. I follow the proof of Lemma 8 with pro¯t functions in equation (3) using

the same de¯nitions of prices pi and p
0
i. It only has to be shown that log ¼i(pi; p

¤
¡i) <

log ¼i(p
0
i; p

¤
¡i). E(log pi) is de¯ned as in the main text.
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log

µ
1¡ ci

p¤k
eµij
¶
+ logB0(pi) + log

µ
1

n
+ E(log pi)

¶
< log

µ
1¡ ci

p¤k
eµik
¶
+ logB0(p

0
i) + log (1 + E(log p

0
i))

As shown in part (ii) of the proof of Lemma 8 jlogB0(pi)¡ logB0(p0i)j can be made
arbitrarily small. As shown in part (ii) of the proof of Lemma 9 jE(log pi)j can
be made arbitrarily small for any pi. Consequently, for any ²

0 one can ¯nd an m2

su±ciently small such that

jlogB0(pi)¡ logB0(p0i)j ¡ log (1¡ jE(log p0i)j) + log (1 + n jE(log pi)j) < ²0:

Consequently, it remains to be shown that

log

µ
1¡ ci

p¤k
eµik
¶
+ log(1 + ²0) < log

µ
1¡ ci

p¤k
eµik
¶
+ logn

which follows from the proof of Lemma 8 where ² has to be replaced by ²0. 2

Lemma 11 Assume (A.1),(A.4). Gi((log pj ¡ log pi)j 6=i) is log-concave in log pj,
j 6= i.

Proof. (following Proposition 5 by Dierker, 1991, for n ¯rms). Take i = 1. Anal-

ogously for i > 1. Take j = 2. Analogously for i 6= 1, j 6= i. De¯ne the convex

set

Ç12 = fµ1jµ12 · ¡ log p1; µ1k · log pk ¡ log p1; for k ¸ 3;
µ1j 2 [µ1j ; µ1j] for all j 2 N; j 6= 1g:

De¯ne ģ12(µ12; : : : ; µ1n; log p2) = g1(µ12 ¡ log p2; µ13; : : : ; µ1n). Since log g1 is concave
in log p2, so is log ģ12. One has

logG1((log pj ¡ log p1)j2N;j 6=1)
=

Z
C1

g1(µ1)dµ1
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=

Z
Ç12

g1(µ12 ¡ log p2; µ13; : : : ; µ1n)dµ1

=

Z
Ç12

ģ12(µ12; : : : ; µ1n; log p2)dµ1

By Theorem 6 of Pr¶ekopa (1973) G1 is a log-concave function of log p2. 2

Proof of Proposition 2. (i) By Tarski's ¯xed point theorem and Proposition

1 there exists a ¯xed point in e¡ = fN; eQ; (log ¼i; i 2 N)g where eQ is a complete

lattice which is a subset of £i2N [log ci;1)\flog pj log pj¡ log pi · µijg. eP is de¯ned
accordingly. Such a ¯xed point is an equilibrium on eP . It remains to be shown that
one can construct a set eP such that an equilibrium given the restricted set of strategy
pro¯les eP is also an equilibrium given the set of strategy pro¯les <n++.
(ii) Denote ¢max = maxf(µij ¡ µij)i;jg. Note that B0(pi) · W . For pi ¸ pi,

denote B0(pi; pi) = maxbpi2[pi;pi]B0(bpi). By construction, the function B0(¢; pi) is
nondecreasing in pi. Hence, B0(¢; pi) converges to some value in [0;W ] as pi turns
to in¯nity for any value of pi. This limit is nonincreasing in pi. Hence, given B0 for

any ² > 0 there exist prices epi such that logB0(pi; epi) ¡ logB0(epi; epi) < log(1 + ²)
for any pi 2 [epi; epi + ¢max ¡ µij] (8 i 2 N 9j 6= i). Denote the sets of these pricesepi by P+(²). Fix for the moment ². Denote z0 = epi + ¢max. The set P+(²) is

a union of intervals and is unbounded. For some epi 2 P+(²) construct compact
strategy sets eP = £i2N [ci; z0) \ f(pi)i2N j log pj ¡ log pi · µijg. Denote ePi(p¡i) =
fpij(pi; p¡i) 2 ePg. The result is shown if ¯rms do not set prices outside the setePi(p¤¡i). Only prices pi with z0 ¡ µij ¸ pi ¸ z0 have to be considered because other
prices outside ePi(p¤¡i) lead to zero or negative pro¯ts. If there is an equilibrium
in eP with log p¤j · log z0 + µij for some j 6= i then ¼i(pi; p

¤
¡i) = 0 for all pi > z0

contradicting ¼i(pi; p
¤
¡i) ¸ ¼i(p

¤
i ; p

¤
¡i). Suppose log p

¤
j > log z0 + µij for all j 6= i.

Clearly, at a price epi, Gi((log p¤j ¡ log epi)j 6=i) = 1. Since p¤ is an equilibrium price

vector in eP , one has
¼i(p

¤) ¸ ¼i(epi; p¤¡i) = µ1¡ ciepi
¶
B0 (epi) :

A pro¯t maximizing deviation has to be a price pi such that z
0 ¡ µij ¸ pi ¸ z0 for
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all j 6= i. This gives pro¯ts

¼i(pi; p
¤
¡i) ·

µ
1¡ ci

pi

¶
B0(pi)

1

n

·
µ
1¡ ci

z0 ¡ µij

¶
B0(pi)

1

n

It can now be shown that such a deviation is not pro¯table for ² > 0 su±ciently

small and epi 2 P+(²) su±ciently large.
log

µ
1¡ ciepi

¶
+ logB0 (epi) ¸ logµ1¡ ciepi +¢max ¡ µij

¶
+ logB0 (pi)¡ log n

(= log n ¸ log
µ
1¡ ciepi +¢max ¡ µij

¶
¡ log

µ
1¡ ciepi

¶
+ log(1 + ²)

because B0(epi) = B0(epi; epi) and B0(pi) · B0(pi; epi). 2
Proof of Lemma 13. Remark that

@2 log ¼i
@ log pi@ log pj

=
@2 logGi
@qi@qj

((qj ¡ qi)j2N;j 6=i) ¸ 0

because of Proposition 1. Remark also that

@2 logGi
(@qi)2

= ¡
X

j2N;j 6=i

@2 logGi
@qi@qj

:

It remains to be shown that

¡ @2 log ¼i
(@ log pi)2

> ¡ @
2 logGi

(@ log pi)2

() pici
(pi ¡ ci)2 ¡

d2 logBi(pi)

(d log pi)2
> 0 for i 2 N .

These inequalities are satis¯ed if m2 is su±ciently small, i.e. for all i 2 N , m2

satis¯es

m2

±

³
1 +

m2

±

´
<

ezci

(ez ¡ ci)2
2
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