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ABSTRACT

In a model of price competition single-product firms compete for consumers.
Consumers purchase a variable quantity of one of the differentiated goods. The
paper provides results on equilibrium existence when consumers are heterogeneous
in their evaluation of the differentiated goods among each other, their evaluation of
the differentiated goods relative to the outside good, and heterogeneous in income.
Furthermore, I provide sufficient conditions for dominance solvability and monotone
comparative statics.
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mand; Oligopoly Theory; Product Differentiation.



1 Introduction

Consider a differentiated oligopoly with a finite number of one-product firms com-
peting in prices. It is known since the work of Roberts and Sonnenschein (1977)
that there are robust non-existence results of Nash equilibrium in pure strategies.
Suppose that there exists a market with two types of consumers characterized by
their individual demand function. Even if equilibrium existence can be shown in any
market with a single type of consumers non-existence might result in the presence
of two types. The problem of non-existence of equilibrium is due to a lack of restric-
tions derived for market, i.e. aggregate, demand. The lack of restrictions on market
demand can be seen as the most fundamental problem in establishing a general
theory of price competition in partial equilibrium. A foundation of imperfect com-
petition then consists of the analysis of models which go beyond a representative
consumer specification or particular examples with heterogeneous consumers and
which address and partially resolve the problem. Given the importance of imperfect
competition in fields such as industrial organization, international trade, economic
geography, and regional science such models and the insights they provide might be
of interest to a wide audience.

In order to establish existence of equilibrium previous work has concentrated on
models in which the best response correspondences of the firms are convex-valued.
In the framework of discrete choice with unit demand or unit elastic demand, posi-
tive results have been obtained by Caplin and Nalebuff (1991b), Dierker (1991), and
Peitz (1997). The theme of their and my paper is that distributional assumptions
can generate strong regularities of aggregate demand. The main contribution of this
paper is to avoid functional form assumptions on individual demand and to show
the existence of equilibrium in a heterogeneous population.

Discrete choice means that each consumer chooses only one out of a set of differ-
entiated goods and is an interesting case which applies to a wide range of consumer
goods, for which consumers do not have a preference for variety (for an exploration
of discrete choice models of product differentiation see Anderson, de Palma, and
Thisse, 1992). A consumer in my model buys only one type of good in a market
depending on the relative prices between the goods. The quantity which consumers

buy depends on the relevant price. Consumers are heterogeneous in three respects:



(1) they have different critical relative prices when one good becomes more valuable
than another, (2) their demand functions for each good conditional on buying the
particular good differ between consumers and (3) they have different income. To
model demand heterogeneity I take Grandmont’s (1993) parametrization of demand.
Demand heterogeneity is split into two parts: consumers have different rescaling pa-
rameters of the units of measurement compared to a base type and there exist
different base types in the population. Grandmont has shown that heterogeneity of
demand behavior with respect to a parameter gives rise to aggregate demand which
is “close” to unit elastic demand, i.e. the price sensitivity of market expenditure is
small. Note that a market in which total expenditure reacts rather insensitive to
price changes makes the partial equilibrium modeling attractive. This regularity of
the aggregate will turn out to be important in my model of price competition.

Since consummers can switch between the differentiated goods, total expendi-
ture on a single differentiated goods can react very sensitive to price changes. The
heterogeneity in the discrete choice between the differentiated goods is character-
ized by a log-concave density over switching points (following Caplin and Nalebuff,
1991b, and Dierker, 1991). This restriction is useful and encompasses a wide range
of density function (see section 2). In the model strengthening the assumption on
the concavity of switching parameters allows for less heterogeneous demand behav-
ior, which means that aggregate demand is further away from the unit-elastic case.
Income heterogeneity in my model will not place restrictions on aggregate demand
but in contrast to models with unit demand does not lead to problems of equilibrium
existence (see Peitz, 1999).

I interpret the model as a model of short-run competition in prices. The property
that the differentiated goods are not perfect substitutes in the aggregate is due to
the heterogeneity of switching points of the consumers. This heterogeneity can be
explained by intrinsic differences in tastes (as in the literature on product differenti-
ation, see e.g. Eaton and Lipsey, 1989), random decision making (or random utility,
see e.g. Anderson, de Palma and Thisse, 1992), which may be due to heterogeneous
information, or previous consumption decisions leading to heterogeneous switching
costs (for other explanations of switching costs see Klemperer, 1995).

In the model, which is described in detail in section 2, I show that there ex-

ists a pure-strategy Nash equilibrium in prices when there is heterogeneity amongst
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consumers (section 3). I present four formalizations: (1) bounded rational firms
(e-maximizers), (2) bounded rational consumers (with an error in the decision rule),
(3) profit maximizing firms which have to reach a minimal market share, (4) rational
consumers and firms with the corresponding existence results in Theorems 1 to 4.
The main results of the paper is Theorem 4.

Under an additional distributional assumption the associated game (with bounded
rational consumers) is log-supermodular and dominance solvable (section 4). Quasi-
supermodularity allows me to show existence which is not based on the convex-
valuedness of the best response correspondence (Proposition 2). In addition, section
4 presents results on comparative statics which are implied by the properties of
the profit functions: higher marginal costs and increased sales taxes imply higher

equilibrium prices of all firms. Section 5 concludes.

2 The model

I consider a market with a finite number of differentiated goods. The set of goods
is denoted by N = {1,...,n}. Each good i € N has a price p; > 0. There are other
goods in the economy but their prices are fixed. These other goods are captured
by the composite commodity 0 which has the normalized price index py = 1. The
existence of other markets is important because market expenditure is allowed to
be price-dependent. For fixed total income and no other markets this could not be

the case.

Consumers
A consumer with fixed income w > 0 has a utility function with arguments x, z
where z is the collection of differentiated goods x = (x;);en € R77. I consider utility
functions according to which discrete choice will result. In particular, I impose that
preferences in the subspace of differentiated goods are linear for any given quantity

xo and the slope is independent of x.

Uz, zo) = U(Z Pt a;, mo)

€N

where 0;; are parameters with #1; = 0 (see below).
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Each consumer maximizes her utility subject to her budget constraint. This can
be interpreted as going through the following program. She first decides which good
to buy taking only the relative prices p;/p;, ¢,7 € N into account. She buys for
instance good 1 and none of the other differentiated goods if log p; — log p; > 64; for
all 7 > 1. The parameter 0;; is referred to as a switching point and is the logarithmic
critical price ratio at which a consumer is indifferent between goods ¢ and j. At prices
p a consumer is going to buy good i if i’ = index(max{—logpy, (01; — log p;)i=1}).
The set of switching parameters 0,5, ¢, 7, k € N satisfies 0;; = —0j;, O +0;; = 0y;, and
6;; = 0. Hence, a vector 6; = (62, ...,01,) determines all §;;, which are introduced
in order to make the presentation symmetric for the goods i # 1.

At the second step, a consumer chooses according to her utility function u. She
decides on the level of expenditure considering only the price of the good she is
actually buying from.

A consumer is characterized by her utility function u and slopes of the indiffer-
ence curves between the differentiated goods fully determined by 6;. Since I want
to work with demand functions which are continuous, I assume that u is contin-
uously differentiable. In addition, I assume that consumers always choose in the
interior of the consumption set %i when maximizing u. Note that quasi-linear pref-
erences are ruled out by this assumption. Formally, limgz, o(Ou(z;, 29)/0z;) = oo
and limg,_o(Ou(x;, To)/Oxo) = oo. This implies that the nonnegativity constraints
Xo, x; > 0 are automatically satisfied when maximizing the utility function u subject
to pix; + rog < w.

A consumer’s budget constraint reads p-x+x¢ < w where p = (p;);en. Consumers

maximize their utility

max U(z, z) = max maxu(e’x;, x0).
x0,T i€EN  xo,x;
st.prz4+x9y <w s.t. pir; +xog < w

Individual demand functions &;(p, w) for each good i € N are obtained as

arg maxxiu(eeilxi, w —p;x;) if logp; —logp; > 6;; for all j >4
Silp,w) = and log p; —log p; > 6;; for all j <1

0 else.



To avoid correspondences I assumed that the consumer rather buys from the good
with a smaller index at a relative price equal to the switching point 6;;. As consumers
will be assumed to be different and mass points for a distribution over the switching
points will be excluded, demand can be arbitrary at the switching point without
changing the result.

Consumer choice has been derived from utility maximization. As explained be-
low, the approach is compatible with demand functions which are not derived from

utility maximization.

From Individual to Aggregate Demand
Up to now every consumer was described by a collection of switching points 6,
an income w > 0, and a utility function u. Along the lines of Grandmont (1987,
1992, 1993) I define classes or types of consumers by a specific parametrization
of preferences or demand and consider heterogeneity with respect to a parameter
inside such a class.! Only differences within each class will play a role. Demand
functions are parametrized as follows. A consumer is said to be of type a € A
if there is a rescaling parameter 3 € R such that u(e ™z, ) coincides with the
utility function of the base consumer and if the consumer has the same income as
the base consumer. In an abuse of notation I now introduce more arguments into
the utility function. The utility function of a base consumer of type a is written
as u(a,0,x1,29). The value of a utility function of a consumer with parameter (3
is written as u(a, 3,21, 20) = u(a,0,ePx;,20). Conditional demand functions are

((a,B,p1) = arg max,, u(a, 5,x1,w — pyxq). It follows that

C(av ﬁ:pl) = GBC(CL, Oa eﬂpl)‘

Consumers of the same type a have the same conditional demand function { up to a
rescaling of the units of measurement. Each consumer of type a can now be described
by a rescaling parameter (, a generating demand function (, and parameters of
switching ;. Since I am only working with conditional demand functions ( it does

not really matter whether they are derived from utility maximization or reflect, for

1Such a parametrization has been introduced by Mas-Colell and Trockel (1977) and further
used by Dierker, Dierker, and Trockel (1984). See in particular Grandmont (1992) for references
on related literature.



instance, rules of thumb. Individual demand is

gi(av ﬁ: elap) = Xz(pa 9@>C(a7 ﬂ - gilapi)
where 6; = (0;1,...,6;i-1,0;41,...0;,) and x; is an indicator function defined as

1 iflogp; —logp; > 0;; for all j > 1
xi(p, 0;) = and log p; — log p; > 6;; for all j <1

0 else

Consumers of the same income are heterogeneous in two respects. They have
different switching points and their demand functions are different. Assumptions on
the population are formally stated for later reference. (A.1) contains assumptions
on distributions over the switching points (6;;);en,ji. Denote ©; = Xjen ;0,5 0]
e (A.1). For all i € N: there exist continuous distribution functions G; over

0; € R"! with G;(0) = 1/n. G; has a density g; which is positive and contin-
uously differentiable on int ©;. g; has bounded support ©;, i.e. 0;; < Qij for
some j € N, j # i implies G;(6;) = 0, and 6,; > 0;; for all j € N, j # i implies
Gi(0;) = 1. g; and 0g;(0;)/00;;, j # i, are uniformly bounded from above on
int ©,.

For convenience, I assume that G;(0) = 1/n which is not restrictive because
I am free to choose the units of measurement of the differentiated goods. I want
to work with twice continuously differentiable profit functions. For this reason the
differentiability assumptions are made. The assumption that g; is positive on int
©, implies that (0/06,;)G;(6;) # 0 for all j # i. Hence, I will analyze a model of
“global competition”, i.e. a price change of a differentiated good has an effect on
the demand of all other differentiated goods.

I assume that g;, i € N has a bounded support because I need that mean expen-
diture on a good turns sufficiently fast to zero for its corresponding price turning to
infinity while holding the other prices fixed. The assumption of a bounded support
says that for given prices p_; one can always find a price p; sufficiently large such that

mean expenditure on good 7 is equal to zero. I make use of this assumption in order



to establish bounds for the price-sensitivity of mean expenditure and in order to con-
struct compact strategy sets. For the latter it is convenient but not necessary (see
Caplin and Nalebuff, 1991b, for a result with unbounded support). If the intervals
[Qij,_i]‘] degenerated to a single point all consumers would be identical with respect
to the switching point. In such a case also mean expenditure is discontinuous; it is
the Bertrand case with homogeneous goods. On the other hand, if, for all i € N, g;
had unbounded support there would be a positive demand left for any price combina-
tion p and each good with its index in N. The assumption of a rectangular support
is made for convenience; it is only important that the support is convex. Note that
for any price vector p, > .y Gi = 1. Denote 0; = (0i5,0;,—;). 09i(0;,0i—;)/00s
is defined as hmgij\gij 0¢;(6;)/06;; and agi(gij,ﬁi,,j) /00;; = limgij o 09;(6;)/00;;.
Partial derivatives of GG; are defined accordingly on the boundary.

Important for the calculations is stochastic independence of the three compo-

nents describing the population of consumers.
e (A.2). a, (3, and 6, are stochastically independent.

(A.2) implies that consumers in a particular segment of the differentiated mar-
ket, formalized by 6, do not systematically differ from the rest of the population in
their expenditure functions in the market. The next assumption is made in order

to integrate over individual demand functions.

e (A.3).
(1) A is a separable metric space of types, i is a probability measure on A.
(2) For each type a there exists a conditional distribution over § with density
f.
(3) Income w® > 0 depends continuously on type a and average income is

finite, i.e.

W = / wu(da) < 0.
A



Under (A.1)-(A.3) mean demand of good i reads
&@z=///mn 0,0~ 0, i) ulda) F(5)5 gs(6,)d0

= — B(pi, eil)gi(9i>d9i

Pi J x;en il log pj—log pil

where
B(pi, 611) //mﬂ%unﬁ%><mw@w.

denotes conditional mean expenditure of type ;. It will be important to show
that conditional mean expenditure reacts slowly to a price change. In the work of
Dierker (19991) and Caplin and Nalebuff (1991b, subsection 8.2) it was assumed
that conditional mean expenditure is a constant. In this paper I do not make such
an assumption or any shape assumptions on individual demand functions (for a dis-

cussion see the conclusion).

Remark 1 ;From the definition of individual demand it follows that conditional
mean expenditure B(p;,0;1) only depends on logp; — 0;1, i.e.

0B(pi,0i1) O0B(pi,0i1)

=0.
001 dlog p;

Firms
Firm behavior is standard: good ¢, i € N, is produced by firm ¢ with constant
marginal costs ¢; > 0. Each firm faces a mean demand function X;(p) depending on
the prices in the market. Each firm is a price setter. The strategic variable, price
p;, is chosen as the best response to the prices of the other firms. For prices above

marginal costs firms will satisfy demand. Profits are given as

mi(p) = (pi — ci)Xi(p), i € N.

Equilibrium
In the paper I look at pure-strategy Nash equilibria in prices. A pure strategy
Bertrand-Nash equilibrium is a vector of prices p* € ', such that for all i € N

(p7,7p ) > ﬂ—l(pzyp 7,) for all Di I~ §R++

In other words, p; is an element of the best response correspondence for p* ,.
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3 Equilibrium existence and demand heterogene-
ity

The main problem to show existence in models of price competition is to establish
the quasi-concavity of profit functions. I show this property to hold on a compact
set of prices and prove that firms never set prices outside this set. In particular, I
show that heterogeneous demand behavior implies that mean expenditure B(p;, 6;1)
does not depend strongly on its price.

Inserting mean demand into the profit functions gives profit functions which
depend on prices and the characteristics of the market. It will be helpful to consider
logarithmic profits. Denote By(p;) = B(p;, 0).

Di —

(2

C;
+ log G;((log p; — log p;)jen,jzi) + log Bo(p:)

o ijew,#i[ﬂijJogprlogpi] B(pi, 0i1)gi(0:)d0;
Bo(pi)Gi((logp; —log p;)jen,j-i)

logmi(p) = log

(1)

The profit function consists of four additive terms. The first existence result shows
that an oligopoly with profit functions consisting of the first two terms has an
equilibrium and that the last two terms are negligible under sufficient heterogeneity.
The second result interprets profit functions consisting of the first three additive
terms as the presented model with the only difference that consumers are bounded
rational. The third and fourth result show equilibrium existence for profit functions
as stated in equation (1). I will show that the respective profit functions are quasi-
concave on a compact set of prices. In contrast to Dierker (1991) and Caplin and
Nalebuff (1991b), in specifications 2 to 4 I cannot show that profit functions are
quasi-concave for all prices so that the construction of compact strategy spaces is of
particular importance.

The outline of this section then is as follows: the first theorem establishes equilib-
rium existence with bounded rational firms (subsection 3.1), the second equilibrium
with bounded rational consumers (subsection 3.2), the third existence result holds
for profit maximizing firms which have to satisfy a minimal market share and the
fourth and main result allows for fully rational consumers and firms without re-

strictions (both subsection 3.3). Theorems 1 to 4 say that if the densities over
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switching parameters are log-concave and if demand behavior is heterogeneous then

there exists an equilibrium.

3.1 Bounded rational firms

Considering the four additive terms of the profit function (1) I start with the first

term which satisfies the following concavity property:

Remark 2 The first term log((p; — ¢;)/p;) is concave in log p; for all p; > ¢;. The
second derivative with respect to log p; is bounded from above by some negative num-

ber when prices are chosen from a compact strategy space.

The fact of the negative upper bound of the second derivative on a compact
set will be important below. Because of Remark 2 one only has to worry about
the second to fourth term in the profit function (1). In this paper two kinds of
heterogeneity will be important. First, heterogeneity with respect to 6; implies that
consumers have different relative prices at which they are indifferent between a pair
of goods. Second, heterogeneity with respect to u, formalized by a distribution over
(3, will be crucial in making expenditure less price-sensitive in the aggregate than it
is on the individual level.

First, I make an assumption on the heterogeneity of #; in order to take care of

the second term in (1).

e (A.4). g; is log-concave in 0;, i € N.

In particular Caplin and Nalebuff (1991a) discuss which distributions have log-
concave densities. They also give the relevant references. For example the Normal
and, with parameter restrictions, the multivariate Beta distribution have log-concave
densities. Results carry over to truncations with convex support.

Following the work of Dierker (1991) and Caplin and Nalebuff (1991b) also the

second term is log-concave in logarithmic price if the density has this property. This
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result is stated as Lemma 1 (for the proof see the appendix.). One of the aggregation
theorems of Prékopa (1973) underlies the result. Dierker (1991) and Caplin and
Nalebuff (1991b) were to my knowledge the first who applied the aggregation results

of Prékopa and Borell to models of imperfect competition.

Lemma 1 Assume (A.1),(A.4). Gi((logp; —logp;);zi) is log-concave in logp;.

In this section I analyze profit functions of the form (1) looking for a generalized
version of Nash equilibrium. A pure strateqy Bertrand-Nash e-equilibrium is a vector
of prices p* € '}, such that for all i € N

1

1——{—5 for all pi € §R++

mi(p;,pZ;) = mi(pi, ;)
Firms are not maximizers but do not bother to change their strategy if such a
deviation increases profits by a factor € or less. Firms which are e-maximizers can
be labelled bounded rational. The reason for not fully maximizing profits can be
motivated by measurement errors such as accounting errors (which are proportional
to the level of profit). In the pure Bertrand model Baye and Morgan (1996) obtain
results on e-equilibria (with additive €).

Consequently, equilibrium existence for profit functions, which are the sum of the
first and the second term, implies the existence of e-equilibria if the third and the
fourth term in (1) can be made arbitrarily small. As will be stated by the following
two lemmas this is implied by sufficient heterogeneity with respect to 3.

Assumption (A.5) says that there is a strict lower bound of expenditure B(p;, 0;1)
for all 0;1 € [0,1,0;1]. This means that the aggregate of consumers with a particular
switching parameter spends a positive minimum budget share in the differentiated
market. A similar assumption is also made in Grandmont (1992, 1993) and is needed

in the proofs of several lemmata.

e (A.5). There exists § > 0 such that B(p;,0;1) > 6 W for all p; > 0 and
i1 € [Qilaail]v 1€ N,1>1.
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If there was only one type (a, 3 = 0) in the market, conditional demand of the
form
C(a,0,py) = 6(a)w
P1
6(a) >0, z: Ax R xRNy — R, implies under (A.4) that there is a lower bound
on individual expenditure for all switching parameters from ©. Given a type space
A (A.5) is satisfied if (A.4) holds and if there is a subspace A; C A of positive

measure such that the above equation of conditional demand holds.

+ Z(G,O,p1>,

With (A.6) I assume uniform integrability over 3. The average slope in absolute
value m; serves as a measure of heterogeneity, 0 < m; < oo for distributions with
unbounded support. A small m, stands for a “flat” distribution and thus for a large

heterogeneity of demand with respect to the parameter 3 (see Kneip, 1993).

e (A.6). f is continuously differentiable with f’ uniformly integrable, i.e. there
exists a real number m; such that

/ F BB = mi < oo,
R

The next lemma puts an arbitrarily small bound on the price elasticity of mean
expenditure By(p;).
Lemma 2 Under (A.1),(A.2),(A.5),(A.6) the following inequality holds

0 log Bo(pi) < my

| 0log p; o

Proof.
o(02) / / pieC(a,0,¢p;) p(da) £(3)dB.

Substitute as in Grandmont (1993) r = 3 + log p;

Bolp) = A /A e ¢(a,0,e") pu(da) f(r — logp;)dr

C;BI;)@(;Z;@) B —/%/Aerg(a, 0,€") u(da) f'(r — log p;)dr

14



_ / /A piC(a, B,ps) p(da) f'(B)dr
m W

’dBo(Pi)|
dlog p;

|d10gBo(pi)| < m W <M g
dlog p; Bo(pi) = 6

The lemma implies that |log By(p;) — log Bo(p;)| can be made arbitrarily small
on a compact set of prices if the average absolute value of the slope of the density
is small, i.e. if m; is small. When price p; is chosen from a compact strategy set
[¢i, 2] then, for firm i, deviations from equilibrium profits are bounded above by the
factor (z — ¢;)(m4/6) when only the third term is taken into account.

The last term of profit function (1) is rewritten as

log | 1+ ijEN,j#i[Qij710gpj_10gpi](B(pi7 9i1> B Bo(pi»gi(gi)dei
Bo(pi)Gi((log pj — log pi) jen, j#i)

) = log(1 + R)

which implicitly defines R. This term can be made arbitrarily small if R is close to

Zero.

Lemma 3 Under (A.1),(A.2),(A.5),(A.6). Then R can be bounded in absolute
value by any positive number if my s sufficiently small, in particular, the bound

(01 — 8;1)m1 /6 is never broken by firm i.

Proof. Since by (A.5) By(p;) is bounded from below it is sufficient to show that
|B(pi, 0i1) — Bo(p;)| can be made arbitrarily small. Because of Remark 1, (A.1),
(A.2), (A.5), and (A.6) imply that

8 lOg B(pl, 911)

<mW.
’ 8911 ’ >m
Consequently,
9.
11 0log B(p;,t
|B(pi, 1) — Bo(pi)| < / %‘dt‘

0

< OalmW

15



Since 6;; has compact support this term can be made arbitrarily small. An explicit

bound depending on the measure of heterogeneity is derived by the following

|R| ‘ijEN,j;éi[Qijlegpj ~log p;] 02| ma W :(0:)dO
6WGi((log pj — log pi)jen,ji)

O — 0;1)g:(0;)d0;

my ijeN,j;&i [0;;log p; *IOgPi}(

- 6 G;((logpj — log p;)jen,ji)
= (gil_Qil)%' U

On a compact set of prices Lemma 1 is used to show the existence of an equi-
librium for profit functions consisting of terms 1 and 2. With Lemmas 2 and 3 one
can show that such an equilibrium is an e-equilibrium. In the proof I have to show
that firms will choose from a compact set of prices. In order to show this I use that

the switching parameters have a compact support. I define

log z = max { (Ej —8,;; +log n 1 + log cl-) }
n—= i,JEN, ji

Theorem 1 says that under the above assumptions an e-equilibrium exists if

consumers are sufficiently heterogeneous with respect to their conditional demand

functions.

Theorem 1 Assume (A.1)-(A.4). There exists an equilibrium for profit functions
mi(p) = ((pi — ¢i)/pi) Gi((logp; — log p;)j-i). Assume in addition (A.5) and (A.6).
For any € > 0 there exists a pure-strateqy Bertrand-Nash e-equilibrium if my is suf-

ficiently small.

Proof. First, equilibrium existence for profit functions as the sums of the first
and second additive term of the right-hand side of (1) is shown for given compact
strategy sets. Lemmata 1 and 4 (the latter in the Appendix) then say that these
profit functions are quasi-concave for given compact strategy sets. In Lemma 5
Kakutani’s fixed point theorem is applied for given compact strategy sets. Lemma
6 shows that firms will always choose out of these strategy sets. Lemmata 4 to 6

are delegated to the appendix. For compact strategy sets Lemma 2 implies that the
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third term of differences of logarithmic profit function (1) can be made arbitrarily
small for m, sufficiently small. Lemma 3 implies that differences in logarithmic profit
functions of the fourth term are arbitrarily small for m; sufficiently small. Hence,
by Lemmata 2 and 3 an equilibrium strategy for profit functions as the sums of the
first and second term of (1) are e-maximal, ¢ > 0, for m; sufficiently small: De-
note equilibrium profits of firm ¢ with 7} and profits after a price change 7., denote
log 2 = log z — max;x; §;;. Since p; < z a deviation to p} > 2’ cannot be profitable.

For p) < 2/, logwl—log 7} < (2 —¢;)(my/6) —2log(1— (0,1 —0,1)(m1/06)) < log(l+e)

for m; sufficiently small because log(1 + |R|) < |R| < —log(1 —|R|). O

3.2 Bounded rational consumers

At this point I present and discuss an alternative formulation of consumer behav-
ior which is not fully rational but may be called bounded rational. Consumers
buy according to the same conditional demand function ((p;, w) independent of the
switching parameters 6.

Each consumer splits the decision problem into two parts (two stage decision
problem): first how much to demand of a good in the differentiated market and
second to decide which of the differentiated goods to buy.? Ex ante goods are
identical, i.e. consumers maximize u(zg,» ., x;) under their budget constraint.
Their demand without an error is &(p, w) = ((p;,w) if p; < p;, for all j # i, and
&(p,w) = 0if p; > p;, for some j # i. Introducing a vector of errors e;, i € N,
which is drawn independently across consumers from a probability distribution with
compact support, generates preferences for a particular differentiated good. If the
realization of e; > 0, a consumer is willing to pay a higher price for the good than
without error. Consumers do not make systematic errors if Fe; = 0 for all i € N.
Define switching points 6;; = e; — ¢;. Demand with the error included is assumed
to be of the form &(p,w) = ((p;,w) if logp; < logp; — 6,5, for all j # 4, and
&i(p,w) = 0if logp; > logp; —0;;, for some j # i. This means that consumers derive

demand for good i conditional on buying none of the other differentiated goods from

2Note that this corresponds to the two-stage budgeting in applied demand analysis (see e.g.
Deaton and Muellbauer, 1980).
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maximizing u(z;, o) s.t. p;x; + o < w but make an error in the decision which
good to buy, i.e. they do not necessarily buy the cheapest one in the market. This
may be interpreted as a consumer being imperfectly informed about prices when
making the decision which good to buy but once this decision is made (trip to the
firm’s factory) the consumer observes perfectly the price of the good chosen and
maximizes utility. Errors in the decision rule have been discussed in the literature

e.g. in Tversky (1972). My formulation leads to profit functions

Pi — G

)

log m; = log +log By (pi) + log Gi((log p; — log p;) j£i)- (2)

e (A.7). f is twice continuously differentiable with f’ and f” uniformly inte-

grable, i.e. there exists a minimal real number my such that

L1704 < ma<
and /%]f"(ﬂﬂdﬁ < my < 0.

Under this assumption which is stronger than (A.6), my serves as the measure
of demand heterogeneity. The following lemma provides bounds for the price sen-

sitivity of mean expenditure (expressed as elasticity and sensitivity of the elasticity).

Lemma 7 Assume (A.1)-(A.3),(A.5),(A.7). The following inequalities hold

’dlogBO(pi)’ ma

dlog p; - 6
d?log By(p;) my my
L ogBopi), o M2 (), M2
dlogp)? | S (1)

Proof. As in the proof of Lemma 2 I substitute » = § + log p; in the expression of
By(p;). Taking first and second derivatives as in Grandmont (1993) gives

- 7 < |/]/
| dlog p; < m
dQBO(p’) //
— ) = e"((a,0,e") plda) f'(r —logp;)dr < moW.
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Consequently,

|d10g By(p;) | ms

dlogp; o
|d2logB0(pi)| . PBo(pi) 1 (dBo(pi))2’
(dlogp;)? By(pi) (dlogpi)*  Bo(pi)* \ dlogp;

mo mo
< 21+ o
< 513
Theorem 2 Assume (A.1)-(A.5),(A.7). In the model with profit functions (2) there
exists a pure-strateqy Bertrand-Nash equilibrium if moy is sufficiently small.

Sketch of the proof. Again I have to show that firms will choose from a com-
pact set of prices. In order to show this in Lemma 8 in the appendix, I use that
mean expenditure is bounded, that ms is sufficiently small, and that the switching
parameters have a compact support. I need that ms is sufficiently small in the
case that there does not exist a price p; above which the mean expenditure func-
tion By is monotone. In the case of monotonicity above some price level, I can do
without ms being small and bound differences in mean expenditure due to the con-
vergence of mean expenditure (which follows from the bounds of mean expenditure).
By Remark 2 the second derivative in logarithmic price of the first term of (2) is
bounded by some negative number. Hence, since by Lemma 7 the second derivative
of the third term can be made arbitrarily small in absolute value one can show the
quasi-concavity of profit functions for ms sufficiently small and g log-concave on the
compact set of prices from which firms will choose according to Lemma 8 in the

appendix. O

Note that in the construction of compact strategy sets (Lemma 8) I use the
condition that ms is small. This allows me to consider the same compact strategy
set as in the previous subsection. From the argument in part (i) of the proof of
Proposition 2 below it follows that it is not necessary to assume that ms is small in

order to construct compact strategy sets.

Remark 3 At this point it seems to be appropriate to discuss the trade-off between

the two different kinds of heterogeneity. As stated in Remark 2 there exists a negative
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number such that 9% log(p; —c;)/p;)/(01og p;)? is bounded from above by that number
on a compact set. Note that this makes it possible to show equilibrium existence even
if G; is not log-concave. With profit functions (2) one can show equilibrium ezistence

as long as there exists some k > 0 such that
0?log Pt 2 og G
(Ologpi)* ~ (Ologpi)* —

on the compact set X;en|c;, z] and mo sufficiently small, i.e.

%<1+%></€.

—K

Denote the set of prices P = X;enlci, 2] N {(pi)ien|logp; — logp; < 6;;} and
denote the Hessian of log G; with H; = (9;;G;) and ¢ = (1,...,1)T € ®"!. Note
that H; is negative semi-definite if and only if log G; concave. The negative semi-
definiteness of H; implies that ), Zj Dijlog Gy = M Hyu < 0. G, is called R—strict
log-concave if for the Hessian H; of log G; the inequality ¥ H;c < —& holds.

Remark 4 If the second derivative of log G; in logp; is sufficiently negative then
conditional mean expenditure is allowed to react more sensitive on prices, i.e. My
18 not necessarily “small”. Hence in order to allow for less demand heterogeneity
(mg not “small”) G; has to be k—strict log-concave. For kK big, the inequality cannot
be satisfied for densities g; over 8; if their supports are “large”. Restricting the
support implies that consumers are more homogeneous with respect to their switching
parameters. In addition to the possibility of a big k, a smaller support of 68; makes
the price setting more competitive and the compact set of prices P smaller. Hence,
also the second derivative of the price-cost margin (in logarithms) can be bounded
from above by a negative number which is greater in absolute value as the support is
reduced.

Remark 5 In a duopoly there exist kK > 0 such that the assumption of log-concavity
of g1, (A.4), implies that G; is k—strict log-concave if g1(0) is bounded from below
on [0, 0], which is for example satisfied if g is uniform or truncated Normal. This

18 shown in the appendiz.
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To conclude this subsection, I summarize the previous Remarks 3 and 4 by a
suggestive statement: in order to show existence of equilibrium a less diverse expen-
diture pattern (ms bigger) has to go hand in hand with less diversity of errors in the
decision rule (support of g; smaller). An additional result on equilibrium existence

is provided in subsection 4.1 below.

3.3 Rational firms and consumers

In this subsection I first consider profit functions of the form (1) in which firms
are profit maximizers under the constraint that they sell to a minimal share of
consumers, i.e. G; > e. Afterwards this restriction on the strategies is no longer
imposed.

It will be useful to rewrite profit function (1).

i Xjen,j#il0;5:l0g pj—logp;]
i — Ci
— logp — + log Bo(pi) + log<Gi((logpj — log pi)jzi) + (3)
B(pi, 0i1) — Bo(pi
X jen,jil0;;,108 p;—log p;] 0(p1>

As is known from Lemma 7 the second derivative of the second term can be made
arbitrarily small. Although G; is log-concave (by Lemma 1) the third additive term

in (3) is not necessarily concave. To save some space let me denote

D(logp;) = Gi((logp; — logpi)jxzi),
E(logpi) = / (p Bl> ' O(p>
Xjen,j#il0;5.log pj—log p;] 0(p’)

In order to show that profit functions are log-concave on a compact support I
have to show that second derivative of log(D(q;)+E(q;)), ¢; = log p;, can be bounded

from above by some positive number arbitrarily close to 0. Hence it has to be shown
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that for any € > 0 there exists an my such that

1 d2D(Qi) dQE(Qz‘) , Ny dD(q;) | dE(q) ? ¢
<D<qz->+E<q@->>2(< T ) P+ s - (T T )><
(1

(A.4) implies that (d>D(¢;)/dq?)D(q;) — (dD(g;)/dg;)* < 0. Consequently, under
(A.4) it has to be shown that

d fq;q” (D(a) + Elq)) + L2 Z;q”mqn - 2—dDd(f") di(f") - (%f;”)
< €(D(g) + BE(g))> (5)

Without a positive lower bound on D(g;) the right-hand side of this inequality cannot
be bounded from below by some positive number. This implies that without further
assumptions one cannot find, for all € > 0, an my (depending on ¢) such that this
inequality is satisfied for all prices in P. As shown in Lemma 9 in the appendix, if
there is a positive lower bound for D(g;) one can make the left-hand side arbitrarily
small and bound the right-hand from below by some positive number.

With a minimal market share I obtain a positive lower bound for D(g;). Imposing
a minimal market share is appropriate in markets in which firms have to have a
critical mass in order to survive. Results are unaffected when instead of consumer
mass, expenditure shares, i.e. p;X;/(> ipiX ;) > €, or demand shares are considered.
One justification can be that firms are run by managers and managerial incentives
include minimal market share (due to dynamic considerations). Such markets also
include markets with strong network externalities where there exists a critical market
size below which consumers do not find the product useful.?

If the cost differences of the firms are sufficiently similar with respect to the
consumer tastes, there exist minimal market share such that firms can make profit

whatever the prices (above marginal costs) of the competitors are.

3This motivation leads to problems when formalized: the profit function of low price firms
would need modifications because these firms can push a competitor below critical size and thus
discontinuously increase their demand. Hence in order to translate my result into a model with
network externalities the discontinuity must be sufficiently small and sufficiently distant from any
equilibrium price vector.
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e (A.8) There exists a ¢ > 0 such that

logc; —loge; € (8 +p,0i5 — 0),4,j € N,i < j

Theorem 3 Assume (A.1)-(A.5),(A.7),(A.8). There exist minimal market shares
such that the model with minimal market shares has a pure-strateqy Bertrand-Nash

equilibrium in which all firms are active if mo is sufficiently small.

Sketch of Proof. Similar to the one of Theorem 2. (A.8) implies that all firms
are active in any candidate equilibrium and can reach some minimal budget shares
€; given prices above marginal costs by the competitors, G;(logc; —logc;) = ¢ >
Gi((8;; +¢)jzi). Due to Remark 2 and Lemmata 4, 7, and 9 (in the Appendix) one
can show the quasi-concavity of profit function on a compact set of prices if my is
sufficiently small. In order to bound the second derivative of log(D(q;) + E(g;)) by
a positive number arbitrarily small on a compact set for ms sufficiently small I need
the log-concavity of G, arbitrarily small bounds on differences | B(p;, 6i1) — Bo(ps)|,
and first and second derivatives, and uniform bounds for g; and its partial deriva-
tives. By Lemma 10 in the Appendix there exists such a compact set in which the
prices of profit-maximizing firms stay whatever the price-setting of the competitors.
O

With this result equilibrium existence is proved in a world with rational firms and
consumers. The trade-off between the different kinds of heterogeneity as pointed out
in Remarks 3 and 4 also holds in this case. I assumed that firms satisfy a minimal
market share. This restriction on the strategy set can be avoided under a stronger
assumption on G;. Since the distribution function G; takes any value between 0 and
1 in order to show that profit function ; is log-concave in ¢; it would be sufficient
to show that

(£2) 4 E20Y (pig + pla) - (G2 + LZL) o

This inequality holds for prices such that a firm has a negligible market share

under the following assumption:
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e (A.9). g; is uniformly bounded from below on int ©;, i € N.

This assumption implies that 0G;((¢; — ¢i);j=i)/0q; evaluated at 6, € {6; €
©i[3j # i : 05 = 0;;} is bounded away from zero and so is dD(g;)/dg;. For ex-
ample, any truncated Normal distribution on ©; satisfies (A.9).

Under the additional assumption (A.9) equilibrium existence can be shown with-
out the restriction of minimal market shares. I now state the main result of the
paper. Like the previous results it formalizes the idea that aggregation reduces the
price sensitivity of market expenditure and log-concave densities imply shape re-
strictions on the demand for each differentiated good so that profit functions are
“well-behaved” on a sufficiently large set of prices. It is the last step to show that
this idea is compatible with fully rational consumers and firms without the need to

impose any restrictions on the firms’ strategy spaces.

Theorem 4 Assume (A.1)-(A.5),(A.7),(A.9). There exists a pure-strategy Bertrand-
Nash equilibrium if mo is sufficiently small.

Sketch of Proof. Follows from the proofs of Lemmata 9 and 10, Theorem 3 and
the argument above. O

To summarize this section, I provide a table which presents the assumptions for
the results in the different specifications.

specification assumptions
e-maximizing firms (3.1) (A.1)-(A.6), my “small”
bounded rational consumers (3.2) ( o , My “small”

A.1)-(A.5),(A.7)
firms with minimal market share (3.3) | (A.1)-(A.5),(A.7),(A.8), my “small”
A.1)-(A5),(A.7),(A9

Table I: existence of equilibrium

rational consumers and firms (3.3) ( .9), my “small”

4 Further results with bounded rational consumers

In this section I derive further results on existence, uniqueness, and monotone com-

parative statics in which I make use of the properties of market demand. I restrict
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the analysis to the simplest case in which uniqueness can be obtained, i.e. I consider
the case in which consumers are bounded rational and make errors in the decision
making as specified in subsection 3.2. For the specifications in subsection 3.3 the
analysis is more complicated but possible along the same lines in order to show

uniqueness.

4.1 On equilibrium existence and uniqueness

For more than two firms, I assume in addition that the distribution functions G;
satisfy the weakly dominant diagonal property defined below. This implies that the
associated game is quasi-supermodular (Proposition 1). Equilibrium existence can
then be shown independent of the demand heterogeneity measured by msy (Propo-
sition 2). Assuming that differences in marginal costs lie in the support of the
distribution over the switching points guarantees that all firms are active and make
profits in an equilibrium. The uniqueness of the equilibrium (Theorem 5) is then
proved by showing that logarithmic payoff functions satisfy the dominant diagonal
property. The game is dominance solvable.

It is convenient to write the model as the game I' = {N, P, (m;,i € N)} where
N is the finite set of firms, m; the profit function of firm ¢, and P is the set of
strategy profiles, which was defined as X;cn|ci, 2] N {(p;)ien|logp; — logpi < 0}
Denote P;(p_;) the strategy set of firm ¢ given p_;. When prices in P are replaced
by logarithmic prices the set is denoted by (). The game with log-profits as payoff
functions and logarithmic strategy sets is denoted by IV = {N, @, (logm;,7 € N)}.
It will be shown that the model is a particular log-supermodular game.

The game I is smooth supermodular if ) is a complete lattice and logm; is
twice differentiable with 92 log 7;(p)/0log p;0logp; > 0, for all i,j € N, j # i, and
p € P (Topkis’ Characterization Theorem). The game I exhibits strong strategic
complementarity if 9*logm;/dlogp;dlogp; > 0, for alli,j € N, j # i and p € P.*

4The fruitfulness of the theory of supermodular games for economics has been recognized by
Vives (1990) and Milgrom and Roberts (1990b). One of the standard examples are simple models
of price competition with differentiated products. In the present framework strategy sets depend on
the choices of the other players which does not create any problems here (for a definition and some
results see e.g. Milgrom and Roberts, 1990a). For an interpretation of strategic complementarity
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In this section I introduce an additional assumption on the distribution of the
0;, 1 € N. Recall that hﬁ;j is an element of the Hessian of log G;.

e (A.10). Foralli,j € N, j # i, H; has the following weakly dominant diagonal

Bes1 =Y hig,i=1,...,n—1.
ki

By Lemma 1 it follows from (A.4) that G; log-concave, which implies that héj <
0. If the cross derivatives hfcj > (0 at some point, then h;y needs to be sufficiently
negative for the weakly dominant diagonal to hold. Note also that in the case of a
duopoly the log-concavity of G;, n = 1,2, implies that (A.10) is trivially satisfied.

The first result says that under the additional assumption (A.10) the game I is

quasi-supermodular.

Proposition 1 Assume (A.1)-(A.4),(A.7),(A.10). The game I" is smooth super-
modular on P.

Proof. I check the conditions for smooth supermodularity of I'V. Given p_;, each
price is chosen from a compact interval in ,. By construction, () is a complete
lattice. For i € N, logm; is twice continuously differentiable (by the assumption of

differentiability and due to the construction of ). Cross derivatives are

0% log ;
alogpialogpj(p) > 0 fori,jeN,j#i
as M( _ M(( )iz
alogpi(?logpjp - 0q:04; qj — Qi) j#i
0?log G;
- ((g5 — i) i)
kz?gi Oqr0q; / J
Py

see also Bulow, Geanakoplos and Klemperer (1985).
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by (A.10) and Lemma 11 in the Appendix which says that G; is log-concave in log p;

on its support. O

Note that quasi-supermodularity can be shown on any set which is a complete
lattice and which is a subset of x;en[ci, 00) N {p|logp; — logp; < 0;;}. Note also
that neither (A.5) nor my “small” are assumed. This implies that one can show
equilibrium existence independent of the individual conditional demand functions
in the population although profit functions are not necessarily quasi-concave (even
on a compact set such as P) if one can find a compact set of strategy profiles. This

is always possible.

Proposition 2 Assume (A.1)-(A.4),(A.7),(A.10). There exists a pure-strategy

Bertrand-Nash equilibrium in the specification with bounded rational consumers.

The proof is delegated to the appendix and is based on Tarski’s fixed point theo-
rem. In the duopoly, the result is more general than Theorem 2. For more than two
firms (A.10) is not implied by log-concavity of g; and the assumption on switching
parameters (A.10) replaces assumptions on the heterogeneity of conditional demand
functions. Along the same lines equilibrium existence can also be shown in specifi-
cation 1 with bounded rational firms.

Below I establish the uniqueness of equilibrium. The following assumption says

that marginal costs of the firms are not allowed to be too different.

e (A.11). logc; —loge; € (0,5,

i), 1,7 € N,i < j.

(A.11) is weaker than (A.8). Under the assumption corner solutions can be ex-
cluded, i.e. all firms ¢ € N will have positive market shares in equilibrium charging

prices above there marginal costs and thus make profits.

Lemma 12 Assume (A.1)-(A.3),(A.11). If there is a pure-strategy Bertrand-Nash

equilibrium all firms are active and make positive profits in equilibrium.
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Proof. Suppose that exactly one firm is inactive and show that this cannot be an
equilibrium. The same argument applies for more than one inactive firm.

(i) Assume first that the inactive firm i chooses a price p; above marginal costs such
that the other firms together serve the whole market. They will choose their prices
such that log p; —log p; = 0,; for all j # i. Such a price p; cannot be a best response
for firm ¢ because by decreasing its price it can make positive profits.

(ii) Let firm ¢ choose its price equal to marginal costs so that the competitors can
only serve the whole market by setting some of the prices below marginal costs.
This cannot be a best response of all competitors. They will set their prices above
marginal cost because they still can obtain some share of the market. In such a
situation it cannot be optimal for firm ¢ to charge a price equal to marginal cost.
(iii) Clearly, firms do not set prices below marginal costs in equilibrium because at

least one of these firms has a positive market share and thus makes losses. O

Consequently, for mo sufficiently small every equilibrium price p* € int P and
the analysis can be restricted to prices in P.

Lemma 13 says that if there is sufficient heterogeneity of demand behavior mea-
sured by small mo, log-profits satisfy the dominant diagonal property. It is the last

step to show uniqueness of the equilibrium. The proof is delegated to the appendix.

Lemma 13 Assume (A.1)-(A.5),(A.7),(A.10),(A.11). If mq sufficiently small, then
log-profits satisfy the dominant diagonal property in log-prices on @, i.e.

0" log m; 0% log m;
T (Aloon)2 - fori.ie N. i<
<810gpi)2(p) ’ jeNZm"alngi@logpj )] fori,j €N, j#1

If (A.10) is strengthened by making the left-hand side of the inequality by some
€ greater than the right-hand side one can allow for less demand heterogeneity, i.e.
msy can be greater. Proposition 1 and Lemma 13 put together give the uniqueness
of equilibrium. A game is called dominance solvable if there exists only one serially

undominated strategy profile.
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Theorem 5 Assume (A.1)-(A.5),(A.7),(A.10),(A.11) and my sufficiently small.
The pure strategy Bertrand-Nash equilibrium p* is unique. The original game I’

1s dominance solvable.

Proof. By Lemmata 8 and 12 there does not exist an equilibrium outside the
interior of P. Furthermore, prices outside P cannot belong to the set of serially
undominated strategy profiles. In particular, one can use the proof of Lemma 8
in order to show that any price vector p with some component p; > z, i € N, is
serially dominated. On P the dominant diagonal property holds. It implies that
there exists a unique pure-strategy Nash equilibrium p* in the game I". Since, in
addition, the game is smooth supermodular it is dominance solvable by Milgrom and
Roberts (1990b, Theorem 5). Since serially undominated strategies are obtained by
ordinal comparison and the transformation of the payoff functions is strictly increas-
ing, the strategy profile p* is the unique serially undominated strategy profile of the

game [ and, consequently, the unique pure-strategy Bertrand-Nash equilibrium. 0O

It is well known that dominance solvability gives a strong prediction of play.
In particular, only serially undominated strategies can be rationalizable (as defined
by Bernheim, 1984) and only serially undominated strategies can be played with
positive probability at a pure-strategy Nash equilibrium, mixed-strategy Nash equi-
librium or correlated equilibrium (see Milgrom and Roberts, 1991, on rationality
requirements for the firms to play the dominance solution see Tan and Werlang,
1988). Hence, p* is the unique rationalizable strategy profile and there are no other

mixed-strategy Nash or correlated equilibria.

4.2 Monotone comparative statics

In the second part of this section I provide comparative statics results. Equilibrium
prices are weakly increased as unit costs of one firm rise or as output taxes are
increased. Under strong strategic complementarity they are strongly increased.

To obtain comparative statics results I look at a family of games. Let the payoff
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functions and strategy sets be parametrized by a parameter 7 € RX. Games in this
family differ only in the value 7 takes. Denote Q;(q_;) > Q%(q_;) if the maximal and
the minimal element of ();(q_;) is larger than or equal to the corresponding element
in Ql(q-1).

Suppose that I'(7) = {N,Q(7),(logm(-,7),i € N),7 € RE} is a family of
smooth supermodular games satisfying 9%logm;/0logp;0m, > 0 for all i,k and let
Qi(q—i,T) be a compact interval in R. If log p*(7) is the unique pure-strategy Nash
equilibrium of the game then it is easy to show that 7, > 7/ for all k and Q;(¢—;, 7) >
Qi(q—i, ') for all ¢ imply that p*(7) > p*(7') (by Theorem 5 in Milgrom and Roberts,
1990a, and Theorem 6 in combination with Theorem 5 in Milgrom and Roberts,
1990b, see also Cooper and John, 1988).

A family of games I"(7) exhibits multiplier effects in the parameter 7 if the
optimal reaction of each player is larger than its optimal reaction given the strategies
of the other players, i.e. if dlogp;/dm, > dlogp;/dm|,_, > 0 for all firms and
> ( for at least one firm. It is easy to show the following result: assume that
a family of games I'(7) has a unique pure-strategy Nash equilibrium for each 7,
is smooth supermodular, exhibits strong strategic complementarity, and satisfies
0?log m; /0 log p;Omy, > 0 for all 4, k with strict inequality for at least one firm and let
all strategy sets be nondecreasing in 7 then the family of games exhibits multiplier
effects. The magnitude of the multiplier effect depends on the sensitivity of strategy
choices to shocks and on the strength of strategic complementarities.

The first comparative statics result is obtained for changes in the marginal
cost ¢; of firm j. What happens to equilibrium prices p* when unit cost c; is
increased for some j € N? I look at the family of games I'(c;) = {N,Q(c;),
(log mi(p; cj),i € N),cj € [¢;,¢5]} where Q;(g—i,c;) is the strategy set of firm 7. Un-
der the assumptions of Theorem 5 (with (A.10) valid for the range of cost parameters
under consideration), equilibrium prices p* are nondecreasing functions of unit cost
¢; of firm j € N because for ¢,, > ¢, Qi(q—i,c;) > Qi(q,i,c;-) for all : € N and

02 logm;

Ologm .,
0log p;Oc; Xaat
o521 ) )
L. b s
dlog p;dc; (pj — ¢)
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If, in addition, H;, i € N, has a strict dominant diagonal then the game I" ex-
hibits strong strategic complementarities and the family of games exhibits multiplier
effects: a cost shock to one single firm is transmitted into price increases of all firms
in the market.

Suppose that the revenue of firm ¢ is taxed by a tax ¢ per unit of output sold.
Profits of firm ¢ are

pi—t—g¢

mi(p,t) = By (pi)G((log p; — log pi)jzi)

For firm 4 the tax simply is an additional cost. If assumption (A.10) is adjusted such
that unit costs including tax satisfy (A.10) for ¢ € [0,¢], equilibrium prices p* are
nondecreasing functions of the tax per unit ¢, t € [0,¢]. If one requires in addition
the strict dominant diagonal of H;, i € N, then the family of games I'(¢) exhibits
multiplier effects. The result remains unchanged if firms face different taxes. Results
are analogous in the case of revenue taxes.

If profits are taxed or the mass of consumers changes (i.e., multiplicative change),
equilibrium prices are unaffected. An additive demand shock leads to monotone
comparative statics but it is not clear what this shock means in terms of the variables

at the individual level.

5 Conclusion

In models of imperfect competition the existence of equilibrium is far from guar-
anteed. Previous literature has looked at discrete choice models under particular
functional form assumptions of individual demand. In this paper I replace func-
tional form assumptions by heterogeneity of demand behavior. In particular, I show
that aggregation along the lines of Grandmont is compatible with the discrete choice
setup which is widely used in the theoretical and empirical literature. Future re-
search has to show whether a more general version of aggregation can give rise to
restrictions which are useful for the analysis of markets in which firms strategically
interact. To summarize the main findings of this paper, aggregation of a heteroge-
neous population of consumers leads to quasi-concave profit functions on a compact

set of prices and this property is used to show existence of equilibrium.
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Some modifications can be accommodated. As remarked in section 2, I analyzed
a model of global competition in which each firm’s price change has an effect on
the demand of each competitor. The model is easily adjusted to allow for localized
competition in which each firm only competes directly with a strict subset of the set
of all competitors (this set can depend on the price vector p). For instance in a one-
dimensional model of product differentiation each firm has at most two neighbors
(under a convexity assumption in the utility function, see e.g. Anderson, de Palma,
and Thisse, 1992). In such a model one can index firms such that firm ¢ competes
directly with firms ¢+ — 1 and ¢ + 1 if all firms are active. Some assumptions on
the costs of production imply that all firms are active in any candidate equilibrium.
Consider the hypothetical profit function 7;(p;_1, p;, piy1) of firm ¢ when it is ignoring
the presence of all other firms other than its direct neighbors. If firm ¢ prices its
good such that firm ¢ — 1 or firm 7 + 1 is out of the market m;(p) < 7;(pi—1, Pi, Dit1)-
Hence, the critical part of the proof of equilibrium existence is the quasi-concavity
of profit functions 7;(p;_1, s, pi+1). Results are analogous to the ones derived in this
paper (see also Peitz, 1998). In environments where vertical elements of product
differentiation such as quality play a role one might want to allow for a correlation
between a, (3, and ;. Such an extension is possible for particular specifications.

The model allows for unrestricted individual demand functions. Alternatively,
one might want to work with shape restrictions on individual demand which are
preserved under aggregation (this corresponds to assumptions on the third derivative
of the utility function). This has been done by Dierker (1991, Proposition 6) who
provides a more general condition on individual demand than unit elastic demand
which is for instance satisfied by CES utility functions. If mean demand of each type
6, is log-concave in logarithmic price on a set of consumers of measure 1, i.e. for a
subset of ©; which is of full measure the price elasticity of the mean demand of type
0, is nonincreasing, equilibrium existence can be shown without the heterogeneity
assumptions (m; or my small) made in this paper.

In addition to the results on equilibrium existence, a sufficient condition for dom-
inance solvability has been provided, which implies monotone comparative statics
results. It should be pointed out that an initial price vector converges to the unique
equilibrium price vector of the stage-game under a large class of learning rules (see

Y

Milgrom and Roberts, 1991). Suppose for example that learning is “slow”, i.e. in

32



period t firms deviate with positive probability from the previous price pi~!. If this
deviation is the best response to pt_’il, prices will converge to p* in a probabilistic

sense as time goes to infinity (this result can be generalized).

33



Appendix

Proof of Lemma 1. (see Dierker, 1991). Take ¢ = 1. Analogously for i > 1.

Define the convex sets

Cl = {91’91j S logpj — 10gp1,91j c [Qlj:glj] for all j c N,j 7é 1},
Gy = {01]01; <logp;, 01 € [0,;,01,] for all j € N,j # 1},

Define §1(012, ... ,01n,10gp1) = g1(012 + logps, ..., 01, +log p1). Since log ¢; is con-
cave, so is log g;. One has

log G1((log p; — log p1)jen,j-1)
%1 (91)d91

Il
S

91(912 + lngl, C. 791n + lngl)d91

1

I
S~

= §1(9127 ooy Ui, 10gp1)d91

1

O]

By Theorem 6 of Prékopa (1973) G is a log-concave function of logp;. O

Lemma 4 Assume (A.1)-(A.4). Profits ((p; — ¢;)/pi)Gi((logp; — logp;)jxi) are

quasi-concave 1n its own price.

Proof. Let me first show that profit is strictly log-concave in its logarithmic price
where demand is strictly positive and price larger marginal cost. Consider firm 1.
The proof goes through for all i € N. Lemma 1 says that Gy is log-concave in log p; .
log(p1 — ¢1) — log py is strictly concave in log p; (see Remark 1).

Now look at quasi-concavity of profits for all cases. Quasi-concavity is violated if
there exists a pjo, pi1, and p;y with ¢; < pjo < pirand pix = Apio+ (1 —=A)pir, A € (0, 1)
such that

(pio — Ci)Gi((Ingj - logpio)j;éi) > (pin — Ci)Gi((Ingj - 10gpi>\)j7éi)
and (pi1 — ¢;)Gi((logp; —logpi)jzi) > (pix — ¢i)Gi((logp; — log pix)jzi)
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Two cases remain to be considered.

Case i) pio = ¢;. The first inequality requires that p;, < ¢; which is a contradiction.
Case ii) pio > ¢;. Keep p_; fixed. For G;((logp; — log pi1);2:) = 0 the second in-
equality requires p;» < ¢; which is a contradiction. I already showed that profit is
log-concave in its logarithmic price where demand is strictly positive and price larger
marginal cost. As the logarithmic function is monotonic profits are quasi-concave.
(Il

Definition The best response correspondence R is defined as
R: Xienlei, 2] — Xienlei, 2]
(p17 s 7pn) — (Tl(p71)7 s 77ﬁn(p*n)) = R<p)
where
B {pﬂﬂ(pﬁp—i) = Imaxp, : m(pi,p—i) } N [ciyz] if #0
ri(p-i) =
{z} else.

Lemma 5 Let profit functions be quasi-concave in their own price. There exists a

pure-strateqy Bertrand-Nash equilibrium for ¢; < p; < z.

Proof. The best response correspondence R is a correspondence with compact
convex domain into itself. Since profit functions are continuous the best response
correspondence is upper-hemicontinuous. The quasi-concavity of the profit func-
tions guarantees that R is convex-valued. Hence, one can make use of Kakutani’s
fixed point theorem which says that there exists a p* such that p* € R(p*). O

Lemma 6 Assume (A.1). There is no p; > z, i € N, such that m;(p;,p*;) >

*

mi(py, p*;) where mi(p) = ((pi — i) /pi)Gi((log p; — logpi)j;éi)-

Proof. Suppose there is p; > z, i € N such that m;(p;, p*;) > m(pf, p*;).

Case i). If there were a j, j # i, with logp} <log z + §,; then m;(p;,p*;) = 0 for all
pi > z contradicting m;(p;, p*;) > mi(pf, p,).

Case ii). log z+0,;; <logpj for all j, j # i. p; > z > pj leads to a profit for firm i of

bi — G bi — G
Gi((logpt — log py)jenjzi) <
. ((log pj —log pi)jen,jzi) < v

35



because G;(0) = 1/n > Gi((logp; — logp;)jen,j»i). For logp; > logpi — 0, for
some j, one has G;((logpj — logpi)jen =) = 0. Thus one must have, for all j,
log p; < log pj — 8;; which is equivalent to p; < pj/ e%i. Consequently, setting p; > z
gives a payoff

Di — G *
+ log Gi((log p; — log pi) jenjxi)

7

< log (1 — C—iegij) —logn
Dy,

log m;(pi,p*;) = log

for all j. Set logp; = min{(logp] — 6;;);} and denote the index of the minimal
element with k. Profit of firm 7 setting p/ is

Pk Pk
log mi(p;, p~;) = log( Z Ci) log = T

It is not in the interest of the firm to set p; > z > p; if m(p:, p*;) < m(pl, p*;).

< log (1 — C—iegik) —logn < log <1 — c—iegik>
Py Dy,

9. n 0. ,
— e lrpr > 1Ci (eel’“ - eﬁlk>
n p—

< logpy, > logz+ 0y,

Since this inequality is satisfied, a deviation from p; is not profitable and one has
mi(pi, ;) < mi(ph, pt;) < mi(pf,p*;) for p; > z. This holds for alli € N. O

Lemma 8 Assume (A.1)-(A.3),(A.5). For my sufficiently small, there is no p; > z,
i € N, such that m;(p;, p*;) > m(pf,p*;) in the specification with bounded rational

CONSUMETS.

Proof. Suppose there is p; > z, i € N such that m;(p;, p*;) > m(pf, p*;).

Case i). As in the proof of Lemma 6.

Case ii). Part (i) following the proof of Lemma 6. log z +0,; < logpj for all j, j # i.
pi > z > pj leads to a profit for firm ¢ of

By (p; * o
Ozg.p )Gi((logpj —logpi)jenzi) < (i — i) :L;@

(pi - Ci)
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because 1/n > G;((logp; — logp;)jen,j#i). As in the proof of Lemma 6 one must
have, for all j, log p; < logp; —6,; which is equivalent to p; < pj /e%i. Consequently,
setting p; > z gives a payoff

Di — G *
+ log Bo(pi) + log Gi((log pj — log p;) jen,j#i)

)

log'ﬁi(piapii> = log

< log <1 — C—e—”) + log By(p;) — logn
Pk

for all j. Set logp; = min{(logp; — 0;;);} and denote the index of the minimal
element with k. Profit of firm 7 setting p} is

lOg ﬂ—l(pz? 7,) 1Og <1 - ;—G ) + 1Og BO(pz)
k

It is not in the interest of the firm to set p; > z > p; if m(p:, p*;) < m(pl, p*;).

< log <1 — C—e—*) + log Bo(p;) — logn
Pk

< log <1 — C—e ) + log By(p})
Pk

Part (ii). First I show that |log Bo(p;) — log Bo(p})| is small.
log p;

0 log p;

m
llog Bo(pi) — log Bo(#)] < / 2

log p}

dlogp; < (logp; — logpl)

. From the definition of p; and p), it follows that log p; —log p; < Eij —20,;. Hence, for
any € > 0 one can find an my sufficiently small such that |log By(p;) — log Bo(p})| <
log(1 + €). It remains to be shown that

log <1 — C—e—*) +log(l+¢€) < log <1 —

65““> + logn
Pk

Dy

*

1
> — ]_ —'Lk:)
S T (ne —(1+e)e
< logp; >logz+ 06,

for my sufficiently small. (From the proof of Lemma 6 it is clear that at two different

steps there is room for eliminating €.) In summary, one has m;(p;, p*;) < m(p;, p*;) <
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mi(pf,p*;) for p; > z. This holds for alli € N. O

Proof of Remark 5.

0
log G(0) = log/ e"®df where h(0) = log g1(6)
0

It has to be shown that d2log G()/df? < —k which is implied by

6
e (h/(é)/ e"®dp — eh(§)> < —K
0

As h is concave: h'(9) < h'(6), 0 € [6,4].

o o )
() / "9dp < / W (0)e"Ddh = "0 — ),
) )

Hence, —e"@eh@ = —g (6)g,(8) < —F because g; is bounded from below on its

support. O

Lemma 9 Assume (A.1)-(A.5), (A.7). The third additive term on the right-hand
side of equation (3) can be bounded in absolute value by any positive number for mq

sufficiently small.

Proof. (i) As shown in the text, the third additive term on the right-hand side of
equation (3) can be made arbitrarily small in absolute value if for any € one can find
an my such that inequality (5) is satisfied. Since firms have to satisfy a minimal
market share D(g;) > +. This implies that €(D(q;) + FE(q;))* > e(D(q;) — |E(g:)])* >
€> 0if |[E(g;)| can be made arbitrarily small.

(ii) |E(g;)| can be made arbitrarily small: for any positive number one can find

a value for my sufficiently small such that |E(g;)| is less than this number.

|E(q:)] = ‘/B(pivHgo)(;)BO(pi)gi(ﬁi)in
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1
S W/|B(pi79i1)—Bo(pi)’gi(ei)dg

1
m —
< 72(91'1 —0,,)D(q:)
Hence, e(D(q;) — |E(q;)|)? > (1 — Z2(0; — 0;1))*y? > € for my sufficiently small.
(iii) It remains to be shown that the left-hand side of inequality (5) can be made
arbitrarily small in absolute value.

d*E(q:) (D(g) + E(g:) + dZD(Qi)E(qi> _ 5D(:) dE(g) <dE(Qi))

dg; dg; dg; dg; dg;
I e o R e S R ey

Remark that D(¢;) < 1. By (A.1) g; and its partial derivatives are uniformly
bounded from above. This implies that |dD(g;)/dg;| and |d*D(g;)/dq?| are uni-
formly bounded from above. It remains to be shown that |F(g;)|, |dE(q;)/dg;|, and
|d>E(q;)/dq?| can be made arbitrarily small. From part (ii) it follows that |E(g;)|
can be made arbitrarily small.

(iv) |dE(g;)/dg;| can be made arbitrarily small:

dEi d B Qz"Hi — B q;
(@) _ 4 / (. 00) — Bole®) a0,
dql dql XjEN, 3751[—23 45 —ai] B[)(e%)

_ / d((B(eq’;@ﬂ) — Bo(e™))/Bo(e™))

dg;

B(eqi, 911) — B[)(qu)
-2 /x By (e%)

i Y XREN kti ki Ok qk —ai]

gi(bi1, - .. Oii—1,0 — 4, 0 g1, - - - 0in)db;y - dt; j_1d0; ji1- - db;y,

As shown in part (ii) of the proof |(B(p;,0i1) — Bo(ps))/Bo(p:)| can be made arbi-
trarily small. Since by (A.1) g; is uniformly bounded from above it remains to be

shown that the first additive term can be made arbitrarily small in absolute value.
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‘d ((B(pi, 1) — Bo(pi))/Bo(p:)) ‘

dlog p;
‘ 1 dB(pi,0)  B(pi, i) dlog Bo(pi)
By(pi) dlogp; By (p:) dlog p;
dB(p;,0;1) W mg
= 6W‘ dlog p; SW s

With the same argument as for dBy(p;)/dlogp; in the proof of Lemma 7 also
dB(p;,0;1)/ dlogp; can be bounded in absolute value by myW. Consequently,

d ((B(ps, 1) — Bo(pi))/Bo(p:)) < M2 (1 n @)
) 5/’

d log p;
which can be made arbitrarily small for msy sufficiently small.

(v) Finally, also |d?E(q;)/dg?| can be made arbitrarily small. The analysis
is lengthy and easily carried out along the lines of part (iv) above. Note that
by (A.1) g; and its partial derivatives are uniformly bounded in absolute value.
With the bounds provided in parts (ii) and (iv), it only remains to be shown that
d? ((B(ps, 0:i1) — Bo(pi))/Bo(pi))/ d(logp;)? can be made arbitrarily small in abso-
lute value.

(B( (3 zl) B ( z))
&y 1 B(pi, 051) (legBo(pi))2_|_ d*log By (ps)
d(log p;)? Bo(p:) o dlog p; d(log p;)?
5 dB(p;, 0:1) | |dlog Bo(p:) d*B(p;, 0:1)
dlog p; dlog p; d(log pi>2

Each of the additive terms in parentheses can be made arbitrarily small and the

result follows. O

Lemma 10 Assume (A.1)-(A.3),(A.5). Formy sufficiently small, there is nop; > z,
i € N, such that m;(p;, p*;) > m(pf,p*;) in the specifications of subsection 3.3.

Proof. 1 follow the proof of Lemma 8 with profit functions in equation (3) using
the same definitions of prices p; and p;. It only has to be shown that log m;(p;, p*;) <
log m;(p;, p*;). E(logp;) is defined as in the main text.
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i 1
log (1 - 1%€QU> + log Bo(pi) + log (; + E(logpi)>
k

< log (1 - %eﬁi’“) + log By(p}) + log (1 + E(log p}))
k

As shown in part (ii) of the proof of Lemma 8 |log By(p;) — log Bo(p})| can be made
arbitrarily small. As shown in part (ii) of the proof of Lemma 9 |E(logp;)| can
be made arbitrarily small for any p;. Consequently, for any € one can find an m,
sufficiently small such that

|log Bo(pi) — log Bo(p;)| — log (1 — |E(log p;)|) + log (1 4 n [E(log p;)|) < €.

Consequently, it remains to be shown that

log <1 — C—iegik> +log(1+€) < log (1 — C—iea““) + logn
Py Dy

which follows from the proof of Lemma 8 where € has to be replaced by ¢. O

Lemma 11 Assume (A.1),(A.4). Gi((logp; — logp;)j+i) is log-concave in logpj,
J#

Proof. (following Proposition 5 by Dierker, 1991, for n firms). Take i = 1. Anal-
ogously for ¢ > 1. Take j = 2. Analogously for i # 1, j # i. Define the convex
set

Cly = {011012 < —logpr, 011, < logpy —logpy, for k > 3,
01j € [0, 01;] for all j € N, j # 1}.

Define g12(bh2, - . -, 61n,logpa) = g1(012 — log pa, b3, . . ., 01,). Since log g is concave
in log po, so is log g12. One has

log G ((log b — log pl)jEN,j;él)

= / 91(91)6191
C1
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= / 91(912 —log pa, 013, . .. 791n)d91
C12

= [ §12(9127 ooy O1p, 10gp2)d91
C12

By Theorem 6 of Prékopa (1973) G is a log-concave function of logps. O

Proof of Proposition 2. (i) By Tarski’s fixed point theorem and Proposition
1 there exists a fixed point in [ = {N, @, (logm;,i € N)} where @ is a complete
lattice which is a subset of X;ex[log ¢;, 00) N {log p| log p; —log p; < 0;;}. P is defined
accordingly. Such a fixed point is an equilibrium on P. Tt remains to be shown that
one can construct a set P such that an equilibrium given the restricted set of strategy
profiles P is also an equilibrium given the set of strategy profiles R” , .

(ii) Denote A™* = max{(f;; — 0:;)ij}- Note that By(p;) < W. For p; > p,
denote Bo(p;;p;) = maxg,c[p, p;] Bo(Pi). By construction, the function Bo(;p;) is
nondecreasing in p;. Hence, Bo(-;7;) converges to some value in [0, W] as p; turns
to infinity for any value of ;. This limit is nonincreasing in ;. Hence, given B, for
any € > 0 there exist prices p; such that log Bo(pi; ;) — log Bo(pi; ;) < log(1 + €)
for any p; € [pi, pi + A" —0,;] (Vi € N 3j # 1). Denote the sets of these prices
pi by PT(e). Fix for the moment e. Denote 2/ = p; + A™*. The set P*(e) is
a union of intervals and is unbounded. For some p; € P*(e) construct compact
strategy sets P = Xienlci, 2/) N {(pi)ien| log p; — logp; < gij}. Denote lgi(p,i) =
{pil(pi,p—i) € ﬁ} The result is shown if firms do not set prices outside the set
]Bi(p*_i). Only prices p; with 2’ — 0,; > p; > 2’ have to be considered because other
prices outside ]Si(p"j ;) lead to zero or negative profits. If there is an equilibrium
in P with logp; < log2' + ¢, for some j # i then m(p;,p*;) = 0 for all p; > 2/
contradicting m;(p;, p*;) > mi(pf,p*;). Suppose logp; > logz' + 0,; for all j # i.
Clearly, at a price p;, Gi((logp; — logp;);») = 1. Since p* is an equilibrium price
vector in ﬁ, one has

w0 2 i) = (1- 2 ) B0 ),

A profit maximizing deviation has to be a price p; such that 2’ — ¢,; > p; > 2’ for
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all 7 # 4. This gives profits
* C; 1
mi(pi,pt;) < (1-— Bo(pi)%

C; 1
< _ N
= <1 o0 ) B[)(pl)n

It can now be shown that such a deviation is not profitable for ¢ > 0 sufficiently

small and p; € P (e) sufficiently large.

log (1—%) + log By (p;) > log (1_@+An61;x—ﬁij) + log By (p;) — logn
—logn>log(1— Ci —log (1—2) +1log(1+¢)
gn 2 log (1= =—rs—g- ) ~los (1= 5 ) +los

because Bo(p;) = Bo(pi; pi) and Bo(pi) < Bo(ps; pi). O

Proof of Lemma 13. Remark that
O?logm;  9%logG;
0log p;0log p; n 0q;0q,

((¢5 — @i)jen,jzi) = 0

because of Proposition 1. Remark also that
0? log Gl _ Z o? log Gl
(0g:)? 9g:0q;

JEN,jF#i

It remains to be shown that

B 0% log ; B 0% log G;
(810gpi>2 (alogpi>2
P 2 Am.
— PG dlog Bi(pi) > 0 foric N.

(pi — ci)? (dlogp;)?
These inequalities are satisfied if ms is sufficiently small, i.e. for all i € N, my

satisfies
z

%(1+%)<ﬁ 0
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