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Abstract

We consider allocation rules that choose both a public outcome and transfers, based
on the agents' reported valuations of the outcomes. Under a given allocation rule, a bribing
situation exists when one agent could pay another to misreport his valuations, resulting in a
net gain to both agents. A rule is bribe-proof if such opportunities never arise (including
the case in which the briber and bribee are the same agent).

The central result is that under a bribe-proof rule, regardless of the domain of
admissible valuations, the payoff to any one agent is a continuous function of any other
agent's reported valuations. We then show that on connected domains of valuation
functions, if either the set of outcomes is finite or each agent's set of admissible valuations
is smoothly connected, then an agent's payoff is a constant function of other agents’
reported valuations. Finally, under the additional assumption of a standard richness
condition on the set of admissible valuations, a bribe-proof rule must be a constant
function.

* Email: schummer@nwu.edu. Discussion with John Duggan was helpful. I also thank
members of the Math Center Bag Lunch Seminar at Northwestern for comments.



1 Introduction

Consider the problem of deciding on a public outcome and on transfers of
a private good among agents. based on how those agents value the various
public outcomes. Without knowing the agents’ valuations. it may not be rea-
sonable for the decision maker to assume that they would truthfully report
their valuations. if doing so is not in their best interest. For example. this
is a concern in the literature on Clarke-Groves Mechanisms:! such decision
rules are the only ones that are efficient (choose value-maximizing public
outcomes) and are strategy-proof (never give any agent an incentive to mis-
report his valuations to the decision maker). Our concern here is to drop
all distributional requirements. such as efficiency. and concentrate solely on
incentives — we examine the consequences of adding an additional incentives
requirement that applies to pairs of agents. as we define below.

One compelling. but strong. group incentive-compatibility requirement is
coalitional strategy-proofness: no coalition of agents should be able to jointly
misrepresent their valuations in a way that results in a direct gain to each of
those agents. The desirability of this condition is clear. However. in many
environments this condition is too strong. ruling out all by a few. unreason-
able decision rules. Part of this strength comes from the fact that coalitions
of any size are prevented from manipulating. However. the execution of a
joint misrepresentation by a large number of agents requires that they all
know cach others’ valuations and that they are able to coordinate their ac-
tions. In many situations. large coalitions may not be able to coordinate.
On the other hand. it is reasonable to suspect that if a small coalition could
manage to coordinate their actions in a profitable. joint misrepresentation of
valuations. then they could. in addition. arrange transfers to cach other. i.e.
they could bribe each other to misrepresent.

We formulate the weakest intuitive condition that rules out this type of
misrepresentation — one in which exactly one agent is bribed by one other
agent to solely misrepresent his valuations. There are only two agents in-
volved in the transfer. and only one of them misrepresents his type. Decision
rules that eliminate the possibility of this type of behavior -~ and that are

strateqy-proof - - ave called hribe-proof.

ISee Clarke (1971). Groves (1973). and Green and Laffont (1977).



The central result is that in a very general setting. if a solution is bribe-
proof. then it satisfies a continuity property: The payoff an agent receives
varics continuously with respect to changes in the reported valuations of any
other agent.

From this we show that if the set of public outcomes is finite, then a bribe-
proof solution is. essentially. constant. in the sense that an agent’s payoff is
never affected by changes in any other agent’s reported valuations. This
result applies not only when all possible valuations of the public outcomes
are admissible. but also when cach agent’s set of admissible valuations is a
connected set. For the case of an infinite set of public outcomes. we derive
the same conclusion as long as cach agent’s set of admissible valuations is
~smoothly connected™ in the sense of Holmstrom (1979). who genecralizes
the characterization of Clarke Groves Mechanisms mentioned above to such
donains.

Finally. we show that if the domain of valuation functions is sufficiently

“rich”. then a bribe-proof solution must actually be a constant function.

For the case of exactly two public outcomes (and the unrestricted domain
of valuation functions). Green and Laffont (1979) consider manipulations by
coalitions of a fixed size in which members make joint misrepresentations.
along with transfers among themselves. They show that no Clarke-Groves
Mechanism is immune to such manipulation by coalitions of any fixed size
less than the total number of agents. Our result for finite sets of public
outcomes is a substantial strengthening of their result for the particular case

of manipulation by coalitions with a size of two.

2 Notation

There is a finite set of agents. N = {1.2..... n}. n > 2. with arbitrary
elements ¢ and j. There is a compact set of public outcomes. Y. with
arbitrary clements y and 3. In addition to the public outcome. cach agent
i € N consumes some amount m; € R of a divisible good. say money. An
allocation consists of a public outcome y € Y and the specification of an
amount of money for cach agent. m = (my.mo. .. .. my).

Each agent ¢ € N has a quasi-linear (z.e. linearly additively separable)

preference ordering over Y xR, parameterized by a set. ©; C R*. of admissible



types.> That is. for cach i € N. there is a valuation function. v;: Y x0; —
R. representing the preferences of an agent. depending on his type: an agent
of type 6; € ©; (weakly) prefers a bundle (y.m;) € ¥ x R to another bundle
(y'.m’) if and only if v;(y:6;) +m; > v (y" 6;) + m.

Assumption 1 (Continuity of valuation functions) Foralli € N. v; is

continuous in Y x ©;.

We refer to © = 0 x -+ - x O, as the domain. For any ¢ € N. the notation
6_, € ©_; refers. as usual. to a list of types for agents other than .

The results of Section 3.2 apply to domains that are connected. in the
sense that if two types are admissible for an agent, then there is a path of

admissible types connecting the two.

Connected: The domain © is connected if for all ¢ € N. ©; is a path-
connected set: For all ;.07 € O;. there exists a continuous function
f:00.1] — ©; such that f(0) =46, and f(1) =4].

A solution is a function ¢: ©@ — Y x R choosing an allocation for any
profile of admissible types. [t will be notationally convenient to decompose
the solution into two functions. 7: © — Y and m: ©@ — R". in which case we
write o = (y./m). It will also be convenient to write for any agent j € N.
@i(0) = (y(#).m;(0)) to refer to agent j's consumption bundle.

Depending on the interpretation of the model. one may want to impose
certain feasibility-type conditions on a solution. such as weak budget balance
(for all € ©. > m;(0) < M. where M is some aggregate endowment of
money). or strong budget balance (Y m;(6) = M). Such requirements have

no effect on our results. so we will not address them.

2.1 The Bribing Condition

If the agents are reporting their types to a planner who is using a given solu-
tion. it is of interest to know whether the solution satisfies certain incentive
compatibility properties. For instance. it is desirable for a solution to be such
that an agent of type 6; can do no better for himself than by reporting the

true type #; to the planner. regardless of the other agents’ types.

2When Y is finite. yvou could imagine the set of types being RYI-1 and that a type
represents an agent’s normalized valuations of the public outcomes.

N



Strategy-proof: The solution ¢ = (y.m) is strategy-proof if for all 6 € ©

and all 7 € N. there exists no ¢! € 0, such that
vi((00.0_):0:) +mi(0:.6_;) > vi(y(8):6;) + m.(0)

Holmstrom (1979) shows that on most connected domains. the only strategy-
proof solutions that maximize Y v;(y:6;) for every profile  are Clarke-
Groves Mechanisms.

As discussed in the Introduction. we also wish to rule out the possibility
that an agent could bribe another to misrepresent his type. We formulate a

condition that rules out this type of situation.

Bribe-proof: The solution ¢ = (y.m) is bribe-proof if for all § € © and all
i.J € N. there exists no b € R and ¢, € ©; such that

V(g0 0): 0, +mi(0..6_) +b > v (y(8):0;) + m(0)
l](ljl(ej H_l')l HJ) -+ ’I7L]’(0;. 9_1') —b > ’l’j(ﬂ(Q)Z HJ) -+ T_flj(g)

Here. j bribes ¢ with b units of money to misrepresent his type. Notice that
by choosing i = j and b = 0. bribe-proofness implies strategy-proofness.®

At this point. a few points arc worth mentioning. First. we are implicitly
assuming that the two agents would trust each other in arranging this mis-
representation: that is. j would not break his promise to pay . and ¢ would
not reneg on his promise to misrepresent. This assumption follows in what
Tirole (1992) calls the “enforceability approach™.?

Second. note that we do not allow j to also misrepresent his type. Since we
are determining the consequences of our condition (which in some instances
are strong). the results are stronger using our weaker definition.

Third. we are implicitly assuming that the divisible good is perfectly
transferable among agents. Perhaps instead. when j sends b units of money.
i only receives B(b) < b of it (e.g. due to some variable transaction cost). All

of our results continue to hold as long as B is a monotonic function (satisfying

3One might argue that the bribe-proofness condition should be defined without implying
strategy-proofness (i.e. disallowing ¢ = j). However it would be unreasonable to attempt
to rule out bribing situations while allowing the possibility that an agent could gain by
simply misrepresenting his own type.

1See that paper for a justification of the assumption.



B(0) = 0. of course).

3 Results

Consider the following example of a domain for which there exist non-trivial.

hribe-proof solutions.

Example 1 (Single-peaked preferences.) Let Y = [a.b] C R be an in-
terval of public outcomes. For all 7 € N, let ©; = R. and for all y € ¥ and
all B, € O,. let vi(y.0;) = —|y—6;|. Note that each v;(-.#6;) is a single-peaked
function on Y and that © is a connected domain.

A bribe-proof solution ¢ = (g.m) can be constructed by letting m be
constant and letting § be defined as a median voter rule (Moulin. 1980). e.g..
if [N is odd. let y(#) be the median of 6;... .. b,

We will point out particular attributes of this example in Sections 3.2-
3.3. First. however. note that under any solution defined in Example 1. an

agent’s payoft varies continuously as any other agent varies is reported type.

Woe first show that this is a general property of bribe-proof solutions.

3.1 Continuity

Since we are dealing with the behavior of bribe-proof solutions in response
to changes in one agent’s type. for the remainder of the paper, we fix

the following.
e an agent i € N (potentially the bribee).
e types ;€ ©_; of the other agents.
e an agent j € N\ {i} (potentially the briber). and
e a hribe-proof solution ¢ = (.mm).

The set of bundles that agent i can obtain by varying his type is his

option set:

O; = {(y.m;) €Y x R: 30, € ©; such that (y.m;) = ¢;(6;.0_,)}



For all 8, € ©,. define the maximum payoff that ¢ may receive. and his set of

best obtainable bundles. as follows.

wiB;) = max_ vy 6;) +my (1)
(y.m €0y
O1(#:) = {(y.mi) € O; vy 0;) +m; =ui(6:)} (2)

Since @ 1s strategy-proof. u} is well-defined: in fact. for all 6; € ©; we have

“;(91‘) = Uz’(!j/(&'- 9_1')1 6,) -+ ’ﬁli(gi. 9_,‘)

*

We first show that since ¢ is strategy-proof. w; must be a continuous
function.® If Y is finite. this follows from a direct application of the Maximum
Theorem. However. in the general case. the option set. O;. may not be

compact. Lemmas 1 and 2 show the boundedness of an agent’s option set.

Lemma 1 Suppose that'Y is compact and @ is strategy-proof. There exists
M C R such that (1) O; CY x M and (2) sup M < co.

Proof: Suppose by contradiction that O; contains a sequence of bundles
(yk.mf');c:l such that mf — oo. Let 6; € ©; be such that p(6;.6_;) =

(0,1

(y.ml).

By strategy-proofness. for all & € N. we have

vyt 6;) + m]-1 — ('vi(yk: 0;) + mff) >0

}‘.

Since m; — oo. it must be that vi(y*:6;) — —oo. However. since v, is

continuous and Y is compact. v;(-:6;) attains a (finite) minimum on Y.
which is a contradiction. U
That lemma bounded agent ¢'s option set from above. The additional

(temporary) assumption of a compact type-space bounds it from below.

Lemma 2 Suppose that Y is compact. ©; is compact. and p is strategy-
proof. There exists M C R such that (1) O, CYxMand (2)inf M > —c.

5This general notion that strategy-proofness implies some sort of continuity has been
accepted by some as “folk knowledge™: however it usually requires an assumption on the
consumption space. such as our compactness assumption on 1.

-1



Proof: Suppose by contradiction that O; contains a sequence of bundles
{(y*.m*)}22, such that m¥ — —oco. For all k € N. let ¥ € ©; be such that
o8 0_) = (y*. mh).

Since O, is compact. the sequence {6%} contains a Subsequence. {9(}
that converges to some 6; € ;. Let (y.m;) = v (0;.0_;). By strategy-
proofness. for all £ € N. we have v;(y: 0 + m; — (v;(y": 9 ) +m') < 0. Since
vi(y:0°) = vi(y: 6;) and m! — —oc. it must be that v;(y*: 6") —» co. However
since v; is continuous and Y x ©; is compact. v; attains a (finite) maximum

on Y x ©;. which is a contradiction. O

Therefore. agent s option set on a compact domain is a bounded set. How-
ever. it may be open. To deal with that technical difficulty. define the fol-
lowing for all §; € ©;.°

wr(8) = max v {y:0;) +m; (3)
(ym;)ecl(O;)
O(0;) = {(y.m;) € (O vi(y:0;) +m; = ' (6;)} (4)

Proposition 1 Suppose thatY is compact. ©; is compact. and p is strategy-

proof. Then u} is continuous in ©;.

Proof: Lemmas 1 and 2 imply that cl(O;) is compact. Therefore the
Maximum Theorem implies that «** is continuous and O** 1s upper semi-
continuous (u.s.c.).” Note that by the definition of strategy-proofness. u} is
in fact well-defined. Therefore. since v; is continuous on cl(O;). we have
*
?

w: = u*. Hence u] 1s continuous. U

Note that since u? is continuous on any compact (sub)domain. it is con-
tinuous on any domain (sec the proof of Corollary 1).

For all 8, € ©;. define the payoff that j receives as follows.
II;(QI') = l'J(g(9,6_1>9j) m; (0 6_ ) (5)
Now we have the main result.

Theorem 1 Suppose thatY is compact. ©; is compact. and ¢ is bribe-proof.

Then 'uj is continuous in ©;.

5The closure of a set S is denoted ¢1{.5).
"See Berge (1963) for a definition. The notation follows Sundaram (1996).



Proof: Suppose by contradiction that «} 1s not continuous at some g, € O,
Case 1: There exists a sequence {#¥}7, converging to 6;. and € > 0. such
that for all &. u;(éz) - u;(ﬁf) > €.

Let (y.m;) = pi(#;.0_;). Bribe-proofness implies that for all k. ul(6%) —
cily: 0%) — m; > € However. Proposition 1 implies that w(6%) converges to
ui(6;). and the continuity of v implies that v;(y: %) converges to v;(y:6;).
Hence uf(0F) — vi(y: 6%) — m; converges to 0. which is a contradiction.
Case 2: There exists a sequence {65} | converging to 6;. and € > 0. such
that for all A. u;(ﬁf) — u;(f)i) > €.

Since. as above. O™ is us.c. and «f = «**. we have for all 6, ¢ O,.
016, C O (6)).

Since v; is continuous. there exists an open set O D O**(f;) such that
(y.m;) € O implies u (0;)—v;(y: 6;)—m; < & Since O;" isw.s.c.. there exists k
(sufficiently large) such that O**(0%) C O. This implies (§(6). m;(6%)) € O.
Therefore. v, (7(8): 0;) + m (%) + € > ul(6;). contradicting bribe-proofness.

L
L

Finally. note that the assumption of a compact type-space was only

needed temporarily.

Corollary 1 Suppose that Y is compact and @ is bribe-proof. Then uj is

continuous in ©;.

Proof: Suppose not. Then u] violates continuity on some compact subdo-
main. ©; ¢ O;. The restriction of ¢ to the subdomain O, x O©_; defines a
discontinuous bribe-proof solution (on a new domain) violating the conditions
of Theorem 1. 0

We end this section by noting that the assumption of a compact Y can

not simply be dropped.

Example 2 Let Y = [0.00). ©; = [0.1]. and v, satisfy

(y.01) —y if 6; = 0.
v (y. 0,) =
1 max{—y.2 — [z- —y|} if 61 > 0.



Let © = {6y}, and va(y:62) = 0. Let ¢ satisfy

o _ _ _ (0.0.0) if 6, =0,

Q- 02) = (g(61). mi(01). ma(6h)) = 1 1 1\ -

One may check that & is bribe-proof. but that neither ] nor uj is continuous
at #; = 0. A similar example can be constructed in which Y is bounded but

open.

3.2 Finite Sets of Public Outcomes

Consider again the bribe-proof solutions in Example 1. Suppose that instead
of being an interval. Y is a finite subset of R. e.g. Y = {1,2.3}. Median-
voter types of solutions are well-defined in this setting also. subject to some
tie-breaking procedure when the “median voter™ is indifferent between two
elements of Y. However such solutions are no longer bribe-proof! Informally.
when the median voter is indifferent (or almost indifferent) between two
elements of Y. he could be bribed to misreport his preferences.

A trivial example of a bribe-proof solution for this environment 1s a con-
stant solution. The discouraging news is that for connected domains. if V'
is finite. then this is essentially the only type of bribe-proof solution. The

following example illustrates why it is only essentially so.

Example 3 Let N = {1.2}. YV = {a.b}. ©1 = R. ©; = {1}. v1(a.b;) =
vy (b.0y) + 6y for all 6;. and va(a. 1) = vo(b. 1) + 1. Note that © is connected.

and that the following solution is bribe-proof. For all § € ©. let

(0) = {(U.0.0) if vy(a.0y) > vi(b.61) -1

| (b.—1.1) otherwise

For the solution in Example 3. agent 1 plays the role of a dictator. but
agent 2. who only has one tvpe. does not care what agent 1 picks - agent 2
is always indifferent between the two bundles he receives. For connected
domains and finite Y. this is the only way a bribe-proof solution may not be
constant — when the solution is responsive to a change in an agent’s type

(agent 1 in Example 3). the change is trivial to all other agents.

10



Theorem 2 Suppose that Y is finite. © is a connected domain. and ¢ 1$

bribe-proof. Then uj is constant in ©;.

Proof: Siuce Y is finite. so is O;.% Therefore, O7 is finite, and the Maximum
Theorem directly implies OF is u.s.c. (without the assumption that ©; is
compact. as necded above). Hence for all #; € ©; there exists & > 0 such
that 10/ — ¢;] < & implies O(6) C O7(6;). Therefore for any such 6. we

1

have (g0 60 )0,y +mit. 0_;) = u;(6;). Therefore bribe-proofness implies

wi(0]) < ui(8;) (otherwise would bribe 7).

We have shown that cach §; € ©; is a local maximizer of uj. Therefore.

since ©; is path-connected and u} is continuous (Corollary 1. uj]

(sce Lemma 3 in the Appendix). 0

1$ constant

Theorem 2 actually implies that under a bribe-proof solution. each agent
is actually a dictator on the range of the solution. Formally. the solution

must satisty the following condition.

All-Dictatorial: The solution ¢ = (j./m) is all-dictatorial if for all 6.0" €
© and all i € N. we have v;(§(0):0;) + m;(0) > v (y(0'):6;) +m;(0').

The Corollary follows directly from Theorem 2.

Corollary 2 Supposc that Y is finite and © is a connected domain. Then

o 15 bribe-proof if and only if ¢ is all-dictatorial.

A relevant concept here is Hurwicz and Walker's (1990) notion of a “de-
composable” domain. When each agent cares only about his own dimension
of the outcome space (i.e.. the domain is decomposable). it is a trivial mat-
ter to define bribe-proof solutions. They can even be efficient. but they need
not be anything close to “constant”™. However when there is a “conflict of
interest”™ between agents (and the domain is indecomposable). the condition
(all-dictatorial) is much stronger. For example. in Section 3.4 we examine a
class of domains for which this conflict of interests always exists. and derive
an even stronger conclusion.

The next result follows from Corollary 2.

fRecall that by strategy-proofness. (y. my). (y.m}) € O; implies m; = .

11



Corollary 3 Suppose that Y is finite. © is a connected domain. and ¢ 1s
bribe-proof. For all 8.0 € ©. if ¢(8) = (y.m) and ¢(§') = (y.m'). then

m=m'.

Before concluding this section. note that even if a domain of interest 1s
not connccted. the results could be applied to cach ~connected component”

of the domain. that is. each subdomain that itself forms a connected domain.

3.3 Smooth Preferences

Consider once again the solutions described in Example 1. Note that each
single-peaked valuation function has a slope of 1 to the left of its peak and
a slope of —1 to the right. As we did originally. let ¥ = R. but now sup-
pose that the domain was such that “steeper” and -flatter” single-peaked
valuation functions were also admissible. Again. the median-voter types of
solutions are still well-defined in such a setting. However. they are not bribe-
proof. If the median voter has a relatively flat valuation function. he cares
less about the location of y. relative to his transfer. than agents with steeper
valnation functions. and can be bribed. Similarly. if valuation functions were
smooth. the same problem would arise: The median voter would have a “lo-
cally flat™ valuation function at his peak. and could be bribed to make at
least a small misrepresentation.

In fact. Theorem 2 and Corollary 2 generalize to the case in which Y
is infinite. as long as the domain is “smoothly™ connected. in the sense of
Holmstrom (1979). That is. there should exist a smooth. one-dimensional

parameterization of some path between any two types:

Smoothly Connected: The domain © is smoothly connected if for all « €
N and all 6;. 0/ € ©;. there exists w: Y x [0.1] — R such that
i. Forallr € [0.1]. there exists 8] € ©; such that w(-.a) = v (-:67)
How( -0y =i :6;)
i ow( . 1) = -:6))

iv. For all y € Y. w(y. -) is differentiable on [0, 1]

v. There exists z € R such that for all y € Y and all z € [0.1].

1011)(1}. x) <.

Jx

12



One may check that the domain of Example 1 can not be parameterized
in this way. so it is not smoothly connected. On the other hand. if v; is

differentiable in ©; for all i € N. then any convex f is smoothly connected.

Theorem 3 Suppose that © is a smoothly connected domain and g is bribe-

proof. Then « is constant in O;.

Proof: Asin the definition of smoothly connected domains. let w be defined
with respect to ©;. and for all 2 € [0.1]. let 67 be defined as in (i).
Define f:[0.1]? — R so that for all .2’ € [0. 1]

Floody = vl 0-;). 65) + i (07.0_;)
Strategy-proofness implies that for all 2’ € [0.1].

_’[,‘I c dlg max f(l LL'/) (6)
rel0.1]

Bribe-proofness implies that for all 2’ € [0.1].

o' € argmax f(x.a') + ui(8) (7)

re[0.1)
Since © is smoothly connected. the Lemma in the Appendix of Holm-
strom (1979) states that (6) and (7) imply that u} is constant. d

As in the previous section. this result can be used to derive the following.

Corollary 4 Suppose that © is a smoothly connected domain. Then ¢ is

bribe-proof if and only if ¢ is all-dictatorial.

3.4 Rich Domains

Finally. one might observe that in the above examples. in which non-constant
bribe-proof solutions exist. the domains are. loosely speaking. “narrow™. For
example. they don’t contain many perturbations of the functions they con-
tain. It turns out that if a domain is rich enough. then in fact only constant
functions are bribe-proof.

We will use the following definition of richness. which requires that if a

valuation function is admissible. then for any outcome y € Y. there exists

13



another admissible valuation function for which the value of y. relative to

any other outcome. is strictly greater than for the original function.

Monotonically Closed: The domain © is monotonically closed if for all
i€ N.all 8, € ©;. and all y € Y. there exists 6! € ©; such that for all

y e Y\ A{y}t vi(y:0) — vy 0) > vily:6;) — vi(y': 0;).

Theorem 4 Suppose that Y is finite. and that © is connected and monoton-

ically closed. If £ is bribe-proof. then it is a constant function.

Proof: Suppose by contradiction that there exist distinct (y.m) and (y'. m’)
in the range of ¢. By Corollary 3. y # y'. so without loss of generality we
have (y.m;). (. m}) € O; with y # y'. In this proof we will change agent j's
type (from 6;). To simplify notation. let ¢ = (y.m) depend only on the types
of agents 1 and .

Let 0; € ©; satisfy p(#;.6;) = (y.m). Since agent i receives (y'.m}) for
some reported type. and since © is monotonically closed. there exists ¢ € ©,

such that

{(y'.m})} = argmaxv;(g:6;) + m; (8)
(§.m)eO0,

Strategy-proofness implies o:(00.60;) = (y'.m;). Corollary 3 therefore implies
S0.0,) = (') (9)
(;orollary 2 implies that for all 919] vi(y:6;) +m; > 'Uj(gj(éi.éj): ;) +
m;(6;. QJ) So. since © is monotonically closed. there exists 6} € ©; such that
for all 6;.0;.
pj(HAI». 0;) # (y.my) = v;(y: 05) +m; > 'Uj(y(éi.éj):&j) + 77’L]—(él’. éj) (10)
Strateqy-proofness then implies @;(6;.6%) = (y.m;). so by Corollary 3.
p0,.6) = (y.m) (1)
Theorem 2 implies
v (501 04):65) 4+ m; (0. 05) = vi(G(0:.07):05) + m;(6:.65)

14



With eqns. (10) and (11). this implies ;(0;.0%) = (y.m;). so by Corollary 3.
p(0,.60°) = (y.m) (12)
Similarly. Theorem 2 implies
v §(07.07):07) + i (0. 0) = v (y(07. 0;): 07) + mi(6;.65)

With eqns. (9) and (12). this implies v;(y: 6;) + m; = v;(y': 0;) + m}. contra-
dicting eqn. (8). O

4 Conclusion

We have presented a model in which agents have quasi-linear preferences
over outcomes and transfers. and shown that in many situations it is es-
sentially impossible to design a solution immune to manipulation by pairs
of agents. Throughout the discussion. the interpretation of the model was
one in which an outcome represents a public decision. such as a level of
public goods. However. there are also applications of this model to vari-
ous private-goods environments. Examples include auctions. more general
allocation problems with indivisible goods.” and various two-sided matching
problems with money such as generalized assignment problems and many-
to-one matching problems. In such environments. the ~“public” outcomes are

actually allocations of the private goods to the agents.

Of additional interest is a seemingly related result by Crémer (1996) for
the case of exactly two outcomes (Y| = 2). which also concerns manipulation
by pairs of agents. and is much less negative.

The remainder of the section is dedicated to an informal discussion of
Crémer’s result. and the way our two scts of results together establish a
boundary between possibility and impossibility at the point where agents
gain information about ecach others types.

Crénier’s setup is as follows. Imagine that a Clarke-Groves Mechanism
is being used. and that all of the agents except. say. ¢ and j have alrcady
revealed their valuation functions to the mechanism (so interpret them as

fixed). Further. imagine that agents ¢ and j do not know each other’s valua-

%See Schunumer (1997) for an application of Theorem 2 to such an environment.
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tion functions. but anticipate the possibility of gains by both jointly misrep-
resenting their valuations and making an internal transfer. for certain realiza-
tions of their true valuation functions. Since they do not know each others’
valuations. they coordinate their potential misrepresentation by devising a
“sub-mechanism’™ . to which they report their valuations. that determines for
them (1) a (mis-)report of their valuation functions to be made to the orig-
inal Clarke Groves Mechanism. and (2) a transfer to be made between the
two.

The question is whether. for a given Clarke-Groves Mechanism. a pair
of agents could devise such a sub-mechanism that is strategy-proof (when
interpreted as a 2-agent solution). The answer is sometimes: Crémer (1996)
provides some Clarke Groves Mechanisms that are immune to such manip-
ulation by pairs of agents.?

Now one may think that Theorem 2 contradicts Crémer’s result with
the following reasoning: If a Clarke- Groves Mechanism is not bribe-proof. as
shown by Theorem 2. why can we not design a sub-mechanism for some pair
of agents. as above. to implement this bribe. violating the result of Crémer?
The reply to this is that such a sub-mechanism would be manipulable by
one of the two agents — one of the two agents cheating the system will be
cheated by the other agent.

For a precise example. suppose ¢ is a strategy-proof solution (for exam-
ple a Clarke-Groves Mechanisim) that is not bribe-proof: given types for
the agents 6 € ©. suppose agent j can successfully bribe agent ¢ with b
units of moneyv to mis-report his type as 6. One may propose the follow-
ing sub-mechanisin for the two agents: If the other agents have reported
those types 6_;;. and if ¢ and j rveport (6;.6;) to the sub-mechanism. then
the sub-mechanism recommends the mis-report (6. 60;). and a transfer of b to
be made from j to 7. In all other cases. the sub-mechanism recommends no
misrepresentation. and no transfer. Is this sub-mechanism strategy-proof?

If ; is not of type 6;. then i can not manipulate the sub-mechanism.
Similarly. j can not if ¢ is not of type ;. and these are almost all of the cases.
However. consider the situation when their types are (0;.60;). Herc. agent @

can tell the sub-mechanism he is type 6;: the sub-mechanism recommends the

0However. he shows that all Clarke-Groves Mechanisms are manipulable to this sort
of manipulation by triples of agents. On the other hand. he shows that each such manip-
ulation by a triple is. itself. re-manipulable by two of those agents!
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report (#1.6;) to the Clarke Groves Mechanisni. which is what would have
been reported anvway. along with a transfer of b to agent 7. resulting in a
gain to agent /. Hence this is not a strategy-proof sub-mechanism.

Furthermore. Crémer’s result tells us that for a particular class of Clarke -
Groves Mechanisms. there is no way for a pair of agents to design a strategy-
proof sub-mechanism taking advantage of any such bribing situation.

The essential difference between bribe-proofness and Crémer’s manipula-
tion condition is in the need for potential manipulators to know each other’s
types. Under the stronger condition of bribe-proofness. a manipulation is
considered possible if there is any situation in which a pair of agents could
gain through the bribing procedure. However. for a pair of agents to be able
to gain with a sub-mechanism. they must devise a plan of manipulation that
covers all realizations of their valuation functions. and it must be immune to
further manipulation by any of the two individuals.

Since the two concepts are similar except for their respective implicit
assumptions regarding the information agents have ahout each others’™ pref-
erences. the two sets of results could be seen as a dividing line between the
possibility and the impossibility of having solutions that are non-manipulable
by coalitions of agents. Possibility obtains even among the class of Clarke-
Groves Mechanisms as soon as potentially misrepresenting agents lose the
information of cach other’s types. With perfect information. however. ma-

nipulation is possible under almost any solution. in many environments.
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Appendix

Lemma 3 Let X be a path-connected set. If f: X — R s continuous and if

for all v € X. x is a local maximizer of f. then f 1s constant.

Proof: Suppose [ is continuous and not constant. Then there exist z.y € X
such that f(x) < f(y). Let ¢g:[0. 1] — X be continuous. and satisfy ¢(0) =«
and g(1) =y. Let L={0€[0.1]:0 <3 <d = f(g(0')) < f(z)}. (Note
that L is a non-empty. connected set.) Let § = sup L.

Since f is continuous. & € L. so ¢g(d) is not a local maximizer of f. O

The continuity of f can be replaced with every x also being a local min-
imizer: If f is not continuous. then ¢(8) in the proof of the Lemma is ecither
not a local maximizer or not a local minimizer. That is. if f is not constant.
then either there exists a non-local-maximizer or there exists a non-local-
minimizer. but not necessarily both. For example. consider the function

flr)=0fora# 1 and f(1) = 1: every x is a local maximizer.

Proof of Corollary 2

Corollary 2 Suppose that Y is finite and © is a connected domain. Then

© 1s bribe-proof if and only if ¢ is all-dictatorial.

18



Proof: Suppose by contradiction that for some #.0' € © and k € N.
clG0): O ) + Mg (0) < o (g0 0k) + (6
By repeated application of Theorem 2.
(G0 07,):0) + mp (0.6 ) < v (G(0"): 0x) + my(6')
contradicting strateqy-proofness. O

Coalitional Strategy-proofness

It is simple to obscrve that any all-dictatorial solution is also coalition-
ally strategy-proof. Thercfore on any domain of the types discussed in Sec-
tions 3.2-3.4. bribe-proof implies coalitional strateqy-proofness. The follow-
ing trivial example shows. however. that this logical relation does not hold
in general.

Let N ={1.2}. Y = {a.b.c.d}. and ©1 = ©, = {0.1}. Let the valuation
functions satistv:

a b c d
vi(:0) 0O 2 —10 1
vp(:1) 1 —10 2 0
va(:0) 0 =10 1
va( 1) 1 2 —-10 0

One bribe-proof solution that is not coalitionally strateqy-proof is ¢ =

(7. m). where m(-) = ma(-) = 0. and

7(0.0) = «
7(0.1) =10
g(1.0)=c
g(l1.1)=d

Also note that this rule is not efficient: hence bribe-proofness does not even

imply efficiency.
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Abstract

We study the financial value of subcontracting by analyzing a competitive stochastic in-
vestment game with recourse. The manufacturer and subcontractor decide separately on their
capacity investment levels. Then demand uncertainty is resolved and both parties have the
option to subcontract when deciding on their production and sales. First, we study price-only
contracts where an ex-ante transfer price is set for each unit supplied by the subcontractor. We
characterize the sub-game perfect investment strategy and present an outsourcing condition.
Manufacturer and supplier capacity levels are imperfect substitutes that, surprisingly, are more
sensitive to changes in the cost structure than in the revenue structure. Uncertainty is the
key reason, and we show that manufacturers will subcontract more when the level of market
risk increases and when markets are more negatively correlated. As with financial options, this
is accompanied by an increase in the option value of subcontracting. Second, we consider an
incomplete contract, so that both parties negotiate over the subcontracting transfer. Depending
on the manufacturer’s “bargaining power,” system performance can exceed that with price-only
contracts. Finally, the third contract type is a state-dependent price-only contract for which we
show an equivalence result with the bargaining contract. While subcontracting with these three
contract types improves system performance, it cannot eliminate all decentralization costs (or
“coordinate” the supply system).

Key Words: Real investments, capacity planning, subcontracting, outsourcing, supply contracts.

1 Introduction

We present analytic models to study subcontracting and outsourcing, two prevalent business prac-
tices across many industries. While the word subcontracting has been used for nearly two centuries,
outsourcing first appeared in the English language only as recently as 1982 [2]. Both terms refer to
the practice of one company (the subcontractor or supplier) providing a service or good for another
(the contractor, buyer or manufacturer). Subcontracting typically refers to the situation where the
contractor “procures an item or service which is normally capable of economic production in the
contractor’s own facilities and which requires the contractor to make specifications available to the
subcontractor [7].” Outsourcing refers to the special case where the contractor has no in-house
production capability and is dependent on the subcontractor for the entire product volume.
Many literatures discuss the costs and benefits of subcontracting. According to the strategy
literature, subcontracting and outsourcing occur because a firm may find it unprofitable or infeasible
to have all required capabilities in house: “a firm should concentrate on its core competencies and
strategically outsource other activities [19]” and “not one company builds an entire flight vehicle,
not even the simplest light plane, because of the exceptional range of skills and facilities required



[1]”. Subcontracting and outsourcing may also be “an impetus and agent for change” and “may
improve unduly militant or change-resisting” employee relations [4]. These benefits come at a
cost by exposing the contractor to strategic risks, such as dependence on the subcontractor (with
its inherent loss of control and associated hold-up risk) and vulnerability (e.g., lower barriers to
entry and loss of competitive edge and confidentiality) [19]. The operations literature highlights
the flexibility that subcontracting offers to production and capacity planning. Like demand and
inventory management, subcontracting allows for short term capacity adjustments in the face of
temporal demand variations. The key distinction between subcontracting and these other two
production planning strategies however, is that subcontracting “requires agreement with a third
party who may be a competing firm with conflicting interests [14].” (The implication being that any
reasonable model of subcontracting must incorporate multiple decision makers.) From a financial
perspective, the main reported benefits of subcontracting and outsourcing are lower operating
costs and lower investment requirements for the contractor, and the spreading of risk between the
two parties. Empirical studies report that cost efficiency is the prime motivation for outsourcing
maintenance [4] and information systems {16]. It is also argued that contractors ‘push the high
risk’ onto subcontractors by having them “carry a disproportionate share of market uncertainties
[8].” The financial costs of subcontracting and outsourcing include decreased scale economies to
the contractor [10] and the transaction costs resulting from the initiation and management of the
contracting relationship [19]. Finally, an extensive economics literature discusses our topic when
studying vertical integration but that literature generally ignores capacity considerations.

Few papers explicitly study an analytic model of subcontracting. Kamien and Li [14] present a
multi-period, game theoretic aggregate planning model with given capacity constraints and show
that the option of subcontracting results in production smoothing. Kamien, Li and Samet [15] study
Bertrand price competition with subcontracting in a deterministic game with capacity constraints
implicit in their convex cost structure. Hanson [11] develops and empirically tests a model of
the optimal sharing of the ownership of a given, exogenously determined number of units of an
asset between a manufacturer and a subcontractor. Tournas [20] captures asymmetries in in-house
information in a principal-agent model and compares them with the bargaining cost of a captive
outside contractor in a low-or-high demand scenario. Recently, Brown and Lee [5] have proposed
a flexible reservation agreement in which a manufacturer may reserve supplier capacity in the
form of options. Finally, there is significant literature on outsourcing in supply-chains. Cachon
and Lariviere [6] give an excellent overview of various possible contract types and their costs and
benefits, which will be discussed in more detail in Section 4.

The model presented in Section 2 below uses a two-stage, two-player, two-market stochastic
game to examine the financial impact of the subcontracting option on capacity investment levels.
In stage one, the manufacturer and subcontractor decide separately on their investment levels.
Then demand uncertainty is resolved and both parties have the option to subcontract when de-
ciding on their production levels in stage two, constrained by their earlier investment decisions.
Subcontracting is viewed as a trade of the supplier’s product for the manufacturer’s money. We
first analyze two scenarios (the centralized firm vs. two independent firms without any subcon-
tracting) that give us performance references. In Section 3 we study price-only contracts where an
ex-ante transfer price is set for each unit supplied by the subcontractor. We characterize the sub-
game perfect investment strategy and formulate an outsourcing threshold condition in terms of the
manufacturer’s investment cost. We show that optimal manufacturer and supplier capacity levels
are imperfect substitutes with respect to capacity costs and contribution margins. Surprisingly,
optimal capacity levels are more sensitive to changes in the cost structure (i.e., capacity costs) than
in the revenue structure (i.e., margins or output prices). Uncertainty is the key reason. We also
show that manufacturers will indeed subcontract more when the level of market uncertainty (risk)



increases and when markets are more negatively correlated. This is accompanied by an increase in
the option value of subcontracting (real assets), similar to the option value of financial assets. In
Section 4 we study two other contract types. One uses the incomplete contracting approach where
no explicit contracts can be made and both parties negotiate over the subcontracting transfer.
This is the ultimate minimalistic and opportunistic approach to subcontracting. It allows us to
analyze the role of the “bargaining power” of the contractor on outsourcing decisions and system
performance improvement (which may be greater than with price-only contracts). Our third con-
tract type is a state-dependent price-only contract for which we show an equivalence result with the
bargaining contract. While subcontracting with any of these three contract types improves system
performance relative to the independent scenario, it cannot eliminate all decentralization costs (or
“coordinate” the supply system) due to uncertainty. We close with a discussion of more complex
contracts in the literature and suggestions for further work.

Our model differs from those in the previous papers in that the capacity investment levels of
both the manufacturer and the subcontractor are decision variables. Our multi-variate, multi-
dimensional competitive newsvendor formulation is an extension of univariate, one-dimensional
supply models and of the univariate competitive newsvendor models of Li [17] and Lippman and
McCardle [18]. Our multi-dimensional model allows us to study the impact of subcontracting on
both players’ in-house investment levels and on the buyer’s outsourcing decision, which is pre-
assumed in captive-buyer captive-supplier models. We show that the higher complexity of subcon-
tracting makes coordination more difficult compared to traditional outsourcing models in supply
chains. The multi-variate demand distribution allows us to investigate the important role of market
demand correlation and provides a graphical interpretation of the solution. Finally, we have chosen
to make both models essentially single-period and to posit no information asymmetries between
the two parties. Therefore we shall not discuss how subcontracting can smooth production plans
over time, create or mitigate information asymmetry problems, or affect the long-run competitive
position of the firms.

2 A Subcontracting Model

2.1 The Model

Consider a two-stage stochastic linear model of the investment decision process of two firms. In stage
one when market demands are still uncertain, both firms must decide separately, yet simultaneously,
on their capacity investment levels. At the beginning of stage two, market demands are realized and
both firms must decide on their production levels to satisfy optimally market demands, constrained
by their earlier investment decisions. At this stage, both firms have the option to engage in a
trade. The subcontractor S can supply the manufacturer A a quantity x; > 0 in exchange for
a payment p,x;. Before we explain the specifics of the supply contract in the next section, let us
discuss model features, notation and two reference scenarios that are useful to evaluate the impact
of subcontracting on firm performance.

In the first reference scenario subcontracting is not an option (z; = 0) so that both firms operate
completely independent of each other. Both firms go solo and each will sell to its own market as
shown in Figure 1. For simplicity, we will assume that both firms have exclusive access to their
respective markets. Because the subcontractor lacks the assembly, marketing and sales clout of the
manufacturer, she does not have direct access to market M. In practice, however, the manufacturer
may have access to market S through wholly owned upstream subsidiaries that provide them and
others with parts or subsystems. General Motors, for example, owns Delphi Automotives which
supplies GM and other auto assemblers with brake systems and other parts. At the same time, GM



Manufacturer A/ Market Af
Iyt

v’

Subcontractor § Market §

Figure 1: The Subcontracting Model.

multisources some parts from outside, independent subcontractors. Thus, market M would repre-
sent the end market for cars and market S the intermediate market for parts. GM could compete in
market S but we will abstract from such competition to highlight the subcontracting option. Also,
notice that direct sourcing from market S instead of from the subcontractor is not an option for
the manufacturer. This modeling assumption reflects the relationship-specific information typically
present in subcontracting and it implies that we are not discussing the purchase of standardized,
off-the-shelve products in commodity markets.

The second reference scenario represents the other extreme in which both firms are integrated
and controlled by a single decision maker. In this centralized scenario the integrated firm will
serve both markets. Subcontracting, then, is the intermediate scenario in which both firms are
independently owned so that we have two decision makers, yet trading is possible. (Thus the
subcontractor’s technology is sufficiently flexible that it can produce the same product as the
manufacturer’s technology.)

Let K; > 0 denote firm i’s capacity investment level, where i = M or S. Firm ¢ is assumed to face
a constant marginal investment cost ¢; > 0, so that its capacity investment cost ¢;K; is linear in the
investment level. The manufacturer’s production level xj; and the supplier’s production xg + x¢
are linearly constrained by the capacity investment levels: zp; < Kjpr and x5 + ¢ < Kg. For
simplicity, we assume that both firms make constant unit contribution margins p; per unit sold in
market i. To avoid trivial solutions we assume that ¢; < p;. Let D; > 0 denote the product demand
in market 7. Like Kamien and Li [14], we assume symmetric information in the sense that each firm
has complete information about the other’s cost and profit structure and investment level, and they
share identical beliefs regarding future market demands. (They have the same available market
information or use the same forecasting method.) Beliefs regarding future market demands can
then be represented by a single, multi-variate probability measure P(-). For simplicity, we assume
that market demands are finite with probability one and that P has a continuous density f(-) on
the sample space Ri. The expectation operator will be denoted by E. We assume zero shortage
costs and zero salvage values for both products and production assets!. Finally, both firms are
assumed to be expected profit maximizers and the research question can thus be formulated in the
two reference scenarios as follows.

2.2 Independents: Going Solo

When both firms do not subcontract, each firm decides on its production and sales decision x; in
stage two by maximizing its revenue 7; = p;x; subject to the capacity constraint z; < K; and the

'Relaxation of these assumptions to include convex investment costs, market-and-firm specific unit contribution
margins p;;, shortage costs and salvage values, and non-unit capacity consumption rates is relatively straightforward
at the expense of added notational complexity.
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D realization and the scenario.

demand constraint x; < D;. This “product mix” linear program can be solved by inspection to
p prog y p

yield the optimal activity level and revenue: xf° = min(K;, D;) and mole = pizio©. In stage 1,

firm 7 chooses its optimal investment level Kf"l" so as to maximize its expected firm value, denoted

by V;, which is the expected operating profit minus investment costs:

Ko = arg max Vol (K) where Volo(K) = Ent®°(K, D) — ¢;K;. (1)

The optimal solution is given by a simple newsvendor solution Kl =G, (%), where G;() is the
inverse of the marginal tail probability function: P(D; > G;(z)) = z. To build some intuition for
the solution technique that will be used below, let us summarize briefly how this familiar result
can be derived using the multi-dimensional newsvendor model of Harrison and Van Mieghem [12].
It will be convenient to partition the demand space as in Figure 2 (where we abbreviated the sum
of the components of K by K. = K + K»y). Any given capacity vector K partitions Ri into 7
regions 4 (K),l =0,1,--- ,6. The rectangular region Qo(kK) is the capacity region of this two-firm
supply system without subcontracting. Whenever D is within the supply system’s capacity region,
all market demand can be met. Qutside the capacity region, some demand will be lost and the
optimal production-subcontracting market supply X = (zpr,25) < D, represented by an arrow
emanating from D, will be on the capacity frontier.

Linear programming theory yields that the revenue vector 75°l°( K, D) is unique and concave in
K. Thus, the linear superposition EWfO“’(K, D) and thus V;*°!°(-) are also concave so that the first
order conditions of (1) are sufficient:

ail(i‘/isolo — —I/fOIO and VfoloK'folo =0,

where uf"lo > () is the optimal Lagrange multiplier of the non-negativity constraint K; > 0. Invoking
[12], gradient and expectation can be interchanged to yield EX(K®°° D) = ¢; — v$°° where \;

1 b
is firm’s 7 capacity shadow value: A, = -(%”(L_. The shadow value A;, which is the optimal dual

variable of firm i’s production linear program, equals a constant /\é in each domain €2; of Figure
2. Thus, the expected marginal revenue can be expressed as g}’?i = E\ = Zle M P((K)).
To simplify notation, define a 2 x 6 matrix A whose [-th column is the shadow vector in domain
Q : Ay = AL Similarly, define a 6 x 1 vector P(K) whose I-th coordinate is the probability of

domain € : P(K) = P((K)). When both firms “go solo” the marginal vector is

3 0 par Prm PM DM | pygesol parP(Dy > K3°0)
E) = AsoloP Ksolo — Par P(K S = 1
( ) 0 ps ps ps 0 O ( ) psP(Dy > K5°°)



Because contribution margins exceed investment costs (p; > ¢;) both firms will invest (1%°° = ()

and the optimality equations directly yield the simple newsvendor solutions G; (:7’)

2.3 Centralization

When both firms are controlled by one central decision maker, the optimal production and sales
vector x in stage two maximizes system revenue, subject to system capacity and demand constraints.
Transfers x; are possible and optimal activity levels %" and revenue 7"
product mix linear program:

are the solution of the

cen
T

= T%cpM(a:M +x¢) + psxs (2)

st. xar < K,z + x5 < Kg,ap +xar < Dar,zs < Ds.

The optimal investment vector K" maximizes expected system value:

K" = arg max Ver(K) where Ve (K) = Er“™(K,D) — K. (3)

The option of transfers z; enlarges the supply system’s capacity region to 2o U€l;, or {o; in short.
Using this shorthand notation, if D € Q23456, demand exceeds supply and the optimal supply vector
X = (zpr + 71,75) will be on the boundary of the capacity region Qp;. The linear program (2)
can be solved parametrically in terms of K and D (thereby directly manifesting the domains {2
defined earlier). If market A/ is more profitable than market S, it gets priority in the capacity
allocation decision yielding market supply vector X, in Figure 2. Otherwise market S gets priority
yielding vector X, in Figure 2. As before, 7¢" (K, D) is concave and the shadow vector A(K, D) is
constant in each domain so that the optimal capacity vector K" solves A®"P(K") = ¢ — v"
and K"y = 0, where

cen __ 00 Illill(p) Par PArr min(p)
Acen — . . (4)
0 ps ps max(p) par min(p)

If M-capacity is less expensive than S-capacity (car < cg), it is profitable to invest in both types
of capacity (v°*® = 0). Otherwise, it is optimal to supply both markets using only the cheaper
S-capacity: v$7* > 0 and K§5" = 0. In the Appendix of 23] we show that V" is strict concave at
K™ so that the optimal investment vector is unique.

We now have completely characterized the optimal investment strategies in both reference
scenarios. Clearly, system values under centralization V" (weakly) dominate those when both
players go solo: V" > Vj"l" = Vls"l" + Vo, The value gap AVsolo = yeen _ Vj"l" captures the
costs of decentralization. In the remainder of this article, we will investigate how subcontracting
can decrease the value gap and whether it can “coordinate” the supply network. That is, can
subcontracting increase system efficiency and eliminate the value gap?

3 Subcontracting with Price-Only Contracts

A price-only contract specifies ex-ante the transfer (or “wholesale”) price p; that the manufacturer
must pay for each unit supplied by the subcontractor. Because this simple contract does not
specify a transfer quantity z; or any other model variables, it cannot force a party to enter the
subcontracting relationship. Using Cachon and Lariviere’s [6] terminology, contract compliance is
voluntary and both parties will enter the subcontracting relationship (or “trade”) only if it benefits
them. First we will consider p; as given and known by both parties from the start and analyze this



contract structure for any value of p;. Later we will discuss the choice—or contract design—of the
transfer price p;.

As before, both players must decide separately, yet simultaneously, on their capacity investments
in stage 1 before uncertainty is resolved. The resulting capacity vector K is observable and becomes
common information. After demand is realized, both parties make their individual production-sales
decisions z in stage 2 where they have the option to subcontract. Thus, the manufacturer can ask
the subcontractor a supply x}M and the subcontractor has the option to fill the order zM (up to
her capacity constraint). Thus the subcontractor offers a quantity x7 <z}, which is accepted by
the manufacturer in exchange for a payment p;x;.

When making decisions, each player acts strategically and takes into account the other player’s
decisions. Any capacity vector K (production vector x) with the property that no player can
increase firm value by deviating unilaterally from K (z) is a Nash equilibrium in pure strategies
and is called simply an optimal investment (production) vector. Its resulting firm value (revenue)
vector is denoted by V(K) (w(x)). The analysis of our subcontracting model involves establishing
and characterizing the existence of a Nash equilibrium in this two-player, two-stage stochastic game.
As with any dynamic decision model, we start with stage 2 and solve the production-subcontracting
subgame for any given pair (K, D). We will show that there exists a unique optimal revenue vector
(K, D), which will allow us to solve the full investment game in stage 1.

3.1 The Production-Subcontracting Subgame

For any given capacity vector K > 0, both players decide sequentially on their production and
transfer levels in order to maximize their own revenue:

max partar +  (par — pe)T max PSTs + DTy
IA[,Ig,IivIZO IS@fZO
st.  xar < Ky, and s.t. xg+a:ts < Ksg,
Tar+x¢ < Dy, zs < Deg,
z, = min(z]M,z7), r, = min(zM, 7).

Depending on the value of p;, the manufacturer M and supplier S have a higher or lower incentive
to subcontract. First, M will only subcontract if p; < par, otherwise the independent solo solution
emerges. Thus, for the remaining of this article we will assume p; < par so that M will always
prioritize his internal capacity and will ask S to fill the remaining demand: x; = min(Dar, Kar)
and oM = Dj; —xpr = (Dpr — Kjr)* . Second, S has an incentive to fill M’s demand if p; > pg,
while if p; < pg, she will prefer to fill her own market demand. Thus, we must distinguish between
two cases: high transfer price (ps < p; < pas) and low transfer price (p; < min(p)).

If the transfer price is high, S prefers supplying M to serving her own market and will fill M’s
order to the best of her capacity: z¥ = min(Kg,z}). Thus, the subcontracting supply is z; =
min ((DM —Kp)™" ,KS), and both players prefer subcontracting whenever M has excess demand,
that is if D € Qy3456. S will use any remaining capacity to fill her own market demand: zg =
min(Dg, Ks — z¢). (The resulting market supply vector in Figure 2 is X.) If the transfer price is
low, S has little incentive to supply M and prefers serving her own market: xs = min(Dg, Kg). S will
use any remaining capacity to fill M’s demand: z{ = min(z}/, K5 — zs). Thus the subcontracting
supply is @¢ = min ((Dar — K", (Ks — D5)+), and subcontracting will materialize when M has
excess market demand and S has low market demand, that is if D € Q156. (The resulting market
supply vector in Figure 2 is X,.)

In both cases (high or low transfer price), the production vector x forms a unique Nash equi-
librium because no player has an incentive to deviate unilaterally. At any transition point between
the regimes where an equality sign holds (e.g., ps = pt), players are indifferent between the two



regimes because they receives the same revenue in either regime, and a continuum of production
vectors are Nash equilibria. This poses no problems, however, because linear programming theory
yields that the associated revenue vector m(K, D) is unique and concave in K:

Proposition 1 For any demand D and capacity K vector, there is at least one Nash equilibrium
x(K, D) in pure strategies and all equilibria have identical revenue vector m(K, D), which is concave
n K.

3.2 The Full Capacity Investment Game

To demonstrate the existence of a Nash equilibrium in pure strategies, we will show that the capacity
reaction curves have an intersection point that is stable. (A simple three step sequential game like
our subgame always has an equilibrium.) Firm ¢’s capacity reaction curve k;(-) specifies firm i’s
optimal investment level K; = k;(K;) given that firm j has capacity K;. Thus, k;(-) is defined
pointwise for each K; > 0 as k;(K;) = argmaxg, >0 Vi(K). As before, because 7;(K, D) is concave
in K;, so too is the linear superposition Em,;(K, D) and thus V;(-). Thus, the first order conditions
(FOCQ) are sufficient and can be represented in matrix notation:

AP(K)=c—vand VK =0, (5)

where

pe 0 pv prropPaooDe
0 ps ps pt Pt Ps

} if ps < pi <par,
Asub:
[Pt 0  par par P P

if < min(ps, )
0 ps ps ps pe D } Pt (ps.par)

Thus, firm ¢'s reaction curve is found by solving equation 4 in (5) as a function of K;. Implicit
differentiation of the FOC shows that —1 < 21(% < 0 (details can be found in the Appendix of
J
[23]). Axis crossings and asymptotes are as shown in Figure 3. It directly follows that the reaction

curves have an intersection K%, Noreover, at least one reaction curve has a slope diifk(—“f > —1 at
J

an intersection so that the corresponding equilibrium is unique and stable (Nash).

Proposition 2 The unique solution K** of (5) is the unique optimal investment vector.

3.3 Complete Subcontracting (Outsourcing): K% =0

From the structure of the capacity reaction curves, it follows that the optimal investment strategy
has one of two distinct forms. Either both firms invest or only the supplier invests. In the latter
case, the manufacturer relies for all sourcing on the outside party. Formally, one can express an
outsourcing condition in terms of a threshold ¢js on the manufacturer’s investment cost cps as
follows. Set K = (0,ks(0)) and define the threshold cost ¢py = A{f‘:bp([_(), where Aff‘:b is the first
row of As*?. Then the manufacturer should outsource if and only if his investment cost ¢y exceeds
the threshold cost ¢,y.

Clearly, the threshold cost ¢j; depends on the manufacturer’s margin pps, on “his cost to
subcontract” as expressed by the transfer price p;, and on the joint probability measure P of
the demand forecast. The supplier’s margin ps and investment cost cg, however, also impact
the outsourcing decision, reflecting the strategic interactions in our game-theoretic model. In
the Appendix of [23] we show that for low levels of demand uncertainty, the threshold level is
independent of the demand distribution:
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Thus, with little demand uncertainty and low transfer prices, no outsourcing will happen because
such low transfer prices give the supplier not enough incentive to invest in extra capacity to serve
the manufacturer. (Even when p; < min(c), M must still invest in in-house capacity because
supply is not guaranteed by S who will prioritize her own market when capacity-constrained.) For
transfer prices higher than the supplier’s capacity cost, outsourcing is possible. For medium transfer
prices, the threshold ¢p; is decreasing in p; so that outsourcing becomes more likely with higher
transfer prices p;. When the transfer price exceeds the suppliers margin, a discontinuous drop in
¢ps reflects the fact that the supplier now has a very strong incentive to invest in extra capacity.
As the transfer price increases, however, subcontracting increasingly becomes more expensive for
the manufacturer compared to in-house capacity so that outsourcing becomes less likely. (From
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Table 1: Sensitivity of the optimal investment levels K°“" and value V*“?, where o, 8 > 0. Table entries represent
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v for example.

partial derivatives: a; = Be.

the structure of the manufacturer’s reaction curve it follows that the threshold cost ¢y cannot be
smaller than p;, because a necessary condition for outsourcing is that cyy > p; so that GM(%L) =0.)
Figure 4 illustrates the outsourcing vs. (partial) subcontracting strategies. Recall that a centralized
system would not invest in manufacturing capacity (and hence “outsource”) if cpy > cg, covering a
wider ‘outsourcing’ zone of the strategy space. This is a first indication that subcontracting with
simple price contracts will improve system coordination as compared to the solo scenario (never
outsourcing), yet it will not eliminate the value gap AV

When the level of uncertainty in the demand forecast rises above a certain level, the threshold
cost &y will decrease for low to medium transfer prices (p; < pg) but increase for high transfer
prices (ps < pr < par). Thus, for low to medium transfer prices, more uncertainty creates a
stronger incentive for the supplier to invest in extra capacity making outsourcing more likely. For
high transfer prices, on the other hand, more uncertainty increases the expected total transfer cost
to the manufacturer who will prefer more in-house capacity making outsourcing less likely.

3.4 Sensitivity of the Investment-Subcontracting Strategies

The sensitivity of the optimal investment strategy with respect to changes in capacity costs c,
contribution margins p, and transfer price p; is summarized in Table 1. Let us highlight some in-
teresting factors. First, strategic decision making captured by our game-theoretic model makes one
party’s investment level and firm value dependent on the other party’s cost and revenue structure.
When the manufacturer faces higher investment costs, for example, he will decrease his investment
level. The supplier, on the other hand, anticipates the manufacturer’s decisions and her decision
reflects the externalities in our model. Lower manufacturing capacity most likely will lead to higher
supply requests 23!, giving the supplier an incentive to increase her investment level. The increase
in Kg“b, however, does not make up for the decrease in Kj}‘b (because transfers are only made with
a probability strictly less than one). This shows that optimal manufacturing and supplier capacity
levels are imperfect substitutes with respect to capacity costs ¢ and margins p.

Second, optimal manufacturing and supplier capacity levels are more sensitive to changes in
capacity costs c than changes in output prices (margins) p. This is a direct result from the presence
of uncertainty. For example, an increase in pjs only warrants an increase in manufacturing capacity
if demand is sufficiently large (e.g., D € Q45 if pr > ps). An increase in cpr, on the other hand,
always justifies a decrease in manufacturing capacity, regardless of the demand realization. This
result is in stark contrast to deterministic systems and one expects this sensitivity differential to
increase in the amount of demand variability.

Third, while the supplier’s value sensitivity directly reflects the externalities in the model, the
manufacturer’s value is a little more intricate. Clearly, an increase in supplier costs leads to a
decrease in total system capacity, which impacts both parties’ value negatively. An increase in
manufacturing cost benefits the supplier who increases her capacity in anticipation of a larger total
demand z}! + Dg. This effect can dominate to yield the unexpected result that the manufacturer’s
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Figure 5: Optimal investment levels as a function of demand variability when market demands are uncorrelated

(left) and of correlation when market demands are uniform (right).

value can be increasing in its investment cost. The manufacturer enjoys spill-over benefits from
increased supplier capacity that may outweigh his increased investment costs.

Fourth, the table shows that an increase in the transfer price p; has a similar effect as a
simultaneous increase in margins pa; and pg. The absolute effect on investment levels and firm
values is ambiguous. An increase in p; makes subcontracting more expensive for the manufacturer
relative to internal capacity investment. This is reflected by a rightward move of the manufacturer’s
reaction curve ks in Figure 3. Increased transfer prices, however, give the supplier a higher incentive
to increase her “relationship-specific” investment. Thus, while we expect K X?b to decrease and K g“b
to increase, the supplier’s reaction curve kg can move upward more than ks moves right so that
KX}"’ increases and K§“b decreases; again, illustrating the intricate externalities that can occur in
stochastic games.

Finally, to study the effect of uncertainty on the optimal investment strategies, we consider a
probability measure P (-|~) with density f(- |7) that is parameterized by v, where 7 represents
an uncertainty measure of importance such as variability or correlation. Formally, the impact of
changes in 4 on the optimal investment strategy can be expressed as:

0 b 1
Lsub — g
oy o [

Sy (T2 A3y — T AS) B
Sy (= JAE -+ T A B )

where J is the Jacobian of the optimality equations (5) and

R == [ 2

= — — f(z |y)d=.
g Joy(rsury N

Although this expression is of limited practical value, it may be useful for estimating the sign
of B%Ks“b. The appendix of [23] shows that Jy < Jp; < 0 and Jy; < Jig < 0. Thus, G%K]s\}‘b and
%Kg“b may have opposite signs so that the optimal manufacturer and supplier investment levels
would respond in opposite ways to changes in the demand distribution, akin to the substitution
effect stated earlier. This effect is present for changes in the level of demand uncertainty or demand
correlation in the example shown in Figure 5. This example was generated numerically using a
demand distribution parameterized by correlation and standard deviation in market demand. Given
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that the mean is constant, we can use the standard deviation as a measure of variability or market
risk. Correlation varies between —1 and +1 for perfect negatively and positively correlated demand,
respectively. (Explicit expressions for this family of distributions were first presented in [22, pp.
75-77].) For simplicity we assume identical mean and standard deviations for Dy; and Dg, so that
both markets are ‘equally risky’.

As shown in the left graph of Figure 5, optimal investment levels are monotone in variability
but they can be increasing or decreasing. This is similar to the well-known effect in one-dimensional
newsvendor models with symmetric demand distributions where optimal investment increases (de-
creases) in variability if the critical ratio = > 0.5 (< 0.5). Also, the supplier’s investment increases
when the manufacturer’s investment decreases, and vice versa. More importantly, compared to the
independent “solo” setting, an increase in market risk decreases the manufacturer’s relative invest-
ment if there is a subcontracting option. This can be paraphrased as saying that the manufacturer
will subcontract more as market risk increases and the subcontractor’s response is to invest more.
(The subcontractor’s optimal investment level seems to be less sensitive to risk, which may be
explained by risk pooling: the supplier’s effective demand pools over both markets and therefore is
less variable.) The graph at the right in Figure 5 shows that the manufacturer’s (supplier’s) invest-
ment level is increasing (decreasing) in the correlation between the two market demands. Thus, the
manufacturer will subcontract less as market correlation increases. Indeed, when market demands
are positively correlated the subcontracting option has less value so that the optimal fraction of
capacity that is subcontracted decreases.

3.5 System Coordination and the Value Gap AV = V" — Vb

Comparing the capacity reaction curves (in bold in Figure 3) with the optimality curves that define
the optimal centralized and solo investment (in light in Figure 3) directly yields:

ng[n S Ar]s\l[tb S I(R(}[O and ngn 2 Kgub 2 ngolo.

Intuitively, this is what one expects: subcontracting allows the manufacturer to decrease his invest-
ment in capital and/or labor. The option of subcontracting means potentially more business for the
supplier and thus warrants additional (or ‘relationship-specific’) investment. Figure 6 illustrates
how the subcontracting capacity investment levels compare to those in the reference scenarios as a
function of the transfer price p;. As argued earlier, the capacity levels are imperfect substitutes
while total industry investment level Ki“b is increasing in p;. The figure also shows that in the
context of our model subcontracting may reduce or increase industry investment compared to the
solo or centralized setting. (While the figure shows that Kfl" < Ki“b, this is not true in general
either.) Thus, in contrast with the one-dimensional competitive models of Li [17] and Lippman
and McCardle [18], in our model centralization and its implicit monopoly power need not result in
industry under-investment compared to the subcontracting and independent (solo) settings. Sim-
ilarly, subcontracting and outsourcing need not result in a decrease of total capacity compared to
the solo setting.

A key question is how effective price-only subcontracting is in inducing system coordination;
that is, by how much does it reduce the costs of decentralization as measured by the value gap
AV = Veen — Vj“b? Because the optimal centralized and subcontracting investment vectors are
the unique solutions to A®"P(K®") = ¢ — 1" and ASP(K*¥) = ¢ — v*", respectively, and
A #£ A% both investment vectors are different in general: K" # K sub and thus system
value V0 < V" (because the value functions are strictly concave at the optimal investment
vectors). Therefore, subcontracting with price-only contracts does not coordinate the supply network.
It does, however, mitigate the decentralization costs in that it reduces the value gap compared
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of the transfer price p; when market demands are uniform but strongly negatively correlated.

to the no-subcontracting setting. From the structure of the capacity reaction curves shown in
Figure 3 it is clear that the optimal subcontracting investment vector K sub moves toward the
centralized investment K" (and thus VS moves toward V") if ¢r increases, ceteris paribus (so
that kg remains unchanged). In that case, an increasing supplier cost advantage improves system
coordination compared to the solo setting. Indeed, subcontracting becomes more profitable to both
parties when the supplier has a cost advantage and her capacity increase can be made at lower cost
than if the manufacturer were to invest himself.

The impact of the contract transfer price p;, however, is ambiguous. Because both reaction
curves change as p; changes, the result on K*® and thus Vj”b is unclear. Higher transfer prices
give higher incentives to the supplier yet lower to the manufacturer. The overall result on firm and
industry values can go either way because of the externality effects in our strategic model. (Partial
pe-derivatives in Table 1 cannot be signed in general.) Contract design, or the choice of the optimal
p: (whether one wants to maximize manufacturer, supplier or system profits-depending on which
party has most ‘power’ in setting p;), becomes thus very case specific. In all our numerical test
problems, system profits where maximized at p; = pg yielding a substantial improvement in the
value gap AV, which is in agreement with economic theory stating that transfer prices should be
set equal to outside opportunity costs. If the manufacturer sets the transfer price, however, he
does not necessarily set it at pg. Indeed, because of demand variability, a transfer price below pg
may yield optimal profits for the manufacturer. Figure 6 illustrates this possibility when market
demands are strongly negatively correlated (p = —0.9).

Finally, the presence of demand uncertainty is a key driver in the option value of subcontracting.
Figure 7 illustrates that the option value of subcontracting is increasing in variability. Thus,
similar to many financial options, more uncertainty is good for this real option. In absolute terms,
however, more variability reduces firm values. Figure 7 also confirms intuition that negative demand
correlations increase the option value of subcontracting. In terms of our graphical solution technique
of Figure 2, the triangular option region €2; gets more probability mass as correlation becomes more
negative.
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4 Subcontracting with Other Contracts

Many contract structures other than price-only contracts can be used to regulate subcontracting.
In this section we will discuss two other types of contracts and relate our results to more complex
contracts studied in the literature.

4.1 Incomplete Contracts: Bargaining

In some situations, ex-ante contracts may be too expensive or impossible to specify or enforce.
Start-up companies and companies in developing countries may find it too expensive to enforce
execution of a contract [11], while “investments by suppliers in quality, information sharing sys-
tems, responsiveness and innovation are often non-contractible. Without the ability to specify
contractually in advance the division of surplus from non-contractible investments, this surplus
will be divided based on the ex-post bargaining power of the parties involved [3].” This incom-
plete contracts approach was first suggested by Grossman, Hart and Moore [9, 13] to study vertical
integration. In our setting, it may be thought of as the ultimate minimalistic and opportunistic ap-
proach to subcontracting: no contracts are needed and subcontracting only happens if both parties
profit from it.

The model is similar to before and both firms have the option to engage in a trade at the
beginning of stage two. The firms can decide jointly on production-sales decisions so that the
resulting activity vector equals the vector 2°"(K, D) chosen in the centralized scenario. Engaging
in subcontracting thus yields a revenue surplus An(K, D) = 7°"(K, D) —n%°"°(K, D) > 0 compared
to going solo, and both parties thus have an incentive to engage in the trade z;(X, D). Without
the ability to contractually specify in advance the division of the surplus, the firms must negotiate
this division, which can be cast as bilateral bargaining. Many bargaining games are possible (c.f.
Kamien and Li [14, p. 1357]). Nash introduced a game that leads to splitting the surplus evenly.

Rubinstein presents a sequential game in which player i gets fraction 8 = 11:6%], of the surplus,

where §; is the “impatience” or discount factor of player 7, which is ex-ante observable. Whichever
bilateral bargaining game is used, the manufacturer can ex-ante ezpect (but not contractually
specify) to receive fraction 8 of the surplus while the supplier will get fraction § = 1 — 6. One can
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Figure 8: The option value of subcontracting with an incomplete contract and its outsourcing threshold (with

dashed bounds) as a function of the manufacturer’s bargaining power for the same model parameters as Figure 7.

also think of 6 as the ‘bargaining power’ of the manufacturer.

In summary, with incomplete contracting the manufacturer’s revenue function is Wi,‘}lo + fmeen
while the supplier receives 7r350“’ + @rce™. Thus, as before, the capacity reaction curves can be
constructed in terms of a shadow matrix A% = A%° 4 diag(6,0)A%". Both curves have a unique,
stable intersection that defines the optimal investment vector K?b7  Thus, whereas price-only
contracts can explicitly induce additional supplier investment through a high transfer price, the
division of the ex-post surplus here gives the supplier an indirect incentive to make a relationship-
specific investment.

Because the sensitivity of the investment strategy is similar to that under price-only contracts,
we will focus on the role of the bargaining power 6. As earlier, we can express an outsourcing
condition in terms of a threshold €j; on the manufacturer’s investment cost ¢p;. The appendix of
(23] shows that if the supplier has higher margins (ps > par), outsourcing will never be optimal
(2ar > par)- If, however, the manufacturer has higher margins (par > ps), outsourcing is possible
as shown by the bounds on the outsourcing threshold:

ye _ . ~ 8
car < Bcs +0par <€y < min { par, Opar + 505 |-

The threshold is decreasing (almost linearly) for small & which implies that outsourcing s more
likely for more powerful manufacturers. The argument, however, cannot be generalized to very
powerful contractors (6§ — 1): the threshold may be increasing close to 8 =1 as shown in Figure
8. There seems to be a range of bargaining powers around 6 ~ 0.75 (and decreasing in demand
variability) for which outsourcing is most likely. If the contractor’s bargaining power is substantially
higher, outsourcing is less likely because the subcontractor receives less ex-post surplus and has
less ex-ante incentive to make a relation-specific investment. If bargaining power is much smaller,
most surplus goes to the supplier. As shown in Figure 8, system value and the option value of
subcontracting with incomplete contracts is maximal when surplus is divided not too unevenly
(but it need not be a fair 50 — 50 split). More importantly, incomplete contracts are not inferior to
explicit price-only contracts. For example, comparing Figure 8 with corresponding Figures 6 and 4
shows that the option value can be larger and that outsourcing is more likely. Yet, as before, mere
supplier cost advantage of the subcontractor is not sufficient for the manufacturer to outsource.
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Indeed, even if cp; > cg, as long as c¢py < €py it is optimal for the manufacturer to invest in some
in-house capacity. Thus, neither price-only nor incomplete contracts can coordinate this supply
system.

4.2 State-dependent Price-Only Contracts

A state-dependent price-only contract is a price-only contract that specifies an ex-ante transfer price
for each possible state vector. The price can be demand dependent p;(D), or also dependent on the
capacity vector p; (K, D). (The latter assumes that capacity levels are not only observable by the two
firms as assumed earlier, but also verifiable by a third party.) Obviously, because of the increased
degrees of freedom, optimal contract design of a state-dependent contract (a calculus of variation
problem) will improve performance (system or one player’s depending on the objective) compared
to a constant price-only contract. Nevertheless, even state-dependent price-only contracts do not
coordinate the supply system in general. Indeed, coordination would require that the expected
marginal revenues equal those in the centralized scenario. Because

ey g — | Parlas £ o, pdP  fo, [Ptl(p>psy + PML(pe<psy] AP

psPas + _[94 max(p¢, pg)dP + -’Qs pdP + JQG min(p;, ps)dP |’

it directly follows that E/\SA‘}" Pt > EN{T* and E/\gm Pt < EXZ™. Coordination requires equality or
Pi3ase = 0 (and thus outsourcing and high cpr) if ps < pas, or Pis¢ = 0 (and thus Ksub pr — solo
if P has (unusual) non-convex support) if ps > pps. Thus, in stochastic systems with partial
subcontracting coordination is generally not achieved with our three types of simple contracts. Not
surprisingly, the higher complexity of subcontracting makes coordination more difficult compared
to traditional outsourcing models in supply chains.

This contract type also allows us to relate the price-only contract with the bargaining contract.
Indeed, the execution of the inter-firm supply z%(K%" D) and the division of the surplus is
implemented by specifying the quantity x;(), D) to be provided by the subcontractor and the
transfer price p?®" to be paid by the manufacturer for each unit provided. This transfer price is
defined implicitly in the bargaining model in that it guarantees the correct division of surplus:

T = pox ™ + pheT e (recall that z%9" = z°"). Rearranging terms yields
Py = Opasai” + Ops(aF' — 2 §™), ()

and because z{*" > :ESSD“’ —x g™ we have that Oprr < pt* (K, D) < Opps+0ps.The payment pharsen

is the composition of two terms: pp;z$e" is the gross surplus derived from subcontracting while

ps(JZSSOlo —x%™) is the subcontractor’s opportunity cost or the profit forgone by subcontracting. The
gross surplus is received by the manufacturer who pays the share 6p;z{®™ to the subcontractor.

The subcontractor bears the opportunity cost and is compensated by the contractor for the share
solo cen)

Ops(zg™® — x§

Moreover, if the manufacturer has a margin advantage but limited bargaining power such that
Oprr < par — ps, then a price-only contract with state-dependent transfer price p; = e (K, D)
will yield the same investment vector as an incomplete bargaining contract. Indeed, in that case 1t
follows that ps < pi(K, D) < pas, so that the production decisions of both parties are independent
of p; and they equal the centralized decisions: z"" Pt(K, D) = 2*(K, D). The particular choice of
pi(K, D) then guarantees that firm price-only revenue functions equal those under the bargaining
model and hence their investment vectors are identical. If the manufacturer’s bargaining power
is high or the margin difference is small, the existence of an equivalent state-dependent price-only
contract is not guaranteed.
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4.3 More Complex Contracts

The price-only contracts studied here are the simplest contracts possible. Clearly, one can include
more variables into the contract specification. Cachon and Lariviere [6] give an excellent overview
of more sophisticated contracts used in the literature and their costs and benefits. These more
complex contracts typically specify not only a transfer price p;, but also some conditions on the
transfer quantity z;, or on the manufacturer’s liability of the supplier’s excess capacity. Cachon
and Lariviere show that these more advanced contracts can, but do not necessarily, improve system
coordination and highlight the role of the information structure and the verifiability (and thus
enforcement) of the players” actions. In the presence of information asymmetries, complex contracts
provide for a powerful signaling device that can improve performance. Tsay [21] has shown that
some price-quantity contracts also improve system coordination. While we analyzed only simple
contracts, we believe that many of the characteristics of more complex outsourcing contracts will
carry over to our subcontracting model.

5 Discussion and Extensions

We have analyzed three contract types to study some important aspects of the subcontracting
decision. Our interest was in the financial benefits that subcontracting with these various contract
types may offer in an economic environment where market demands are uncertain. Because our
main results are already summarized in the abstract and introduction, let us discuss briefly some
issues and extensions. It is clear that our analysis is only a first attempt to study the complex prac-
tice of subcontracting and outsourcing. Relatively straightforward extensions are the inclusion of
specific transaction costs and merging costs. We have assumed that the initiation and management
of the subcontracting relationship was costless. A positive cost is directly incorporated so that
both parties would enter into the relationship only if the ex-post surplus exceeds the transaction
cost. Similarly, one can include merging costs which would explain why both parties not always
choose to merge into a single, centralized organization. Another variation is to make both firms
more equal ‘partners’ by dropping the non-negativity constraint on z; to allow for bi-directional
transfers. (This also yields a two-location inventory model with transfers between profit centers.)

In addition to analyzing more complex price-quantity contracts and information structures as
discussed in Section 4.3, other involved extensions to the model would be to allow for demand-
dependent sales prices (and thus margins) by incorporating downward sloping demand curves (our
firms are assumed to be price takers). Such an approach yields a duopoly model more in-line
with traditional economic theory and allows us to incorporate tactical pricing decisions. This
generalization, however, comes at a considerable cost. ~One not only looses the connection to
the traditional newsvendor model and its intuitive, graphical interpretation, but the competitive
pricing decision under uncertainty greatly increases the complexity of the analysis®. Allowing for
non-exclusive market access is an easier extension that, we believe, will not change the qualitative
insights obtained here. Finally, the time-horizon can be extended to a multi-period setting to study
the effect of predictable temporal demand variations, such as over a product life cycle (stochastic
temporal variations most likely will lead to a production smoothing effect as studied by Kamien
and Li [14]).

Acknowledgments: I am grateful to Sunil Chopra, Magbool Dada, Jim Patell, Scott Schaefer
and seminar participants at Columbia University, Northwestern University and Stanford University.

? Allowing for inter-firm subcontracting transfers would amount to putting yet another layer of complexity on the
competitive investment-pricing model that we studied in {24].
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6 Appendix

All first order optimality equations (OE) are of the form EX = AP = c.where the 2 x 6 matrix A is function
only of p;,pas and pg, while the vector P is function only of K (and of parameters in the probability
distribution). The structure of the OEs (or capacity reaction curves) and uniqueness of an optimal solution
will be established using partial derivatives which are found by implicitly differentiating one or both OE.
Let z represent a cost or margin parameter of interest. Total differentiation of the OE yields:

d d — (8 \N=. .0
TE = —AP= (57;/\> Pt J5 K.

where J is the Jacobian matrix of the OE: J;; = 28 = 9V which can be calculated explicitly:
J oK 5K, 0K, p Y

J=A[ 72=P 7% P ] :A<VK?>/7

where the 2 x 6 matrix V KFI can be expressed in terms of the line integrals L;; of the probability density
f() over the boundary between domains {2; and Q; and Lijx = Lij + Lyt -

vy Lig— Lot Loz L3y — Loz —Lay —Lsg Lsg — Lis
L —Loy L3y — L3¢ —Lzs—Lss Lis —Lse Lsg + Lae — Lie

For example: Loz = fKO(i f(Kyr.Ds)dDs. Thus, all effort is reduced to showing that J = A (VK—P/> is

invertible which then yields

0 dc 0 —
—K=J'— -J ' AP
ox dr J <3I > (8)
Thus, letting = ¢; we directly have that
[ aca\, K ag K ] =J 9)

and the slope of k;(-), the OE for K; given K;, follows from totally differentiating the ¢’th OE: a -EXi 715 gk

UK
2 o
aKJE)‘l =0 or

2

3
dki oK,k Vi Jij
d[\/’j 5%2—,7‘/1 Ji

6.1 Centralized Reference Scenario

The optimal solution K" is at the intersection of the two OE curves. We have that

—(par — ps)Laise — psLis2s  —(par —ps)laise — Pslie if ps < par

Jeen _ —(par —ps)Lasse —psLie  —(par — ps)L3is6 — PsLo2,16 -
—parLis23 —parLis )

if par < ps.

—parLis —psLoz — (ps — par)Lis 36 — parLas
All entries in J are nonpositive with Jy; < Ji2 < 0 and Jop < Jo1 < 0 so that |J| > 0 and

J| = (par — ps)psLasseLozos + pi(LieLoo + LogLoz + LasLis) if ps < par,
parpsLisasloz + par(ps — par)Lis2sLas e + Py Laslie  if par < ps.
1 ki Juoy

< =
- dK] Jii T

Clearly, if cy; > cg. it is optimal to invest only in S-capacity: vy > 0 so that k§7*(-) = 0 and keent() =
Kce"t If ps < par. psPese + par Pis = cg. Because Pyo = 0, either Lig and/or L3y 56 are positive so that
OES is strict concave at K&" (Jz2 < 0), ergo uniqueness. If pas < ps, psPosg +pwP56 = ¢g and either
L34 36 and/or Lyg are positive, again showin uniqueness.
p g g q

Otherwise, if cay < ¢s, we invest in both capacities and at least one of the terms in |J] is positive so that

Vcen is strict concave at the unique optimal K<€, We can compute some points of the centralized curves:
q p P
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o If KS =0 and cpr < Cs, then P()1356 = 0.L23 = L34~,L16,56 =0 and p;\[PL; = p;uP(DM > K?\?"t) = CAf-
Thus,

kSEnt(0) = K399 and ——2L = P

dkas { —BMEPS 5 1 if pg < par,
dKS 0 i Ps > Par-

o If K¢ — oc and ¢y < cg, then Pasyse = 0 so that Lgy 56,16 = 0 and EXy; = 0 < ¢y so that

dk;\[ (OO)

kyr(oc) =0 and i <

:0_’

a situation that remains if Kg decreases as long as Pp1 ((0, Ks)) = 1. Clearly, this minimal Ky increases
in correlation and variability.

o If Ky =0, then Pys = 0 and Lo = 0. Thus,

dkg (0 :

_(}:T,():_l if ps < par,
1< O gt

1t = T dKa = I ps > Par-

e If K3y — oo, then Pi3y56 = 0 so that Lay 56,16 = 0 and pgPs = cg. Thus,

dkcent
k" (oc) = GS(;T‘Z) = K¢ and —fzK\(,OO) =0,

a situation that remains if K; decreases as long as Pyse ((Kar, ks(oc)) = 0. Clearly, this minimal Ky
increases in variability.

6.2 Subcontracting with Price-Only Contracts

The Jacobian becomes

—(par — pt)Lasse — pelor2s —(par — pe)Las 36 .
1 s s lf < < AT
_ —(pt — ps)Lsas6 —pslie  —(pe — ps)Lasse — psLoz2ie bs = Pt = Par,
/= ptLor — parLas — (par — pe)L (par —pe)L
—peLor — parLoz — (par — ) Lis —(par —pe)Las . -
if p; < min(p).
—ptLie —psLoz — (ps — pt)Las 36 — PeLis } Pr 2

6.2.1 Uniqueness of the solution K%

All entries in J are nonpositive with Ji1 < J12 <0 and Ja2 < J2; <0 so that |J] > 0 and

(par — p)psLaaseLoz + (Pt — ps)peLoi,23Lasse + pepsLoi2sLoz 16 if ps < pt <pwnr,
|J| = (par — pe)psLoaLie + (par — pe)(ps — pt)L1sLas 36 + pe(ps — pt)Lo1Las 36 if pe < min(p).
+par(ps — pi)L2sLas 36 + pepsLoi Loz + pfLoiLie + parpsLasLloa + parpeLasLae
-1 < dki iy 0.
- dKJ Jii T

Existence of an intersection follows from the relative position of axis crossings and asymptotes:
o If K5 =0, then Pyigse = 0, Loz = L3s. Lo116.56 = 0 and par Py = par P(Day > Kay) = car. Thus,

CAr L solo dk“\] (0) —BMTPe 5 ] if Ps < Pt < P,
kar(0) = Gar(—5) = K d —— = Pai
‘”( ) GM(]);\[ ) A an d]{g 0 if Pt < min(p).

dk . . . . .. . .
(d—‘}’(ifoz remains 0 as Kg increases with low p; until P; becomes positive. Clearly, this maximal Kg
decreases in correlation and variability.)
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e If Kg — o0, then Ps3ys6 = 0 so that Lgyse16 = 0 and EAa; = pe Py < pr. Thus, if py < cpy, we have
kas(oc) = 0, else

Car I dkar(00)

kar(oc) = Gar(—) < K39° and ———=

ar(o0) = Gar( o ) < Kif ks

a situation that remains if Kg decreases as long as Py ((kar(oc), Kg)) = 1. Clearly, this minimal Kg

increases in correlation and variability. Note that k;;(-) is continuous in p; for ps < p < pas, except

at pr = cpy if Dys is bounded from below by a positive number with probability one (the demand

density is zero at Dy; = 0).

::O,

o If K3y = 0, then Py, = 0 so that Lgo = 0. For high p, we have that pgsPs¢ + p:Ps5 = cs and because
ps < pt, we have that

dks(0) _

dKy

With small variability, we have that kg(0) ~ D, (exact: P(D; > ks(0)) = 2. Indeed, if Ks <

(>)D4, we would have that P3ss6 = 1(0), which cannot satisfy OEs.) For low p, we have that

psPss + pePsg = cs. 1f py < cg, then Pyy > 0. If D has low variability in the sense that P(Q2;(K =
(0, K£°9))) = 0. then ka(-) is discontinuous at p; = ¢z and we have that

dk
k2(0) = D (exactly: Psg = Eg) and s(0) = —11F p; > cs,
Dt dKyy
dk
ks() = ng"lo ~ Dg and thus s(0) =01IF p; < cs.
A

If D has high variability, 0 < 20 < .
e If K — oo, then Py3y56 = 0 so that Lgy 56,16 = 0 and ps P = cs. Thus,
Ccs 1 dk‘S(OO)
kg(oo) = G (=) = K&° and ———— =0,
ps’ 0 Ky
a situation that remains if K; decreases as long as Pysg ((Kar, ks{o0)) = 0. Clearly, this minimal Ky,
increases in variability.
Uniqueness of K% follows from —1 < %‘r‘_f at intersection (assume high p;, low p; is similar)
o If prs > pr > car 1 0 < Pi3gys < 1 and because P is a continuous measure we have that Laz o1 > 0 so
that Vs is strict concave at the optimal Kj; and thus the reaction curve ks (-} is unique. Moreover
dkag dkyy
~— <0 (and —== =0 if P;z = 0).
dKg — ( dK s 1 = 0)

-1<

o If par > car > pe : 0 < Py5 < 1 so that Ly 56 > 0. Again the reaction curve kjs(-) is unique but now,
as long as ky; > 0:

dk dk
A 0 (and —2 = —1if Py1p = 0).

—-1<
~ dKgs dKg

At the intersection K*“® we have that —1 < %‘éf which shows uniqueness (indeed Fpi2 = 0 would

imply Ps456 = 1, which cannot be a solution to OEg : psPsg + pt Pss > min(ps.pt) = ps > ¢s).
Similarly for firm 2’s reaction curves (psPass + pt Pis = cg), if follows that

e Because p; > pg > cs : 0 < Page, Pys < 1 and thus 0 < Py; < 1 and Lgg,16 > 0 so that Vg is strict
concave at the optimal Ks and thus the reaction curve kg(-) is unique. Moreover

dkg dkg . dkg .
—-1< < 0 (and =—-1if P, =0 and =0if P, =0).
T dKa T ( dKyy : dKay 13156 = 0)
Given that the two reaction curves are unique with —1 < % < 0, and the relative axis crossings are as

given higher together with —1 < %‘é\% at any solution to the OE, it follows that hey have a unique intersection
which is a stable, and thus Nash, equilibrium.
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6.2.2 Sensitivity of K

The intersection point K is the unique solution to the OE and it follows from the OE that one will never
invest to cover all demand with probability 1. In other words, if K > 0, then 0 < P31 < 1 and at least one
of the terms in det(J) is positive so that |J| > 0 and J is invertible:

1| —(pt = ps) Lass6 — PsLo2.16 (par —pt) Laas6 .
g1 (Pt — ps) L3s56 . X 5 foe < < Dy
JT = 7 (Pt = ps) Lass6 + psLlis — (Par = pt) La,s6 — peLor,2s 1 Ps = Pr = Par
B 1| —psLo2 — (ps —pt) Lis36 — prLie (par — ) L1 . ]
J|-! PsLo2 , fp < .
7 peLie —peLor — parLas — (par — pt) Lis if p¢ < min(p)
_ 0] + a3 —Qg
B —aq Qg + Oy
Because %—fl = J;;, we have that both capacities are imperfect substitutes w.r.t. the marginal cost vector.
Partials w.r.t. the margins are
[0 0 01 1 0] [ o1+ a3 ] .
-1 _ 1 3 /
d 7 00000 O_P ! _P45 if ps < pr < pars
apj\[ -1 0 O 1 1 1 1 _ [a5] —+ Qg ; . .
J I 00 0 0 0 0 ] P = o —ar | Piys6 if pr < mm(p).
[0 00 00 0] [ —ay ] .
_j-! _
K3 B J (0011001 P -02+a4-P236 if ps < pr < pars
Ops N 1[0 00000 B —ag i .
d (001 1 10 O_P__ag+a4_P234 if pr < min(p).
4[1 0100 1] [ (a1 + a3)Pise — aaPys .
—J! = ) <p <
KA J 000 11 O_P | —a1Puag + (a2 + aq) Py if ps < pr < par.
Opt - |10 0000 | (ea+a3)Py — apPse . .
g 000 01 1_P__—Q1P1+(a2+a4)p56 if pr < min(p).
While 3 K cannot be signed in general, we do have that K+ > 0.

6.2.3 Sensitivity of Vsub

We have that %— = 662/’\1 0—5‘# + 5= oYvi 81‘“ + 5 av , where gk = 0 under optimal investment. The cross-partial

g—X’; = g%Em = Eainﬂ'i = E)\L_] can be computed as before by the weighted average of the constant )\i,j
in each domain [:
8vsub
= EMago= —p)Pys >0
9Ks 1.2 = (par = pt)Pas >
ovs™ Edp; = —ptPr — (pe —ps)P3s <0 if ps < pt < par,
OKas ’ —p:PL <0 if py < min(p).

Denoting EA; 2 = 35 > 0 and Edp 1 = =3¢ <0, we get

oy sub - ,3 K sub 3 Ksub v N [j _ [)’ >0

Jear. - 15 T 1T BM o ey T sl +a3) =083 20,

Yy b gy ik

G- = —(ag+ag)Bs = 0, <0, F- = —Fea - K = -3, — K <0.

As expected 5 M at* are negative and a‘\*{ is positive, while _cA,L cannot be signed in general. For price
sensitivity 001151der high transfer prices (the other case is similar but replace the Py5 by Passe, Pase by Pasa,

Pi36 by P, and Py5 by Psg):

gy sub aysub
dpar. —Bs01Pys + Ex14¢ = =3, Pys + Bz 44, NV —Bg(ar +a3)Pys = —83P45 <0,
avqub . a‘/.:iuh
“gal= = Bs(az + ) Pazs = 35 Fa3e 2 0, o~ = Bea2Pass + Exg = 3, P36 + Exg 2 0.
oV sub ) 81& b YR oy Rcs BRI
—— » o j—
_ALBp, 35 —52— —car —ALap Ex;. B —36 —‘“—ap’ cs—go— + Ex,.
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6.3 Outsourcing Conditions
6.3.1 Low transfer price: p; < min(p)
Because Ky = 0, we have that Pyo = 0 and Pi3s56 = 1 and the optimality equations yield
pePL +parPaase = Car,
psPss +ptPse = cs,
so that %3 < Psy56 < %:4

Par — P _ Par— P
+ —;Ds tCs < err =pe + (Par — i) Psase < pr + —p tCs~
t

Pt

Also,
Grr = cs + PP+ (par — ps)Pas + (par — o) Psg = P12P5 ¢
Notice that with low levels of uncertainty, one either has
pr < cs: Kg=ks(0) >~ Dg (exactly: psP3y = ¢s5). Pauss =1 = Casr = par-

cs < pi:Ks=ks(0)~ Dy (exactly: p1Ps = cs). Pig = 1. Poagas =0 = Car = pe + %Cs - cs.
t
As uncertainty increases, ¢y; will decrease. Indeed, if p; < cg, increasing uncertainty will decrease Pss56
from 1 and increase P;, but P; has lower coefficient p; < pas in the definition of ;. If p; > cg, increasing
uncertainty will decrease Ps and increase Ps34. From OE 2 we see that P will decrease more than Psss will
increase (ps > p¢); thus Py will also increase, but again less than the decrease in Fs, so that ¢ps will decrease
because p; < pas.

6.3.2 High transfer price: ps <p; <pas

Because K3 = 0, we have that Py = 0 and Pj3356 = 1 and the optimality equations yield

pePise + parPis = Cars
psFs6 +piPis = cs,
sothat0§P45 S %?‘

Par — Pt
——cs.
Pt

pt < Car =pe + (par — pe)Pas <pr +

Again, with limited levels of uncertainty, one can only have (p; > ps > cs):
KS = kg(0) = D, (exact: pgFs = cs), Pie = 1, Pogaas = 0 = Car = pr.

As uncertainty increases, Pjg will decrease from 1 and P45 will grow, leading to an increase in ¢ar because
p: < par. Finally, notice that ¢,y is discontinuous at py = ps.

6.3.3 Incomplete Contracts (Bargaining)

Because K = 0, we have that Py, = 0 and Pj3456 = 1 and the optimality equations yield (assuming
ps < par):
Opar Py + (Opar +0ps)Pss + parPis = Car,
psPs + (Opar +0ps)Py + 0par Ps +0psBs = cs,

so that
_ - 2 - 6° - 0
Opar + Ocs < Ear = Opar + Ocs + 0% ((par — ps) Py + par Ps + psPs) < Opar + 0cs + 505 = Opar + 5Cs"

If ps > par, we have that
Err = parPr + (par + 0par) Pagse > pas-
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