
Voluntary Implementation

Matthew O. Jackson and Thomas R. Palfrey�

May 1998

This Revision: November 22, 1999

Abstract

We examine Nash implementation when individuals cannot be forced to accept the

outcome of a mechanism. Two approaches are studied. The �rst approach is static

where a state-contingent participation constraint de�nes an implicit mapping from re-

jected outcomes into outcomes that are individually rational. We call this voluntary

implementation, and show that the constrained Walrasian correspondence is not volun-

tarily implementable. The second approach is dynamic where a mechanism is replayed if

the outcome at any stage is vetoed by one of the agents. We call this stationary imple-

mentation, and show that if players discount the future in any way, then the constrained

Walrasian correspondence is stationarily implementable.

�We thank an associate editor, an anonymous referee, and Bhaskar Dutta for helpful comments and sug-

gestions. Division of Humanities and Social Sciences, Mail Code 228-77, Caltech, Pasadena, CA 91125
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1 Introduction

Implementation theory has been successful in characterizing the objectives that a society

can implement when accounting for the incentives that individuals have to take advantage of

their information. Nevertheless, the theory is open to criticism for the sometimes implausible

mechanisms (i.e., game forms) that it relies on to show which objectives may be achieved. In

this paper we focus on remedying a speci�c, but critical, weakness of implementation theory:

its use of implausible outcomes o� the equilibrium path to enforce equilibrium behavior

and/or to \break" undesirable equilibria (i.e., assure that undesired strategy combinations

are not equilibria). The implausibility stems from the assumption that the outcome function

is fully enforceable1, which is not the case in many applications.

One source of di�culty in enforcement relates to commitment. If, for example, a mecha-

nism is constructed to assist bargainers in reaching mutually improving agreements, then it

is problematic to assume that highly ine�cient outcomes will be allowed to stand. This is

potentially a problem both on and o� the equilibrium path, as o�-equilibrium path consid-

erations have implications for equilibrium behavior.

A second source of di�culty with enforcement relates to property rights that are exogenous

to a mechanism and impose state-contingent constraints on a social choice rule. In many

settings individuals have inalienable rights that guarantee them some outcomes in some

states of the world. Many economic models treat these rights as exogenous, and only impose

them as participation constraints or individual rationality constraints. Here, we stress the

importance of considering these constraints out of equilibrium as well as in equilibrium.

A third source of di�culty with enforcement is related to dynamic contexts. Most im-

plementation problems that have been studied are static. After the mechanism has reached

an outcome, the world ends. In fact, most of these are more realistically viewed as being a

single period of a multiperiod allocation problem. Thus, it makes sense to model explicitly

the dynamics that can occur after the mechanism has tentatively reached an outcome. Is

there renegotiation? Is the mechanism replayed? Is there time discounting between periods?

1See Hurwicz (1994) for a general discussion of issues related to enforceability in mechanism design.
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The framework laid out is designed to address these problems with enforcement, and

variations on them, in a uni�ed way, and includes the standard implementation problem as a

special case. While this admits a number of applications, the implications of the characteri-

zation theorems depend on the speci�cs of the setting. We then specialize to an application

of the reasoning to a study of dynamic implementation in stationary equilibria, where speci�c

implications can be understood.

1.1 Relation to the Literature

There has been a 
urry of recent research into the general question of realistic restrictions on

mechanisms.2 There are several papers that address either the issue of individual rationality,

or renegotiation. Most closely related to this paper are three papers that deal with impos-

ing individual rationality or allowing for renegotiation both in and out of equilibrium.3 Ma,

Moore and Turnbull (1988) were the �rst to point out the importance of imposing an individ-

ual rationality constraint both in and out of equilibrium. They examined a principal-agent

model where the usual individual rationality constraint (imposed only on the equilibrium

path) was replaced by an \opt-out," where each player had the ability to decline the outcome

of the mechanism and accept a status-quo outcome instead. Maskin and Moore (1998) ex-

amined a more general implementation problem, and changed the opting out to a possibility

of renegotiation. They considered implementation where any outcome of a mechanism that

suggests a Pareto dominated allocation is replaced by a Pareto e�cient allocation according

to an exogenous renegotiation function.4 In Jackson and Palfrey (1998), in the context of a

2See Jackson (1997) for an overview and references.
3A more distantly related (but similarly motivated) problem in implementation theory is \credibility", or

the ability of the planner to commit to o�-equilibrium-path outcomes that are known to be undesirable, in

order to implement desirable outcomes on the equilibrium path. Chakravorti, Corchon, and Wilkie (1992)

investigate this, and Baliga, Corchon, and Sj�ostr�om (1995) and Baliga and Sj�ostr�om (1995) go further, by

including the planner as a player in the mechanism.
4Rubinstein and Wolinsky (1992) took a di�erent approach to incorporating the possibility of renegotiation

into implementation. They examined \renegotiation-proof" implementation in a pairwise bargaining setting

where the equilibrium was required to be immune to di�erent sorts of renegotiation, and showed that the

2



dynamic bargaining and matching model, we endogenized the alternative coming from the

\opt-out." We considered implementation when players have the ability to opt out of the

outcome suggested by the mechanism and be rematched with a new bargaining partner. We

showed that although such an endogenous individual rationality constraint is compatible with

e�ciency within individual matches, it could be incompatible with e�ciency from society's

point of view accounting for the overall evolution of a market.

Here, we begin by unifying these approaches. They all have the common feature of viewing

a mechanism as an intermediate institution that suggests outcomes that may subsequently

be altered. This may be captured in a general form of implementation where an outcome

of a mechanism is converted by a general state-contingent allocation rule { which we call a

reversion function. The characterization of implementable rules given such reversion func-

tions follows a close parallel to the characterization of Nash implementable rules. Next, we

examine voluntary implementation where the reversion function is in the form of an individ-

ual rationality constraint, in the spirit of Ma, Moore and Turnbull (1988), but taken to the

general implementation problem. We show that the implications of such constraints may be

derived in a variety of settings from voting to exchange. Finally, in the spirit of Jackson and

Palfrey (1998), we examine a model where players may force the game form to be replayed,

thereby endogenizing the reversion function (in this case, the alternative that individuals

may be opting for). This �ts well with the structure of many markets, where the mechanism

represents the protocol or rules by which agents negotiate and trades are not �nalized until

all parties reach agreement. We show that without discounting, the set of implementable cor-

respondences is severely limited, while with discounting much more positive results may be

obtained, and for instance, the constrained Walrasian correspondence may be implemented.

The remainder of the paper is organized as follows. Section 2 lays out the general frame-

work and explains how the standard implementation model is being extended. We establish

necessary and su�cient conditions for voluntary implementation. The conditions are the

natural extensions of monotonicity and no veto power, modi�ed to incorporate the voluntary

possibilities for implementation depend on the way in which renegotiation is modeled.
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constraints. Section 3 presents examples which illustrate the e�ect of voluntary constraints

on the set of implementable social choice correspondences. That section also shows how

individual rationality constraints, renegotiation, and blocking coalitions all fall within the

bounds of this framework. Section 4 looks at implementation when the voluntary constraint

is modeled as a replay of the mechanism.

2 De�nitions

There is a �nite set of individuals or agents, I = f1; : : : ; ng, a known set of feasible outcomes,

denoted A, and a set of states S, with individual states denoted by s.

The preferences of individuals may be state dependent, and so each state has a corre-

sponding pro�le of preference relations, R(s) = (R1(s); : : :Rn(s)), where Ri(s) is a weak

preference ordering over A. We write aRi(s)b if i weakly prefers a to b, and aPi(s)b if the

preference is strict.

A social choice correspondence is a (possibly multi-valued) mapping F : S ) A. A single-

valued social choice correspondence is called a social choice function, and is denoted in the

lower case, f . The set of all social choice correspondences is denoted by F .

A mechanism, (M; g), consists of a message space, M = M1�� � ��Mn that is a Cartesian

product of n individual message spaces, one for each agent, and an outcome function, g :

M ! A.

2.1 Voluntary Implementation and h-Nash implementability

The idea behind voluntary implementation is similar to the notion of an individual rationality

constraint or a participation constraint. Individuals are permitted to veto some subset of the

feasible set, which may vary across states and individuals. This idea can be illustrated in the

simple example of a pure exchange economy with �xed initial endowments, ! = (!1; : : : ; !n).

If x denotes some reallocation of !, then this reallocation is individually rational at s if and

only if xiRi(s)!i for all i. Suppose the mechanism is (M; g), the players report m at s, and

the reallocation speci�ed by the outcome function is g(m). If !iPi(s)gi(m) for some i, and
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we wish the mechanism to re
ect voluntary trade, then we should allow this individual to

veto the outcome gi(m): The issue, of course, is how to specify the consequences of this veto.

The simplest way to model voluntary implementation is to explicitly specify what happens

if an individual vetoes an outcome. To do this involves specifying a function that maps states

into allocations.

A reversion function, h : S ! A, is a mapping that indicates what the outcome is in the

case of a veto by some individual. A reversion function h induces a mapping H : A� S �F ,

by

H(a; s; h) = a if a Ri(s) h(s) for all i

= h(s) otherwise:

An action pro�le m is an h-Nash equilibrium of (M; g) at s if

H(g(m); s; h) Ri(s) H(g(bmi; m�i); s; h) for all i bmi 2Mi

A social choice correspondence F is h-Nash implementable if there exists a mechanism,

(M; g) such that, for all s :

(i) For each a 2 F (s) there exists an h-Nash equilibrium, m 2M , such thatH(g(m); s; h) =

a

(ii) If m 2M is an h-Nash equilibrium at s, then H(g(m); s; h)2 F (s).

2.2 Necessary condition for h-Nash implementation

It is well-known that monotonicity of the social choice correspondence is a necessary condition

for Nash implementation. (See Maskin (1998))

F is monotonic if, for all s; s0 2 S and a 2 F (s) such that a =2 F (s0); there exists b 2 A

and i 2 I such that a Ri(s) b and b Pi(s
0) a.

The intuition behind this condition is that if a 2 F (s) but a =2 F (s), then implementability

of F implies the existence of a mechanism where a is a Nash equilibrium outcome at s, but

not a Nash equilibrium outcome at s0: Thus, considering the equilibrium strategies leading
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to a at s, there must exist an agent i that has a deviation (resulting in b), which must be

preferred by i at s0, but not at s.

This condition generalizes in a straightforward way to h�implementation. We call this

condition reversion-monotonicity.

A social choice correspondence, F , is reversion-monotonic relative to h if, for all s 2 S

and for all a 2 F (s); there exists z 2 A such that:

1. H(z; s; h) = a, and

2. For all s0 2 S such that H(z; s0; h) =2 F (s0); there exists y 2 A and i 2 I such that

H(z; s; h) Ri(s) H(y; s; h) and H(y; s0; h) Pi(s
0) H(z; s0; h).

The necessity of this condition follows the same reasoning as the necessity of monotonicity

for Nash implementation. There are two di�erences however. The �rst is noted in item 1

above, where it is recognized that a may not be coming directly from the mechanism, but

instead from the reversion function. The second di�erence is in item 2, where it is not just

the lower contour set of a that matters, but also the (state-dependent) reversion function,

since this function determines what outcomes will be vetoed in each state and the resulting

reversion point following a veto.

2.3 Generalized Reversion Functions

In fact, this necessary condition can be stated in a more general form, which will prove

useful in the dynamic context as well. The approach outlined above with a reversion function

presumes that any single agent can veto an outcome and then the alternative that replaces it

is independent of the starting alternative. Instead, we can consider the situation where any

suggested alternative a is converted in a state dependent way via some mapping G.

Consider any mapping G : A � S ! A. The H de�ned above for a given h is one such

function.

We say that m is an G-Nash equilibrium of (M; g) at s if

G(g(m); s) Ri(s) G(g(bmi; m�i); s) for all i ; bmi 2Mi

6



A social choice correspondence F is G-Nash implementable if there exists a mechanism,

(M; g) such that, for all s :

(i) For each a 2 F (s) there exists an G-Nash equilibrium, m 2M; such thatG(g(m); s) = a

(ii) If m 2M is a G-Nash equilibrium at s, then G(g(m); s) 2 F (s).

A social choice correspondence, F , is G-monotonic if, for all s 2 S and for all a 2 F (s);

there exists z 2 A such that:

1. G(z; s) = a

2. For all s0 2 S such that G(z; s0) =2 F (s0); there exists y 2 A and i 2 I such that

G(z; s) Ri(s) G(y; s) and G(y; s0) Pi(s
0) G(z; s0).

The following theorem follows directly from the logic of Maskin's theorem (1998).

Theorem 1 If F is G-Nash implementable, then F is G-monotonic.

Proof: Consider a state, s, and an outcome, a 2 F (s). Let (M; g) G-implement F in Nash

equilibrium, and let m be a Nash equilibrium at s which produces a as the outcome. That is,

G(g(m); s) = a. Next suppose that G(g(m); s0) =2 F (s0) for some other state s0. Let z = g(m).

Since m is a G-Nash equilibrium at s, it must be that G(g(m); s)Ri(s)G(g( bmi; m�i); s) for all

i, bmi: But since F is G-Nash implementable and G(z; s0) =2 F (s0); we know thatm is not a G-

Nash equilibrium at s0. So, there exists i and bmi) such that G(g( bmi; m�i); s
0)Pi(s

0)(g(m); s0).

Let y = g( bmi; m�i), to satisfy the de�nition of G-monotonicity.

Similarly, su�cient conditions for Nash implementation have analogs for G-Nash impl-

mentation.

With Nash implementation, it is well-known that if there are at least 3 players, monotonic

social choice correspondences are Nash implementable if they satisfy No Veto Power. No veto

power states that if all players except possibly one agree on a best outcome in some state,

then that outcome must be in the social choice correspondence at that state. A similar result

follows here for G-Nash implementation, using an appropriately modi�ed version of NVP.

7



A social choice correspondence F satis�es G-No Veto Power (G-NVP) if, for all i 2 I , for

all j 6= i, z 2 A, and s 2 S, then G(z; s) 2 F (s) whenever G(z; s)Rj(s)G(y; s) for all y 2 A.

Theorem 2 If n � 3 and F is G-monotonic and satis�esG�NV P; then F is G-implementable.

Again, the proof is an easy extension of proofs of Nash implementability, and is provided

in an appendix.

3 Applications

3.1 Implementation with Individual Rationality Constraints

One of the most natural applications of h-implementation is to problems in which there

is a �xed status quo outcome that any agent can revert to. For example, in the case of

exchange economies, it is often natural to assume that each individual can protect their initial

endowment. Surprisingly, applications of implementation theory to exchange environments

generally ignore these constraints. This is not to claim that implementation theory has not

investigated whether certain individually rational social choice functions are implementable.

That is a much di�erent issue. The issue is that individual rationality constraints must be

respected for the entire outcome function, rather than just at the equilibrium outcome. Why?

If the individual messages happen to produce an outcome that violates individual rationality

constraints, then a violated agent can simply veto the outcome. We are requiring that the

mechanism be voluntary: no agent can be forced to accept an outcome. This views the

mechanism as the protocol for communication and negotiation between agents, after which

all of their signatures are required before a suggested outcome becomes �nal.5

As we will see below, the constraint that outcomes be acceptable to all agents can either

restrict or even expand the set of allocation rules that are implementable. The intuition for

why the set of implementable social choice functions can be restricted by such constraints is

obvious. The intuition for why the set of implementable social choice functions can expand

5Thus, this viewpoint takes a mechanism as the means by which binding contracts are formed, rather than

viewing the mechanism as a binding contract itself.
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is more subtle, and has to do with the fact that these constraints implicitly provide state-

contingent threat points that can a�ect equilibrium behavior.6

The simplest reversion function is simply a �xed status quo outcome, w, which results if

any individual vetoes g(m). That is, h(s) = w for all s and

H(a; s; h) = a if aRi(s)w for all i

= w if wPi(s)a for some i:

We call h-implementation with this kind of reversion function IR-implementation, and we

refer to h-reversion monotonicity with this kind of reversion function as IR-monotonicity.

The following examples illustrate how IR-monotonicity can di�er from monotonicity. The

�rst example illustrates this surprising phenomenon that a social choice correspondence may

satisfy IR-monotonicity, but fail to be monotonic.

Example 1 (Voting)

Let A = fw; x; y; zg, I = f1; 2; 3g, and S = fs; s0g. The status quo outcome is w

(regardless of the state). Preferences are described below, where higher outcomes in the

table are preferred to lower outcomes.

s s0

1 2 3 1 2 3

x y z x y z

z z x z z x

y x w y x y

w w y w w w

Let F (s) = fx; zg and F (s0) = fxg. F is not monotonic, since z 2 F (s), z =2 F (s0), but the

only preference reversal between s and s0 involves agent 3's preferences changing between out-

comes y and w. However, F satis�es IR-monotonicity. To see this, note that H(y; s0; h) = y,

6The fact that allowing agents to opt-out can ease implementation has been previously noted in a moral

hazard setting by Arya, Glover, and Hughes (1997).

9



but H(y; s; h) = w. Thus, for player 2 it is the case that H(z; s; h)R2(s)H(y; s; h) and

H(y; s0; h)P2(s
0)H(z; s0; h), since these two relations reduce to zR2(s)w and yP2(s

0)z; respec-

tively.

To understand this phenomenon, note that the revision function introduces a form of

sequential rationality to the Nash implementation problem.

The same phenomenon can be seen in an exchange economy.

Example 2 (An exchange economy)

Consider a two-person two-good exchange economy, with initial endowment point w =

((1; 5); (5; 1)). There are two states, which determine two possible preference pro�les. In

state s, both players have preferences represented by symmetric Cobb-Douglas utility func-

tions U(xi1; xi2) = xi1xi2. In state s0 individuals have Leontief preferences represented by

U(xi1; xi2) = minfxi1; xi2g. This is shown in �gure 1.

FIGURE 1 HERE

Consider the following selection from the Pareto correspondence:7

f(s) = xCD = ((3; 3); (3; 3))

f(s0) = xL = ((2; 2); (4; 4))

The social choice function f is not monotonic. To see this, note that monotonicity requires

that if x 2 f(s) and x =2 f(s0), then there exists i and y such that yPi(s0)x and xRi(s)y. In

this case, given the Leontief preferences at s0, if yPi(s
0)xCD then yi � (3; 3) and yi 6= (3; 3).

But this implies that yPi(s)xCD given the Cobb-Douglass preferences at s. However, while f

is not monotonic, it is in fact IR-monotonic. The key is that the lower contour sets relative

to w di�er between states s and s0. To see how the problem above with monotonicity is

7A similar example appears in Moore and Repullo (1988), to illustrate how non-monotonic social choice

functions can be implemented in subgame perfect equilibrium.
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overcome, note that IR-monotonicity requires that if x 2 f(s) then there exists z such that

x = H(z; s; h) (where h reverts to the endowment w) and if H(z; s; h) =2 f(s0) then there

exists y and i such that H(z; s; h) Ri(s) H(y; s; h) and H(y; s0; h) Pi(s
0) H(z; s0; h). Here,

let z = xCD, y = xL and i = 2. Then H(y; s; h) = w as agent 1 vetoes xL in state s while

H(y; s0; h) = xL. So the condition is satis�ed as we have xCDRi(s)w and xLPi(s
0)xCD.

Moreover, f is IR-implementable via the trivial mechanism where player 2 simply chooses

between xCD and xL. In state s, xCD is individually rational, but xL is not individually

rational for player 1, so this choice reduces to a choice between xCD and w. Since player 2

prefers xCD to w, his optimal choice is xCD. In state s0, both xCD and xL are individually

rational for both players. Since player 2 prefers xL to xCD , his optimal choice is xL. Thus,

this simple mechanism voluntarily implements the stated allocation rule, which is not Nash

implementable.

Both examples 1 and 2 show that there are voluntarily implementable social choice cor-

respondences that are not Nash implementable. The next example shows the converse.

Example 3 (Nash Implementable but not Voluntarily Implementable)

Let A = fw; x; yg, where w is the status quo. Let I = f1; 2g. Let S = fs; s0g. Preferences

are described by:

s s0

1 2 1 2

x x w y

y y y x

w w x w

F (s) = fxg

F (s0) = fyg

This social choice function is monotonic and implementable by the simple mechanism

where player 2 chooses between x and y. However, this is not individually rational in state
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s0, and hence not voluntarily implementable. In particular, individual rationality requires

F (s0) = fwg.

Next we show that the constrained Walrasian correspondence is an important social choice

correspondence that falls into the category of being Nash implementable, but failing to be

voluntarily implementable.

Example 4 (Non-Implementability of the Constrained Walrasian Correspondence)

Consider a two-person two-good exchange economy, with initial endowment point w.

There are two states, which determine two possible preference pro�les, as illustrated in �gure 2

below.

FIGURE 2 HERE

Here, the unique Walrasian outcome at s is not a Walrasian equilibrium at s0. However,

the only changes in preferences relative to a occur at points that are not individually rational

for agent 2. Since such points will always be vetoed and lead to w, there are no preference

reversals between s and s0 that can be used to satisfy IR-monotonicity. Thus, any mechanism

that yields a as an IR equilibrium outcome at s must also produce a as an IR equilibrium

outcome at s0, even though it is not a Walrasian outcome at s0. Since these are interior

points, this applies to the constrained Walrasian correspondence.8

The next example shows that the implications of voluntary implementation extend far

beyond the consideration of Nash implementation. There are also implications for other forms

of implementation.

Example 5 (Not Voluntarily Implementable via any Solution, but Implementable via Many)

8See Hurwicz, Maskin and Postlewaite (1995) for a detailed discussion of the constrained Walrasian corre-

spondence and its Nash implementability.
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This is an example of an allocation rule that is individually rational, and is imple-

mentable in subgame perfect equilibrium, undominated Nash equilibrium, iterative elimi-

nation of weakly dominated strategies, and is virtually implementable. However, it is not

implementable by any solution concept if agents can veto outcomes that are not individually

rational. As in example 2, denote the initial endowment point by w. There are two states,

and the utility functions in state s are called US
1 and US

2 , respectively. In state s0, US0

1 is

identical to US
1 for all allocations x for which US

1 (x1) � US
1 (w1) and US0

2 is identical to US
2

for all allocations x for which US
2 (x2) � US

2 (w2). That is, preferences di�er only on alloca-

tions outside the set of individually rational allocations. Let f(s) = x and f(s0) = x0 be an

individually rational allocation rule, shown in �gure 3.

FIGURE 3 HERE

Let US
1 and US0

1 di�er outside of the individually rational lens, as shown in that same

�gure. This social choice function violates IR-monotonicity, since the utility functions only

di�er on allocations that will revert to w in any mechanism that speci�es them in the outcome

function.

In constrast, it is easy to show that these allocation rules are implementable via sub-

game perfect equilibrium, undominated Nash equilibrium, iterated weak dominance, perfect

equilibrium, and is also virtually implementable. For example, the following mechanism

implements f via iterated weak dominance, where y and z are the allocations marked in

�gure 2:

m21 m22

m11 x y

m12 x z

m13 x0 x0

In state s, m11 weakly dominates m12. At the next iteration, m22 is weakly dominated

by m21. At the third and last iteration m11 strictly dominates m13 so the solution in state s
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is m11. In state s0, m1 weakly dominates m11. At the next iteration, m22 weakly dominates

m23. At the third and last iteration m13 strictly dominates m12 so the solution in state s0 is

m13. Similar mechanisms can be constructed for implementation by other re�nements.

The insight from this example is that the voluntary constraint implies that individuals'

preference relations over outcomes that are not individually rational (for some individual)

are irrelevant. Re�nements have been used in implementation theory to take advantage of

any reversal in preferences, even when these involve alternatives that are sub-optimal or not

individually rational. This is not possible in voluntary implementation, regardless of the

solution concept used.

3.2 Implementation with Renegotiation

Maskin and Moore [1998] consider a di�erent version of a reversion function, which also �ts

nicely within the present framework. They are concerned with the renegotiation problem that

can arise in mechanism design. In particular, they argue that if g(m) is ine�cient in state s,

then the players will renegotiate the outcome to something that is Pareto e�cient, and which

Pareto dominates it. Since the second property (Pareto domination of g(m)) will generally

depend on g(m) itself, they de�ne a reversion function that depends not only on the state but

also on the the allocation that is vetoed. In particular, they de�ne a renegotiation function

r : A � S ! A. Given that r is Pareto e�cient, there will always be some voter who would

veto g(m) if it were ine�cient at stage s. Therefore, implementation with renegotiation is

consistent with our \veto" interpretation of the h function, and is an example of a G function.

3.3 Implementation with Coalitional Veto Sets

The notion of h-implementation can be generalized substantially, within the framework of the

G-function. First, as with implementation with renegotiation, one can allow h to depend on

the outcome that is being vetoed.9 Second, and perhaps more interesting, one can allow for

9Implicitly, the G function can also incorporate information about who is vetoing, as G depends on the

state. This then allows for outcomes such as veto by one agent and trade amongst the remaining agents.
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coalitional veto sets. For example, one can require majority rule approval of the outcome of

the mechanism, with the outcome reverting to h(s) if g(m) is does not receive a majority. The

generalization of this is the concept of blocking coalitions. In our de�nition of \voluntary"

implementation, each individual constitutes a blocking coalition. In many contexts, one can

argue that this is too strong a requirement, and that larger coalitions may be needed to veto

an outcome.

Let C : S ) 2I be a blocking coalition correspondence, which speci�es the set of all

blocking coalitions in each state. Thus, for example, under voluntary implementation, C(s) =

2I �; for all s, so that any set of objecting individuals can prevent an outcome. This de�nes

the mapping, HC : A� S �F , by

HC(a; s; h) = a if, for all c 2 C(s); aRi(s)h(s) for some i 2 c

= h(s) otherwise

This �ts the form of a G-function and so the results on G-implementation apply.

While the examples and applications described above show the broad coverage of general

reversion function techniques for analyzing implementation, much of the details of imple-

mentability depend on the speci�cation of the reversion function. Rather than simply take

that function as being exogenous, we turn next to analyze a class of situations where the

reversion function is naturally endogenously determined.

4 Voluntary Implementation with Repeated Mechanisms

In this section, we endogenize the generalized reversion function, by considering situations

where a player opting out of an outcome simply forces the mechanism to be replayed. The

motivation for examining this situation is simple, and related to the motivation for studying

implementation with renegotiation. If an individual vetoes g(m), it is unnatural to suppose

that the world stops at that moment. For example, in a pure exchange environment, if an

agent vetoes g(m), and the endowment results, the individuals in the economy could simply
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play the mechanism again.10 This captures applications where we think of the mechanism as

describing the methods or framework available to agents for communication and negotiation,

where the replay of the mechanism is the natural form of (re)-negotiation.

This is how game theorists have modeled bargaining. When two agents bargain, say by

o�ers and countero�ers, rejection of an o�er generally does not mean no-trade (except in very

special cases like the ultimatum game). The reason for this is that the notion of voluntary

trade implies that if there are still gains to trade to be exploited, the agents involved will

continue playing some game. In this section, we explore a general model of recontracting of

this sort, when rejection (i.e., veto) of g(m) is followed by simply replaying the mechanism

again in the following period. This converts the original mechanism into an in�nite game

form.

For this reason, we time date outcomes, so the outcome space is expanded to be A =

A�f1; 2; 3 : : :g and a typical outcome is denoted at. For simplicity we write drop the subscript

in the �rst period and write a1 = a. In the event that players use strategies such that no

outcome is ever reached, the outcome of the game is denoted ;. We assume that ytPi(s); for

all i; y; s; and t.11

4.1 Stationary Preferences, Equilibrium, and Implementation

Preferences are extended to be complete and transitive on A � f1; 2; 3 : : :g for all players.

The following assumptions on extended preferences over time dated outcomes, capture a

stationarity of preferences.

1. atR
i(s)bt , aetRi(s)bet for all a; b 2 A and t; et 2 f1; 2; 3 : : :g (Ordinal stationarity).

2. atRi(s)bt+1 , aetRi(s)bet+1 for all a; b 2 A and t; et 2 f1; 2; 3 : : :g (Intertemporal station-
arity)

10More generally, a veto might trigger an alternative mechanism which is played. We looked at voluntary

implementation using sequential mechanisms in a matching/bargaining framework in Jackson-Palfrey (1998).
11This is a simplifying assumption. It only needs to be true that implemented outcomes are weakly preferred

to no outcome, and that there is some outcome at some date that is strictly preferred by all agents to no

outcome. See Lemma 1 in the appendix and its proof for details.
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3. atR
i(s)at+1, for all i, a, s, and t = 1; 2; : : :. (Weak Impatience).

The above assumptions are maintained throughout this section.

The �rst two restrictions on preferences guarantee that individuals' tastes do not change

over time, and are thus time consistent. The third restriction avoids the pathological case

where individuals always prefer to defer agreement to the future.

A message pro�le m is a stationary equilibrium of (M; g) at s if, for all i, and bmi 2 Mi,

g(m) Ri(s) H(g( bmi; m�i); s; g(m)2).12

So, a message pro�le is a stationary equilibrium if each player is best responding knowing

that a veto today results in the same message pro�le being played tomorrow. Essentially,

stationary equilibria correspond to the Markov perfect equilibria of the game form where in

a given period the mechanism is played, then agents are called on to veto sequentially, and

the process terminates with g(m) if there is no veto and starts over in the next period if

there is a veto. To be precise, in the appendix we show that the set of stationary equilibria

correspond exactly to the set of Markov perfect equilibria of the game form described above,

where agents do not veto when indi�erent.

While the stationary equilibria have a foundation as Markov perfect equilibria and may

be argued for on the grounds of simplicity, restricting attention to such equilibria rules out

some behavior that may be quite natural. Most importantly, such strategies ignore history

and eliminate many folk-theorem like constructions.13

A social choice function is attainable in stationary equilibrium via a mechanism (M; g)

if, for each s, there exists a stationary equilibrium ms such that g(ms) = f(s).

Attainability is a very weak form of implementation (essentially, an indirect version of

truthful implementation). A social choice correspondence F is implementable in station-

ary equilibrium if there exists a mechanism, (M; g) such that, for all s :

12Note that here the last argument of H is an outcome rather than a social choice function. This obvious

extension can be made formal by considering the constant social choice function resulting in g(m)2.
13See Baron and Ferejohn (1989) for examples of such constructions and the role of stationarity in multi-

lateral bargaining.
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(i) For each a 2 F (s) there exists a stationary equilibrium, m 2M; such that g(m) = a

(ii) If m 2M is a stationary equilibrium at s, then g(m) 2 F (s).

Before taking a careful look at stationary implementation, we �rst apply Theorems 1

and 2 to characterize stationary implementation. Given individuals' weak preference against

delay, the de�nition of G-monotonicity translates to:

A social choice correspondence F satis�es stationary monotonicity if, for all s, s0, and

for all x such that x 2 F (s) but x =2 F (s0), there exists y 2 A and i 2 I such that for all t,

xt Ri(s) H(yt; s; xt+1) and H(yt; s
0; xt+1) Pi(s

0) xt.

Theorem 3 If a social choice correspondence is implementable in stationary equilibrium then

it satis�es stationary monotonicity.

Proof: This follows from Theorem 1.

Within this abstract framework, we can also obtain a standard characterization of suf-

�ciency for the case of 3 or more agents. If a social choice function satis�es stationary

monotonicity and an appropriately modi�ed version of NVP, then it is implementable in

stationary Nash equilibrium. The modi�cation of NV P to the dynamic case is stated below.

A social choice correspondence F satis�es stationary No Veto Power if for any i,

z 2 A, and s 2 S

[ztRj(s)H(y; s; zt+1) 8y 2 A; t; j 6= i]) [z 2 F (s)]:

Theorem 4 If n > 2 and a social choice correspondence satis�es stationary monotonicity

and stationary NVP, then it is implementable in stationary equilibrium.

Proof: This follows from Theorem 2.

Let us now analyze environments with more structure, where we can get a more detailed

picture of stationary implementation.
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4.2 Stationary Implementation with No Discounting

First, we consider the case with no discounting. That is the case where at I
i(s) a, for all i, a,

s, and t = 1; 2; : : :. Therefore, the time subscripts in the de�nition of stationary equilibrium

can be removed, and the problem becomes very straightforward.

In this case, we call f self-attainable if it is attainable in stationary equilibrium.

Self-attainability simply considers which social choice functions can be supported as sta-

tionary equilibria of a mechanism, completely ignoring the multiple equilibrium problem usu-

ally at the heart of implementation theory. The next proposition shows a simple su�cient

condition for self-attainability.

Let PE denote the Pareto correspondence

PE(s) = fx j8y; yPi(s)x) 9j s:t: xPj(s)yg:

We say that a social choice function f is Pareto e�cient if f(s) 2 PE(s) for every s.

Proposition 1 If f is Pareto e�cient, then f is self-attainable.

Proof: Consider the mechanism in which each player simultaneously announces an outcome,

so Mi = A. If all announcements match, say mi = x for all i, then let g(m) = x. If the

announcements don't all match, then let g(m) = x0, where x0 is some pre-speci�ed default

outcome. Consider s, and x = f(s). Note that x is Pareto e�cient at s. We need only

show that mi = x for all i and t forms a stationary equilibrium at s. Suppose to the

contrary that there exists i such that H(g( bmi; m�i); s; g(m)2)Pi(s) g(m). This implies that

H(g( bmi; m�i); s; g(m)2) = g( bmi; m�i). However, by the Pareto e�ciency of g(m), it follows

that since g( bmi; m�i)Pi(s) g(m), there must exist j such that g(m)Pj(s)g( bmi; m�i). This

contradicts the fact that H(g( bmi; m�i); s; g(m)2) = g( bmi; m�i).

While any Pareto e�cient selection is self-attainable, it is clear that the mechanism out-

lined in the above proof has a multitude of equilibria, some of which can be ine�cient. So we

should be interested in understanding which social choice correspondences are implementable
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in this setting. So, we turn to the stronger notion of implementation in stationary equilibrium,

which we call self-implementation in the no discounting case.

Let RF denote the range of F .

Proposition 2 If F is self-implementable, then RF \ PE(s) � F (s).

Proof: Consider s and a 2 RF \ PE(s), and a mechanism (M; g) that self-implements F .

Since a 2 RF it follows that there exists m such that g(m) = a. Since a is Pareto e�cient,

thenm is a self-equilibrium at s by an argument similar to that in the proof of Proposition 1.

In special cases, we can say more. For example, if agents all have strict preferences over

the Pareto set in any state, then the Pareto Correspondence is self implementable. Consider

a mechanism such that for every pro�le of actions of the other agents, each agent has an

action which can lead to any outcome. (Such a mechanism exists, as evidenced by a modulo

construction.) It is easily seen that any such mechanism fully self-implements the Pareto

correspondence.

Another implication of Proposition 2 is that the (constrained) Walrasian correspondence

is not self-implementable, without discounting. This can be seen by revisiting Example 4,

where a is in the range of the (constrained) Walrasian correspondence and a is Pareto e�cient

at s0, but a is not a (constrained) Walrasian equilibrium at s0.14

Further implications of Proposition 2 depend on the structure of RF . To see this, consider

two extremes. At one extreme RF = fyg, so F is constant and F (s) = fyg for every s. This is

obviously self-implementable by any trival mechanism that has g(m) = y for all m. Thus one

can self-implement very selective F 's that may not be Pareto e�cient. At the other extreme

suppose that RPE � RF . Thus, the range of F is quite large and includes all allocations that

may be Pareto e�cient at some s. In this case, Proposition 2 implies that PE(s) � F (s).

This means that of the range of F is su�ciently rich, then F cannot be selective among

Pareto e�cient allocations but must include them all.

14Note that while the partial linearity of the indi�erence curve through a and w was necessary for Example 4,

it is not necessary for this point, and one can easily �nd similar examples with strictly convex preferences.
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Thus Proposition 2 shows that the apparent permissiveness of proposition 1 is deceiving.

On the one hand it is true that any Pareto e�cient allocation rule self-attainable. On the

other hand, once one constructs a mechanism to attain that allocation rule, then any other

allocation rule that is e�cient relative to the range of the mechanism is also a stationary

equilibrium outcome of the mechanism. Finer selections from the Pareto e�cient set of

allocation rules (relative to the range of the mechanism) are not self-implementable. So,

e�ectively one can only be selective at a given s by making sure that the range of F is narrow

across all s.

Note that these propositions are reminiscent of �ndings in bargaining theory (e.g., Ru-

binstein (1982)). For example, if individuals do not discount the future, then any bargaining

split is an equilibrium outcome of the Rubinstein-Stahl bargaining game. What we have

shown above is that this feature is robust across settings and mechanisms. We also know

from the bargaining literature, that the introducing a strict preference against delay changes

the scope of equilibrium. That turns out to be true in the dynamic implementation problem

as well, as we now explore.

4.3 Stationary Implementation with Discounting

In most settings, it is more reasonable to expect that rejection of the outcome of a mechanism

will lead to delay in the implementation of a �nal outcome, and that individuals �nd this

delay costly.

The discounting case is formalized by requiring that aPi(s)at, for all i, a, s, and t > 1.

For the discussion of the discounting case we assume that A is a metric space, with metric

j � j.

To begin to understand stationary implementation with discounting, we study a useful

strengthening of stationary monotonicity. This strong form of monotonicity is applicable in

many settings, including exchange economies.

A social choice correspondence F satis�es local monotonicity if, for all s, s0, and x 2

F (s) such that x =2 F (s0), and for all ", there exists y 2 A and i 2 I with jy � f(s)j < " such
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that x Ri(s) y and y P i(s0) x.

Local monotonicity is a strengthening of monotonicity in that it requires that the test

alternative y can be picked to be arbitrarily close to x. If preferences are continuous then y

can be chosen so that it is preferred to receiving f(s) with one-period delay. This leads to

the following theorem that shows that in some reasonable cases, local monotonicity implies

stationary monotonicity.

Theorem 5 If preferences are continuous and individuals discount the future, then F satis-

�es local monotonicity only if it satis�es stationary monotonicity.

Proof: Consider s, s0 and x 2 F (s) such that x =2 F (s0). By the continuity of preferences

and discounting, there exists " such that zPj(s0)x2 for all j and z such that jz � xj < ".

Apply local monotonicity with this ", to �nd i and y with the properties stated in the

de�nition of local monotonicity. By our choice of " it follows that xtRi(s)H(yt; s; xt+1) and

H(yt; s0; xt+1) = ytPi(s0)xt+1. Thus, stationary monotonicity is satis�ed.

We now illustrate the power of Theorem 5, by applying it to pure exchange environ-

ments to show that the constrained Walrasian social choice function can be implemented in

stationary equilibria.

Let ` denote the number of goods and ei 2 IR`
+ denote the endowment of agent i, where

P
i ei 2 IR`

++. Here, A = fx 2 IRn`
+ j
P

i xi �
P

i eig. For each i, the preferences of i depend

only on i's allocation (so xIi(s)y whenever xi = yi), are continuous, increasing (where xi � yi

implies xPi(s)y), and convex.

An allocation x 2 A is a constrained Walrasian equilibrium at s if there exists p 2 IR`
+

such that

� p � xi � p � ei

� xRi(s)y for all y 2 A such that p � yi � p � ei.

The constraint in the de�nition above appears in the restriction to y 2 A which implies

that i's demand of any good is limited by the total available endowment in the economy.
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Theorem 6 With time discounting preferences, if n � 3, then the constrained Walrasian

correspondence is implementable in stationary equilibrium.

Proof: We need only show that the constrained Walrasian correspondence satis�es local

monotonicity. Theorem 6 then follows from Theorems 5 and 4.15 Consider x that is a

constrained Walrasian equilibrium at s, with corresponding price p, but not at s0. It follows

that x is not the (constrained) demand of some agent i at s0. Given that preferences are

continuous, convex, and increasing, it follows that for any ", there exists y 2 A such that

p � yi � p � xi and jy � xj < " and yiPi(s0)xi. Local monotonicity is thus satis�ed.

It is essential to Theorem 6 that the set of alternatives not be discrete. The ability to

�nd trade-o�s locally is critical to the theorem. This is analagous to results in the theory

of bargaining, as for instance in the game analyzed by Rubinstein (1982) if only discrete

o�ers can be made, then if agents do not discount too much, then all splits are sustainable

in stationary equilibrium. Here, similar results hold: the results of the no-discounting case

carry over if the set of alternatives is discrete and players are su�ciently patient.

5 Concluding Remarks

We have analyzed an approach to implementation with generalized reversion functions, that

uni�es and extends some analyses of agents' abilities to opt out of a mechanism, renegotiate,

or otherwise alter the suggested outcome of a mechanism. We have also showed how this

(static) implementation approach can be usefully applied to dynamic settings to understand

implementation via stationary equilibria, where agents may veto a tentative outcome of a

mechanism and opt instead to play the mechanism over again.

There is a rich array of applications where dynamics are a crucial element, ranging from

the operation of continuous trading institutions to the rules governing electoral and legislative

institutions. While the analysis here (see also Kalai and Ledyard (1998)) gives us some initial

15It is straightforward to check that stationary NVP is satis�ed in an exchange economy with continuous

and locally non-satiated preferences and time discounting.
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insights into implementation in dynamic settings, it leaves open many interesting questions

associated with the problems of dynamic implementation.
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Appendix

Proof of Theorem 2 The message spaces are de�ned by:

Mi = S �A� f0; 1; 2; : : :g

The outcome function is de�ned by partitioning the set of message pro�les into two regions

corresponding to compatible (D1) and incompatible (D2) messages.

D1 = fm 2M j9i 2 I; s 2 S; z 2 A such that mj = (s; z; 0) for all j 6= i;

and G(z; s) 2 F (s)g

D2 = fm 2M jm =2 D1g

In D1, there can be at most one deviator. If there is no deviator, then g(m) = z. If i is

the single deviator, denote mi = (s0; y; k) and de�ne the outcome function as:

g(m) = z if G(y; s)Pi(s)G(z; s) and m 2 D1

= y if G(z; s)Ri(s)G(y; s) and m 2 D1

In D2, the outcome is determined by the largest integer game:

g(m) = m2
i�

where i� = minfijm3
i � mj

j for all j 2 Ig: The proof now involves showing three things:

1. If a 2 F (s) then there is a Nash equilibrium at s in which mi = (s; a; 0) for all

i. To see this, �rst observe that since a 2 F (s), it must be that a = G(a; s); so m 2 D1,

g(m) = a; and G(g(m); s) = a: Furthermore, since s is being reported truthfully, any

unilateral deviation by some player i to bmi = (s0; y; k) can only change the outcome if

G(y; s) 6= a and aRi(s)G(y; s). In this case, i is no better o� than he would have been

reporting (s; a; 0). Thus, it is an equilibrium for everyone to report (s; a; 0).

2. If G(a; s) =2 F (s0) then mi = (s0; a; 0) for all i is not a Nash equilibrium at s0.

This follows from h-monotonicity, which guarantees the existence of a feasible outcome,
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y, and an individual, i, such that aRi(s)G(y; s) and G(y; s
0; h)Pi(s

0)G(a; s0; h). By doing

making a unilateral deviation to (s0; y; k), i can change the outcome from G(a; s0; h) to

G(y; s0; h), which makes i strictly better o�.

3. If m� is an equilibrium at s and it is not the case that mi = (s; z; 0) for all i and

G(z; s) 2 F (s) then G(g(m�); s) 2 F (s). Since it is not the case that mi = (s; z; 0)

for all i and G(z; s) 2 F (s), then at least n � 1 of the agents can unilaterally cause

the outcome function to choose any outcome in A. Thus, for m� to be an equilibrium

requires that G(g(m�); s)Rj(s)G(y; s) for all y 2 A, which, by h �NVP , implies that

G(g(m�); s) 2 F (s).

Relationship of Stationary Equilibrium to Markov Perfect Equilibrium

Given a mechanism [M; g] de�ne the dynamic (stochastic) version of the mechanism,

[M; g]1, as follows. We append n veto moves (one for each player) to [M; g], producing an

n+1 stage game form. This is then played and terminates if no player vetoes and is repeated

otherwise. That is, in stage 1, each player i independently submits a message m1
i 2 Mi:

After this is done m1 is revealed to all players. Next, player 1 chooses v11 2 f0; 1g. The other

players observe v11 and then player 2 chooses v12 2 f0; 1g. The other players observe this and

then player 3 chooses v13 2 f0; 1g. This process continues until all players have made a veto

choice v1i . If v
1
i = 0 for all i then the game form ends and the outcome is g(m)1. Otherwise,

play proceeds to period 2 and the process starts over: players again report messages followed

by a sequence of veto moves. If in the second stage v2i = 0 for all i then the game form

ends and the outcome is g(m)2. If not, then play proceeds to period 3, and so on. Thus, the

interpretation is that vti = 1 constitutes a veto by i of g(mt).

Fixing any given preference pro�le, R, [M; g]1 and R de�ne a stochastic game, and

so standard de�nitions of pure strategies and subgame perfect equilibrium in pure strategies

apply.16 For this game, a pure Markov strategy for i is a choice ofmi, and vi : M�f0; 1gi�1 !

16See Fudenberg and Tirole (1991) for de�nitions. The stochastic nature of the game here is a very simple
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f0; 1g that is to played in every period (such that the game has not already ended).17 Thus,

vi(m; v1; : : : ; vi�1) is a function of the message pro�le and the veto decisions of the previous

players in the current period. This can be further simpli�ed, as the only time a player's veto

makes a di�erence is in the case where the previous veto choices where all 0. Thus, without

loss of generality for the de�nition of Markov strategy in this game, one can take vi to depend

only on m. The corresponding strategy in the in�nite game is found by simply having i play

mi and vi whenever called on to do so. A pure strategy Markov perfect equilibrium fR,

[M; g]1g is a pro�le of pure Markov strategies which form a pure strategy subgame perfect

equilibrium of fR, [M; g]1g.

Lemma 1 If m is a stationary equilibrium of [M; g] at s, then m together with v, de�ned

by vi(m) = 1 if and only if g(m)t+1Pi(s)g(m)t for each i, form a Markov perfect equilibrium

of fR(s); [M; g]1g. Conversely, if (m; v) is a pure strategy Markov perfect equilibrium of

fR(s); [M; g]1g and v is such that vi(m) = 0 if g(m)tI i(s)g(m)t+1, then m is a stationary

equilibrium of [M; g] at s.

Note that if vi(m) = 0 if g(m)tI i(s)g(m)t+1, then it must be that vi(m) = 0 if and only if

g(m)tRi(s)g(m)t+1. So the converse requires that players not veto when they are indi�erent.

To see why this is necessary consider the following simple example. M1 = fm1; m1g

and M2 = fm2g. Let g(m1; m2) = a and g(m1; m2) = b. Preferences are such that

atP1(s)b
tP1(s)b

t+1P1(s); and atI2(s)b
tI2(s)b

t+1P2(s);. So player 2 is completely indi�erent

while player 1 prefers a to b. The only stationary equilibrium is m1; m2. The combination

m1; m2 is not a stationary as 1 has an improving deviation tom1; m2 which will not be vetoed

since 1 prefers at to bt+1 and 2 is indi�erent. However, there is a Markov perfect equilibrium

with m1; m2 where player 2 always vetoes m1; m2, since player 2 is fully indi�erent.

one with two states fended, continueg, which keep track of whether there has been a period with no vetoes and

so the game has ended, or whether in each previous period someone has vetoed and the game is continuing.

We consider only pure strategies and only pure strategy deviations.
17Again, see Fudenberg and Tirole (1991) for discussion of Markov strategies, Markov perfect equilibrium,

and references.
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Proof: Let us �rst show that if m is a stationary equilibrium of [M; g] at s, then m

together with v, de�ned by vi(m) = 1 if and only if g(m)t+1Pi(s)g(m)t for each i, form a

Markov perfect equilibrium of fR(s); [M; g]1g. First, it follows directly from the de�nition

of stationary equilibrium that if there is an improving deviation from the Markov strategies

m; v for some player i, then that deviation must involve a deviation in more than one period.

The �nite one stage deviation principle (see, e.g., the proof of theorem 4.1 in Fudenberg

and Tirole (1991)) then implies that if there is an improving deviation it must result in the

outcome 1. However, g(m) is (weakly) preferred to 1 and so m; v is a Markov perfect

equilibrium of fR(s); [M; g]1g.

Let us now show that ifm; v is a pure strategyMarkov perfect equilibrium of fR(s); [M; g]1g

and v is such that vi(m) = 0 if g(m)tIi(s)g(m)t+1, then m is a stationary equilibrium of [M; g]

at s. First note that if (m; v) is a pure strategy equilibrium of fR(s); [M; g]1g then vi(m) = 0

for each i and so the outcome is g(m) at time 1. (The only alternative outcome is ;, and

since all individuals prefer g(m) to ;, subgame perfection implies that each player condi-

tional on no previous vetoes must not veto g(m).) Also, subgame perfection and the fact

that vj(m) = 0 if g(m)tIj(s)g(m)t+1, implies that vj(m) = 0 if g(m)tRj(s)g(m)t+1. Sup-

pose that m is not a stationary equilibrium of [M; g] at s. Then there exists i such that

H(g( bmi; m�i); s; g(m)2)Pi(s)g(m). This implies that H(g( bmi; m�i); s; g(m)2) = g( bmi; m�i)

and so g( bmi; m�i)Pi(s)g(m) and g( bmi; m�i)Rj(s)g(m)2 for all j. Since vj(m) = 0 if g(m)tRj(s)g(m)t+1

for each j, we know that vj( bmi; m�i) = 0 for each j. But then g( bmi; m�i)Pi(s)g(m) contra-

dicts the fact that m; v form a Markov perfect equilibrium.
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