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Abstract

We prove the folk theorem for the Prisoner’s dilemma using strate-
gies that are robust to private monitoring. From this follows a limit
folk theorem: when players are patient and monitoring is sufficiently
accurate, (but private and possibly independent) any feasible individ-
ually rational payoff can be obtained in sequential equilibrium. The
strategies used can be implemented by finite (randomizing) automata.

∗Thanks to Görkem Celik for valuable research assistance.
†Economics Department, Northwestern University. ely@nwu.edu
‡Economics Department, University of Southamption. valimaki@soton.ac.uk

1



The folk theorem for discounted repeated games states that every payoff
vector that is feasible and individually rational is an equilibrium payoff when
players are sufficiently patient. A proof of the folk theorem first appeared
in Fudenberg and Maskin (1986) for subgame-perfect equilibria of repeated
games with perfect monitoring. Perfect monitoring means that the history
of chosen actions is always common knowledge among the players. In many
important economic applications, players monitor one another imperfectly:
each observes a noisy signal of the actions chosen by others. Thus, start-
ing with the early papers by Radner (1985) and Green and Porter (1984),
attention turned to repeated games with imperfect monitoring. The early
applications were to situations in which monitoring, while imperfect, was
public: the random payoff-relevant outcome in each stage was assumed com-
mon knowledge among the players. Exploiting the structure of public mon-
itoring, dynamic programming techniques can be used to characterize the
set of perfect public equilibrium payoffs as in Abreu, Pearce, and Stachetti
(1986) and Abreu, Pearce, and Stachetti (1990). This approach to imperfect
monitoring culminated in the folk theorem of Fudenberg, Levine, and Maskin
(1994) which identified conditions on the public monitoring technology which
ensured that all feasible and individually rational payoffs could be supported
in equilibrium.

In repeated games with monitoring by privately observed signals, these
techniques do not apply and whether the folk theorem extends is still an open
question. Indeed, for some games, whether there are any sequential equilibria
different from repetition of stage-game Nash profiles is unresolved.1 Numer-
ous negative results emphasize the difficulties invovled. Matsushima (1991)
considers repeated play of stage games with a unique Nash equilibrium and
monitoring by conditionally independent private signals. Conditional inde-
pendence means that for each action profile, the players’ private signals are
distributed independently of one another. Each individual’s private signal
may be arbitrarily informative about the realized action profile, but condi-
tional on that action profile, each player’s signal is uninformative about the
signals observed by other players. Matsushima shows that if there is any
pure-strategy equilibrium different from repetition of the stage game Nash
profile, it must involve conditioning on payoff-irrelevant history. Specifically,
there must be a player i and a pair of histories for i which give rise to identical

1For a particularly problematic example, see the discussion in Mailath and Morris
(1998) of the “convention game” originally studied by Shin and Williamson (1991)
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beliefs over the opponents’ continuation strategies but which nevertheless in-
duce distinct continuation play by i. In particular, this implies that equilibria
cannot be “strict.”2

Many of the strategies used to prove folk theorems in environments with
public monitoring fail to be even approximate equilibria when monitoring is
at all imperfect but conditionally independent. For example, consider the
strategies used by Fudenberg and Maskin (1991) to prove the folk theorem
under perfect monitoring. These strategies begin in a cooperative phase in
which players play a deterministic sequence of pure action profiles until some
player deviates from that sequence. Such a deviation triggers a punishment
in which the deviating player is minmaxed. Continuation strategies are con-
structed so that the non-deviating players have an incentive to carry out
the punishment and return to the cooperative phase. When the discount
factor is close enough to one, each player has a strict incentive to follow his
equilibrium strategy after every history.

It is this strictness property that implies that even the slightest conditi-
nally independent private monitoring imperfections destroy the equilibrium.
To see this, consider a player i who has detected a deviation by player j in
stage 1. Since i knows that j is following his equilibrium strategy, i knows
that j has not deviated and in fact that no player has deviated. Since the
equilibrium was constructed so that i has a strict incentive to cooperate after
histories in which no player has deviated, i will not punish but will instead
continue to cooperate. But this unwillingness to punish signals of bad be-
havior eliminates the necessary incentives to cooperate in the first place.

This naturally raises the question of what equilibria of games with per-
fect monitoring are robust to private monitoring imperfections. That is, for
which (if any) equilibria is there guaranteed to be a nearby equilibrium when
monitoring is nearly perfect, but private. In this paper, we focus on the
repeated prisoners’ dilemma and prove a robust folk theorem: for sufficiently
patient players, every feasible, individually rational payoff can be achieved
by equilibrium strategies that are robust to private monitoring. This implies
a limit folk-theorem: For monitoring technologies sufficiently accurate and
discount factors close enough to one, any individually rational payoff can be

2Bhaskar (1998) derives an even stronger necessary condition from a model in which
each player’s payoffs are randomly perturbed in each period independently of history and
are private information to that player. In a repeated game with overlapping generations
of players (hence private monitoring), his condition implies that any equilibrium must be
a repetition of stage-game Nash outcomes.

3



achieved in a sequential equilibrium of the private monitoring game.
Related results have been obtained elsewhere. Sekiguchi (1997) was the

first to show that the mutual cooperation payoff can be achieved in a class of
prisoners’ dilemma games when monitoring is nearly perfect.3 Mailath and
Morris (1998) show that some trigger strategies are robust to monitoring
imperfections that are approximately “public.” Monitoring is approximately
public when a players realized signal is informative of the signals observed
by others (even after conditioning on the realized action.) Conditional inde-
pendence is therefore ruled out.

To prove that trigger-strategy and other strict equilibria are robust, the
problem of discontinuous conditional beliefs must be circumvented. Condi-
tional beliefs about opponents’ continuation strategies after histories involv-
ing a deviation change discontinuously when slight monitoring imperfections
are introduced. This can be seen in the above discussion of the Fudenberg
and Maskin (1991) strategies. When monitoring is perfect, when player i ob-
serves a deviation in stage 1, he is certain that his opponents will move into
the punishment phase. But when monitoring is conditionally independent,
following the corresponding (private) history player i is nearly certain that
his opponents will continue to cooperate. This observation, together with
the Matsushima result, make it clear that strict equilibria cannot be robust
to all private monitoring imperfections.

Mailath and Morris (1998) restrict attention to monitoring technologies in
which there is sufficient correlation in the players’ private signals, i.e. nearly
public monitoring. When monitoring is approximately public, player i will
be nearly certain that the opponents have also observed a deviation and will
begin punishing, even though it is common knowledge among the players
that no deviation has occured. Notice that conditional beliefs are no longer
discontinuous once the monitoring imperfections are restricted in this way.4

Our approach to the folk theorem deals with discontinuous conditional
beliefs in a simpler way. We construct stationary strategies which have the
property that each player is indifferent among each of his actions no mat-
ter what private history his opponnent has observed. It is then irrelevant

3Bhaskar (1999) sharpens the analysis and shows that the payoff restriction used in
Sekiguchi (1997) is not necessary. When public correlation devices are available, these
strategies can also be used to prove the folk theorem.

4There is still an additional complication to overcome in establishing that a strict
equilibrium is robust to approximate public monitoring. Conditional beliefs must move
continuously uniformly across the infinite set of histories.
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how conditional beliefs are altered by the monitoring imperfections since the
players’ continuation strategies will be a best-reply to every conditional be-
lief. This in turn implies that our strategies will be robust to all monitoring
imperfections, including conditional independence and even negative corre-
lation. We show that a large set of payoffs, including mutual cooperation,
can be supported by such equilibria. However, not all individually rational
payoffs can be supported in this way. To obtain the full folk theorem set
of payoffs, we show how these robust equilibria generate continuation val-
ues that can enforce behavior yielding payoffs outside the original set for a
sufficiently long but finite length of time.

A recent paper by Piccione (1998) employs a technique similar to ours. In
the repeated prisoners’ dilemma Piccione uses dynamic programming tech-
niques over the infinite state-space of private histories to construct the mixed
strategies necessary to maintain indifference. His strategies can be used to
approximate most of the feasible, individually rational payoff set. Our ap-
proach uses stationary behavior strategies that condition only on one period
of history. This dramatically simplifies the dynamic program yielding a sys-
tem of four equations which can easily be solved for equilibrium mixtures.5

Beyond the computational simplicity, the simple structure makes this a more
promising direction for results in more general games. We demonstrate the
flexibility of our approach by analyzing some more general games in section
4.

In section 1, the perfect monitoring folk theorem is proven for a large
subset of the feasible payoff set using simple two state mixed strategies. In
section 2, it is shown that the strategies used are robust, and the limit folk
theorem is established for these payoffs. In section 3 we show how to augment
these strategies to obtain the full set of feasible individually rational payoffs.
In section 4, we consider more general games. For 2 player games, we provide
a sufficient condition on stage payoffs under which our approach will apply.
We also analyze a symmetric N -player prisoners’ dilemma and show how to
extend our approach and obtain nearly cooperative payoffs for high discount
factors and sufficiently accurate monitoring. Finally, section 5 concludes.

5We also obtain the full set of payoffs exactly.
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1 Perfect Monitoring

We consider the δ-discounted infinitely repeated prisoner’s dilemma, the nor-
malized stage-game payoffs of which are displayed below, where g, l > 0.

C D
C 1, 1 −l, 1 + g
D 1 + g,−l 0, 0

Figure 1: Normalized Prisoners’ Dilemma

In this section, monitoring is assumed perfect.6 Consider the family of
behavior strategies defined as follows. Player i’s (i = 1, 2) plays C in stage
1, and in any subsequent stage t , his mixed action depends only on the
outcome in stage t − 1. Denote by πi

aiaj
the probability with which player i

plays C conditional on the outcome (ai, aj) occurring in the previous period.
Note that the behavior in period t > 1 is independent of t. For consistency
with the following section, we will use lower-case subscripts, e.g. πj

cd. Below
is a diagram of the two-state machine that plays this strategy.7

d c

d d

c cπ

c dπ

DC

d
c

c
dπ

π

1-

1-

Figure 2: Machine representation of πi. To avoid clutter, we have left out
the arrows that return to the preceding state.

6Another interesting question concerns the robustness of the folk theorem under im-
perfect public monitoring: what payoffs in the public monitoring game can be obtained
when monitoring becomes nearly public, but remains imperfect? The techniques here can
be extended to this context, and is a subject for further research.

7Obara (1999a) independently applied strategies of this form to repeated games with
public monitoring.
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We will show that for any payoff pair (v1, v2) in the square V = (0, 1] ×
(0, 1], there are strategies of this form that constitute an equilibrium of
the repeated game (assuming sufficient patience) and obtain average pay-
offs (v1, v2). In the next section, we will show that equilibria of this form
are robust to private monitoring. Obviously V is not the entire feasible,
individually-rational set. The construction will make it clear that more can-
not be achieved using strategies of this simple form. In section 3 we show
how to modify these strategies to obtain any feasible individually rational
payoff in a robust equilibrium. Let V ◦ denote the interior of V .

Fix values V i
C and V i

D in (0, 1], with V i
C > V i

D for i = 1, 2, and let δ̄ < 1
satisfy mini{V i

C − V i
D} > 1 − δ̄. The goal is to find δ ∈ (δ̄, 1) sufficiently

large and to construct probabilities πj such that (1) in any period in which
j is playing C, player i is indifferent between actions C and D and obtains
continuation value V i

C and (2), in any period in which player j is playing D,
player i is indifferent between actions C and D and obtains continuation value
V i

D. From this it will follow that each player is indifferent between C and D
after every history (a fact that is essential for the robustness argument), and
player i gets average payoff V i

C , for i = 1, 2. The following four equations
express these conditions:

V i
C = (1 − δ) + δ

[
πj

ccV
i
C + (1 − πj

cc)V
i
D

]
(1)

= (1 − δ)(1 + g) + δ
[
πj

cdV
i
C + (1 − πj

cd)V
i
D

]
(2)

V i
D = −l(1 − δ) + δ

[
πj

dcV
i
C + (1 − πj

dc)V
i
D

]
(3)

= δ
[
πj

ddV
i
C + (1 − πj

dd)V
i
D

]
(4)

Equation 1 is equivalent to the following

πj
cc =

V i
C − (1 − δ) − δV i

D

δ(V i
C − V i

D)

Because V i
C − δV i

D > V i
C − V i

D > 1− δ̄ > 1− δ, the numerator and hence the
fraction is greater than zero. It is no greater than one iff V i

C − (1− δ) ≤ δV i
C

which is equivalent to V i
C ≤ 1 which was assumed. For future reference, note

that πj
cc can be made interior if V i

C < 1.
Combining 1 and 2 and manipulating, we obtain

πj
cc − πj

cd =

(
1 − δ

δ

)(
g

V i
C − V i

D

)
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Since V i
C − V i

D > 0, this is greater than zero and can be made arbitrarily
small by choosing δ sufficiently close to 1. Thus, πj

cd ∈ (0, 1) for sufficiently
large δ. Note also that for any such δ, this πj

cd ∈ (0, 1) continues to hold for

any V̂ i
C > V i

C .
We have shown that then there exist probabilities πj

cc ∈ (0, 1] and πj
cd ∈

(0, 1) such that if V i
D is the value to player i when his opponent is playing D,

then V i
C is the value to i when his opponent is playing C, and i is indifferent

between C and D after such histories.
Now equation 4 reduces to

πj
dd =

(
1 − δ

δ

)(
V i

D

V i
C − V i

D

)

This is always positive and will be less than 1 once δ is sufficiently close to
1. Finally, equations 3 and 4 combine to yield

πj
dc − πj

dd =

(
1 − δ

δ

)(
l

V i
C − V i

D

)

which again makes πj
dc an interior probability once δ is sufficiently large.

Again, if we fix such δ, πj
dc will remain interior for any V i

C closer to 1. Thus,
interior probabilities can be found to ensure that when player j is playing D,
player i is indifferent between C and D and obtains a continuation value V i

D.
We conclude that for δ sufficiently close to 1, there exists a strategy for

player j satisfying equations 1-4 for any value V̂ i
C ∈ [V i

C , 1]. By the symmetric
argument, there exists a strategy for player i which satisfy the analogous
equations for player j. Furthermore, since these equations imply that each
player is indifferent between C and D after every history, each strategy is a
best-response to the other after every history. Thus, the strategies form a
subgame-perfect equilibrium of the perfect monitoring game and since each
strategy is assumed to play C in the first stage, player i obtains average
payoff vi = V i

C .

2 A Limit Folk Theorem

The focus now turns to the repeated prisoners’ dilemma with private moni-
toring. In this setting, players do not directly observe the actions chosen by
their opponent. Following each stage of play, each player observes his own
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chosen action and a private signal which depends on the outcome in that
stage. Let Σi be a finite set of signals for player i, and Σ = ×iΣi. Assume
that each Σi has at least two elements.

A monitoring technology is a collection {m(·|a) : a ∈ {C, D}2} of prob-
ability distributions over signal profiles, one for each possible stage-game
outcome. The marginal distribution over player i’s signal will be denoted
mi(·|a). Perfect monitoring corresponds to a technology m0 which satisfies
two conditions. First, each m0(·|a) exhibits perfect correlation (public moni-
toring); and second, for each i there is a set ci ⊂ Σi such that if aj = C then
mi

0(c
i|a) = 1 and if aj = D then mi

0(c
i|a) = 0.

Say that a monitoring technology is an ε-perturbation of m0 if for each i
there is a set ci ⊂ Σi such that aj = C implies mi(ci|a) > 1 − ε and aj = D
implies mi(ci|a) < ε. Note that this definition involves no requirement on
the correlation in m, and in particular, includes as a special case, indepen-
dent private monitoring: technologies m for which mi(·|a) is independent
of mj(·|a) for each a. Henceforth, we restrict attention to technologies that
are perturbations of m0 and write mi

aiaj
= mi(ci|ai, aj), so for example mi

DC

represents the probability that i observes a signal in ci when i plays D and
j plays C. Let di denote the complement in Σi of ci.

The δ-discounted repeated prisoners’ dilemma with private monitoring
technology m will be denoted G∞(δ, m). A strategy πi in G∞(δ, m) specifies
a mixed action for each history of own-actions and observed signals. We will
restrict attention to strategies which depend only on histories of length 1
and condition only on the player’s own action and the events ci and di. By
analogy to the previous section, write e.g. πi

dc for the probability with which
player i plays C following a stage in which i played D and observed a signal
in ci. Set πi

∅ = 1.
For any two strategy profiles π, π̃ of this form, define the distance |π− π̃|

to be max |πi
s − π̃i

s| where the maximum is over players i = 1, 2 and states s
of the machine.

Definition 1 A subgame-perfect equilibrium π of G∞(δ, m0) is robust to
private monitoring if for every e > 0 there exists ε̄ > 0 such that for all
ε ∈ (0, ε̄) and all ε-perturbations mε of m0, there is a sequential equilibrium π̃
of G∞(δ, mε), within e distance of π and with payoffs within e of the payoffs
under π.

A sufficient condition for a pair (π1, π2) to be a sequential equilibrium
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of G∞(δ, m) with payoffs (v1, v2) is for the mixtures to solve the following
equations for V i

C = vi, i = 1, 2, j 6= i.

V i
C = (1 − δ) + δV i

C

[
mj

CCπj
cc + (1 − mj

CC)πj
cd

]
+ δV i

D

[
(1 − mj

CC)(1 − πj
cd) + mj

CC(1 − πj
cc)
] (5)

V i
C = (1 − δ)(1 + g) + δV i

C

[
mj

CDπj
cc + (1 − mj

CD)πj
cd

]
+ δV i

D

[
(1 − mj

CD)(1 − πj
cd) + mj

CD(1 − πj
cc)
] (6)

V i
D = −l(1 − δ) + δV i

C

[
mj

DCπj
dc + (1 − mj

DC)πj
dd

]
+ δV i

D

[
(1 − mj

DC)(1 − πj
dd) + mj

DC(1 − πj
dc)
] (7)

V i
D = δV i

C

[
mj

DDπj
dc + (1 − mj

DD)πj
dd

]
+ δV i

D

[
(1 − mj

DD)(1 − πj
dd) + mj

DD(1 − πj
dc)
] (8)

Equations 5 and 6 state that player i gets average payoff V i
C when he

plays either C or D in any stage in which player j plays C. Equations 5 and
6 state that player i gets average payoff V i

D when he plays either C or D in
any stage in which player j plays D. If these equations are satisfied, then
player i is always indifferent between his two actions and is therefore willing
to play any mixed strategy after every history.

When monitoring is perfect, mj
∗,D = 1 − mj

∗,C = 0 and these equations
reduce to equations 1-4 from the previous section. There it was shown that
provided δ is sufficiently large and V i

C ∈ (0, 1], a solution (π̄j, V̄ i
C , V̄ i

D) exists ,
and that the mixtures π̄j

cd and π̄j
dc can be chosen to be interior. We can now

fix π̄j
cc and π̄j

dd at the solution and solve for V i
C , V i

D, πj
cd, and πj

dc:

πj
dc =

δπj
ddµD(µC − g(1 − mj

CC)) + l(1 − δ(π̄j
cc − π̄j

dd) + πj
ddm

j
DD)

δgµD(mj
CC − 1) + µC(µD − lmj

DD)

πj
cd =

δµCπj
cc(µD + lπj

dd) + gµD(δ(πj
ccm

j
CC − πj

dd) − 1)

δgµD(mj
CC − 1) + µC(µD − lmj

DD)

V i
C = V̄ i

C +
gµD(mj

CC − 1)(1 + δ(πj
dd − 1)) − δµCl(πj

cc − 1)mj
DD

µCµD(δ(π̄j
cc − π̄j

dd) − 1)

V i
D = V̄ i

D +
δ[gµDπj

dd(1 − mj
CC) − lµCπj

ccm
j
DD] − lµCmj

DD

µCµD(δ(π̄j
cc − π̄j

dd) − 1)

where we have written µD = mj
DC − mj

DD and µC = mj
CC − mj

CD . These
equations define the left-hand side variables as continuous functions of the
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monitoring parameters. Since π̄j
cd and π̄j

dc were interior, it follows that for
mj

∗,D and 1−mj
∗,C sufficiently close to zero, there exists a solution (πj, V i

D, V i
C)

to equations 5-8 with mixtures πj and values V i
C , V i

D arbitrarily close to
(π̄j, V̄ i

C , V̄ i
D). Player j therefore has a strategy against which every strat-

egy of player i is a best-response and achieves payoff V i
C . This establishes

the following theorem.

Theorem 1 (Robust folk theorem) Let (v1, v2) ∈ V . There exist δ̄ ∈
(0, 1) such that for all δ ∈ (δ̄, 1), there exists a robust subgame perfect equi-
librium of G∞(δ, m0) with payoffs (v1, v2).

Now suppose V i
C ∈ (0, 1) and recall that this implies that π̄j

cc ∈ (0, 1). We
can now fix (V̄ i

C , V̄ i
D) ∈ (0, 1)2 and solve equations 5-8 for the following explicit

relations between the equilibrium strategies and the monitoring probabilities.

πj
cc =

(V i
C − δV i

D)(mj
CC − mj

CD) + (1 − δ)(g + mj
CD − mj

CC(1 + g))

δ
(
mj

CC − mj
CD

)
(V i

C − V i
D)

πj
cd =

(V i
C − δV i

D)(mj
CC − mj

DD) + (1 − δ)(mj
CD − (1 + g)mj

CC)

δ
(
mj

CC − mj
CD

)
(V i

C − V i
D)

πj
dc =

(1 − δ)
[
l(1 − mj

DD) − V i
D(mj

DD − mj
DC)
]

δ
(
mj

DC − mj
DD

)
(V i

C − V i
D)

πj
dd =

(1 − δ)
[
(mj

DC − mj
DD)V i

D − lmj
DD

]
δ
(
mj

DC − mj
DD

)
(V i

C − V i
D)

One can easily verify that these define equilibrium behavior strategies as
continuous functions of the monitoring probabilities mj . Since all mixtures
in πj are interior, it follows that for mj

∗,D and 1 − mj
∗,C sufficiently close to

zero, equations 5-8 can be solved for probabilities πj , and the symmetric set
of equations can be solved for probabilities πi. These solutions will be Nash
equilibria of the private monitoring game with values (V̄ 1

C , V̄ 2
C). This proves

the limit folk theorem

Theorem 2 (Limit folk theorem) Let (v1, v2) ∈ V ◦. There exist δ̄, ε̄ ∈
(0, 1) such that for all δ ∈ (δ̄, 1) and ε ∈ (0, ε̄), if m is an ε-perturbation
of m0, then there exists a sequential equilibrium of G∞(δ, m) with payoffs
(v1, v2).
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The order of quantification was not proven above. In the previous section,
it was shown that if there is a solution for some δ then there is a solution
for any larger δ̂. One can easily verify that the same holds here: if there
are probabilities that solve equations 5-8 for some ε and δ, then there are
probabilities that solve the equations for ε and any δ̂ > δ.

3 Extending to the Full Payoff Set

We have shown that any payoff pair in V can be obtained in a robust equi-
librium. This leaves out much of the feasible, individually rational set of
payoffs. In particular, the only efficient payoff pair in V is the symmetric
payoff (1, 1). Unfortunately, nothing outside of V can be obtained robustly
using strategies of the simple form considered above. To see this, note that
if in equilibrium, player i is indifferent between C and D after every history,
then his long-run average payoff must be equal to the payoff he would get by
playing C after every history. Obviously such a payoff cannot exceed 1.

However, more can be achieved using more complicated (yet still finite-
state) strategies. We sketch the idea here, and prove it formally below.
Return to the perfect monitoring case. Fix V 1

D > 0 close to zero and V 2
C = 1

Let V 1
C be any value in (V 1

D, 1]. We have shown in theorem 1 that for δ close
enough to 1, there exist robust equilibrium strategies (π1, π2) which obtain
values (V 1

C , V 2
C), and player 2’s strategy can be chosen so that player 1 obtains

value V 1
D whenever player 2 plays D.

Consider the following strategies. Player 1 plays C in stage 1, then pro-
ceeds with π1 starting in stage 2. Player 2 plays D in stage 1. In stage 2,
player 2 switches to strategy π2 but starts in state D if he observes that
player 1 has played D in stage 1. If 2 observes that 1 has played C, 2 starts
in state C.

Let (v1, v2) = (1 − δ)(−l, 1 + g) + δ(V 1
C , V 2

C). The above strategies form
an equilibrium with payoffs (v1, v2) if the following incentive constraints are
satisfied.

(1 − δ)(1 + g) + δV 1
C > (1 − δ) + δV 1

C (9)

(1 − δ)(−l) + δV 2
C > δV 2

D (10)

These hold for sufficiently large δ. Note that the payoffs (v1, v2) are outside
of V . Now we claim that this equilibrium is robust to private monitoring.
To see this, note that in stage two, each player is indifferent between his
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two actions regardless of the outcome in stage 1. Each is therefore willing
to behave as the strategy demands even after erroneous signals. The con-
tinuation payoffs V 1

C , V 2
C , V 1

D are continuous in the monitoring perturbation
because the continuation strategies are robust. Thus, because the first-stage
incentive constraints are satisfied with strict inequalities, they will continue
to hold for small perturbations of m0. We show below that by increasing the
number of stages in which (C, D) is played, any feasible individually rational
payoff vector can be sustained in a robust equilibrium.

To prove this formally, we make an additional assumption. We assume
that g − l ≤ 1 so that mutual cooperation is not Pareto-dominated by any
other profile. We make this assumption merely to simplify the exposition
as this allows us to achieve any individually rational payoff by a convex
combination of the set V and a single additional point. Our result continues
to hold without this assumption, with strategies alternating between (C, D)
and (D, C), slightly complicating the proof.

For P ⊂ Rn, denote by Co(P ), the convex hull of P .

Lemma 1 Let P be a convex subset of Rn with a non-empty interior amd
v ∈ Rn. For any u ∈ int co(P ∪ {v}), there is a δ such that for all δ ∈ (δ, 1],
there is a natural number N, and w ∈ P such that

u =
(
1 − δN

)
v + δNw.

Proof: Fix u ∈ int co(P ∪{v}). Since P is convex with a non-empty interior,
there is a λ′ ∈ (0, 1) and a w′ ∈ int P such that

u = (1 − λ′) v + λ′w′. (11)

Since w′ ∈ int P, there is (by continuity) an ε > 0 (and ε < λ′), such that
for all λ ∈ Bε (λ′) , there is a w (λ) ∈ P satisfying

u = (1 − λ) v + λw (λ) .

Let N (δ) = max {n | δn ≥ λ′} . The remaining task is hence to show that
there is a δ such that for all δ ∈ (δ, 1], δN(δ) ∈ Bε (λ′) . By construction,
δN(δ)+1 < λ′ and hence δN(δ) < λ′

δ
or δN(δ) − λ′ < λ′

δ
− λ′ = λ′ (1

δ
− 1
)
and the

claim holds for δ = λ′−ε
λ′ .

Theorem 3 For each v ∈ V ∗ there is a δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1)
there is a robust subgame perfect equilibrium of G∞(δ, m0) with payoffs v.
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Proof:
Let V ∗

1 be the subset of V ∗ in which player 1’s payoff is at least 1 (and
hence player 2’s payoff is less than 1). We will show that each v ∈ V ∗

1

is a robust equilibrium payoff for δ close enough to 1. Together with the
symmetric argument when the players roles are reversed, this will establish
the theorem.

If v ∈ V ∗
1 then v ∈ Co(V ∪ {(1 + g,−l)}) (see figure 3). By lemma 1

there is a δ̄ such that for all δ ∈ (δ̄, 1) there is a N and u ∈ V such that
v = (1 − δN)(1 + g,−l) + δNu. Note that since u2 > 0 > −l, u2 > v2.
Choose w2 so that 0 < w2 < v2 and δ sufficiently close to 1 so that u and
w := (u1, w2) are robust equilibrium payoffs.

��
��
��
��

��
��
��
��

��
��
��
��

(1+g, -l)

u

v

w

(0,0)

(1,1)

(-l, 1+g)

Figure 3: Prisoner’s Dilemma feasiblepayoff set.

Consider the following strategy profile. Player 1 plays D indpendent of
history for the first N periods. If player 1 observes that 2 has played C
in each of the first N stages, player 1 continues with a strategy s1 against
which every strategy of player 2 is a best-response and achieves a payoff of
u2. Otherwise, player 1 continues in stage N + 1 with a strategy s′1 against
which every strategy of player 2 achieves a payoff of w2.

8

Player 2 plays C in each of the first N stages provided he has never played
D. If in any of the first N − 1 stages, 2 has played D, then 2 continues with
D through stage N . Independent of history, beginning in stage N + 1, 2

8In a working paper version, we showed by a more complicated argument that less
draconian strategies can be used.
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plays a strategy s2 against which every strategy of player 1 achieves a payoff
of u1.

By construction, any continutation for player 1 is a best response to s2

beginning in stage N + 1. And since 2 continues with s2 is independent of
history, it is a best-response for 1 to play D in each of the first N stages.

Likewise, s2 is a best response to both s1 and s′1 beginning in stage N +1.
To establish that this profile is a subgame perfect equilibrium, therefore, it
remains only to check that 2 is willing to play according to the equilibrium
in each of the first N stages. If 2 has played D prior to stage N , then
independent of any future history, 1 will play s′1 and 2 will receive contin-
uation payoff w2. Therefore, 2 optimally continues with D through stage
N . Finally, suppose that in each stage up to s ≤ N , 2 has played C. If 2
plays according to the equilibrium, his payoff is −l(1−δN−s+1)+δN−s+1u2 >
−l(1− δN) + δNu2 = v2. If he instead plays D in stage s and then continues
with his equilibrium strategy, his payoff is δN−s+1w2 < w2. Since w2 < v2,
player 2 optimally plays C.

To conclude the proof, we show that the above equilibrium is robust. By
Theorem 1, for any sufficiently small ε-perturbation of m0, there are contin-
uation strategies s̃1, s̃

′
1, and s̃2 arbitrarily close to s1, s

′
1, and s2, generating

continuation payoffs arbitrarily close to w1, u1, and u2 respectively, and mak-
ing the opponent indifferent among all strategies. It follows that beginning
in stage N + 1, both s̃1 and and s̃′1 are best-responses to s̃2 and s̃2 is a
best-response for 2 whatever his belief over s1 and s′1. The players will play
as before for the first N stages, and now continue with these continuation
strategies. The payoffs in the first N stages are unaffected by ε. The distri-
bution over N -stage histories, and hence continuation payoffs beginning in
stage N +1 is continuous in ε. Therefore ε can be taken sufficiently small so
that the overall payoffs to these strategies are arbitrarily close to v and they
remain a sequential equilibrium.

4 Extensions

In this section, we outline briefly how the method for finding robust subgame
perfect equilibria can be extended to more general games.
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4.1 Two-Player Games

Let G = (A1, A2, g1, g2) be a finite two- player normal form game, where Ai

are the action sets and gi payoff functions. Let G∞ (δ) the infinitely repeated
game with G as the stage game and δ as the discount factor. Consider two
strategy profiles (a′

1, a
′
2) and (a′′

1, a
′′
2) and assume that the following condition

on the payoff functions is satisfied: For i ∈ {1, 2} , there are vi and v̄i > vi

such that

i) max
ai∈Ai

gi

(
ai, a

′′
−i

)
< vi and

ii) min
{
gi

(
a′

i, a
′
−i

)
, gi

(
a′′

i , a
′
−i

)}
> v̄i.

The first step is again the construction of a subgame perfect equilibrium in
the game with perfect monitoring where the players mix between (a′

i, a
′′
i ). In

analogy to the previous sections, let πi
ai,aj

∈ ∆ (Ai) be the probability distri-
bution on player i′s pure actions conditional on observing outcome (ai, aj) at
the previous stage, and let V i

ai
be as before.

Theorem 4 For any v ∈ (v1, v̄1) × (v2, v̄2), there is a δ < 1 such that v can
be supported as SPE payoff in G∞ (δ) for all δ > δ using strategies where
πi

ai,aj
(a′

i) > 0, πi
ai,aj

(a′′
i ) > 0 and πi

ai,aj
(ai) = 0 for ai /∈ {a′

i, a
′′
i } .

Proof: Pick V i
a′

j
and V i

a′′
j

such that vi < V i
a′′

j
< V i

a′
j

< v̄i. Suppose that

j randomizes between a′′
j and a′

j in each period so that πj
aj ,ai

(aj) = 0 for

aj /∈ {a′
j, a

′′
j

}
. The claim is proved if there are probabilities πj

aj ,ai

(
a′′

j

)
such

that the following conditions hold:

V i
a′′

j
= (1 − δ) gi

(
a′′

i , a
′′
j

)
+ δ

[
πj

a′′
j ,a′′

i

(
a′′

j

)
V i

a′′
j

+
(
1 − πj

a′′
j ,a′′

i

(
a′′

j

))
V i

a′
j

]
= (1 − δ) gi

(
a′

i, a
′′
j

)
+ δ

[
πj

a′′
j ,a′

i

(
a′′

j

)
V i

a′′
j

+
(
1 − πj

a′′
j ,a′

i

(
a′′

j

))
V i

a′
j

]
.

For all ai /∈ {a′
i, a

′′
i } ,

V i
a′′

j
≥ (1 − δ) gi

(
ai, a

′′
j

)
+ δ

[
πj

a′′
j ,ai

(
a′′

j

)
V i

a′′
j

+
(
1 − πj

a′′
j ,ai

(
a′′

j

))
V i

a′
j

]
.

V i
a′

j
= (1 − δ) gi

(
a′′

i , a
′
j

)
+ δ

[
πj

a′
j ,a′′

i

(
a′′

j

)
V i

a′′
j

+
(
1 − πj

a′
j ,a′′

i

(
a′′

j

))
V i

a′
j

]
= (1 − δ) gi

(
a′

i, a
′
j

)
+ δ

[
πj

a′
j ,a′

i

(
a′′

j

)
V i

a′′
j

+
(
1 − πj

a′
j ,a′

i

(
a′′

j

))
V i

a′
j

]
,

16



and also for all ai /∈ {a′
i, a

′′
i } ,

V i
a′

j
≥ (1 − δ) gi

(
ai, a

′
j

)
+ δ

[
πj

a′
j ,ai

(
a′′

j

)
V i

a′′
j

+
(
1 − πj

a′
j ,ai

(
a′′

j

))
V i

a′
j

]
Our condition on payoffs ensures gi

(
ai, a

′′
j

)
< V i

a′′
j

for all ai ∈ Ai, and

gi

(
a′′

i , a
′
j

)
> V i

a′
j
, and gi

(
a′

i, a
′
j

)
> V i

a′
j
.

The first set of equalities and inequalities can, in fact, be solved as a set
of equalities, and we get:

πj
a′′

j ,ai

(
a′′

j

)
=

V i
a′′

j
− (1 − δ) gi

(
ai, a

′′
j

)− δV i
a′

j

δ
(
V i

a′′
j
− V i

a′
j

) .

Since V i
a′

j
> V i

a′′
j

and gi

(
ai, a

′′
j

)
< V i

a′′
j
, 0 < πj

a′′
j ,ai

(
a′′

j

)
< 1 whenever δ is

sufficiently close to 1.
The second set of equalities yields:

πj
a′

j ,a′′
i

(
a′′

j

)
=

(1 − δ)
(
V i

a′
j
− gi

(
a′′

i , a
′
j

))
δ
(
V i

a′′
j
− V i

a′
j

)

πj
a′

j ,a′
i

(
a′′

j

)
=

(1 − δ)
(
V i

a′
j
− gi

(
a

′
i, a

′
j

))
δ
(
V i

a′′
j
− V i

a′
j

) .

Again, πj
a′

j ,a′′
i

(
a′′

j

)
and πj

a′
j ,a′

i

(
a′′

j

)
are probabilities for δ sufficiently close to 1.

The second set cannot be satisfied as equalities, in general. To see this
solve for the probabilities:

πj
a′

j ,ai

(
a′′

j

)
=

(1 − δ) (V i
a′

j
− gi

(
ai, a

′
j

)
)

δ
(
V i

a′′
j
− V i

a′
j

) .

If gi

(
ai, a

′
j

)
< V i

a′
j
, and V i

a′′
j

< V i
a′

j
, the solution is negative.

This does not cause any problems, however, since we can pick an arbitrary
V̄ i with V i

a′′
j

< V̄ i < V i
a′

j
and probabilities πj

a′
j ,ai

(
a′′

j

)
that yield for all ai /∈

{a′
i, a

′′
i }:

V̄ i = (1 − δ) gi

(
ai, a

′
j

)
+ δ

[
πj

a′
j ,ai

(
a′′

j

)
V i

a′′
j

+
(
1 − πj

a′
j ,ai

(
a′′

j

))
V i

a′
j

]
.
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A similar set of conditions holds for player j, and given that each player
is indifferent after each history between actions a′

i and a′′
i , and given that all

other actions yield a weakly lower payoff, the randomizations above are best
responses.

An argument similar to that in the previous sections can be given to show
that there is, in fact, a robust subgame perfect equilibrium that yields v as
the payoff vector. Two corollaries follow immediately from the result above.
Let e = (e1, e2) be a pure strategy Nash equilibrium profile of the stage game.
Denote the stage game equilibrium payoffs by ve

1 and ve
2 respectively.

Corollary 1 If there is a profile a = (a1, a2) such that min {gi (ei, a−i) , gi (ei, e−i)} >
ve

i for i ∈ {1, 2} , then the set of robust subgame perfect equilibrium payoffs
has a non empty interior. Furthermore, we can require that player i uses at
each stage either ai or ei for i = 1, 2.

As an example of this corollary, consider the discretized Cournot compe-
tition model with linear demands. For concreteness, let Ai = {0, 1, 2, ..., 20}
and gi (ai, aj) = ai (20 − ai − aj) . A Nash equilibrium of the stage game is
ei = ej = 7. The monopoly price is supported by action profile a1 = a2 = 5.
Observe that gi (e) = 42 , gi (a) = 50 and gi (ai, ej) = 56. As a result, we
conclude that any v ∈ (42, 50)2 can be supported as a robust subgame perfect
equilibrium for sufficiently high δ.

For the second corollary, let mi ∈ Ai be the action that minmaxes player
j. Let vi denote the pure strategy minmax payoff of each player.

Corollary 2 If there is an (a1, a2) such that min {gi (mi, a−i) , gi (ai, a−i)} >
vi for i ∈ {1, 2} , then the set of robust subgame perfect equilibrium payoffs
has a non empty interior. Furthermore, we can require that player i uses at
each stage either ai or mi.

Using this corollary, it is easy to see that in some games, payoffs below
those resulting from the unique dominant strategy equilibrium of the stage
game are sustainable in robust subgame perfect equilibrium and hence in
games with small imperfections in the monitoring technologies. Consider
e.g. figure 4.

In this example, mi = a2 for i = 1, 2. Hence the Corollary above im-
plies that any v ∈ (−1, 0)2 can be supported as a robust equilibrium payoff.
Observe also that the pure strategy Nash equilibrium payoff cannot be ap-
proximated by a mixed strategy equilibrium of the type as described above.9

9Although such payoffs can be obtained by strategies which play (a1, a1) for sufficiently
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a1 a2

a1 1, 1 −1, 0
a2 0,−1 −2,−2

Figure 4: Payoffs below the dominant strategy equilibrium can be supported.

4.2 N-Player Case

We conclude this section by analyzing an example of a symmetric N -player
game. The basic difficulty in comparison to the two player case is that the
transitions between the states of the machines equivalent to those described
in the previous section are no longer linear in the randomizations of the other
players (even after conditioning on own actions). As a result, the probabilities
cannot be solved for as before by simple linear algebra. In this subsection,
we show that for δ close to unity, we can recover approximate linearity and
show the robustness by an application of the implicit function theorem.10

We consider here the following version of the N -player Prisoner’s Dilemma.
Ai = {C, D} for i = 1, ..., N, and gi (C, a−i) = ni (a−i) = gi (D, a−i)+1, where
ni (a−i) is the number of players different from i that play C in profile a−i.
Let G∞(δ) stand for the infinitely repeated version of this game with discount
factor δ.

Suppose that all players are using strategies of the following form:

πi
ai,ni

= Pr {C | a} .

In words, each player bases her own randomizations solely on her own past
actions and the number of other players that cooperated, not their iden-
tity. The next theorem shows that outcomes arbitrarily close to the efficient
outcome can be supported

Theorem 5 For any v ∈ (0, N) there is a δ such that for all δ > δ, G∞ (δ)
has a completely mixed SPE in which each player obtains a payoff of v.

Proof: Construct the following sequence of numbers:

V (0) = v0, V (n) = v0 +
n

(N − 1)
(v − v0) for n ∈ {1, ..., N − 1} . (12)

many periods before reverting to an equilibrium in the set (−1, 0)2. These strategeis are
robust by the argument made in section 3

10Obara (1999b) also analyzes the N -player prisoner’s dilemma. He uses an extension of
the Sekiguchi (1997) approach to obtain an approximately efficient symmetric equilibrium.
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We show that each V (n) can be interpreted as the value to a player in the
game when n other players cooperate at the current stage.

To simplify notation, write the strategies as:

πC,n = 1 − γn and πD,n = βn.

Note that we have dropped the superscript as we will now restrict attention
to symmetric strategies. We are interested in the existence of equilibria
in strategies of this type for δ large enough. The dynamic programming
equations become then for n ∈ {0, ..., N − 1}:

V (n) = (1 − δ)n + δED,nV (n′) , (13)

V (n) = (1 − δ) (n − 1) + δEC,nV (n′) ,

where EC,nV (n′) denotes the expected value from tomorrow on conditional
on the action profile today The transition probabilities are nonlinear in
(γn, βn) since they are obtained from two binomial distributions.

Suppose that the strategies used by the players depend on δ as follows:

γn (δ) |δ=1= 0, βn (δ) |δ=1= 0 for all n ∈ {0, ..., N − 1} .

In this case, the equations in (13) are trivially satisfied at δ = 1, and
in particular, the sequence given in 12 solves the system. Write γ(δ) =
(γ0(δ), . . . , γN−1(δ)) and β(δ) = (β0(δ), . . . , βN−1(δ)). We want to use the
implicit function theorem to conclude that the nonlinear system, 13 has a so-
lution (γ(δ), β(δ)) for δ in a neighborhood of 1. Next, to guarantee that the
solutions are indeed probabilities, we need to show that for all n, ∂γn

∂δ
(1) > 0

and ∂βn

∂δ
(1) > 0

To apply the implicit function theorem, we treat (13) as a system of 2N
equations that implicitly define the 2N probabilities (γ(δ), β(δ)). Write this
system as

V (γ, β; δ) = 0,

with γ, β as the endogenous variables and δ as the exogenous variable.
Viewing (13) as a system of N − 1 pairs of equations, denote by VnD

the first function of the nth pair and VnC the second. We now evaluate the
partial derivatives of the system at the original solution (for δ = 1) with
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respect to the endogenous variables. For 1 ≤ n ≤ N − 1,

∂VnD

∂γn−1

=
∂VnC

∂γn

= n(V (n − 1) − V (n))

∂VnD

∂βn

=
∂VnC

∂βn+1

= (N − n − 1)(V (n + 1) − V (n))

It can easily be verified that this system has full rank. The implicit function
theorem then guarantees the existence of a differentiable solution mapping
(γ(δ), β(δ) in the neighborhood of δ = 1. To check the sign of the derivatives,
we apply the chain rule. Note

DδV (γ, β; δ) =




V (0)

V (0) − 1

V (1) − 1

V (1) − 2
...

V (N − 1) − (N − 1)

V (N − 1) − N




Observe that the system of equations,

D
,�V (γ, β; δ)Dδ(γ(δ), β(δ)) = −DδV (γ, β; δ)

can be solved in blocks of size 2. This makes the comparative statics relatively
easy:

(
n (V (n − 1) − V (n)) (N − n − 1) (V (n + 1) − V (n))

(n + 1) (V (n) − (V (n + 1))) (N − n − 2) (V (n + 2) − V (n + 1))

)(
∂γn

∂δ
∂βn

∂δ

)

= −
(

V (n) − n + 1

V (n + 1) − n − 1

)
.

Using the fact that V (n + 1) − V (n) = V (k) − V (k − 1) for all k, n ∈
{0, 1, ..., N − 1} , it is easy to see that the derivatives have the right sign
whenever v0 is chosen close enough to v. Hence for δ close enough to one, the
system can be solved for probabilities. This implies that for such discount
factors, the game has a completely mixed SPE with a payoff v.
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In order to obtain the result on games with almost perfect monitoring,
fix a δ for which there is a completely mixed SPE with payoff vector v.
We can make the same continuity argument as in the previous section to
conclude that whenever the monitoring is close enough to perfect, a sequential
equilibrium with payoff vector v exists.

5 Conclusion

There are many unresolved questions in the context of discounted repeated
games with private monitoring. In particular, unlike the public monitoring
case, there is no known folk theorem for fixed monitoring technologies.11

In this note, we have followed the literature and sought after the weaker
result: a limit folk theorem for nearly perfect monitoring. An important goal
for future research is to characterize equilibrium payoffs when monitoring is
private but far from perfect. The strategies we have used in this paper can
sustain some cooperation under less than perfect monitoring technologies
and equilibrium can be characterized by an analogous system of dynamic
programming equations. The payoffs that can be supported are thus those
values for which the system can be solved for probabilities. Determining the
full potential of this approach is ongoing research.
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