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1. Introduction

In this paper we develop a model of endogenous growth in an economy with
competitive markets. Technical change arises from the intentional actions of en-
trepreneurs looking for profits. Opportunities for such profits are available even
though there are no monopoly rents. This provides a counterexample to the
widespread view that endogenous technical change is possible only if innovating
firms can expect to reap monopoly or oligopoly rents. This view goes back to
Schumpeter (1911/1934); in the recent literature it has been expressed, e.g., by
Romer (1990), Grossman and Helpman (1991), Peretto (1996), and Aghion and
Howitt (1998). In a typical formulation, Peretto (1996, p. 897) asserts that imper-
fect markets and monopoly power are necessary to induce profit—seeking agents
to undertake costly R&D.

We do not want to dispute the notion that prospects of monopoly rents en-
courage innovative activities. We merely want to argue that profit opportunities
in competitive markets may also provide incentives for innovative activities. If
production technologies are strictly convex, there will be inframarginal rents pro-
viding for an excess of revenues over variable production costs even when firms
take prices as given. Such inframarginal rents may provide compensation for the
costs of research and development; spending on research and development may
be desirable as a way to increase such rents.!

Strictly convex technologies and inframarginal rents have largely been excluded
from growth theory because they seem incompatible with the standard assump-
tion of constant returns to scale. Tradition, or perhaps a concern for the stylized
facts of economic growth (Kaldor (1961), Solow (1970)) and the steady-state
growth patterns that these stylized facts suggest, have led the profession to focus
on growth models with constant returns to scale in production. Given this spec-
ification, Euler’s law ensures that for a price—taking firm, revenues are equal to
variable production costs, there are no inframarginal rents, and hence there is no
compensation for research and development (see, e.g., Romer (1990)).

In this line of argument, the assumption of constant returns to scale appears in
two distinct guises: At one level, constant returns to scale are seen as a condition
on aggregate technology, taken to be implied by observed evolutions of interest
rates, capital intensity, etc. at the level of the overall economy. At another
level, constant returns to scale concern the individual firm as this firm chooses

IThe idea that a competitive environment may leave room for financing of expenditure on
research and development already appears in a partial equilibrium model of Shell (1973). He
considers two types of price taking firms. A large but finite set of firms employs an advanced
technology, the others operate at an old technology. Rents appear in the form of quasi—rents on
advanced technology and arise if industry output exceeds the quantity produced by the set of
advanced firms at minimum unit costs.



profit-maximizing production plans and finds that maximum profits (before con-
sideration of R&D spending) at equilibrium prices are zero. Our analysis is based
on the observation that there is no necessary link between constant returns to
scale at the level of aggregates and constant returns to scale at the level of the in-
dividual firm. This observation has previously been made by Bester and Petrakis
(1998); we follow their specification and embed it in a general-equilibrium model
of aggregate economic growth.

Regardless of what technologies are at the level of the individual firm, at the
level of economy—wide aggregates, constant returns are guaranteed if one assumes
that technologies of individual firms can be replicated ad libitum. We assume that
the economy contains a large ocean of small (atomless) firms, each of which has
access to the same technology. This assumption guarantees that if a production
plan is feasible at the level of the individual firm, then an arbitrary nonnegative
multiple of this plan is feasible at the level of the economy. This is enough to
allow the kind of steady—state growth patterns that are suggested by the stylized
facts of economic growth.

At the level of individual firms, we specify technologies in such a way that
for a given production technique, the set of feasible input—output combinations
is strictly convex. In addition there is a possibility of improving production tech-
niques through prior resource spending; this introduces a nonconvexity because
the R&D spending is not related to subsequent output and corresponds to a fixed
cost. The combination of strict convexity of the technology for a given production
technique and the nonconvexity from research and development makes it possi-
ble to have both, marginal-cost pricing of output and free entry into R&D cum
production, i.e., zero profits net of R&D spending.

The specification we use has production of a firm at any time depend on its
labor and capital inputs and on the resources it has devoted to improving labor
productivity. Labor inputs are provided in the period of production, capital inputs
and productivity improvement resources are provided one period before. Labor
and capital are strict complements; capital has decreasing returns even when it is
the limiting factor. This is the source of inframarginal rents.

Bester and Petrakis (1998) use this specification to study endogenous technical
change in a partial-equilibrium model of a competitive industry which faces a
given demand function, a given, time-independent interest rate, and is subject
to exogenous wage growth. They show that the industry converges to a steady—
state equilibrium where productivity growth matches wage growth. In the steady
state, the output price, aggregate production, and production per firm are all
constant; employment decreases as productivity goes up. Endogenous technical
change provides a dynamic mechanism of substitution against labor in response
to high and growing wages.



From a general-equilibrium perspective, this account of the employment ef-
fects of wage—induced technical change is problematic as it seems to rest on the
assumption of a given function relating output demand to output price. As la-
bor productivity grows, so should income. This should shift the output demand
function. Could it be that the negative employment effect of wage growth in the
Bester—Petrakis analysis is due to the neglect of such income effects? And what
is the role of the assumed exogeneity of wage growth and the interest rate?

To approach these questions, one needs to endogenize income and account for
its effects on output demand, i.e., to embed the analysis of endogenous technical
change in a general-equilibrium model. We do this by combining the Bester—
Petrakis model of firm behavior with a household sector a la Ramsey (1928),
Cass (1965) or Koopmans (1965). For simplicity we have a single household
concerned with his consumption levels in an infinite sequence of periods. From a
fixed endowment, this household in each period supplies labor inelastically to the
market, and he uses his income from wages and financial claims from past periods
to finance his consumption as well as the acquisition of new financial claims.
Financial claims are issued by firms needing funds to finance their spending on
capital and on productivity improvements with a view to production in the next
period. At the level of firms planning for future production there is free entry;
following Bester and Petrakis, we assume that at this point all past productivity
improvements are in the public domain, i.e., without any spending on productivity
improvements, any firm can avail itself of production techniques that yield current
productivity levels.

Assuming that wages and interest rates in all periods are determined endoge-
nously by the requirement that all markets clear when all plans are made on the
basis of the given sequence of wages and interest rates, we establish the existence of
a unique intertemporal general equilibrium. The equilibrium involves stead—state
growth from the second period on, with constant output per firm, and a constant,
endogenous rate of technical change. Given the fixed supply of labor, total man-
ufactured output increases at the rate of technical change and so do real wages
as well as aggregate consumption and aggregate investment. The equilibrium
growth rate is one where the income effects of increasing wages on demand just
compensate the employment effects of increasing productivity so that aggregate
employment is constant at the level corresponding to labor supply. In addition
to the Bester—Petrakis effect of wage growth providing incentives for innovation,
we also have market—clearing conditions in a world of technical change imposing
restrictions on wage growth. Whereas traditional growth models with exogenous
technical change have causality running from technical progress to wage growth
and Bester and Petrakis have causality running from wage growth to technical
change, we treat both, wage growth and productivity growth as endogenous, letting



them be determined jointly by the conditions for intertemporal general equilib-
rium.

A key price variable for equilibrating the economy is the rate of interest. On
the production side of the economy, for each level of the current interest rate and
each level of current productivity, there is a unique future real wage rate such
that at the given combination of interest and wage rates the profit-maximizing
production—cum-innovation plan of active firms is just compatible with the zero—
profit condition that is implied by free entry. On the consumption side of the
economy, for each level of the current interest rate, there is a unique growth rate of
consumption that is compatible with consumer optimization. For an equilibrium,
the interest rate must adjust so that the consumption growth rate that is implied
by consumer optimization is exactly equal to the rate of productivity improvement
that is implied by profit maximizing and free entry of firms.

Proceeding to comparative statics and welfare analysis, we find that the equi-
librium growth rate in our model is the higher the less discounting of future
consumption there is at the household level. We also find that an interest subsidy
financed by a tax on (inelastically supplied) labor will increase the equilibrium
growth rate as it drives a wedge between the interest that is paid by firms and
the interest that is received by the household sector. Up to some level, such an
interest subsidy will actually raise welfare because the laissez—faire equilibrium
involves too little innovative activity.

Our welfare assessment of too little innovation under laissez—faire is unambigu-
ous because our model has only one relevant externality, the knowledge—spillover
externality that arises when innovations between periods ¢ and t 4+ 1 increase
the stock of knowledge that is available at ¢ + 1, from which subsequent innova-
tive activity starts. In contrast, in some of the models involving oligopolistic or
monopolistic competition, this positive externality can be outweighed by nega-
tive (pecuniary) externalities from shifting resources out of current consumption
where market power makes for a wedge between social marginal benefits and so-
cial marginal costs (Aghion and Howitt (1992), Grossman and Helpman (1991),
Klingen (1993)). In our model this is not possible because no firm has market
power and hence there is no such wedge.

The plan of the paper is as follows. In Section 2 we lay out the details of
the model. We begin with the household sector in Section 2.1, continue with the
production sector in Section 2.2, discussing first technologies at the level of indi-
vidual firms, and then the behavior of production aggregates. Finally in Section
2.3, we specify the concept of intertemporal general competitive equilibrium for
the economy that we study. Section 3 presents our main result on the existence
of a competitive equilibrium with endogenous growth. Finally, in Section 4, we
deal with comparative statics and the welfare analysis of equilibrium growth in



our model. Section 5 concludes.

2. The Model

We study an economy with three objects of exchange, a manufactured good,
labor, and bonds, in an infinite sequence of periods ¢t = 1, 2, ... The manufactured
good serves for investment as well as consumption. In each period ¢, there are
markets for the three objects of exchange. Treating the manufactured good as
the numéraire, we let w; denote the real wage and p? the real bond price at t. A
bond at ¢ is a claim on one unit of the manufactured good at ¢+ 1. Working with
real interest rates rather than bond prices, we write p? = 1/(1 + r;) where 7; is
the real interest rate from ¢ to t + 1.

2.1. The Household Sector

For simplicity we assume that the household sector comprises one household. This
household has an initial endowment of By bonds coming due at ¢t = 1, L units
of labor in each period t = 1,2,..., and 100% of the shares of all firms. The
household does not care about leisure. He draws utility from his consumption ¢
in periods t = 1,2, ..., according to the functional

Zﬁt Inc, (2.1)
=1

where 0 < § < 1 is a discount factor. Given his initial endowments and given
his expectations about the real wages w;, real interest rates r;, and aggregate
dividend distributions II; in all periods t = 1,2, ..., he chooses a strategy for his
consumption demand ¢;, labor supply L;, and bond demand B¢ in t = 1,2, ... so
as to maximize the utility functional (2.1) under the constraints that

Cct + Bg/(]. + ’I“t) = tht + Bgfl + Ht, (22)

>0, L; <L, BY>0 (2.3)

for all ¢, with B¢ = By, given. For the given logarithmic utility specification?, one
has:

2Little would change if we used the more general constant relative risk aversion utility

ct o1

. _

—_ > 1.
> Bt 021
t=1

As usual in infinite—horizon optimal-saving models, the condition 6 > 1 is needed to ensure the
existence of an optimal solution to the household’s problem.
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Proposition 1. Given the initial bond endowment By and the sequence {wy, ¢, I1; }
of real wages, interest rates, and dividend distributions, the household chooses the
sequence {c;, Ly, B} such that fort =1,2,...,

¢ = (1-0)[BL,+ H;+ V]
Lt - L
Bf = (1+ rt)ﬁ[Bg—l + H, + V],

where

Hipy
1 + Tt

oo T—1
= wL + Z H (1 +17“t+z'> Wiy L

T7=1 =0

Ht = th+

is the consumer’s assessment of his human capital and

Vi = I+

is the aggregate value of the consumer’s share holdings (the discounted current
value of outstanding expected dividend distributions) as of date t.

The proof of this proposition is standard and is left to the reader. Given that
the household does not care about leisure, his planned labor supply is equal to
the endowment L for all ¢. As for his consumption, the first—order conditions for
¢, B, and ¢y, yield a simple equation

cer1 = B(1+1¢)c (2.4)

for consumption growth between ¢ and ¢t + 1. This condition will play a crucial
role in the analysis of equilibrium growth.

2.2. The Production Sector

2.2.1. Individual Firms, Technology, and Profit Maximization

The production sector of the economy is represented by an atomless measure space
of firms. From an ex ante perspective, all firms have access to the same technology.
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Production at ¢ requires inputs of manufactured goods at ¢ — 1 and labor at ¢.
Inputs of manufactured goods at ¢ — 1 serve two purposes: (i) they determine
production capacity, and (ii) they affect labor productivity at . Output of a firm
at t is equal to

Y = min(zy, agly), (2.5)

where x; is production capacity, a; is labor productivity, and [; is the labor input
of the firm at date t. A production capacity x; at ¢ presumes a capacity investment
equal to I'(z;) units of the manufactured good at ¢ — 1. The labor productivity
of the firm at date t is equal to

ar = A1 (1 + q1);

here A;_; is an indicator of economy—wide labor productivity at t — 1, and ¢; is
an indicator of productivity growth at this firm; this productivity growth requires
an investment of K (q;) units of the manufactured good by the firm at date ¢ — 1.
In summary then, at the level of the individual firm, the technology is such that,
for a given state A;_; of economy—wide labor productivity at date t — 1, an input
of I'(x;) + K(q;) units of the manufactured good at ¢ — 1 and [, units of labor of
t yield an output equal to min(z;, Ay 1(1 + g¢)l;) units of the manufactured good
at t.

In terms of intellectual property rights, the specification here assumes that any
innovation is proprietary knowledge in the period when it is made; however the
technology for making it is widely available. Subsequently, as we discuss below,
this knowledge becomes embodied in the economy-wide productivity indicator
A and is no longer available for proprietary use. Investment in innovation takes
place (with reduplication across the firms doing it) because of the possible gains
to be reaped during the initial period of availability of the innovation.

In terms of the date ¢ manufactured good as numéraire, a firm that is active
at t expects to have a profit equal to

e = min(xy, Ap 1 (1 4+ q)ly) —wily — (1 + 7 1) (D) + K(q)), (2.6)

corresponding to the difference between its revenue min(x;, Ay 1(1+ q¢)l;) and its
costs for labor and prior inputs. The prior inputs I'(z;) + K(¢;) are financed by
issuing bonds, so taking account of interest, the cost is (1 +r_1)(T'(x;) + K(g))-
The profit, if any, is immediately distributed to the household as the firm’s only
shareholder.

The input requirement functions I'(z;) and K(g;) are assumed to be twice
continuously differentiable and to have the following properties:

K(0) = 0,K'(0)=0,K"(¢q) > 0 for all q, (2.7)
ro) = 0,1'0)=0,I"(z) > 0 for all z, (2.8)
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so investments in innovations and in capacity are both subject to decreasing re-
turns.

We assume that firms take prices as well as economy-wide productivity indi-
cators as given. For given A; 1, w;, and 7, 1, a firm that considers production
at t chooses its labor input [;, capacity z;, and productivity growth rate ¢; to
maximize the profit m; as given in (2.6).

Proposition 2. For any A;_1, wy, and r;_1, the maximum level of profits that a
firm can achieve is nonnegative. If w; > 0, 1 +7r;,_; > 0, a profit-maximizing plan
for production at date t satisfies

It — At,1 (1 + Qt) lt' (29)

If moreover the maximum level of profits that a firm can achieve by producing at
date t is zero but a profit-maximizing production plan (I, x¢, q) involves z; > 0,
then

K(qt) + ()

x; minimizes ———————= (2.10)
Tt
a >0, (2.11)
and
S Wy
minimizes —————  + (1 + ;1) C(q), 2.12
a A (1 +q) ( -1)C(a) ( )
where
K r
C(qt) == min (9:) + D) (2.13)
Tt
Proof. Nonnegativity of maximum profits follows from the fact that zero

production is feasible with zero costs. If w; > 0 and 1 + r;_; > 0, then in view
of the Leontief specification (2.5), labor demand will obviously be matched to
capacity, yielding (2.9). If (I, xt,q) maximizes profits, x; > 0, but maximum
profits are zero, i.e.,

0=m = min(zy, A1 (1 +q0) 1) —wely — (1 +71)(K(q) + T'(24))
zy — Wi/ A1 (T +q) — (1 +7m1)(K(q) + T(ae))
=zl —w /A1 (1 +q) — 1+ 700) (K (g) + ()

/th],



then (x,q) must be minimizing expected unit costs,

Wt K(Qt) + F(.’Et)
(A4 Y

Atfl(l + Qt) ( ‘ 1) Tt
This immediately yields (2.10) and (2.12). Positivity of ¢, i.e., (2.11) follows from
(2.10) in combination with the observation that, by (2.7), ¢; = 0 would imply that
K(q:) =0, and, by (2.8), that (K(q) + I'(z;))/x; has a unique infimum which is
approached as x; goes to zero. W

For given data (A;_1,w;, 1:_1), the firm’s maximization problem is not convex,
so quite generally it will have more than one solution. This issue arises at two
levels: (i) If the maximum profit level is zero and this is reached with positive
production, then obviously profits are also maximized by choosing not to produce
at all. (ii) There might be several distinct profit-maximizing production plans
with positive production. Of these two possibilities, the first one is an essential
ingredient of the model, arising from the fact that the innovation investment K (¢;)
acts like a fixed, i.e., output—independent, cost of production. Whether firms want
to produce or not, depends on whether the excess of revenues over variable costs
is enough to cover this fixed cost or not; at the boundary between the two regions,
they are just indifferent between the two alternatives and as in other models with
fixed costs, the transition from one alternative to the other is not continuous.

As for an eventual multiplicity of profit—-maximizing production plans with
positive production, we note that this depends on the curvature of the unit—cost
function C'(.) that is defined in (2.13). Under the given assumptions (2.7) and
(2.8), for given ¢; > 0, the minimization problem (2.10) that governs the choice of
x; has a unique solution, but if the function C'(.) is not convex, we do not know
whether this is also true for the minimization problem (2.12) that governs the
choice of ¢;. To avoid this difficulty, we follow Bester—Petrakis (1998) and impose
the additional conditions:

K"(q) > [é(flé?;f for all ¢ > 0, (2.14)
Mz) > 2 [F/(’“");_ P for all 2 > 0. (2.15)

With these conditions we obtain:

Lemma 1. If I'(.) and K (.) satisfy (2.14) and (2.15) in addition to (2.7) and
(2.8), then

(a) For any q > 0, there exists a unique x(q) > 0 that minimizes (K (q) +1'(z))/z.
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This x(q) is continuous and increasing in q, with lim,_0x(q) = 0.

(b) The function C (.) that is defined in (2.13) is twice continuously differentiable,
strictly increasing and convex on R, with lim,_oC(q) = 0 and lim,,C'(q) =
K"(0)I"(0).

The proof of this lemma is given in Appendix 6.1. We immediately use it to
state and prove:

Proposition 3. If I'(.) and K (.) satisfy (2.14) and (2.15) in addition to (2.7)
and (2.8), then

(a) If wy/A1(1 +rq) > /K"(0)I"(0), then the problem (2.12) of minimiz-
ing unit cost has a unique solution q;; this solution is positive and is characterized
by the first-order condition

Wy

A1 (147 )

= (1+ Qt)QCI(CJt)- (2-16)

(b) If wy /A1 (1 4+ r—1) < /K"(0)I"(0), then the problem (2.12) of minimizing
unit cost has no solution. An infimum is approached as g; converges to zero (and
x(q:) converges to zero).

Proof. (a) Consider the unit—cost function ¢ — w;/A; 1(1+¢q)+(1+71)C(q),
defined on R, . This function is differentiable. Its slope is —w;/A; 1(1 + ¢)* +
(1 +7.1)C"(q); by Lemma 1, this is increasing in ¢. If wy/A; (1 + 1 q) >

K"(0)I'(0) = limg—0C"(q), this slope is strictly negative for ¢ near zero. For ¢
sufficiently high, this slope is obviously positive, i.e., the unit—cost function is first
decreasing and then increasing in the innovation rate ¢q. At the point ¢ > 0 where
the slope changes signs, the unit—cost function has a minimum; this is unique and
is characterized by the first-order condition (2.16).

(b) wi/Ai—1(1 + r—1) > /K"(0)I"(0) = limy—0C’(q), the unit-cost function
q— wi/Ai—1(1+¢q) + (1 +7:-1)C(q) is increasing everywhere, so it has no mini-
mum on R, ,. An infimum is approached as g goes to zero. W

Apart from providing for the regularity of firm behavior that is entailed by
convexity of the function C (.), Proposition 3 shows that under our assumptions
innovative activity and production will always go together. Either a firm doesn’t
produce and then it doesn’t innovate, or it produces, and then it always wants
to have some innovative activity as well. This latter, rather strong, result is due

11



to the (strong) assumption that with K(0) = 0 and K’(0) = 0, the first unit of
innovative additivity is basically costless. As long as a firm plans to have some
positive production, it may as well avail itself of this cheap possibility of reducing
the cost of its labor.

2.2.2. The Production Sector: Economy—Wide Aggregates

Turning to the production sector as a whole, we represent the set of all firms
by the set R, of positive real numbers, using Lebesgue measure to represent the
weights of subsets of firms relative to the household. For instance if all firms that
are active at some date t have the same production plan (¢, z;, g;) for this date
and if the set of these firms has Lebesgue measure n;, we say that aggregate labor
demand at t is nyl;, which is to be compared with the household’s labor supply L.

In identifying the set of all firms with R, , we implicitly introduce a free—entry
condition. Given that labor supply is bounded, in any given period the set of firms
employing more than some € > 0 units of labor and producing more than some
n > 0 units of output must have bounded measure and hence must be smaller
than the set of all firms. Given that all firms have access to the same technology,
this implies that in any equilibrium in any period maximum profits of any firm at
equilibrium prices are zero so profits are the same for firms that choose to produce
and firms that choose to stay out.

Given that maximum profits in any period t are zero, Propositions 2 and 3
imply that all firms that are active in this period will choose the same production
plan (I, ¢, q:). Let n; be the measure of this set of firms. This measure n; will
determine the overall impact of firms producing in period ¢ on markets in periods
t — 1 and t. Given the individual production plan (I;, x;,q) for date ¢ and the
measure n; of active firms, the production sector of the economy expresses an
aggregate investment demand for n, (K(q) + I'(x;)) units of the manufactured
good at date t — 1, in combination with an aggregate bond supply equal to (1 +
ri—1)n:(K(q) + IT'(z¢)) units of the manufactured good at date ¢. At date ¢ itself,
the production sector expresses an aggregate goods supply equal to n;x; and an
aggregate labor demand equal to nl;.

For firms active in period 1, we must make some assumption about initial
conditions, in particular about capacities and productivities. Taking our cue from
the preceding account of firm behavior in later periods, we assume that as of date
1, there is a set of measure n; of firms all of which have the same installed capacity
1 and labor productivity a; = Ag(1+¢;). These firms also have outstanding debt
obligations equal to By on aggregate, or By/n; per firm; this is the counterpart

12



of the household’s initial holdings. For notational convenience we write
BO == (1 —I—To)?’Ll(K(ql) +F(.I'1)), (217)

but otherwise, we treat the firms’ prior investments at date 0 as sunk and thus
outside the scope of our analysis. Initial conditions of the production sector are
thus summarized by the measure n; of active firms, the installed capacity x; and
labor productivity a; = Ag(1+¢;) of these firms, and their aggregate indebtedness
By. To ensure that positive production is feasible at date 1, we assume that n; > 0,
x1 >0, and a; = Ag(1 + q1) > 0.

To conclude our account of the production sector, we discuss the evolution of
the economy—wide productivity indicators Ay, Ay, As,... that determine for each
period the base from which further productivity growth starts. Given that for any
t, all firms that are active at date ¢ will choose the same innovation rate ¢; and
reach the same labor productivity a;, it seems reasonable to equate the aggregate
productivity indicator A; with this common individual productivity level a; and
to set

At = At,1 (1 + Qt) (218)

for t = 1,2,..., with Ay and ¢; given by initial conditions. This specification
reflects the notion, expressed above, that after one period all knowledge becomes
embodied in the economy—wide productivity indicator and is no longer available
for proprietary use.

At a conceptual level, the specification (2.18) is incomplete because we say
nothing about the development of productivity indicators when firms choose dif-
ferent rates of innovation. To do so and to close the model, we might equate A;,
e.g., to the cross—section average or to the cross—section maximum of the pro-
ductivity levels a,{ reached by different firms f with possibly different choices of
productivity growth rates qtf . For our purposes here, this does not matter because
we shall not actually have to worry about situations where different firms choose
different investments in innovation.

2.3. Intertemporal General Competitive Equilibrium

We now consider the coordination of activities through prices. We refer to a
sequence {wy, 1} of real wages and real interest rates for periods t = 1,2, ... as a
price system. By an allocation we understand a sequence {c;, Ly, B, ng, Iy, 24, q¢ }
comprising a strategy {c;, Ly, B¢} for the household and, for each ¢, a measure n;
of firms active at ¢, and a production plan (I, z¢, ¢;) for these firms. An equilibrium
will correspond to price system {w;, 7}, an allocation {c;, L, BE, ny, ls, x4, q: }, and
a sequence {II;, A;} of distributed aggregate profits and productivity indicators
that satisfy the following conditions:

13



(E1) Given the price system {w, 1} and the distributed—profit sequence {II;},
the strategy {c;, Li, B¢} maximizes the household’s utility (2.1) under the
constraints (2.2) and (2.3).

(E2) For any t, the profit distribution IT; which the household expects to receive
is equal to the actual aggregate of profits of firms active at ¢, i.e.

I, = nefman(ay, Ae 1 (1+ @)ly) —wily — (1 + 1) (K (g) + D)) (2.19)

(E3) Given the productivity indicator A;_;, the real wage w;, and the real interest
rate r;_q, for any ¢ > 1, the production plan (I, ¢, ¢;) maximizes the profit
(2.6) of a firm active at t. For ¢t = 1, the labor input /; maximizes the profit
(2.6) of a firm active at this date.

(E4) Given the productivity indicator A;_;, the real wage w;, and the real interest
rate r,_1, for any t > 1, the profit (2.6) of the profit-maximizing production
plan (I;, z, q;) is equal to zero.

(E5) For any ¢,

Ct ‘I— nt+1 (K (q,j+1) + F ('Tt+1)) = Ny min (.Tt, At,1(1 —I— Qt)lt) . (220)

(E6) For any t, Ly > ml; , with a strict inequality only if w; = 0.
(E7) For any t,

B = (147 ne (K (gi1) + T (2041)) -

(E8) For any ¢, the indicators A; satisfies the updating condition (2.18).

Our concept of equilibrium embodies the usual notions of market clearing and
rational expectations, as introduced in Radner’s (1972) “equilibrium of plans,
prices and price expectations”. Agents are assumed to make their plans initially
on the basis of expectations about the entire future, the household on the basis
of expectations about the price system {wy, 7} and the sequence {II;} of divi-
dend distributions, the firms on the basis of expectations about the price system.
Given the array of chosen plans, in each period t, markets actually clear at the
pair (wy, ;) and aggregate profits actually amount to the level II; that had been
anticipated for this period.

Among the equilibrium conditions, (E1) relates the allocation to the house-
hold’s utility maximization at given expectations about prices and dividends.
Rationality of his expectations about profits and dividends is ensured by (E2).
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Condition (E3) asserts that active firms maximize profits; profit maximization
by inactive firms is implied by the zero—profit condition (E4). (E5)—(E7) are the
market—clearing conditions, (E5) for manufactured goods, (E6) for labor, and (E7)
for bonds. In (E6), we must allow for the possibility of excess supply of labor (at a
zero wage) because in view of the strict complementarity between capacity inputs
and labor this cannot be ruled out.

A further comment may be warranted about condition (E2). Given that we
have said nothing about the prior choices of firms active at t = 1, it is quite possible
for II; to be negative, implying that the household must pay in additional funds
to bail out “his” firms. We make this assumption for notational convenience only,
because we want to avoid going into details about wage payments or debt service
of a bankrupt firm when there is limited liability of shareholders. Given that there
is only one household, the specification of liability rules for stocks and bonds at
date 1 does not actually matter because regardless of such rules, the sum of wage
earnings, debt service and profits received by this household at date 1 must equal
the output min(xy, A1l;) at this date (Hellwig (1993)). In our treatment this is
exactly implied by the budget constraint (2.2), the consistency condition (2.17),
(E2) and (E6).

In specifying a consistent circular flow of income, condition (E2) also ensures
the validity of Walras’ Law in each period ¢, so one of the market—clearing condi-
tions is superfluous. To see this, use (2.2) and (2.19) to write the excess demand
for bonds at date t, B — (1 4+ 7¢) ny1 (K (1) + T (2441)), in the form

(1 + Tt) [tht + Btd_l + Tt [min(a:t, At,1(1 + qt)lt) — wtlt
—(T+7re-1) (K (q) + T (20)] = e — m1 (K1) + T (@41))]
= (1 + rt)[wt (L — ntlt) + Bf& — (1 + Tt—l) (K (Qt) +T (%))]
+rg[man(zy, Ae—1 (1 + g)ly) — ¢ — a1 (K (geg1) + T (2441))]
which is automatically equal to zero if (E5) and (E6) hold for ¢ and (E7) holds

for t — 1. Given that the initial condition (2.17) entails the analogue of (ET7) for
t =0, it follows that for every ¢ the bond market condition (E7) is redundant.

3. Intertemporal Competitive Equilibrium and Growth
3.1. Equilibrium Growth: The Main Result

In the following we develop the main result of our analysis. We give a simple
condition for existence of equilibrium. The equilibrium is unique and has a sta-
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tionary structure, involving productivity growth and output growth at a constant
rate from date 2 on.

Theorem 3.1. Assume that /K" (0)I"(0) < (. Then there exists a unique
equilibrium. The equilibrium has a constant growth rate q* > 0 so that for
t = 2,3, ..., the equilibrium price system and allocation satisfy the following:

(1) Wiyl = (]. —+ q*) Wy,

2)r=>0+q¢)/8-1,

(3) Qi1 = G,

(4) Ary1 = (1+q") Ay,

(5) 2141 = 2 (¢*) = argmin[(K(¢*) + ['(z)) /=],

(6) L1 = 1/(1+q) = 2 (q*) [Ai1,

(7) 1 = (L+ g )y = Apr L/ (q7),

(8) ciy1 = (1 +q" )y = Pwpa L+ (1 = B) A L,

(9) Bl = B(Ay — w)L = neca[K(g*) + Tz ()]/ (1 +70).

If \/K" (0)I"(0) > 8 an equilibrium fails to exist.

We defer the proof of this result to the next section and first discuss the nature
of the equilibrium. The equilibrium has a constant rate of innovation ¢* > 0, a
constant capacity investment and a constant output per firm. Employment at
any one firm decreases at the rate of productivity growth. This is due to the fact
that output per firm is constant, so as productivity grows, this output is produced
with less labor.

The reduction of employment per firm is compensated by growth in the “num-
ber” of firms that are active. The measure n; of the set of active firms grows at
the rate ¢* so aggregate output n;x; grows at the rate ¢* and aggregate employ-
ment n;x;/A; is constant at the level L that corresponds to the household’s labor
supply.

The growth of productivity and output is matched by real-wage and consump-
tion growth. The intricate interdependence of these four variables stands at the
center of the entire growth process. Leaving aside for the moment the role of the
interest rate, from the perspective of the production sector, productivity growth
and wage growth are related by the conditions that for a given level of current
productivity (i) the (expected) future wage determines firms’ investments in pro-
ductivity improvements, and (ii) current productivity improvements determine
the future wage at which the active firms will just break even. For a given level
of the interest rate, productivity growth and wage growth are jointly (and indeed
uniquely) determined by these optimization and free—entry conditions.
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The R&D investment of the individual firm is indeed financed by inframarginal
rents. From the profit function of the individual firm (2.6) in conjunction with
(2.9) it is clear that marginal cost pricing requires that for ¢ > 1

Wy

1= — Y (A 4r )T (z).
A (14 q) ( re-) I (1)

Because an investment in capacity is subject to decreasing returns this gives rise
to a “rent”, i.e., an excess of revenues over variable production costs. Using R to
denote this “rent”, we have

R= /0 {1 - #fﬂh) — (Lt (g)} dc.

At the equilibrium values of A; 1, wy, 141, and z; = = (¢*), ¢ = ¢* with profits
equal to zero, this rent is equal to

= 1-— 2 (A4r
[ - ay o] «
and just covers the innovation cost (1 4 r,_1) K (¢*). At the same time

_dn
d

Wit

14+7r1) K (¢ = —,
( -1) K’ (¢") A, (1—|—q*)2

(¢%)
i.e., firms use their innovative activity to raise the inframarginal rent R, and at the
equilibrium values of A; 1, wy, 41, and z; = x (¢*), ¢ = ¢*, the marginal effect
of an increase in ¢ on R is just balanced by the marginal cost of this increase.
As in other models of endogenous growth, see, e.g., Grossman and Helpman
(1991), Aghion and Howitt (1992), the sustained nature of the growth process
rests on the assumption that innovative activity in one period improves the tech-
nology not only in production but also in subsequent innovative activity. We use
a particularly strong version of this assumption. Not only do we assume that
current innovations add to the “stock of knowledge” in the sense of defining the
starting point for subsequent investment in innovation. By using manufactured
goods rather than labor as inputs into innovative activity, we also ensure that the
innovation technology itself partakes of the technological advance: As labor pro-
ductivity grows, the working hours needed to produce the inputs into innovative
activity shrink, which makes it possible to sustain a given positive rate of inno-
vation even as ever more firms engage in innovation and production. Underlying
this consideration is the more general issue of how technical progress affects the
innovation technology itself. We leave this issue for the moment, but will return
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to it when we discuss the robustness of our analysis in the final section of the
paper.

As indicated by (8) and (9), the growth of wages and output also feeds into
consumption and investment growth. Equilibrium consumption at any date is
equal to a given convex combination of real wage income and aggregate output at
this date, so with full employment of labor, equilibrium consumption grows at the
same rate ¢* as labor productivity and the real wage rate. Equilibrium investment
at any date ¢ is equal to n,,; times the investment firm, (K (¢*) + ' (z (¢*))), that
is required for the innovation rate ¢* and output capacity z (¢*), so this grows at
the same rate ¢* as the “number” of active firms. This growth in consumption
and investment ensures that the growth in aggregate production is matched by a
corresponding growth in demand.

However, from the perspective of the consumer’s optimization problem, con-
sumption growth is a matter of relative intertemporal prices rather than income
growth. As indicated by the first—order condition (2.4) for the consumer’s opti-
mization problem, between two periods ¢t and ¢+ 1, consumption growth at a rate
q; is warranted if and only if

1+g=B1+m). (3.1)

With ¢ = ¢*, this shows why the interest rate must satisfy condition (2) in the
theorem.

As in other intertemporal models, the interest rate plays a central role in
the coordination of activities between the household sector and the production
sector. As explained above, for a given productivity level at date ¢, a productivity
growth rate ¢ and a real wage rate w;,; are determined jointly by the firms’
optimization and free—entry conditions and by the interest rate ;. However from
the consumer’s perspective, a growth rate ¢; and interest rate r; are compatible
only if they also satisfy (3.1). The point of our theorem is that this combination
of conditions has exactly one solution.

To see the significance of this point, go back to our discussion of Bester and Pe-
trakis (1998) in the introduction. In their analysis of partial equilibrium in an in-
dustry facing a fixed demand function, an interest rate and a constant growth rate
of wages are given exogenously, and profit maximization of firms leads (asymptot-
ically) to a rate of innovation which is equal to this growth rate; industry output
is asymptotically constant, industry employment is asymptotically declining at a
rate equal to the growth rate of wages. Here we allow for productivity growth
to feed back into growth of output and demand, where however the growth of
consumption demand must satisfy the household’s optimality conditions. Given
this requirement, the interest rate and the joint growth rate of wages are no longer
exogenous, but there is a unique combination of them that is compatible with full
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employment in all periods.

To conclude this introductory discussion of the theorem, we briefly com-

ment on the assumption that /K" (0)I'" (0) < 8. Recall from Lemma 1 that

K"(0)I"(0) = limy—oC"(q). Suppose that we had an interest rate r so that
B(1 4+ r) = 1, and note that by (3.1) this would be the equilibrium interest
rate if the equilibrium growth rate were zero. For this specification of r, 3 >

K" (0)I'(0) implies 1 > (1 + ) limy_oC'(q). By Proposition 3, this in turn
implies that at the interest rate r and an expected future wage rate w;; which
is not too far below current productivity A; (and that is compatible with overall
profits being zero), profit-maximizing firms will choose a strictly positive innova-
tion rate g;;1. The assumption that 5 > /K" (0) ' (0) effectively ensures that
at the market conditions corresponding to zero growth, the marginal cost of in-
vesting in labor productivity improvements is less than the marginal benefit of
these improvements.

If this marginal condition is not satisfied, i.e., if § < /K" (0) I (0) and, for
r=1/-1,1< (1+r)lim,oC’(q), there is no equilibrium with positive growth.
Indeed as indicated by the last statement of the proposition, in this case, there is
no equilibrium at all. This conclusion is an artefact of the strict convexity of the
capacity cost function I' (.) in combination with the possibility of free entry; strict
convexity of I' (.) implies that profit-maximizing, price-taking firms that choose
qg = 0 and x > 0 make positive profits. We might want to think about this as
a situation with an unbounded measure of firms each producing an infinitesimal
output, but this would transcend the mathematical formalism that we have here.

3.2. Proof of the Theorem

We prove the theorem in a sequence of steps, designed to clarify the economics un-
derlying the analysis. We begin by considering the implications of the equilibrium
conditions (E1)—(E7) for a price system {wy, 7}, an allocation {c;, Ly, B, ng, Iy, x4, g1 },
and a sequence {II;, A;} of distributed aggregate profits and productivity indica-
tors.

Lemma 2. Let {wy, .}, {ct, Ly, BE, ny, Iy, x4, ¢}, {11y, Ay} be an equilibrium. Then
fort=2,3,..., wy >0 and, 1 +1r,., > 0.

Proof. Immediate from conditions (E3) and (E4): If w; were equal to zero,
then by choosing x; > 0 and ¢; = 0, a firm producing at ¢ would obtain positive
profits. This would also be the case if 1 4 r;_; were equal to zero and the firm
chose z; > 0, close to zero, and ¢; very large. W
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Lemma 3. Let {wy, .}, {ct, Ly, BE, ny, I, x4, ¢}, {11y, Ay} be an equilibrium. Then
fort=2,3,..., ;l; = L, and nyxy = A¢L.

Proof. By Lemma 2, w; > 0 for t = 2,3, .... By the market—clearing condition
(E6), it follows that n.; = L; and hence, by Proposition 1, n; = L fort = 2,3, ....
By Lemma 2, Proposition 2, and (E8), we also have x; = A;l; and hence nyx; =
niAgly = AL for t =2,3,.... W

From Lemma 3, we have z; > 0 for t = 2,3, .... By (E3) in combination with
Propositions 2 and 3, it follows x; = z(q;) = argmin|[(K(q:) +T'(x)) /x], ¢ > 0
and q; = argminjw,/A (1 + q) + (1 + r,._1)C(q)]. As indicated by the first—order
condition (2.16), the minimization determining ¢; depends only on the ratio

Wy

At(l —+ Tt—l) )

Qt =

We use this ratio €); as a state variable which determines the behavior of the
economy in period ¢, and we study the equilibrium dynamics of the economy
through the dynamics of €2;. For this purpose, we write

[ %/(1+q)+C(q)ifg>0
&) '_{ Qif g =0

for the minimum-—unit—cost of production at ¢ discounted back to ¢t — 1, and we
set q() = argmin ¢ (S, q), and ¢* () = min ¢ (24, q). Given that z; > 0
and ¢ > 0, (E3) and the zero—profit condition (E4) yield ¢ = q(€2), and

1=(1+mr_1)p" () fort=23,... (3.2)
The properties of the functions ¢* (.) and ¢ (.) are summarized in:

Lemma 4. (a) The function ¢* (.) 1s continuous and stnctly increasing, with
(Qt) = Qt lf Qt ~ K// FI Qt —I— q Qt)) (Qt) < Qt lf Qt
K"(0)I'(0), and lzmgﬁoogo (Qt

(b) The function q (.) satisfies q (§2;) = 0 for 2, < /K" (0) I (0); it is continuous
and strictly increasing for (0, >+/K" (0) ' (0), with limg,—.oq(§2) = oo.

The proof of this lemma is immediate from Proposition 3 and the convexity
of C'(.) and is left to the reader.

In the remainder of the proof of the main theorem, we use the preceding obser-
vations to study condition (E5), the market—clearing condition for manufactured
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goods. Lemma 3 implies that for ¢ = 2,3, ..., the supply of the manufactured
good at date t, i.e., the right-hand side of (2.20), takes the simple form A;L. On
the demand side, since x;;; > 0, the investment demand n¢y1 (K (gey1) + T'(2e41))
can be rewritten as n;12411C(qe11) = A1 LC(q(2441)). The market—clearing
condition (2.20) for the manufactured good at date ¢ is therefore equivalent to the
equation ¢; + A1 LC(q(41)) = AL, or in view of (E8),

¢ = A L(1 = (1+4q(241))C(q(41))) (3-3)

From the first—order conditions for the consumer’s maximization, we also know
that for all ¢, ¢;1; = B(1 + r¢)ct , or, in view of (3.2), ¢;11 = Ber/@* (41). Upon
combining this with (3.3), applied to successive ¢, we obtain:

A1 L(1 — (1 4+ q(Q2442))C(q(Q442))
BAL(L — (14 q(Q241))C(q(Q241)) /" (1) -

Again using (E8) to substitute for A;;; and cancelling A;L, we find that the
succession of market—clearing conditions for the manufactured good in periods

2,3, ..., is equivalent to a first—order difference equation for the “state variable”
Qt:

(14 q(42)) (1 = (14 q(Q42)) C(q(2142))
= B = (14 q(Q1))C(@( Q1)) /" (Ri11) (3.4)

Lemma 5. The difference equation (3.4) has a unique solution that is compatible
with consumption as well as (), being nonnegative for all t. The so]ution satisfies
Q, = QF for some Q* > B andt = 3,4,.... If § > \/K” 0)I(0), then [ >

Q* > /K" (0)I"(0) and q(£2*) > 0. Ifﬁ < VK" (0)I'"(0 then Q* = (3 and
q(*) =0..

Proof. We first show that the difference equation (3.4) has a unique steady
state (2* and that this steady state has the indicated properties. Upon setting
Qi1 = Quyo = QF and rearranging terms, we can rewrite (3.4) as

(14+q(2)e* (") = 5. (3.5)

By Lemma 4, the left-hand side of (3.5) is strictly increasing and continuous
in Q*, taking the value zero if Q* = 0, and taking a value no less than [ if
Q* = 3. Hence there is a umque O* < B that solves ( Lemma 4 also
implies that if 8 > /K" (0)I'” (0), then at Q* = /K" (0 F” , the left—hand
side of (3.5) is strictly less than B, and at Q* = (3 the left hand side of (3.5)
is strictly greater than (3, implying that the solution to (3.5) must lie strictly
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between /K" (0)I"(0) and 5. If § < /K" (0)I"(0), Lemma 4 implies that
the left-hand side of (3.5) takes the value § at Q* = [ exactly. Compatibility of
the steady state with nonnegative consumption follows from the observation that
(1+G)NC@R) < (1+ G () so by (35) (1+GQ)CG) < 1,
and for Q1 = Q* | (3.3) yields ¢; > 0.

We next show that the difference equation (3.4) has no economically meaningful
solution other than the steady—state solution €2; = Q* for all t. Suppose to the
contrary that there is a solution (2, €23,... that differs from the steady-state
solution. Let €11 > Q* for some t. Then (1 + q(2441))9*(Quy1) > B, so (3.4)
implies

(1= (14 q(242))C(q(E212)) < (1 = (1 +q(Q11))C(q(Q441)),
hence, by the monotonicity of ¢(.), Q12 > Q1 > Q. By induction, the sequence
{Qx}, K =1,2,... must then be increasing. It cannot converge to a limit. For
suppose that it did. Then by taking limits in (3.4), one should find that this
limit must be a steady state of this difference equation. Given that the difference
equation has only one steady state Q* and that Q* < ;.1 < Q49..., this is
impossible. Hence the sequence {4} must be going out of bounds. But then
we must have (1 — (14 q(Q4x))C(q(2t4x)) < 0 and hence, by (3.3) ¢;x—1 < 0 for
any sufficiently large k. This shows that a solution to (3.4) with Q.1 > Q* for
some t is incompatible with the requirement that consumption be nonnegative at
all dates.
If instead we have €2, ; < Q* for some ¢, a precisely symmetric argument shows the
sequence {Q.x}, K = 1,2,... must then be decreasing. As before, this sequence
cannot have a limit because such a limit would have to be a steady state. But
then we must have ), < 0 for any sufficiently large k, which is impossible. This
completes the proof of Lemma 5.
|

To complete the proof of the theorem for the case 5 > /K" (0)I"(0), we
set ¢* = q(2*) where Q* > /K" (0)I” (0) is the unique steady state of the dif-
ference equation (3.4). By Lemma 5, ¢* > 0 as claimed. For ¢t = 2,3, ...,we set
1+7r,1 = (14¢*)/8 so that the consumer’s optimization is compatible with con-
sumption growth at the rate ¢*. For t = 2, 3,...,we also set w11 = A;(1 4 r;)Q*
so that for the given values of A;, w1, 1, according to Propositions 2 and 3 a
firm will actually maximize profits by choosing ;11 = ¢*, x¢11 = x(¢*), and I =
z(q*) /A1 + q*). For t = 2,3, ..., we specify the allocation as in (3) — (9). Given
this specification, for ¢t = 2,3, ..., the equilibrium conditions (E1)—(E8) are easily
verified.

The first period, ¢ = 1, requires special treatment because we have no guaran-
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tee that nix; = A;L. Considering the market—clearing condition for the man-
ufactured good in period 1, we note that goods supply is exogenously given
as min(nyxy, A;L). Consumption demand ¢; can be equated to c¢o/B(1 + 71),
where, from (3.3) with Q3 = Q% ¢ = A2L(1 — (1 + q(Q*))C(q(©*))). Invest-
ment demand at t = 1 is Ay LC(q(€22)) and, by the zero—profit condition (3.2),
1/(14r1) = ¢*(Q). Given that Ay = A;(1+q(22)), the market—clearing condition
for date 1 can now be written as

min(nyzy, Ay L) = A1 L(1+4q(22))[" (22) (1 — (1 4+ (7)) C(q(2))) /8 + C(q(2))]-

By familiar arguments, the right—hand side is continuous and strictly increasing
in €y, and there exists a unique {2y for which this market—clearing condition is
satisfied. Upon using this value of €y to specify wy, 11, o, T2, no, lo, ¢1, B{, and
setting l; = min(x1 /A1, L/n), one finds that the specification of the equilibrium
allocation is complete.

For the case § < /K" (0)I'"(0), we note that in an equilibrium on the one
hand, by Lemma 5 the “state variables” (); would have to take the value (3,
with q(£2) = q(B) = 0 for t = 2,3,..... On the other hand, by Lemma 3 and
Proposition 2, we should have z; > 0 and ¢; = q(€;) > 0 for all . In this case
then the assumption that an equilibrium exists leads to a contradiction. This
completes the proof of the theorem.

4. Comparative Statics and Welfare Analysis

4.1. Comparative Statics

In this section we consider the dependence of the equilibrium growth rate ¢* on
the parameter of the model. We also consider the possibility of affecting the
equilibrium growth rate by measures of public policy. We begin with a result
on the comparative statics properties of the equilibrium under laissez—faire that
was the subject of Section 3. Our first result concerns the influence of consumer
discounting.

Proposition 4. The equilibrium growth rate ¢* and the equilibrium output per
firm x(q*) are the higher, the higher is (3.

Proof. Recall from the proof of the theorem that ¢* = G(2*) where Q* is
the unique value of the “state variable” 2, that satisfies the steady—state con-
dition B = (1 + ¢(2))p*(Q*), i.e., condition (3.5). As [ goes up, so must
(1 4+ G(2%))e*(2*). Given that, by Lemma 4, (1 + §(2*))¢*(£2*) is increasing in
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Q*. This implies that the solution Q* to (3.5) must increase with 3. Since, by
Lemma 4 and Proposition 3, ¢(.) and z (.) are strictly increasing functions, the
proposition follows immediately. W

The intuition of this proposition is the following. A higher § means that the
household values future consumption more highly, and for a given value of the
interest rate, he is prepared to have a higher growth rate of consumption. From
the production side of the economy however, a higher growth rate requires a
reduction in the interest rate. This reduction will reduce the consumption growth
rate desired by the household, but not enough to outweigh the direct effect of
having a higher § and less discounting by the household. In the equilibrium
corresponding to the higher 3, there must be both, a lower interest rate and a
higher growth rate, in accordance with the implications of profit maximization and
zero profits of firms. The increase in firm spending on innovative activity raises
their fixed costs which in turn raises the level of output at which they minimize
average costs.

Similar comparative—statics results are available with respect to productivity
parameters if we introduce such parameters into the cost functions K (.) and I'(.).
Suppose for instance that K(q) = ¢*/k and I'(x) = 2%/~ so that innovation costs
decrease as k increases and capacity costs decrease as y increases. Then for g > 0,
minimal unit cost is equal to C(q) = ¢/(k7y)Y?, and for Q > 1/(k7v)'/? one has
G(Q) = QY2(ky)Y/* — 1, which is increasing in k7. A similar argument as before
shows that in this case, the equilibrium growth rate ¢* is increasing in s and 7.
Thus ¢* is positively affected by positive shifts in the productivity of innovative
investments as well as capacity investments.

Turning away from the comparative statics of the laissez—faire system that we
have studied so far, we now consider the impact of fiscal policy in our model.
The fiscal policy measure we consider involves a government subsidy for bonds,
financed by a tax on labor income. With inelastic labor supply of the household,
the tax on labor income is nondistortionary, so we really are looking at the effects
of an interest rate subsidy. We assume that the subsidy rate is the same in all
periods. We denote this rate by o. Letting 7, denote the interest rate contracted
and paid by firms borrowing at date ¢, as before, we specify the household’s rate
of return on these bonds as r; + o.

For a given price system {wy, 7} as seen by firms, the production side of the
economy is unaffected by this fiscal policy. The household is affected because (i)
for a given sequence of interest rates {r;}, the interest rate subsidy affects his
desired rate of consumption growth, and (ii) both the interest rate subsidy and
the labor income tax have income effects. If the government budget is balanced,
the income effects will just neutralize each other, and it suffices to consider the
incentive effects of the interest rate subsidy. With the subsidy, the first-order
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condition indicating the household’s desired consumption growth is found to be:

ciy1 =Pl + 1 +0) c,

which generalizes (2.4) to the case o # 0. As before, this condition can be matched
with conditions from the production side of the economy to determine the impli-
cations of market clearing for manufactured goods in successive periods. Without
going through the details, we note that the same argument as before can be used
to rule out non—steady—state equilibria. As for the steady state, we find that the
equilibrium steady—state interest rate and growth rate, which we denote by r(o)
and ¢(o) must be such that

1+q(o)=0(1+r(c)+o0) (4.1)

so the household’s optimization is indeed compatible with growth at the rate
q(o). From the preceding sections’ analysis of firm behavior, we also know that
q(o) = ¢(Q(0)), where for the given o, (o) denotes the steady—state equilibrium
value of the “state variable” €); which determines optimal production plans for
period t. Using the zero—profit condition (3.2) as before to substitute for 1+ (o)
and rearranging terms, we can rewrite (4.1) as

B =(1+q((0)) = Bo)e" (2a)), (4.2)

which generalizes (3.5) to the case o # 0. The right-hand side of (4.2) is again
increasing in Q(co), so again there cannot be more than one steady state. More-
over the direct effect of o is to reduce the right—hand side of (4.2), requiring a
compensating increase in (o). This yields:

Proposition 5. The equilibrium growth rate q(o) and the equilibrium output
per firm x(q(o)) are the higher, the higher is o. The equilibrium interest rate paid
by firms, r(o), decreases with o.

The interest rate subsidy also serves to expand the range of parameters for
which an equilibrium exists. Whereas our main theorem gave 3 > /K" (0) I (0)
as necessary and sufficient condition for equilibrium existence, this condition is

now modified to g > /K" (0) I (0)/ (1 + o/ K" (0) T (O)) . The argument es-

tablishing existence and uniqueness of equilibrium under this condition with o # 0
is practically the same as for the case 0 = 0. We leave this argument to the reader.
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4.2. Optimal Growth

To conclude the analysis of our model, we consider the welfare properties of equi-
librium. Given that the model has only one household, the choice of a welfare
criterion is straightforward: We evaluate allocations according the discounted
present value of utility that they yield to the household.

In comparing allocations, we restrict attention to those allocations that have
the same structural properties as the equilibrium allocations in our analysis,
namely in each period, the set of all firms is partitioned into a subset of active
firms and a subset of inactive firms, and all active firms choose the same produc-
tion plan. We do not allow for allocations that involve, e.g., a very small set of
firms investing a lot in innovations as a way of enhancing the “stock of knowledge”
available in subsequent periods without so much reduplication of innovative ac-
tivity. Such allocations would require a lot of explicit coordination across firms to
determine who innovates a lot and who does not. When the decisions of firms are
decentralized and any “social planner” is restricted to using taxes and subsidies
to affect the incentives that firms have, such coordination mechanisms are not
available.?

Given these considerations, the welfare maximization problem can be written
as:

Max Zﬂt In ¢ (4.3)
t=1
subject to the constraints that
Ct + ntH[K(th) + F(xtJrl)] = min(ntxt, AtL), (44)

and
At+1 = (1 + Qt+1)At

for all £, where ny > 0, z; > 0, A; > 0 are again given. The first constraint requires
that consumption and investment in each period are covered by that period’s
output, the second constraint restates our specification for productivity growth.
Full use of available labor has already been incorporated as this is obviously
necessary for welfare optimality.

3To avoid the difficulty mentioned here, we might also assume that the economy-wide pro-
ductity indicator A;y; at date t + 1 responds to a cross—section average of innovations at ¢.
However, this would require some account of what happens at £ 4+ 1 to firms that have invested
more than the average in innovations at .
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Proposition 6. The welfare maximization problem (4.3) has a unique solution
{ct, ne, 1, @1, At} There is a constant growth rate ¢** so that for t = 2,3, ..., the
optimal allocation satisfies the following:

ok

dv1 = 4

Arpr = (144q7)As,

Te1 = x(¢") = argmin[(K(¢™) + [(z))/x],
nepr = (L+¢")n = A L/2(q™)

cy1 = (14+¢")n = ALl —(1+¢7)C(q™).

The optimal growth rate q** satisfies the first—order condition:

™)+ (1 + ")) = U+ 0™) | +Ca™) | (45)
(1+¢q)?

The proof of this proposition is routine and is given in Appendix 6.2. Here
we concentrate on the intuition for the condition determining the optimal growth
rate. By simple efficiency considerations, for t = 2, 3, ..., we must have nyx; = AL
and x; = x(q) so that there is full employment of all resources and moreover the
trade—off between “number” and size of active firms is handled so as to minimize
unit costs. Given these conditions, we can rewrite the feasibility constraint (4.4)
for the use of the manufactured good at date t in the form

Ct + At+1LC(qt+1) = AtL
or
ct + A L(1 4 q41)C(qegr) = AL

Now consider the effects of an increase in ¢;. 1, combined with a decrease in g;,o so
that Ao (as well as A3, Aryg, ete.) is unaffected. The increase in g,y requires
additional investment resources and lowers consumption at date ¢. The two terms
on the left-hand side of the first-order condition (4.5) indicate this cost effect
from the perspective of period t at the margin, normalized by A;L. The first term,
C(q**), corresponds to the additional investment needs that arise as g, increases,
the productivity A;y1 = Ai(1 4 ¢41) increases, so at the given efficient per—firm
capacity x(g.1) additional firms with additional investment must become active
to provide for full employment of labor at ¢+ 1. The second term, (1+¢**)C’(¢™),
measure the direct effect of the increase in g;;1 on the investment needs of given
firms.

The right-hand side of first—order condition (4.5) measures the marginal ben-
efits from the increase in ¢ 1. These benefits arise in period t + 1. Given that
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we look at the situation from the perspective of period ¢, the marginal benefits
must be discounted back by one period, hence the 3 before both terms. Since
whatever happens concerns an economy that is (1 + ¢;11) as large at ¢ + 1 as at
t, the marginal benefits per firm must also be multiplied by this factor. At the
level of the individual firm, there are then two sources of benefits of the increase
in ¢ 1: First, labor inputs per unit of output are reduced so more output can be
produced; this is represented by the first term in square brackets. Second, the
“knowledge spillover” from productivity growth between ¢ and ¢ 4+ 1 permits a
decrease in ¢, o resulting in lower investment; this is represented by the second
term in square brackets. Both these benefits serve to increase consumption at
t+1. Condition (4.5) requires that after discounting back by one period, they are
at the margin just equal to the cost of an increase in ¢ ;.

A comparison of the optimal-growth condition (4.5) with the conditions for
equilibrium growth under laissez—faire yields:

Proposition 7. The equilibrium growth rate ¢* under laissez—faire is strictly less
than the optimal growth rate q**.

Proof. The equilibrium growth rate ¢* satisfies the first—order condition for
q(sr),

O = (1+¢)*C'(q") (4.6)
as well as the steady—state condition
B=(144q")e ().
Given the definition of ¢* (.), the latter is equivalent to the requirement that
B=+(1+4¢)C(q)
Upon using (4.6) to substitute for 2* and rearranging terms, this yields:

1

Clg)+(1+q¢)C(q") = e np3

(4.7)

Upon comparing this with the condition for ¢**, one easily finds that ¢* < ¢**. R

The crucial difference between the condition for ¢* and the condition for ¢**
is that the former does not take account of the intertemporal spillover effect
from current productivity growth on the starting point of future innovative and
productive activity. Condition (4.7) has no equivalent of the second term on the
right—hand side of (4.5).
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A natural question is whether this problem can be resolved by an interest rate
subsidy. The answer to this question is affirmative. If the interest rate subsidy is
chosen so as to just account for the "knowledge spillover” externality, the resulting
equilibrium will maximize welfare (4.3) under the constraint (4.4)

Proposition 8. For an interest rate subsidy

Clg™) + (14 ¢*)C'(q™)’

(4.8)

the equilibrium growth rate q(o™*) is equal to the optimal growth rate ¢**, and
the equilibrium allocation is equal to the optimal allocation.

Proof. By (4.2), for any o, we have

B+ Boe" () = (14 q(0))¢"(2(0))-

By the definition of ¢*(.), and the first—order condition for ¢(c) = §(2(e)), we
also have

¢ (Q(0)) = C(q(o)) + (1 +q(0))C"(q(0)),
hence

B+ 09" (20)))
T+ 4(0))
Upon substituting from (4.8) into (4.9) and comparing with (4.5), one immediately

sees that q(c™) = ¢**. Given this observation, the optimality of the equilibrium
allocation at the interest rate subsidy o** is easily verified. W

= (Clg(0)) + (1 4 ¢(0))C"(q(0)))- (4.9)

5. Concluding Remarks

To conclude the paper, we briefly discuss the robustness of our findings to changes
in the specification of the model that we use. Three points seem important: First,
what is the role of the assumption that there is one infinitely—lived household?
Secondly, what is the role of the assumption that capacity investments and labor
are strict complements in production? Thirdly, what is the role of the assumption
that innovations require investments of manufactured goods rather than labor?
Each of these assumptions is quite special, so it is important to see how robust
our findings may be if we generalize them. We discuss this for each one in turn.
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The assumption that there is one infinitely—lived household seems to be im-
portant in tying the equilibrium growth rate of the economy to intertemporal
consumption choices. As far as the household sector is concerned, equilibrium
consumption growth and interest rates in our analysis are linked together by
condition (3.1), which derives the household’s desired consumption growth from
marginal considerations concerning the intertemporal allocation of consumption.
The question of robustness with respect to this specification can be posed at two
levels: (i) For a given population involving several infinitely-lived consumers,
one can ask whether the coordination of their intertemporal consumption choices
through the price mechanism works sufficiently well to maintain the link between
the growth of aggregate consumption and individual optimization at equilibrium
prices that we use in (3.1). (ii) For a growing population of finitely- or infinitely—
lived consumers, shouldn’t the growth rate of aggregate consumption depend on
population growth rather than individual optimization? The first of these ques-
tion is not specific to growth models, it affects all macroeconomic models that
represent the household sector by one person and use the conditions for that per-
son’s optimization to obtain restrictions on economic aggregates. On this question
we have nothing to add. The second question is more specific to our analysis as
it directly concerns the determination of equilibrium growth.

On this question, one easily verifies that, e.g., in an overlapping—generations
model with finitely—lived consumers, the aggregate growth of the economy will be
equal to the growth of the labor force in efficiency units, i.e., to roughly the sum of
population growth and productivity growth. In terms of equilibrium consumption
demand, both growth rates matter: Whereas the population growth rate comes
in as an additional factor determining the intertemporal equilibrium, it does not
entirely displace the productivity growth rate. As a result, the very simple rela-
tion (3.1) between equilibrium productivity growth and interest rates has to be
replaced by a more complex relation, which also contains the ratio w1 /A; of real
wages and productivity, but apart from its being more complicated, the analysis
of equilibrium growth developed in Section 3 goes through without change.

The second question above concerns the role of complementarity in production.
This assumption is important for the treatment of wages. In each period other
than possibly the first, installed capacity is just equal to full-employment capacity.
This ensures that in each period the labor market clears. The role of the wage
is not so much to clear the labor market by changing supply and demand in the
current period. It is rather that expectations of the wage at prior dates guide
prior entry, capacity and innovation investment decisions. In contrast, in a world
with ex post variability of labor inputs per capacity unit, the market—clearing
role of wages in current labor market will also be important. Specifically, in each
period the real wage must be equal to the marginal product of labor at installed
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capacity, a consideration which did not play a role here.

On this question again though, one easily verifies that our conclusions are ro-
bust, except that convergence to the steady state may take more than one period.
The crucial technological assumption concerns the existence of inframarginal re-
turns, not the complementarity between labor and capacity investments. Suppose
for example that at the firm level production is governed by a neoclassical pro-
duction function F', with inputs capital and efficiency units of labor, and suppose
that F' is homogeneous of degree a € (0,1) in these two inputs. If the firm’s
input of efficiency units of labor takes the form, A; 1 (1 + ¢)l;, where, as in the
analysis here, A;_; is an economy—wide productivity index for date t — 1, ¢; is a
chosen innovation level presuming an innovation investment of K (¢g;) units of the
manufactured good at date t — 1, and [; is labor input, one can again establish ex-
istence of steady—state equilibria with positive endogenous growth where the fact
that « is strictly less than one provides firms with inframarginal returns which
serve to finance the innovation investment. Given that steady-state production
plans involve the determination of capital-labor ratios as well as firm scales and
firm innovation investments, the analysis is again more complicated, but does not
involve any fundamental difficulty.

Our third question concerns the specification of inputs for innovation invest-
ment. As mentioned in our discussion of the main theorem, the assumption that
innovation investment uses the manufactured good rather than labor as an input
provides a way to introduce technical progress into the innovation process itself. If
instead we specify the innovation cost K(g) in units of labor, the economy cannot
exhibit sustained growth because there is no technical progress in the innovation
process itself.

It is useful to think about this issue in more abstract terms, from an Austrian
perspective where all prior investments, whether in capacity or in innovation, are
traced back to a sequence of dated labor inputs. From this perspective, different
sequences of innovation investments correspond to different production choices
about the transformation of dated-labor—input sequences into outputs. Steady—
state productivity growth at a positive rate would require that for one unit of
output produced at, say date ¢t + 1 as opposed to date ¢, the entire sequence of
dated labor inputs can be less by a factor ¢/(1 4 ¢). This requires in particular,
that in terms of labor inputs the productivity of innovation investments grows at
the same rate ¢ as everything else. With a fixed function K(.), specified in units
of labor, this is not satisfied.

In contrast to our paper, most of the literature, e.g., the work of Aghion
and Howitt (1992) or Grossman and Helpman (1991), assumes that innovative
activity is based on labor as an input. In this literature, the issue of productivity
improvements in innovation itself would also seem to arise. However this issue
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is handled implicitly, through the assumption that growth takes place inside of
firms rather than replication. If we allowed for innovation to affect the unit—cost—
minimizing scale of firm production as well as the level of labor productivity, this
would provide room for sustained growth with labor as well as manufactured goods
serving as inputs into innovation. Further research in this direction would seem to
hold some promise of insight into the relation between innovation technologies and
the development of the distribution of production units and firms in the growth
process.
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6. Appendix

6.1. Proof of Lemma 1

(a) Given that ¢ > 0, (2.7) implies K(q) > 0. Hence lim,_o(K(q)+I'(z))/z = oc.
From (2.8) and (2.15), we also have lim, (K (q) + I'(x))/x = co. For ¢ > 0,
a minimum of the expression (K (q) + I'(x))/z on (0, 00) will therefore exist, and
the first—order condition for this minimum,

2I'(z) — K(q) — T'(z) =0, (6.1)

will have a solution. Given that the left-hand side of this condition is strictly
increasing in x (with slope xzI'(x)), this solution is unique. Refer to it as z(q).
For z < z(q), the left-hand side of (6.1) is negative, so (K(q) + I'(z))/x is de-
creasing; for x > z(q), the left-hand side of (6.1) is positive, so (K(q) + I'(z))/z
is increasing in z. Thus (K (¢) + I'(z))/z has a unique minimum at z(g). By the
implicit function theorem, the function z (.) defined by (6.1) is differentiable, with
derivative
dz K'(q)

4~ T @) .

which by (2.8) is positive, so z (.) is increasing. As ¢ goes to zero, x(q) decreases
to a limit. This limit must satisfy the equation zI"(z) = I'(z), obtained by taking
limits in (6.1). Again by (2.8), it follows that this limit is equal to zero.

(b) By (a), for ¢ > 0, C(q) is well defined. By the envelope theorem, C'(.) is
continuously differentiable at ¢ > 0, and the derivative satisfies

_ K'(9)

¢ x(q)

(6.3)

Using (6.2), this can again be differentiated to yield
_ K"(@)z(q) — K'(9)2'(q)
[2(q))”

which is nonnegative if (2.14) and (2.15) hold. The first part of the lemma is thus
proved. To show that lim,,C(q) = 0, it suffices to observe that for any ¢ > 0,

one has 0 < C(q) < [K(q) +T (\/K(q)ﬂ //K(q). As g and K(q) go to zero,
so obviously will K(q)/\/K(@) = /K@), T <\/K(q)> //E(q), and with them

C/I (q)
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C(q). To prove that lim,oC'(q) = /K"(0)['"(0), use 'Hospital’s rule to take
limits in (6.3) as

KII(O)
limq—oC'(q) = limg_o (dx/dq)
[limg—oC" (q)] [limg—o (dz/dq)] = K" (0). (6.4)

From (6.2) and (6.3), we also have I''(x(q))dz/dq = C'(q), hence
F”(O)l@mqﬁodx/dq = limy_oC"(g). Upon multiplying (6.4) by I'"(0), one obtains
[limg_oC'(q)]> = K"(0)T"(0), as desired. W

6.2. Proof of Proposition 6

We begin with a preliminary lemma, which provides the analogue of Lemmas 2
and 3 in the proof of the main result. The proof of this lemma is trivial and is
left to the reader.

Lemma 6. Suppose that {c;, n, x¢, g, A} solves the welfare maximization prob-
lem (4.3). Then for t = 2,3,..., x; = x(q;) = argmin[(K(q;) + I'(x))/z|, and
nyxy = Ay L. Moreover {c;, q;, Ay} solves the problem

Maz ) f'Inc (6.5)
t=1
subject to the constraints that
c + AlL(l + QQ)C(QQ) = min(nlml, AlL), (66)
and, fort = 2,3, ...,
et + A L1+ q41)Cge1)) = AL, (6.7)
and
A1 = (14 qe1) Ar, (6.8)

Conversely, if {c;, q;, A} solves problem (6.5), then by setting x; = x(q;) and n, =
A;L/xz(q:), one obtains a solution {c;,ni, xy,q, Ay} to the welfare maximization
problem (4.3).
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Lemma 7. Problem (6.5) has a solution.

Proof. Consider the set of programs {ct, ¢, A;} that satisfy the constraints (6.6)—
(6.8) for the given ny, z1, A;. Nonnegativity of consumption implies that for all ¢,
q is bounded above by ¢, where (1+3)C(q) = 1. Therefore A; < A;(1+q)"!, and,
by (6.6) and (6.7), ¢; < A;L(1+ q)"~! for all ¢. The set of programs satisfying the
constraints (6.6)—(6.8) for the given ny,z1, A; is therefore compact in the product
topology, so, any sequence {cf,qr, AF} of programs satisfying (6.6)—(6.8) has a
subsequence that converges to a limit {c;, ¢, A;} that also satisfies (6.6)—(6.8).

Since the constraints (6.6)—(6.8) imply ¢; < A;L(1 + q)t ! for all ¢, over the
set of programs {c, ¢, A;} satisfying these constraints, the value of the objective
function in (6.5) is bounded above by

> B'In(1+q)'AL=> Btln(l+q)+InAL],
t=1

t=1

which is finite if A; is finite. Since ¢; = min(njx;1, A; L) for all ¢ is an option in
problem (6.5), with payoff In(min(nyz1, A;L))/(1 — ) > —o0, it follows that the
supremum of the objective function over the set of programs {¢;, q;, A; } satisfying
(6.6)—(6.8) is finite. Noting that the initial data n; and 27 enter the specification
of problem (6.5) only through the product nyzq, let V(njx1, A1) be the value of
this supremum, and let {c¥, ¢¥, A¥} be a sequence of programs satisfying these
constraints such that

lim Zﬂt Inck = V(nizy, A).
=1

k—oo

Further, let {c;, ¢, A} be a limit of a convergent subsequence of the sequence
{ck, qF, AF}. Then, as mentioned above, {c;, ¢;, A; } satisfies (6.6)—(6.8). Moreover,
by continuity of the logarithm,

o 0

E B'lne = lim E B'nck,
k—oo

t=1 t=1

i.e., the supremum for problem (6.5) is actually attained by the program {c¢, ¢;, A;}
and hence is a maximum. H

By Lemma 6 and the principle of dynamic programming, the function V(.)
satisfies the functional equation

V(nz, A) = ngzx[ﬁ Inc+ V(AL +q), A(1 + q))], (6.9)
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where ¢ and ¢ must satisfy the constraint
¢ =min(nx, AL) — AL(1 + q)C(q). (6.10)

Moreover the choice of ¢ and ¢ in (6.9) corresponds to the optimal first—period
choice in (6.5) when the initial data are n,z,and A.

We first consider the special case nix; = AL, where we don’t have to bother
about the difference between (6.6) and (6.7). To simplify the notation set V*(A) :=
V(A, A). Then we obtain:

Lemma 8. V*(A) =Y f'In A+ V*(1) = %IHA—I— V*(1).

Proof. Let {¢;, q;, A:} be an optimal program for problem (6.5) with an ini-
tial productivity level A and initial aggregate capacity nr = AL. Given that
{ct, qt, Ai} satisfies the constraints (6.6)—(6.8) for nx and A, clearly the program
{ct/A, qi, A;JA} satisfies the same constraints for the initial aggregate capacity
nd = 1 and the initial productivity level A; = 1. Therefore

o o, °]

VA1) = ) B n(e/A) =) e —In A

t=1

== V*(Al) - lIlAl.

p
1-p

A precisely symmetric argument also shows that

V*(A) > V*(1) + In Ay,

B
1-0
and the lemma follows. B

From (6.9) and (6.10), one now obtains:
V*(A) = ngz;x[ﬂ Inc+ BV*(A(1+q))] (6.11)
where ¢ and ¢ must satisfy the constraint
c=AL(1—- (1+q)C(q)). (6.12)

Upon substituting from Lemma 7 and (6.12) into (6.11), we obtain

g
1-p

(InA+1In(1+4q))| +BV*(1).
(6.13)

V*(A) =BIn AL + ﬂm;%x In(1—(1+¢)C(q)) +
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The choice of ¢ in (6.13) is obviously independent of A and must satisfy the
first-order condition

A+ +Cla B 1

1-(1+¢Clg) 1-6(1+q)
which is easily seen to be equivalent to condition (4.5), i.e. ¢ = ¢** is the unique
solution to the maximization problem in (6.13). By the principle of dynamic
programming it follows that the program {c;, g;, A;} such that for ¢t = 1,2, ...,

¢ = AL(l—(1+¢*)0(g™)), (6.14)
@ = q7, (6.15)
A = A (1+¢7), (6.16)

is the unique solution to problem (6.5) for initial conditions satisfying niz; = A; L.
For initial conditions with n;z; # A;L, the principle of dynamic programming
in combination with (6.9) and (6.13) implies that the unique solution to problem
(6.5) satisfies

(c1,q2) = argmax[Blnci + BV (Ai(1 + g2))]

= argmax |ln¢; + BIn A (1 + ¢o2) +

1+ )]

with the constraint (6.10), as before, and, for t = 2,3, ..., (6.14)-(6.16). This
completes the proof of Proposition 6. l
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