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COMPARISON OF SCORING RULES IN POISSON VOTING GAMES

by Roger B. Myerson. revised July 2000

1. Introduction

When there are only two alternatives in an election. the meaning of majority rule seems
clear and straightforwardly implementable. But when voters have to select among three or more
alternatives. there are many different voting rules that can be used. The impossibility theorems
of social choice theory show that no ideal voting rule can extend the definition of majority rule
by a unique pure-strategy equilibrium in all social choice situations (Muller and Satterthwaite.
1977). To move beyond such impossibilities. we should now study how the sets of equilibrium
outcomes in an election may be systematically affected by changes in the voting rule.

This paper considers simple examples of social choice situations that illustrate some of
the basic ways that voting reform can change rational voting behavior. To keep things simple.
most of this paper focuses on winner-take-all elections in which there are just three alternative
candidates: but some simple elections with more candidates are considered in Section 8.

The voting rules considered in this paper are all scoring rules. In a scoring rule. each
voter's ballot must be a vector that specifies the number of points that the voter gives to cach
candidate. The vote vectors of all voters are summed. and the winning candidate has the most
points. In case of a tie for the most points. we assume that a winner is chosen randomly among
those with the most points. each with equal probability.

In a model of three-candidate elections where the candidates are numbered {1.2.3}. a vote

vector can be denoted by a triple ¢ = (¢|.c5.c5), Where ¢; denotes the number of points given to



candidate i. Difterent scoring rules are characterized by the different sets of vote vectors that are
permitted to the voters in the election. In this paper. we consider a family of scoring rules for
three-candidate elections which are characterized by two parameters A and B such that
0<A<B<l
In an (A.B)-scoring rule. each voter must choose a vote vector that is a permutation of either
(1.B.0) or (1.A.0). That is. the voter must give a maximum of 1 point to one candidate. a
minimum of 0 points to some other candidate. and A or B points to the remaining candidate.
The set of (A.B) pairs that satisfy 0 < A < B < 1 can be represented as a triangle (as
shown in Figure 1 below). and the extreme points in this triangle will get particular emphasis
here. The corner (A.B)=(0.0) is plurality voting, the familiar system in which each voter gives |
point to one candidate and 0 points to all the others. The corner (A.B)=(1.1) is negative voting.
in which each voter votes against one of the candidates by giving him 0 points, while giving 1
point to every other candidate. and the winner will be the candidate with the fewest such votes
against him. The corner (A.B)=(0.1) is approval voting. in which each voter can give 1 or 0
points to each candidate. regardless of how many points he has given the others. (Voting (0.0.0)
or (1.1.1) would be equivalent to abstaining and can be ignored here. because we assume that
voting is costless and each voter knows his or her utility for each candidate.) The (A.B)-scoring

rule where (A.B) = (0.5.0.5) is Borda voting.

Following the terminology of Cox (1987. 1990). the scoring rules where (A.B) is near
(0.0) may be called best-rewarding rules. because the most important aspect of any voter's ballot
is which candidate has been ranked as "best" to get the maximum of | point. the other candidates

both getting close to 0 points. In contrast. the scoring rules where (A.B) is near (1.1) may be



called worst-punishing rules. because the most important aspect of any voter's ballot is which

candidate has been ranked as "worst" to get the minimum of 0 points. the other candidates both
getting close to 1 point. Borda and approval voting are balanced between these best-rewarding
and worst-punishing extremes. but approval voting differs from Borda voting on a dimension of
flexibility.

In Section 4. we show that best-rewarding rules tend to generate many discriminatory
equilibria in which the voters disregard some candidate as not a serious contender. possibly even
a candidate who would be widely preferred. In Section 5. we show that such discriminatory
equilibria can be eliminated by worst-punishing rules. but then even a universally disliked
candidate may have to be taken seriously in equilibrium. In Section 6. we characterize the voting
rules that yield discriminatory equilibria in the Condorcet cycle. thus breaking the symmetry of
this example which has been central in proofs of impossibility theorems. Section 7 considers
symmetric equilibria of bipolar elections and shows that majoritarian outcomes can be
guaranteed only by approval voting. Section 8 shows that this majoritarianism and efficiency of
approval voting can be extended to all equilibria of more general bipolar elections.

The analysis of voting games in this paper is based on the assumption that voters are

instrumentally motivated. that is. that each voter chooses his ballot to maximize the utility that he

gets from the election. which is assumed to depend only on which candidate wins the election.
This assumption seems natural and realistic. but it implies that each voter cares about his choice
of ballot only in the event that his ballot could pivotally change the outcome of the election. So
this theory of rational voting necessarily implies that voters' decisions may depend on the relative

probabilities of various ways that one vote may be pivotal in the election. even though these
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pivot probabilities may be very small in a large election.

Under plurality voting. for example. voters often choose to vote for their second-favorite
candidate rather than their favorite candidate. This phenomenon occurs when the probability of
their favorite candidate being in a close race (where a vote could make a difference) i1s much
smaller than the probability of their second-favorite candidate being in a close race with their
worst candidate. in which case it would be a waste to not vote for their second-favorite candidate.
Such wasted-vote effects can be very important in equilibria under best-rewarding voting rules
like plurality voting.

So to characterize rational equilibria with instrumental voters. we need a formal
procedure to identify which pairs of candidates are more likely to be in a close race where one
vote could determine the winner. Myerson and Weber (1993) made some simple assumptions
about how the serious races might be determined. given any pattern of anticipated voting
strategies. but we will see an example (in Section 6) where the assumptions of that paper appear
to be inconsistent with any reasonable probability model. To avoid the such pitfalls. the simple
assumptions about serious races in Myerson and Weber (1993) should be replaced by
calculations basced on some formal probability model.

Unfortunately. it can be very difficult to calculate the probabilities of these close-race
events. where two candidates' scores are within one vote of each other and are ahead of all the
other candidates. I have argued elsewhere (Myerson 1998a. 2000) that the difficulty of these
probability calculations can be minimized by assuming a Poisson model of population
uncertainty. in which there is uncertainty about the numbers of each type of voter. and beliefs

about these numbers can be characterized by independent Poisson random variables.



So Poisson models are applied here to quantify all probabilities in our analysis. The
general Poisson model is described in Section 2. and the calculus of Poisson probability
magnitudes is presented in Section 3. The advantage of the Poisson model is only that it gives us
a precise and tractable framework for seeing how beliefs about outcome probabilities and rational
voting behavior can fit together in a logically consistent way under a wide variety of voting rules.
The most important conclusions of our analysis here are, not the specific quantitative
probabilities that may be computed for any one equilibrium, but the more general qualitative
ways that these equilibria may change when the voting rule is changed. (See Myerson. 2000. for

an argument that other Multinomial models should yield qualitatively similar results.)

2. General definitions

In a general social choice situation. we may let K denote the set of candidates (or
alternatives) in the election. One candidate in K must be chosen as winner in the outcome of any
voting game. In models of three-candidate elections. we let K = {1,2.3}.

Each voter has a type that determines his (or her) preferences over the candidates. We let
T denote the set of voters' possible types. We assume here that voters have independent private
values for the candidates. and so the preferences of a type t voter can described by a utility vector
u(t) = (u;(t));e . Where ui(t) is the utility payoff to each voter of type t if candidate 1 wins the
election.

The expected distribution of voters in the electorate is denoted by a probability
distribution r = (r(t)),.7. where r(t) denotes the probability that any randomly sampled voter will

have type t. This given distribution r must satisfy



r(t) > 0 VteT. and Y r1(s)= 1.
The expected number of voters is denoted here by the parameter n. In our Poisson models of
population uncertainty. we assume that the actual number of voters participating in the election
will be a Poisson random variable with mean n. and each voters' type will be independently
drawn from T according to the probability distribution r. A Poisson distribution has a standard
deviation that is the square root of its mean. So if the expected number of voters is 100,000.000.
then the Poisson assumption implies uncertainty about this population with a standard deviation

of 10.000. (Extended Poisson models with more uncertainty are formulated by Myerson. 1998b.)

These parameters (K. T. u. r. n) then characterize a social choice situation with Poisson

population uncertainty. Then to complete the definition of a voting game, we must specify the
voting rule. In general. we may let C denote the set of ballot options from which each voter must
choose. In the scoring rules that we study here. these ballot options are vote vectors of the form
¢ = (¢;);-.. Where ¢; denotes the number of points that a voter is giving to candidate 1 when the
voter chooses ballot ¢ in the election. These parameters (K. T. u. r. n. C) then completely
characterize a voting game with expected population size n.

A strategy function for the voters in such a voting game is any mapping o from T into the

set of probability distributions over C. That is. a strategy function o will specify. for cach type t
in T and each ballot option ¢ in C. a number o(c|t) denoting the probability that a voter of type t
would choose ballot ¢ in the election. Any strategy function 0 must satisfy

o(ct) > 0. VeeC. and Y 4. o(d|t) =1, VieT.
When the voters behave according to the strategy function o. the probability that any randomly

sampled voter will cast the ballot ¢ 1s



(1) T(c) =Y o r(t) o(c|t).

This vector T = (T(c)) . is the expected vote distribution corresponding to the strategy function

o in the voting game. Each candidate i's expected score in points per voter is then

Sit) =Y e T ¢y

The actual outcome of the election will depend on how many voters actually cast each of

the ballot options in C. These numbers can be listed as a vote profile vector X = (X(¢)) ¢ In
which each component x(c) denotes the number of voters who cast the ballot ¢ in the election.
The set of all possible vote profiles with ballot set C is denoted here by Z(C), where

7(C)= {XERC} x(¢) is a nonnegative integer, VceC}.
With Poisson population uncertainty. for any expected vote distribution t. the numbers of voters
who choose each ballot option ¢ are independent Poisson random variables with means nt(c).
This independence of the counts in the vote profile is a unique characteristic of the Poisson

model (called independent actions by Myerson. 1998a). Thus. when the expected vote profile is

nt = (nt(¢)), ¢ the probability that any x in Z(C) will be the actual vote profile in the election is
P(x nT) = [Loec (e "™ (n(e)™/x(0)).

Another noteworthy property of the Poisson model is that any single voter in the election should

assess this same probability distribution P(¢|nt) for the vote profile that will be generated by all

the other voters in the election. counting everyone's ballots except his own. (This property is

called environmental equivalence by Myerson. 1998a.)

When the vote profile is x. the winner will be a candidate with the most points. in the set
W(x) = argmax; . Y ..c X(€) ¢;.

Assuming random selection in ties. the probability of i winning given a vote profile x 1s



QG x) = 1/#W(x) if ieW(x). Q(i|x)=0 if 1e¢ W(x).
Given any expected vote profile nt. the corresponding probability distribution over the winner of
the election may then be denoted by q = (q(1));.k. where each
2) a() = Yoz POx 00) QI TX).

For any vote profile x and any ballot option ¢ in C. we let x+[c] denote the vote profile
which differs from x only in that the number of c-ballots is increased by one. That is. y=x+[c]
when y(¢)=x(c)+1 and y(d) = x(d) for all d#c. Thus. given any expected vote profile nt. a voter
of type t should want to choose the ballot option ¢ that maximizes his expected utility

¥ ey PInD) Yoo QUi x+e]) w(o).
So we may say that (0.7.q) is an equilibrium of the voting game with expected size n iff T and q
are the expected vote distribution and win probability distribution corresponding to o (as in
equations (1) and (2)) and. for each ¢ in C and each tin T.
(3) o(cit)> 0 implies that ¢ € argmax Eer(C) P(x|nt) } ;o QGIxF[d]) uy(t).

We consider here only equilibria in which weakly dominated actions have been
eliminated for all types. That is. any type t should assign zero probability in equilibrium to a
ballot option c if there exists some other ballot option d in C such that

¥oQa xtHe]) w(t) < ¥ QGixHd]) uy(n). VxeZ(C), with strict inequality for some x.
In an (A.B)-scoring rule. dominance implies that a voter with independent private values should
give 1 or B points to his best candidate. and should give 0 or A points to his worst candidate.

The focus in this paper is on elections with large numbers of voters. and so we shall look
at the limits of such equilibria as the expected number of voters n goes to infinity, holding fixed

the other parameters of the Poisson voting game (K. T. u. 1. C). Thus. we may say that a large



equilibrium sequence of this structure (K. T. u. r, C) is any sequence of equilibria {(0,.7,.9,)}, ..
of the finite voting games (K. T. u. r. n. C) such that the vectors (0,,.7,,.q,,) are convergent to
some limit (0.7.q) as n—e in the sequence. We may also refer to this limit (0.7,q) as a large
equilibrium of (K. T. u. r. C).
When the expected vote profile is nt, in a voting game of expected size n. any set M that

is a subset of Z(C) can be interpreted as an event that has probability

PMint) =Y ..\ P(x|nT)).
We will be particularly interested in two kinds of events: the event that a particular candidate can
win the election. and the event that there is a close race where one vote may make a pivotal
difference between one candidate or another winning. So for each candidate i, let €(i) denote the
event that candidate i is a winner or tied to win,

Q(i) = {xZ(0)] Q(ilx) > 0}.
For any pair of candidates 1 and j and any ballot option c, let A(c.1.j) denote the event that adding
one more ballot ¢ could change the winner from 1 to j.

Alc.j) = {xeZ(O)] Q(i]x) > Q(i[x+[c]). Q([x) < Q(|x+[c]}
Let A(1,)) denote the event that there is a close race between 1 and j such that one additional vote

could pivotally change the winner from one to the other of these two candidates.

A(L) = Coee (Alci) o Adei)).

Let D denote the set of pairs of candidates {i,j} who are distinguishable by the voters. in the
sense that voters are not completely indifferent between them,.
D= {{ij}] uy(t)# uj(t) for some tin T}.

Let A* denote the event that a close race exists where one additional vote could be pivotal



between some pair of distinguishable candidates.

A*=Ciiien A(iy)).

Notice that a rational voter cares about his vote only in the event that there is at least one

close race among distinguishable candidates, so that his vote could make a difference. That is.

argmaxyec Yz P(X|nty,) Yok QUix+[d]) uy(v)

= argmaxy ¢ Leepar PXINT) Yok QGIxF[d]) uy(t).

So even though the probability of a close race may be quite small when n is large. rational voters
would act the same if all probabilities were replaced by conditional probabilities given the event
of a close race A*. There must be some pairs of candidates for which the conditional probability
of a close race given A* has a positive limit (or limit supremum) in any large equilibrium

sequence. So for any two candidates {i.j}. we may say that the {i.j}-race is serious in a large

equilibrium sequence iff i and j are distinguishable and

limsup,, .., P(A(ij)Int,)/P(A*int ) > 0.
That is. the race between i and j is serious if. in the event that a close race exists in the election.
the conditional probability that i and j are in this close race has a positive limit as the expected
population gets large. Any race that is not serious becomes of infinitesimal importance relative
to the serious races. as n—e. in the rational voters' expected-utility maximization problems.

In a large equilibrium sequence. we may say that a candidate i is serious iff there is some
other candidate j such that the {i.j} race is serious. We may also say that a candidate i is out of
contention in a large equilibrium iff the candidate is not serious. We say that a large equilibrium
is discriminatory iff there is a candidate in K who is not serious. So discriminatory equilibria

represent situations in which the voters perceive great differences in the chances of different



candidates. so that some candidates lose virtually all significance in the voters' decision-making.

Notice that a serious candidate is not necessarily likely to win. We may say that a
candidate i is strong in a large equilibrium sequence {(0,.7,.q,)} . if the probability of i
winning has a positive limit q(i) > 0. In the winner-take-all voting games that are considered
here. any strong candidate will be serious. but a serious candidate might not be a strong

candidate.

3. Computing magnitudes and probability ratios of events in large voting games

The probability of any close race will generally tend to zero as the expected population n
becomes large. But we can identify which races are serious in a large equilibrium by comparing
the rates at which their probabilities go to zero. These rates can be usefully measured by a
concept of magnitude defined as follows.

Given a large equilibrium sequence {(6,,.7,.q,)} .- the magnitude of an event M is

u(M) = lim_, log(P(M|nt,))/n.

N
(Here. log denotes the natural logarithm, base e.) In particular, for any candidates i and j, we let
tt; denote the magnitude of candidate 1 winning.

= w(Q(i)) = lim,_, log(P(Q(1)!nt,))/n.
and we let Hij denote the magnitude of a close race between 1 and j.

Hij = wAGL)) = lim,_, log(P(A(ij)!nt,))/n.
So if we can show that a close race between one pair of distinguishable candidates has a

magnitude that is strictly greater than the magnitude of a close race between another pair of

candidates. then the latter race is not serious. This fact can give us a practical way to identify the



serious races. once we have learned how to compute these magnitudes.

The key to computing magnitudes is given summarized by the magnitude theorem trom

Myerson (2000). To state this theorem. we need some notation. For any positive number 8. let
P(0) = 0(1-log(0))-1.

and let Y(0) = - 1. Then ¥ is concave. is maximized at y(1) = 0. and has slope §'(6) = ~log(0).

We say that o = (0(c)).. 1s the offset-ratio vector of a vote profile x. relative to the

expected vote profile nt,. iff
a(c) = x(c)/(nT,(c))

Then let M/(nt,)) denote the set of all offset-ratio vectors of vote profiles in M relative to nt
M/(n1,) = {(X(€)/ (1T, (D)o | X € M.

Writing nt, o = (nt,(c)a(c)) .. We have o € M/(nt) iff nt 0 € M.

These definitions are useful because. for any sequence of vote profiles {x,},_., such that

N—c

lim,_, x,(c)/(nT,(c)) = a(c) and lim T, (c)=1(c). VeeC.

n-w ‘n
the magnitude of this sequence is
lim , log(P(x,int,))/n

=lim,_,, Y ..c (-nt(c) +x (c)og(nt (c)) - log(x,(c)!))/n

=lim, ., Y ..c (-nt(c) +x,(c)log(nt (c)) - x,(c)(log(x,(c))-1))/n

=1im, . Yeoe Th(0) U(x,(c)/(nT,(c)))

= Yeec TE) W(a(e)).
(Here the second equality uses Stirling's formula; see Abramowitz and Stegun. 1965.) Then the

magnitude theorem of Myerson (2000) then tells us that the magnitude of any event 1s

determined by the magnitude of the most likely points in the event.



Magnitude Theorem. Given M < Z(C). the magnitude of M 1s

w(M) =lim__ log(P(M|nt,))/n= 1m max, log(P(y,|nT ))/n

=lim . max, o, YT ewe ().

For any event M and any ballot c. if a(c) is the unique limit as n-e of the a (c) values in
the optimal solutions of the (last) maximization problem in the magnitude theorem then. as n-=<.
all probability in the event M becomes concentrated in the set of vote profiles x where the offset
ratio x(c)/(nt,(c)) is close to a(c). (See Myerson, 2000.)

The magnitude theorem gives us an optimization problem with nice mathematical
structure. because the objective function is smooth and concave. Furthermore. the events that
concern us in the analysis of large voting games generally have the simple geometrical structure
of a cone defined by a finite collection of linear inequalities. For example. the event of
candidate 1 winning Q(1) is a cone defined by the linear inequalities that candidate 1's total point
score (a linear function of the vote profile) should be greater than or equal to each other
candidate's total point score. Under an (A.B)-scoring rule where 0<A<B<I. this cone is in a
twelve-dimensional space. because a vote profile must count the numbers of each of the 12 ballot
options in C (3! permutations of (1.B.0) and (1.A.0)). But the following dual magnitude
theorem gives us a way to reduce the dimensionality of this magnitude problem down to the

number of constraints that define the cone.

Dual Magnitude Theorem. Let M be a cone defined by

M= (xe RS Y ¢ bu(c) x(c) = 0 Vkel].

where J is a finite set. and the numbers by (c) are given for each k in J and ¢ in C. Given a vote



distribution . suppose that A in K. is an optimal solution to the dual problem
minimize; Y .. T(e)(exp(¥y Ay be(c)) — 1) subjectto A, > 0 Vkel.

Then letting
a(c) =exp(Yy Ay by(c)). VeeC.
vields the optimal solution to the magnitude problem
maximize .y, ¢ Y eec T©) Plac)).
and the optimal values of the objectives in these two problems are equal. (Notice that

M/(nt) = M,/1. because M is a cone.)

Proof. By the first-order conditions at the dual optimum A. we must have. for each j in J.

Y e T(e) exp(Yy Ay bi(c)) bj(c) =0 if Xj > 0.

Y oc Tle) exp(Yy Ay by(c)) bj(c) >0 if }‘j =0.
So the letting

ac) = exp(Y .5 A be(c)) and x(c)=nt(c)a(c). VeeC.
vields a vote profile x that satisfies the cone inequalities. But now consider changing the offset
ratios from o in any direction 0 that keeps us in the cone. The objective function of the
magnitude problem is concave. and its derivative at o in the direction 6 is

Leec () Te) Y(afe)) = ~ Yoo 8(e) Te) log(a(c))

==Y e 0() T(€) Yy Ay b)) = -4 Ay Yoo bi(e) T(c) O(c) < 0.

because staying in the cone when the offset ratios change from o to a+& implies that

Y e be(e) T(e) 8(c) = 0

for every binding constraint k where A > 0. Q.E.D.



As an application of this result. consider the event M where the number of votes in some
set G is greater than or equal to the number in some other set H. where G=C. HeC, and GnH=0.
M=x Y ox©)2 Y 4o x(d) ]

—ceG e

Let y and 1 denote the expected fractions of voters choosing ballots in G and H.
Y= Yeeg WOk M= Ygep ©d).
So we get the dual problem
minimize; .o Y eeG r(c)(e)‘f D+ Yaen t(d)(e*)‘f D+ Y beciGot) t(b)e’- 1)
=y(et - e - 1.
If y > m then the optimal solution has A=0. and the event M has magnitude 0. achieved at the
expected vote profile where all offset ratios a(c) are 1. But when y <n. the optimal solution has
ofc) = e = m VeeQ.
a(d) = et = Jy/m. vdeH.
a(b)=¢" = 1. vbeCY(G_H).
and the magnitude is
wM)=vyn/y -y +nyy/m -n=2yyn -y -
= -Gy -V
This is also the magnitude of having equal numbers of votes in G and H. For large n, almost all
probability in this event M is concentrated near the vote profiles that have these magnitude-
maximizing offset ratios . so that the numbers of votes in G and H are near
nyyn/y =nmmyy/n =ny/yn.
which is the geometric mean of the expected numbers of votes in G and H.

The event that no voters choose ballots in some set G < C can be viewed as a the special



case of this analysis. where H = (. So if y is the expected fraction of votes in G. then the event
that no voters actually choose ballots in G has magnitude -vy. In particular. the event of zero
turnout in the election (that is. the vote profile x such that all x(c) = 0) has magnitude - 1.
(Indeed. the probability of 0 is e " for a Poisson random variable with mean n.) But the cone
events considered here all include the zero vector in Z(C), and so their magnitudes cannot be less
than - 1. Also. the magnitudes of these events cannot be greater than 0, because the natural
logarithm of a probability is never positive.

For any vote profile x. any expected vote profile nt,,. and any ballot option ¢, we have

P(x-[c]InT,)/P(x|nT,) = X(¢)/(nT(C)).
So the ratio of probabilities of two vote profiles that differ by a single ¢ ballot is equal to the
c-offset ratio. Thus. if the offset ratios a = (a(c)) . uniquely achieve the maximal magnitude of
an event M. then
lim, .. P(M-k[c]|nt,)/P(M|nT,) = a(c)",

where M- k[c] is the event that adding k more ¢ ballots would make M occur. This result is
called the offset theorem in Myerson (2000).

Denoting the expected vote profile by w = (w(c)) . (instead of nT, ). we can express the
sensitivity of P(x|w) to the expected vote profile w by the formula
4) clog(P(x| ))/dw(c) = d(-w(c) + x(c)log(w(c)) - log(x(c)!))/dw(c)

=x(¢c)/w(c) - 1
=o(c) - 1. when a(c) = x(c)/w(c).
The highest possible magnitude of 0 holds for an event that includes points x, such that

the offset ratios x,(c)/(nt,(c)) converge to 1 as n—e forall c. To estimate probabilities in this



region where all offset ratios are close to 1. we can apply the Normal approximation to the

Poisson distribution. (See Theorem 3 of Myerson 2000.) In this Normal approximation for the
game of expected size n. the components of the realized vote profile (x (¢)) . are approximated
as the integer roundings of independent Normal random variables. where each x (¢) has the mean
nt,(c) and standard deviationm. Assuming that these means are large. this Normal
approximation can be applied to estimate probabilities in a 0-magnitude event where all offset

ratios are close to 1.

4. Problems of too many discriminatory equilibria: Above the Fray

We can now apply these techniques to compare equilibria under different voting rules.
We may begin with a general proposition that best-rewarding voting rules like plurality voting
(where A=B=0) tend to have many discriminatory equilibria. Recall that B is the upper bound on

the number of points that a voter can give to the middle-ranked candidate on his ballot.

Proposition 1. For any (A.B)-scoring rule with B < 0.5, for any pair of candidates {i.j}. if
all voters have strict preferences on {i,j} and neither i nor j is expected to be unanimously
preferred over the other. then a discriminatory large equilibrium sequence exists in which {1j} is

the only serious race.

Proof. It suffices to consider {ij} = {1.2}. In a discriminatory equilibrium, each voter
will want to maximize his probability of making an impact on the serious race. by giving one
point to the candidate in {1.2} whom he prefers. and giving zero points to the candidate in {1.2}
whom he does not prefer. So all voters must be expected to choose among the four ballots

(1.0.A). (1.0.B). (0.1.A). (0.1.B).

17



When there are m voters. the total points of candidates 1 and 2 always sum to m with this
strategy. and so the high scorer among 1 and 2 never has less than m/2 total points. But
candidate 3 always has less than m/2 total points because A < B < 1/2. So candidate 3 cannot
win or be in a close race with any positive fraction of the large expected turnout. Thus the pivot
magnitudes 1, 3 and p, 5 are both - 1. Now let y = t(1,0.A)+1(1.0.B). Because the voters are
not expected to unanimously prefer either 1 or 2, we have 0 <y <1. So the magnitude of'a {1.2}
close race satistfies

Mo =Gy V11 > 1= 5= s
This condition confirms the existence of a discriminatory equilibrium in which candidate 3 is not

serious. Q.E.D.

To illustrate this proposition. let us consider as Example 1 a simple voting game where
existence of discriminatory equilibria seems very undesirable from a social-choice perspective.
In this game there are three candidates. K = {1.2.3}. and there are two types of voters T = {1.2}.
(We use boldface here for type values. to make them easier to distinguish from candidates'
names.) Any randomly sampled voter is equally likely to be type 1 or 2. so

r(1)=0.5=1(2).
The utility values are

u(l) =(6.0.9). u(2)=(0.6.9).
So type 1 voters prefer candidate 1 over candidate 2, and type 2 voters prefer candidate 2 over
candidate 1. but all voters prefer candidate 3 over both candidates 1 and 2. We may call this
game "Above the Fray". to indicate something of candidate 3's superior position in the contest.

Under plurality voting or any (A.B)-scoring rule such that B <0.5. we can find a
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discriminatory equilibrium in which candidate 3 is not serious. In this equilibrium. each voter
wants to maximize his impact for the serious candidate that he prefers against the other serious
candidate in {1.2}. but still wants to give the admired nonserious candidate 3 as many points as
possible (B) subject to the constraint of achieving this maximal impact on the serious race. So
the equilibrium strategy o and expected vote distribution T satisfy

0(1.0.B'1)=1=0(0.1.Bj2) and t(1.0.B) = 0.5 =7(0.1.B).
Given B < 0.5. a close race between candidates 1 and 2 occurs near the expected vote distribution
nt. and so it is an event of the highest magnitude p; , = 0. But with everyone expected to vote
(1.0.B) or (0.1.B). the score of candidate 3 (B points per voter) is always less than the average of
1's and 2's scores (0.5 points per voter) with any positive turnout. and so ;3= -1 =y 3. These
magnitudes confirm the perception that only the {1.2} race is serious. The candidates' expected
scores (points per voter) are then S(t) = (0.5. 0.5, B). and (given B <0.5) the distribution of
candidates’ win probabilities is g = (0.5. 0.5. 0) in this equilibrium. That is. the good candidate 3
has almost no chance of winning in this discriminatory equilibrium.

This discriminatory equilibrium vanishes when B > 0.5. If everyone were expected to
vote (1.0.B) or (0.1.B). then candidates 1 and 2 could be in a close race only when their scores
were both 0.5 points per voter. So with B > 0.5. a close {1.2} race with only (1.0.B) and (0.1.B)
ballots could occur only when candidate 3 was also involved in the close race. which would
contradict the assumption that candidate 3 was not serious.

Under any (A.B) scoring rule, this example also has a good equilibrium in which 3 is
serious. everyone votes (A.0.1) or (0.A.1). and the good candidate 3 wins with probability one.

We can show that this good equilibrium is unique under approval voting and negative voting.



Under approval voting (where A=0 and B=1). dominance implies that everyone gives an
approval point to his favorite candidate. and no one gives an approval point to his worst
candidate. So type 1 voters must vote (1.0.1) or (0.0.1), and type 2 voters must vote (0.1.1) or
(0.0.1). and so the expected vote distribution in a large equilibrium must satisfy

7(1.0.1) + t(0.1.1) + 7(0.0.1) = 1.
With only these ballots. the magnitude of a close {1.2} race is p; , = - 1. because a close {1.2}
race could not occur with any positive turnout. The magnitude of a close {1.3} race is
Hy 3= —(1-1(1.0.1)). because a close {1.3} race occurs when the only votes are (1,0.1) ballots.
So if ©(1.0.1) were positive. then a close {1.3} race would have strictly higher magnitude than a
close {1.2} race. but then the type 1 voters (who prefer 3 over 1) should not give a second
approval point to candidate 1. Thus. we must have t(1.0.1) = 0. and all type 1 voters must vote
(0.0,1) in a large equilibrium. A similar argument shows that type 2 voters must also vote (0.0.1)
with probability 1. and so the unique large equilibrium of this example under approval voting has
0(0.0.1{1)=1=0(0.0.1/2) and 7(0.0.1)= 1.
This unique approval-voting equilibrium uses only single-point ballots that are also feasible in
plurality voting. but the equilibrium set under approval voting is significantly different from the
equilibrium set under plurality voting. which also includes the bad discriminatory equilibrium.

It is even easter to show that this good equilibrium is unique under negative voting, where
A=B=1. Under negative voting. casting a (1.1.0) ballot against the most-preferred candidate 3
would be dominated for any voter in this example, and so ©(0,1,1)+t(1.0.1) =1 in any
equilibrium. The limiting expected vote share t(0.1.1) against candidate 1 cannot be strictly less

than the limiting expected vote share t(1.0.1) against candidate 2. because then the only serious



race would be {1.3}. which would make all voters would want to vote (0.1.1) against
candidate 1. Similarly 1(0.1.1) cannot be strictly greater than t(1.0.1). because then the only
serious race would then be {2.3}. which would make all voters want to vote (1.0.1) against
candidate 2. Thus in the limit of any large equilibrium sequence, we must have t(0.1.1) =
1(1.0.1) = 0.5. which is achieved by the strategy function with 6(1.0.1/1) =1 = 0(0.1.112).
It may be interesting to see how this argument for uniqueness under negative voting still

applies when we modify this example by changing the expected fractions of types 1 and 2 to

r(1)=0.6. r(2)=0.4.
In this modified example. the limiting expected vote shares against candidates 1 and 2 must still
be t(0.1.1) = 1(1.0.1) = 0.5. because otherwise the candidate in {1.2} who was expected to get
tewer negative votes would be the only serious challenger to candidate 3. which would make
everyone want to vote against him. So the expected vote distributions must have the form

T,(1.0.1)=05+¢,. 1(0.1.1)=0.5 - ¢,
for all n. where ¢,-0 as n~e. With r(1) = 0.6. this expected vote distribution T, can be achieved
only if type 1 voters randomize between voting (1.0.1) and (0.1.1). In equilibrium, £ must be
just large enough to make type 1 voters indifferent between voting (0.1.1) against 1 and voting
(1.0.1) against 2. even though they actually prefer 1 over 2. With u; = (6.0.9). type 1 voters
would be willing to so randomize only if

P(A((0.1.1).1.3){n7,)/P(A((1.0.1).2.3)|nt,) = (9-0)/(9-6) = 3.
That is. 1's expected lead over 2 must make the probability of candidate 1 winning in a close
{1.3} race three times larger than the probability of candidate 2 winning in a close {2.3} race. In

the limit of these equilibria 7, all probability in A((0.1.1).1.3) becomes concentrated where the



offset ratios are o(1.0.1) = 1 and «(0,1.1) = 0, because the votes against 1 must disappear to make
aclose {1.3} race. The partial-derivative formula (4) in Section 3 then implies
clog(P(A((0.1.1).1.3)|nt,)))/0¢, = n(e(1.0.1)-1) + (-n)(e(0.1.1)- 1) = n.

Similarly, all probability in A((1.0.1).2.3) becomes concentrated where the offset ratios are

o(1.0.1) =0 and a(0.1.1) = 1. because (1,0.1) votes must disappear in a close {2.3} race. and so
dlog(P(A((1.0.1).2.3)|nt,))/0e, =n(0 - 1) + (-n)(1 - 1) = -n.

When g is 0. log(P(A((0.1.1).1.3)In7,))- log(P(A((1.0.1).2.3)[nT,)) is 0. by symmetry. So to

make log(P(A(1.3) nt))-log(P(A(2.3)|nt,)) equal to log(3), we need (n - -n)e, = log(3).

Thus. €, must be 0.55/n in a large equilibrium sequence for this modified example.

5. Problems of too few discriminatory equilibria; One Bad Apple

We saw in the preceding section that best-rewarding rules like plurality voting can easily
generate discriminatory equilibria that sometimes seem problematic or undesirable. Our next
proposition shows how worst-punishing rules like negative voting frequently do not yield any
discriminatory equilibria. which can also be problematic. (Recall that A is the lower bound on

the number of points that a voter can give to the middle-ranked candidate on his ballot.)

Proposition 2. For any (A.B)-scoring rule with A > 0.5, if all voters have strict

preferences over the three candidates then discriminatory equilibrium sequences do not exist.

Proof. Suppose. contrary to the proposition, that we have a discriminatory large
equilibrium sequence in which {1.2} is the only serious race. In such equilibria. for all large n.
each voter would want to maximize his probability of making an impact on the serious race. and

so all voters must be expected to choose among the four ballots
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(1.0.A). (1.0.B). (0.1.A). (0.1.B).
So when candidates 1 and 2 have equal scores. they must each get an average of 0.5 points per
voter. But candidate 3 in such a scenario would have a score of at least A > 0.5 points per voter.
and so candidate 3 could never get fewer points than the low scorer among 1 and 2. Thus
candidate 3 could never be more than one vote away from winning in a close {1.2} race. So the
probability of a close race involving 3 cannot be less than the probability of a close {1.2} race.

which contradicts the assumption that candidate 3 is not serious. Q.E.D.

To illustrate the implications of Proposition 2. let us consider now as Example 2 a simple
voting game where absence of discriminatory equilibria seems undesirable from a social choice
perspective. In this game. there are again three candidates K = {1.2.3}. and two types of voters
T = {1.2}. and any randomly sampled voter is equally likely to be type 1 or 2.

(1) =0.5=r1(2).
The utility values in this example are

u(l) =(9.6.0). u(2)=(6.9.0).
So again. type 1 voters prefer candidate 1 over candidate 2. and type 2 voters prefer candidate 2
over candidate 1. but now all voters prefer both candidates 1 and 2 over candidate 3. We may
call this game "One Bad Apple". because our concern is that the presence of one universally
undesirable candidate may in some way spoil the whole election. as one rotten apple can spoil a
whole barrel of apples.

In this example. the majority-preferred outcome can be guaranteed only if there exists a
discriminatory equilibrium where candidate 3 is not serious. and Proposition 2 tells us that this

equilibrium cannot exist unless A <0.5. Indeed, when A <0.5. this example has a

o
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discriminatory large equilibrium where

0(1.0.A!1)=1=0(0.1.A]2). and 7(1,0.A) = ©(0,1,A) = 0.5.
Here the pivot magnitudes are pi; , =0 and ;3= W, 3 = - 1. confirming that only the {1.2} race
is serious. For example. under plurality or approval voting. everyone votes (1.0.0) or (0.1.0) in
this discriminatory equilibrium. and so the bad apple 3 cannot win with any positive turnout.

But now consider the case where A > 0.5. If candidate 3 was not serious then the type 1
voters would vote (1.0.A). and the type 2 voters would vote (0.1.A). and so any close race
involving candidates 1 and 2 would necessarily involve candidate 3 as well. But each voter
prefers his second-favorite candidate over a lottery where all three candidates have equal
probability. and so each voter would then want to deviate to (1.A.0) or (A,1.0).

Under negative voting. the unique large equilibrium of this example has limiting strategy

o(1.0.1 1)=2/3. o(1.1.0]1) = 1/3. 0(0.1.112) =2/3. o(1.1.0: 1) = 1/3.
and the limiting vote distribution is

7(1.1.0) = 1(1.0.1) = 1(0.1.1) = 1/3.
So each candidate’s expected score in the limit is 2/3 points per voter. and all three races have
magnitude 0 and are serious. Thus. even though all voters dislike candidate 3 in this example.
candidate 3 must be a serious candidate in a large equilibrium under negative voting.

We may now ask how likely the bad candidate 3 is to actually win the election in this
large equilibrium under negative voting. Just because all candidates have equal expected scores
per voter in the limit does not imply that they have equal chance of winning in large equilibria.
because their expected scores can converge differently to 2/3. from above or below.

If all three close races were equally likely in this example then. under negative voting. the



voters would all vote sincerely against candidate 3. To induce some voters of each type to vote
against their second-favorite candidate in {1.2}. the probability of a close {1.2} race must be
somewhat greater than either race involving 3. which can happen if. for large finite n. the
expected fraction of votes against 3 is slightly larger than 1/3 while the expected fraction of votes
against 1 and 2 are each slightly less than 1/3. Because the possible pivot events A(c.i,)) all
occur here with offset ratios approaching 1. we can use the Normal approXximation to estimate
their probabilities. and the probability of any possible pivot event A(c.1,)) is essentially the same
as the probability of candidates i and j being tied for first place (in the sense that the ratio of these
probabilities goes to 1 as n—e, by the offset theorem). So. given any large n. let Pjj denote the
probability of i and j being tied for first place. To make type 1 voters indifferent between voting
(1.1.0) against 3 and voting (1.0.1) against 2. these probabilities must satisfy

(9-0)py3 +(6-0)py3 = (9-6)p;, + (0-6)p,3.
To make type 2 voters indifferent between voting (1.1.0) against 3 and voting (0.1.1) against 1.
we similarly need

(6-0)py3 T (9-0)pa3 =(9-6)pyn + (0-6)p 3.
These equations imply

P13 = P23 = P12/ 7.
That is. the probability of a close {1.3} race and the probability of a close {2.3} race must each
be 1/7 of the probability of a close {1.2} race. So for any large n (noting the symmetry among
candidates 1 and 2 in this game). we may look for an equilibrium of the form

0,(1.0.11)=2/3-¢,=0,(0.1.112), 0,(1,1.0/1) = 1/3+¢, =0,(1.1.0(2)

which gives us the expected vote distribution
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T,(1.0.1)=1/3 - 0.5¢, = 7,(0.1.1). 7,(1.1.0)=1/3 +¢,.
Near the expected vote profile. the numbers x(c) for each ballot option ¢ can be approximated as
the integer-roundings of independent Normal random variables with mean and variance both
equal to nt,(c). From this random vector x. we define

7, = (x(1.0.1) - x(0.1.1))/ y/n. 23 = (x(1.1.0) - x(0.1.1))/ .
The joint distribution of z, and z is approximately Multivariate-Normal. with means E(z,) = 0
and E(z;) = 1.5811\/;. variances both close to 2/3, and correlation 1/2. Candidates 1 and 2 are
tied for first place when z, is between -0.5//n and 0.5/ /n and z; is positive. But when z, is
close to 0. the conditional distribution of zy is approximately Normal with mean 1.5¢ J/r and
variance 1/2. Let ®(x.m.v) and ®’(x.m.v) denote respectively the cumulative and density at x for
a Normal with mean m and variance v. So p, is approximately

P> = (1/yn) ©(0.0.2/3) (1 - ®(0. 1.5¢,y/n, 1/2))
Similarly. I and 3 are tied for first place when z; is between -0.5//n and 0.5/ and z, is
positive. But when z; is close to 0. the conditional distribution of z, is approximately Normal
with mean *0.75811\/; and variance 1/2. So

pi3 = (1/yn) @'(0. 1.5e,y/n. 2/3) (1 - ®(0. -0.75¢,/n. 1/2)).
This approximation yields p;,/p;; =7 when g, = 0.628//n. (Thus, for example. if n =
9.000.000 then we get the equilibrium expected vote profile nt (1.1.0) = 3.001.884 and
nt,(1.0.1) = nt,(0.1.1) = 2.999.058.) Simulation analysis shows that the probability of the bad

candidate 3 winning is 0.044 in these negative-voting equilibria with large n.

6. Breaking symmetry of cvclic majorities in the Condorcet Cycle




We have considered above (and will consider in other sections below) simple examples
that have just two types of voters. In such two-type examples, the meaning of majority rule
seems clear: It means that there should never be another candidate whom a majority of the voters
would strictly prefer over the winner of the election. When we consider such examples, we can
evaluate voting rules by whether their equilibrium outcomes are consistent with majority rule.
because majority-rule outcomes always exist.

But the great impossibility theorems of social choice theory tell us that majority-rule
outcomes cannot be defined for all social choice situations. The Condorcet cycle example is the
simplest and best-known of these situations where majority-rule outcomes do not exist. In this
section. we consider a version of this Condorcet cycle. to show that. even when "majority rule" is
not well-defined. we can still find systematic differences among voting rules in terms of their
tendency to admit discriminatory equilibria.

So let us consider as Example 3 a replicated version of the Condorcet cycle where there
are three candidates K = {1.2.3}. three types of voters T = {1.2,3}, any randomly sampled voter
1s equally likely to be of any type

r(1)=r(2)=r(3) = 1/3.
and the utility values of the candidates for each type are

u(l) =(9.6.0). u(2)=(0.9.6). u@3) = (6.0,9).
So type 1 voters have the preference ordering 1>2>3. type 2 voters have the preference ordering
2>3>1. and type 3 voters have the preference ordering 3>1>2.

The symmetries of the candidates and types in this example imply that the voting game

must always have a symmetric equilibrium in which each candidate has the same 1/3 probability



of winning. and each pair of candidates is equally likely to be in a close race. In such a
symmetric equilibrium. each voter should vote sincerely. giving 1 point to his most-preferred
candidate. 0 points to his worst candidate. and B points to his middle candidate. (The choice is B
rather than A for the middle candidate, because we have assumed that each voter would prefer
the middle candidate when the other choice is equally likely to be the best or worst candidate.)

The main question of this section is to characterize the scoring rules such that this
Condorcet cycle also has discriminatory equilibria which break the symmetry of the candidates.
So let us look for discriminatory equilibria in which, say, candidate 3 is not serious. If {1.2}
were the only serious race, then type 1 voters would all vote (1.0.A) (because they prefer 1 over 2
but think 3 is worst). type 3 voters would all vote (1.0.B) (because they also prefer 1 over 2 but
think 3 is best). and type 2 voters would all vote (0.1.A) or (0.1.B) (because they prefer 2 over 1).
So for some p in [0.1]. the expected vote distribution must be

T(1.0.A) = 1/3 = t¢(1.0.B). ©(0.1.A)=(1-p)/3. 1(0.1.B)=p/3

in the limit of any discriminatory equilibrium sequence where 3 is not serious.

The decision of the type 2 voters will depend on whether a close race involving candidate
3 is more likely to be with 1 or with 2. We have assumed that u;(2)-u,(2) is more than
U,(2)-u3(2). and so the type 2 voters should be more concerned about influencing a {1.3} race
(where they would prefer to vote (0.1.B)) than about influencing a {2.3} race (where they would
prefer to vote (0.1.A)) unless a close {2.3} race is much more likely than a close {1,3} race.

But we now claim that a close {2.3} race cannot be more likely than a close {1.3} race in
a discriminatory equilibrium where 3 is not serious. so that the type 2 voters should all vote

(0.1.B). yielding p=1. To verify this claim. consider the dual optimization problem for the event



Q(3) where candidate 3 wins. For eachiin {1.2}.let A, denote the Lagrange multiplier for the
constraint that candidate i should not have a higher score than candidate 3. Then the dual
magnitude problem for Q(3) is to find values of A,>0 and A,>0 that minimize the dual objective
(1/3) exp((A- 1)A,+AX,) + (1/3) exp((B-1)A;+BA,)
£ ((1-p)/3) exp(Ad +HA- 1DAy) = (p/3) exp(BA +(B-1)A,) - 1
= exp(A(A+4,)) (exp(-A() + (1-p) exp(-4,))/3
+exp(B(A,+4,)) (exp(- A)) + p exp(-1,))/3 - 1
If &, < A, then switching the values of A, and A, would strictly reduce this convex objective
function. Thus. an optimal solution must have A, > A, > 0. The A; cannot both be zero. or else
candidate 3 would be winning at the expected vote profile (contradicting the assumption that 3 is
not serious). So we must have A, > 0. which implies that the magnitude maximizing region in
Q(3) must be near a close {1.3} race and p; = u; 5. If there is not also a close {2.3} race in this
region. then py = W 3 > K, 3. in which case the claim is verified. So it remains to consider the
case where py = Wy 3 = [, 5. By concavity of the magnitude problem. the magnitude-maximizing
points in €(3) must be in the region where both linear constraints are binding. and so the most
likely way of candidate 3 winning or being in any close race is in the region near a three-way tie
among all the candidates. where the offset ratios o are as given by the dual magnitude theorem.
So by the offset theorem. changing a vote profile in this region by adding k (1.0.A) votes and
subtracting k (0.1.A) votes would change the probability by a multiplicative factor of
((0.1.A)/0(1.0.A)K = (exp(A;A+A,(A-1))/exp(A (A- 1)+A2A))k
=exp(k(A;-24,)) > 1.

because A; > A,. So for any given point X in this region where a close {2.3} race exists, we can



find a corresponding point x+k[1.0,A]-k[0.1,A] where a close {1.3} race exists and which is at
least as likely as x. (Let k be the difference of candidate 2's points minus 1's points at x+[0.1.A].)
Thus. as claimed. a close {1.3} race cannot be less likely than a close {2.3} race in a
discriminatory equilibrium where 3 is not serious.
Now with p=1. a discriminatory equilibrium must have the expected vote distribution
7(1.0.A) = 1(1.0.B) = 7(0.1.B) = 1/3.
where 2/3 of the voters are expected to vote for 1 and only 1/3 for 2. and so the magnitude of a
tie between candidates 1 and 2 is
Hy 2 =-(/2/3-/1/3)" = -0.05719.
By the dual magnitude theorem. the magnitude of candidate 3 winning (which is also the
magnitude of 3 being in a close race) is the minimal value of the dual objective
(exp((A-1)A,+AR,) + exp((B-1)A+BA,) + exp(BA,+(B- DA,))/3 -1
subjectto A, > 0 and A, > 0. Solving this problem numerically, we find that its optimal value is
less than -0.05719 as long as (A.B) is below a curve that goes through the points
(0.0.649). (0.1.0.621). (0.2, 0.593). (0.3.0.563), (0.4, 0.532). (0.5, 0.500).
This curve i1s shown in Figure 1. Thus. for (A,B)-scoring rules below this curve. we can
find discriminatory equilibria of this Condorcet cycle example such that any single candidate is

out of contention. These scoring rules include the best-rewarding rules like plurality voting.
[INSERT FIGURE | ABOUT HERE]

So when voters in the Condorcet cycle use plurality voting or any of the best-rewarding

rules below this curve. the symmetry of the Condorcet cycle can be broken in equilibrium. A



perception that one candidate is not serious can become a self-fulfilling prophecy, so that the
next candidate in the cycle 1>2>3>1 will be almost sure to win the election. Thus. a candidate i's
success in the election may depend on manipulation of the voters' perceptions. to get them to
focus on the equilibrium in which the candidate who can beat 1 is not taken seriously.

On the other hand. when voters in the Condorcet cycle use a rule above this curve. such
as approval voting or negative voting. all three candidates must always be taken seriously as
contenders to win the election.

According to the simpler theory of Myerson and Weber (1993). an (A.B)-scoring rule
would have discriminatory equilibria for this Condorcet cycle example if and only if it satisfies
the inequality A+2B < 1. which holds somewhat below the curve in Figure 1. To see the
shortcomings of the Mverson-Weber theory. consider the case of A=B=0.4, which is below the
curve in our Poisson analysis but would be above the line in Myerson-Weber analysis. With
(A.B)=(0.4.0.4). if 3 were considered out of contention then the type 1 and type 3 voters would
vote (1. 0. 0.4). while the type 2 voters would vote (0. 1, 0.4), and so the expected scores for the
three candidates would be 2/3 points per voter for candidate 1, 1/3 for candidate 2. and 0.4 for
candidate 3. From these expected scores. the Myerson-Weber analysis would conclude that
candidate 3 should be considered as a more serious contender than candidate 2. because 3's
expected score is greater than 2's. and so the conditions for a discriminatory equilibrium would
not be recognized. But in our Poisson analysis. the universally middle-ranked candidate 3 gets
the lowest pivot magnitudes p; 3 = 1, 3 = — 1. because 3 always get fewer points (with A=B=0.4)
than the average of candidates I and 2. and so candidate 3 could not be in a close race when there

is any positive turnout. The magnitude of a close {1.2} race is p| , = ~(y2/3 - V1/3): =



~0.05719 in Poisson analysis. because it is the event that the (1.0.0.4) and (0.1.0.4) ballots get
equal vote shares. instead of their expected 2/3 and 1/3 vote shares. Thus. the Poisson analysis

appropriately finds discriminatory equilibria for this Condorcet cycle with A=B=0.4.

7. Majoritarian outcomes in symmetric equilibria of simple bipolar elections

In the preceding sections. we compared voting rules in terms of whether they admit
discriminatory equilibria in which voters perceive candidates as having very different chances of
contending to win the election. In this section, we show that voting rules may differ substantially
even when we focus only on equilibria where the voters view similar candidates symmetrically.
In particular. we consider now the question of whether it may be an advantage or disadvantage
for a bloc of voters to have more than one serious candidate in the election. We simplify matters
here. in this section and the next. by again considering examples in which there are only two
types of voters. For such examples, we can then ask whether the equilibrium outcomes under
different voting rules coincide with what the majority of voters would most prefer.

So let us consider as Example 4 a simple bipolar game where there are two types of
voters T = {1.2}. three candidates K = {1.2.3}. and the utility values of candidates to voters are

u(1) =(1.0.0). u(2)=1(0.1.1).
Candidates 2 and 3 here are indistinguishable duplicates advocating type 2 interests. So type 2
voters prefer candidates 2 and 3. while type 1 voters prefer candidate 1. The expected fraction of
type 1 voters r(1) is left as a parameter to be specified later in the analysis, with r(2) = 1-r(1).
We may say that an outcome of this example is majoritarian iff the winner is a candidate

who is preferred by at least half of the voters. that is. candidate 1 if there are more type 1 voters.
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but candidate 2 or 3 if there are more type 2 voters.
Under any (A.B)-scoring rule, this simple bipolar example always has a symmetric
equilibrium in which the voters treat candidates 2 and 3 symmetrically and use the strategy
a(1.A.0!1)=0(1.0.A{1) = 1/2. 0(0.1.B|2) = 0(0.B.1]2) = 1/2.
In this equilibrium. each voter gives as many points as possible to the candidate(s) he prefers. and
as few points as possible to the candidate(s) whom he does not prefer. splitting randomly in their
treatment of the similar candidates 2 and 3. Unfortunately, these symmetric equilibria allow

failures of majority rule under all (A.B)-scoring rules except approval voting.

Proposition 3. For this simple bipolar example, the equilibrium outcome is always
majoritarian under approval voting. but a non-majoritarian outcome can occur in the symmetric

equilibrium under any (A.B)-scoring rule other than approval voting.

Proof. In the case where A > 0, it can happen that the type 1 voters have a slight majority.
but the type 1 voters all vote (1.A.0) and the type 2 voters all vote (0.1.B). making candidate 2
the winner. In the case where A =0 and B < 1. it can happen that the type 2 voters have a slight
majority, but the type 1 voters all vote (1,0.0) and the type 2 voters split equally among (0.1.B)
and (0.B.1). making candidate 1 the winner. But in the equilibrium under approval voting. with
A=0 and B=1. each candidate gets as many points as there are voters who prefer him. and so the

set of voters who prefer the winner cannot be a strict minority. Q.ED.

In this symmetric equilibrium, the expected score for the candidate 1 is r(1) points per
voter. and the expected score for candidates 2 and 3 is (r(1)A+(1-r(1))(1+B))/2. So 1's expected

score 1s largest. and the probability of candidate 1 winning goes to one as n—e. when

(%)
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r(1) > (1+B)/(3+B- A).
Conversely. 1's expected score is lowest. and the probability of candidate 1 winning goes to 0 as
n—-o, when r(1) < (1+B)/(3+B-A). This quantity (1+B)/(3+B-A) is Cox's threshold of diversity
for (A.B)-scoring rules with 3 candidates (see Cox, 1987. 1990. and Myerson. 1993b).

Consider now the (A.B)-scoring rules where A + B < 1. (These include the best-
rewarding rules like plurality voting.) Under such voting rules, the expected fraction of type 1
voters can satisty 1/2 > r(1) > (1+B)/(3+B~A). and then the probability of a majority with two
candidates both losing the election approaches one as n—. Thus. a majority bloc of voters may
be weakened by having duplicate candidates under best-rewarding rules like plurality voting.

Consider now the (A.B)-scoring rules where A + B > 1. (These include the worst-
punishing rules like negative voting.) Under such voting rules. the expected fraction of type 1
voters can satisfy 1/2 <r(1) <(1+B)/(3+B~A). and then the probability that a minority with two
candidates has a winner of the election approaches one as n—+e. So a minority bloc of voters
may be strengthened by having duplicate candidates under worst-punishing rules like negative
voting.

Under (A.B)-scoring rules where A + B = 1. the probability of nonmajoritarian outcomes
in the symmetric equilibria of Proposition 3 goes to zero as n~. So the possible failure of
majority rule for symmetric equilibria of this simple bipolar example does not seem very

problematic under such rules that are well balanced between best-rewarding and worst-punishing.

8. Efficient majoritarian outcomes in more general bipolar elections with corruption

In the simple model of the previous section, we could apply the criterion of
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majoritarianism but not Pareto-efficiency because, among any two distinguishable candidates. the
better candidate for one type of voter was always worse for the other type. We now consider a
more general bipolar model in which both efficiency and majoritarianism can be tested. and we
show that approval voting passes both tests. In this analysis, we extend the results of Myerson
(1993a) to the Poisson framework (and the proof here is easier than in the original framework).

As before. suppose that there are two types of voters T = {1.2}. We assume now that the
type 1 voters are expected to form a strict majority, with 0.5 <r(1) <1 and r(2)=1-r(1). For
any type t. we may let ~t denote the other type in {1.2}.

We now allow any finite set of three or more candidates, but we assume that each
candidate is associated with one type or the other. That is. set of candidates K is partitioned into
sets K| and K. where K, denotes the set of candidates of type t. As in the model of Myerson
(1993a). we assume that each candidate k has a given known corruption level which we denote
here by f(k) > 0. We may say that candidate k is clean if f(k) = 0, but is corrupt if f(k) > 0. For
any type t voter. the utility from candidate k winning is

u (1) = 1-ftk) 1f k € K. u(t) = -f(k) if k¢ K.
That is. each voter gains one unit of utility from having the winner be a candidate of his own
type. but also loses an amount of utility equal to the winner's corruption level regardless of tvpe.
We consider the generic case where no voter is indifferent between two candidates of different
types (which can be guaranteed if no two candidates' corruption levels differ by exactly one).
Finally. we assume that there exists at least one clean candidate in K. so that the election of this
clean type 1 candidate could fulfill both the criteria of Pareto-efficiency and majority rule in the

event that the type 1 voters have a majority (which has probability approaching one as n-—),
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Proposition 4 Under approval voting, in all large equilibria of a bipolar election as
described above. the winner at the expected vote distribution will be a clean candidate in K. and

so the probability of a clean majority-type winner goes to one as n-—e,

Proof: In any given large equilibrium sequence. each voter's decision about whether to
add an approval for any candidate k depends on a comparison of the probability that k might be
in a close race with a worse candidate (where approving k would be preferred) or with a better
candidate (where not approving k would be preferred). In particular, a voter should not approve
a serious candidate whose serious races are all with better candidates. By dominance. all type 1
voters should approve the clean candidate in K, because they have no better candidates.

[f some voters are willing to cross over and approve a candidate of the other type. then all
voters of that candidate's type must strictly prefer to approve him also. because of the monotone
increasing differences property of the utility function.

If the proposition failed. then the magnitude of a close race involving the clean candidate
in K; could not be less than -r(2). because his score would be maximal when the type 2 voters
disappear. So we can rule out the existence of any serious candidate whom nobody is expected
to approve. because the magnitude of a close race involving such a candidate would be - 1.

If all serious candidates were of one type, then the most corrupt serious candidate would
only have serious races with other candidates who are preferred by all voters, and so nobody
would approve him. Thus, there are serious candidates both in K| and in K.

We now claim that no serious candidate can expect a positive rate of approval from both
types of voter. To prove this claim by contradiction. let g be most corrupt such candidate. Let t

denote g's type. So g expects approval from all type t and some type ~t voters.
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If there are any serious candidates in K; who are more corrupt than g. then let h be the
most corrupt among these candidates. So h gets approval only from type t voters (by definition
of g). and so the voters who are expected to approve h in equilibrium must be a strict subset of
the voters who are expected to approve g. There must also be some candidate j in K_; such that
the {h.j} race is serious. because otherwise h would only have serious races with other less
corrupt candidates in K, (and then nobody would approve h). But in the event of such a {h.j}
close race. g must be in the close race also. and there must be zero turnout from the expected bloc
of voters who would approve g but not h. Now we have to consider two cases. As case 1.
suppose that there exists a candidate j in K_; such that the {h.j} race is serious and a positive
fraction of type ~t voters are expected to approve both j and g. In the event of a close {h.j} race.
as n—cc. there would be a zero offset ratio for these ~t voters who approve g and j but not h, and
so there would be an arbitrarily larger probability for the event that differs by adding two votes
that approve j and ¢ but not h. But adding these two votes would put us in the event where a
close race exists involving j and g but not h. Thus, the event of a {g.j} close race would be
infinitely more likely than a {hj} close race. as n~, contradicting the assumption that the {h,j}
race is serious. As case 2. now suppose that every candidate j in K_, who has a serious race with
h does not have a positive expected share of supporters in common with g. In the event of a
close {h} race. as n--. there would be a zero offset ratio for these ~t voters who approve g but
not h orj. So there would be an arbitrarily larger probability for the event that differs by adding
two votes that approve g but not h or j. and subtracting two votes that approve h and g but not j
(which could not have a zero offset ratio when h is in a close race at a positive score). Adding

and subtracting these votes would put us in the event where a close race exists involving j and g



but not h. So the event of'a {g.j} close race would be infinitely more likely than a {hj} close
race. as n—e. again contradicting the assumption that the {h.j} race is serious. Getting a
contradiction in both cases. we conclude that there does not exist any serious candidate h in K,
who is more corrupt than g.

So g is the most corrupt serious candidate in K. Now let 1 denote the most corrupt
serious candidate in K_,. Voters of type ~t must prefer i over g, because otherwise 1 would be the
worst serious candidate for both types of voters (and so nobody would approve 1). So there does
not exist any serious candidate in K_, who is worse than g for voters of type ~t.

So type ~t voters must consider g worst among all serious candidates. So type ~t voters
should not approve g in equilibrium. contradicting the definition of g. Thus. as claimed above.
no serious candidate g can expect a positive rate of approval from both voter types.

Recall that the clean candidate in K gets approval from all type 1 voters. [f some corrupt
candidate in K, also expected a 100% approval rate from type 1 voters in the limit. then the event
of a close race between that candidate and the clean candidate in K; would have magnitude 0.

On the other hand. the event of type 1 voters not being a strict majority has strictly negative
magnitude - (y/r(1) - /r(2))?. and any close races involving candidates in K, (who expect no
approvals from type 1 voters) could not have a magnitude greater than this. So candidates in K,
could not be in any serious races. if there were a corrupt candidate in K; who expected a 100%
approval rate from type 1 voters in the limit. But we have seen that there must be some serious
candidate in K,. So only a clean candidate in K, can expect votes from all type 1 voters in the

limit, and no other candidates can win at the expected outcome. Q.E.D.
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Figure 1. Characterizing Equilibria of (A,B)-Scoring Rules.
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