
Journal of Network and Computer Applications(1999)22, 199–213

Article No. jnca.1999.0091, available online at http://www.idealibrary.com on

Towards role-based administration in network
information services

Gail J. Ahn and Ravi Sandhu
ISE Department, Mail Stop 4A4, George Mason University, Fairfax, VA 22030, USA;
E-mail: fgahn, sandhug@isse.gmu.edu

Client-server networks have grown tremendously since the mid-1980s. The information
they store changes much more rapidly than it did during the time at beginning. The
size and complexity of these networks required new, autonomous administration prac-
tices. Network Information Services was designed to address these requirements. As
one of the network information services, NISC is a widely used network protocol. It
allows networked machines to have a common interface regardless of the workstation
that a user logs into. NISC keeps all information into tables to support a common inter-
face between networked machines. In the most of case these information are controlled
by centralized manner. Centralized management of NISC tables in large systems is a
tedious and costly task. An appealing possibility is to use role and role hierarchy to
facilitate decentralized administration of NISC tables which has not been previously rec-
ognized in the literature. This paper presents decentralized administration of NISC tables
using the notion of role and also shows how to simulate role hierarchy in NISC groups.

 1999 Academic Press

1. Introduction

Network information services store information that users, workstations, and
applications must have to communicate across the network. Without a network
information service, each workstation would have to maintain its own copy of
this information. For example, take a simple network of three workstations; Alice,
Bob and Chris. Before Alice can send a message to either Bob or Chris, it
must know their network addresses. For this reason, it keeps a file,/etc/hosts,
that stores the network address of every workstation in the network, including
itself. Likewise, in order for Bob and Chris to communicate with Alice or
with each other, they must keep similar files. However, addresses are not the
only network information that workstations needs to store. They also need to
store security information, mail information, information about their Ethernet
interfaces, information about network services, and about groups of users allowed
to use the network, about services offered on the network, and so on. As networks
offer more services, the list grows. As a result, each workstation may need to keep
an entire set of files similar to/etc/hosts. Unfortunately, some files change too
frequently to be kept current. The problem of keeping system information current
is especially troublesome with very dynamic information such as passwords. As
this information changes, administrators must keep it current on every workstation

1084–8045/99/070199C 15 $30.00/0  1999 Academic Press

200 G. J. Ahn and R. Sandhu

in the network. In a small network this is simply tedious, but on a large network,
the job becomes not only time consuming, but unmanageable.

Network information services solve this problem by maintaining system infor-
mation on a central host known as an NISC server. It stores network information
on servers and provides it to any workstation that asks for it. Network Informa-
tion Services allow networked machines to have a common interface regardless
of the workstation that a user logs into. With this mecahanism we can use the
same password and group files (the same uid and gid) over the network and
the same home directory can be mounted on each machines. It also reduces the
effort required to setup and maintain a network of Unix workstations. This is
accomplished through the centralization on aserver of the major configuration
files required to setup a Unix machine for a particular site. Thus only the set of
configuration files on the server need to be updated to effect all machines at a
site. This has proven to be a very powerful network administration tool.

However, the information on the server is exclusively controlled by a central-
ized manner which does not scale gracefully to systems with large numbers of
groups and users. More generally, it is possible to decentralize an administra-
tion by allowing administrators to selectively delegate authority to control the
information. In this paper we describe decentralized administration of NISC can
be implemented by means of setting access rights to NISC objects (specially to
NISC table) supporting NISC administration mechanism.

The rest of the paper is organized as follows. In Section 2, we discuss the
overview of network information services. In Section 3 we review the role concept
and discuss its adoption in NISC followed by implementation of Role-based
NISC in Section 4. Section 5 concludes the paper.

2. Overview of NIS and NISC
In this section we describe the background of network information services. And
we present the basic structure of NISC which we will focus on.

2.1 Background on NIS and NISC
NIS was developed independently of DNS and had a slightly different focus.1

Whereas DNS focused on making communication simpler by using workstation
names instead of addresses, NIS focused on making network administration
more manageable by providing centralized control over a variety of network
information. As a result, NIS stores information not only about workstation names
and address, but also about users, the network itself, and network services. This

1 DNS, the Domain Naming Service, is the network information service provided by the Internet
for TCP/IP networks. It was developed so that workstations on the network could be identified
with common names instead of Internet addresses. NIS and NISC are other network information
services developed bySunSoftTM.

Role-based administration 201

collection of network information is referred to as the NIS namespace. NIS stores
information in a set of maps. However, NIS maps were designed to replace Unix
etc files, as well as other configuration files, so they store much more than names
and addresses. As a result, the NIS namespace has a large set of maps. NISC
was designed to replace NIS. NIS addresses the administration requirements of
client-server computing networks prevalent in the 1980s. Client-server networks
have grown tremendously since the mid-1980s. The size and complexity of these
networks required new, autonomous administration practices. NISC was designed
to address theses requirements. NISC is upwardly compatible with NIS. The new
service provides for a hierarchical name space, similar to that used by the Internet.
This allows for a distributed authority mechanism.

NIS and NISC are based upon the Remote Procedure Call (RPC) protocol
which uses the External Data Representation (XDR) standard. Below this level
are the raw communications services of Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP) provided by the Internet Protocol (IP) [2].
The relationships between these protocols are shown in Fig. 1. RPC implements a
method by which aclient process on one machine can perform a virtual procedure
call to a server process on a remote machine. The client is considered to be
accessing a feature of a service provided by the server. The client calls an RPC
procedure with the arguments for the remote procedure and does not return from
the call until the request has been sent to the server, processed, and a reply
received. The message is encoded using XDR so that RPC can be used between
heterogeneous machines using different internal data representations [1, 3, 4]. The
actual transmission of data is performed using either TCP or UDP depending on
the desires of the client and the design of the server.

2.2 Architecture overview of NISC
The NISC domain is composed of a directory object and all of its children as
shown in Fig. 2. The NISC name space is made up of all the domains below
the root directory. Each name is composed of a series of characters separated by

RPC/XDR

IP

TCP

UDP

Client Process

RPC/XDR

IP

TCP

UDP

Server Process

NIS map or
NIS + tables

NIS Server

look-up request

NETWORK

NIS Client

Figure 1. NIS mechanism.

202 G. J. Ahn and R. Sandhu

org_dir.list.gmu.edu.group_dir.list.gmu.edu.

list.gmu.edu.

group3group2group1

GROUPS

group1.group_dir.list.gmu.edu.

TABLES

Figure 2. NIS architecture.

a (.). These character sequences are known as labels. There are three types of
objects:

objects description

directory objects they form the framework of the name space
table objects they store the information
group objects they are used for security

The directory objects are at the top of the name space. Directory objects
contain the names, addresses, and authentication information for systems within
the domain. Objects within the database are stored as children of the directory
object. The directory object at the top of the hierarchy is known as the root
directory. Thetable objects identify table databases. The table object contains
the scheme by which columns within the table can be identified and searched.
Each table contains information about users, machines, or resources on the
network.2

The group objects contain a list of members of the group. An NISC group
is a collection of users and workstations identified by a single name. They are
assigned access rights as a group. Essentially, this is used to set security. As
shown in Table 1(a, b) NISC authorization allows four classes of principals and
four access rights. NISC objects specify access rights for NISC principals in the
same way that UNIX files specify permissions for UNIX users. Access rights
specify the types of operations that NISC principals are allowed to perform on

2 The normal set of 16 tables store information for:hosts, bootparams, password, cred,
group, netgroups, mail, aliases, timezone, networks, netmasks, ethers, services,
protocols, rpc, auto home, auto master.

Role-based administration 203

Table 1. The basic structure of NISC
(a) Principals

Principal Description

Owner owner of the object
Group set of specified users
World set of authenticated users
Nobody all clients

(b) Access rights

Right Functionality

read read contents of objects
modify change objects
create add objects to tables
destroy remove objects from tables

(c) Default access rights for NISC objects

Object Nobody Owner Group World

Root-directory object r--- rmcd rmcd r---
Non-root directory object r--- rmcd rmcd r---
group�dir directory objects r--- rmcd rmcd r---
org�dir directory objects r--- rmcd rmcd r---
NISC groups ---- rmcd r--- r---
NISC tables varies varies varies varies

an NISC object. NISC operations vary among different types of objects, but they
fall into for classes: read, modify, create, and destroy. NISC objects specify their
access right as part of their object definitions. So, if the operation that a principal
tries to perform on an object is authorized by the object’s definition, the server
performs it. There is one more wrinkle in this process. An object does not grant
access right directly to a particular principal. Instead, it grants access rights to
four classes of principal:Owner, Group, World, andNobody. The principal who
happens to be the object’s owner gets the rights granted to the Owner class. The
principals who belong to the object’s Group class get the rights granted to the
Group class.3 The World class encompasses all NISC principals that a server
has been able to authenticate. Finally, the Nobody class is reserved for everyone,
whether an authenticated principal or not. Table 1(c) shows the default access
rights for NISC objects.4

3. Roles in Network Information Systems

As metioned in Section 2, NISC maintains the tables to store information about
users, machines, or resources on the network. And controlling these tables is
done by a centralized method. Centralized management of NISC tables in large
systems is a tedious and costly task. An appealing possibility is to use role and

3 This is an NISC group, by the way, not a UNIX group or a netgroup. Information about NISC
groups is not stored in the NISC group table. That table stores information about UNIX groups.
Information about NISC groups is stored in NISC groupobjects, under the groupsdir subdirectory
of every NISC domain.
4 We can change permission attributes of an object with the/usr/bin/nischmod command. The
/usr/bin/nisls command can be used to list the objects and permissions of an NISC directory.

204 G. J. Ahn and R. Sandhu

role hierarchy to facilitate decentralized administration of NISC table which has
not been previously recognized in the literature. In this section we address the
needs of role and role hierarchy in network information systems.

3.1 Groups and roles

NISC tables store a wide variety of information, ranging from user names to
Internet services. Although NISC tables have the same underlying sturcture,
each table stores different types of information. For instance,auto master

table contains automounter map information which can be used in network
filesytem.Passwd and cred tables store password information and credentials
for users who belong to the domain. These two tables are used for authentication
process.Networks andnetmasks tables list the network masks used to implement
standard Internet subsetting including the networks of the Internet created from
the official network table maintained at the Network Information Control Center
(NIC). Unlike networks andnetmask tables, hosts table associates the names of
all the workstations in a domain with their IP addresses. These NISC tables are
normally administrated by an administrator or single administrator group. This
kind of management in large systems is a tedious and costly task. Also, single
mistake may affect whole systems because administration of NISC tables does not
have a supervising method such as hierarchical structure between administrator
group.

Instead of centralized and single-level administration, we introduce decen-
trailized and hierarchical administration. In order to do that we divide NISC
tables into several categories according to their types and characteristics because
each table has different types of information. For example, as shown in Fig. 3,
we have four categories grouped by their similarity and sensitivity. For instance,

auto_master tableCategory A Group A

host tableCategory B Group B

passwd table
Category C Group C

cred table

netmasks table
Category D

networks table
Group D

Figure 3. A scenario.

Role-based administration 205

passwd andcred tables can be in the same category because those tables are used
for administrating user accounts. Alsonetmasks andnetworks tables can be in
the same category because those tables are referred to configure the network envi-
ronment.host table can be another category itself because the modification of this
table affects all network configuration so this table have more sensitive informa-
tion thannetmasks andnetworks tables. Anauto master table can be another
important category which is used for mounting filesystem. In addition, these cat-
egories should be controlled by different administator groups instead of single
administrator group. Also we use the notion of hierarchy between these admin-
istrator groups so that we can support least previlege in relationships between
administrator groups. Therefore, senior group can do what junior group can do
as well as his task(s). That is, a group that can controlauto master table should
be able to control other categories becauseauto master table has highly sen-
sitive information.5 Most of system including NISC, however, does not support
hierarchical relationship between groups. We bring role concept here to support
this. We can define a role for each administrator group such as senior secu-
rity officer (SSO), junior security officer (JSO), account security officer (ASO),
and network security officer (NSO). And these different roles can access each
categories in Fig. 3 as shown in Table 2.

The question of what is different between roles and groups inevitably arises.
A group is a named collection of users and possibly other groups. A users can
be directly made a member of a group or indirectly by means of including one
group in another. Users are brought together in a group for some access control
purpose. Groups serve as a convenient shorthand notation for collection of users
and that is the main motivation for introducing them. Role is a job function
within the organization that describes the authority and responsibility conferred
on a user assigned to the role [6, 7]. Roles are organized in a partial order, so that
if x>y then rolex inherits the permissions of roley, but not vice versa. In such
cases, we sayx is senior toy. A role is a named collection of permissions, and
possibly other roles. The motivation for roles is convenience in administration and
convenience in articulating policy. Also that the name of a role has significance
and indicates the purpose of the role. Permissions enable activity in the system. In

Table 2. Example of roles

Role Accessible Tables

SSO auto�master, host, netmasks, networks, passwd, cred
JSO host, netmasks, networks, passwd, cred
NSO netmasks, networks
ASO passwd, cred

5 This hypothetical categorization is just for example purpose. We can make any category according
to an organization’s policy.

206 G. J. Ahn and R. Sandhu

terms of abstract operations, a physician role may have the permission to write
prescription. Similarly, a manager role have may permissions to hire and fire
employees. A role could be viewed as a collection of users in which case there
is no difference between a role and a group. Since the notion of a role is similar
to that of groups in NISC, particulary when we focus on the issue of user-role
and user-NISC group membership, we adopt the notion of role.6

3.2 Role hierarchy

NISC notably lacks a facility for expressing relationship between groups. In
practice, it is often desirable that groups bear some relationship to each other.
For instance, consider a project divided into several independent tasks assigned
to different teams. We can define a group for each task team so its members have
common access to files relevant to the task. Since some files may pertain to the
entire project we can define a project group such that members of the individual
task groups are thereby also members of the project group. The project-wide files
are then made explicitly available to the project group alone. This is certainly
more convenient than having to explicitly make such files available to every
task group. We iterate, hierarchical groups are useful. It is also more convenient
than explicitly making every member of a task group a member of the project
group. By allowing membership in a group to automatically imply membership
in some other groups we can reduce the number of explicit access decisions
that need to be made by users and administrators. Many commercial database
management systems, such as Informix, Oracle and Sybase, provide facilities for
hierarchical groups (or roles). Commercial operating systems, however, provide
limited facilities at best for this purpose.

Let x>y signify that groupx is senior to y, in the sense that a member ofx is
also automatically a member ofy but not vice versa. Note that a member ofx has
the power of a member ofy and may have additional power, hence a member of
x is considered senior to a member ofy. It is natural to require that seniority is
a partial ordering, i.e.> is irreflexive, transitive and asymmetric. The irreflexive
property is obviously required since every member ofx is already a member of
x. Transitivity is certainly an intuitive assumption and perhaps even inevitable.
After all, if x>y andy>z then a member ofx is a member ofy and so should
also be a member ofz. The asymmetric requirement eliminates redundancy by
excluding groups which would otherwise be equivalent. We writex½y to mean
x>y or xDy. If x is senior toy we also say thaty is junior to x. For convenience
we use the term hierarchy to mean a partial order.

Figure 4 shows a role hierarchy using groups in NISC. The senior-most role
is the senior security officer. Junior to SSO is a junior security officer role, an

6 Although NISC groups are different from our concept of roles, in certain situations NISC groups
can implement roles. That is, the group mechanism closely resembles our role concepts.

Role-based administration 207

ASO
(account security officer)

NSO
(network security officer)

JSO (junior security officer)

SSO (senior security officer)

Figure 4. An example administrative group hierarchy.

account security officer role, and a network security officer role. These groups in
NISC are authorized to access and modify NISC tables as we will see shortly.
We will use this example throughout the rest of this paper.

4. Implementation of role-based NISC
Different types of groups have proliferated throughout UNIX. NISC creates one
more type: NISC group. The member of NISC group can be the principal and
other group. If a NISC group is a member of other group, it is called as recursive
group. For instance, assume that a NISC groupjunior admin is a member of a
NISC groupsenior admin. In this casejunior admin is a recursive group and
will be represented with the symbol ‘@’ as follows. It is the representation of
NISC group object in NISC. It defines thatsenior admin is group object and
junior admin is one of its members.

Object Name : senior�admin
.

Object Type : GROUP

.
Group Members :

@junior�admin

An NISC group is used only as a means to provide NISC access rights to
several NISC principals at one time; it is used only for NISC authorization.
In order to do NISC authorization, each NISC group is assigned to table’s (or
object) Group class which allows the principal who belong to the Group class to
get the rights granted to the Group class. In Table 1(c) we notice that the access
rights for NISC tables is various. Therefore, we can assign different NISC group
to each table’s Group class.

208 G. J. Ahn and R. Sandhu

That is, member users of a table’s group owner can have special privileges
to that object. For example, we can add several junior administrators to the
administrator group so that they can only modify the password and hosts tables,
but they would be unable to modify any other tables. By using this mechanism,
we can distribute administration tasks across many users and not just reserve
them for the superuser of the entire table [5]. Each administrator group can be
role which performs certain control over the NISC tables. In our case study, we
also have four NISC groups and each table has different group ownerships as
shown in Table 4.

In order to achieve group hierarchy in NISC, we use the recursive group
membership functionality in NISC. First, we need to create NISC group as below.
The first argument is the group name. Using NISC group, we create a network
security officer role.

nisgrpadm -c NSO.list.gmu.edu

Group ‘‘NSO.list.gmu.edu.’’ created.

In order to assign a user to network security officer, we can use the following
command. The first argument is a group name. The remaining argument is the
name of the administrator. So we assign Dave to network security officer role.

nisgrpadm -a NSO.list.gmu.edu Dave.list.gmu.edu

Added ‘‘Dave.list.gmu.edu.’’ to group ‘‘NSO.list.gmu.edu.’’

To remove members from NISC group, we can use the-r option as below.

nisgrpadm -r NSO.list.gmu.edu Dave.list.gmu.edu

Removed ‘‘Dave.list.gmu.edu.’’ from group ‘‘NSO.list.gmu.edu.’’

As mentioned before, we use one of NISC features, a recursive group, to simulate
the hierarchy between NISC groups. For example, the following statement add
a recursive group,JSO as a member ofNSO. Therefore, all members of junior
security officer are also the member of network security officer group.

nisgrpadm -a NSO.list.gmu.edu @JSO.list.gmu.edu

Added ‘‘@JSO.list.gmu.edu.’’ to group ‘‘NSO.list.gmu.edu.’’

Table 3 shows how we can construct hierarchy between NISC group. Alice
is a member of senior groupSSO and also a member ofJSO, ASO, and NSO

according to the hierarchical structure as shown in Fig. 4. Bob who is a member
of JSO becomes a member ofASO andNSO. That is, this table implies thatSSO
is the senior-most group andJSO who is junior toSSO is senior toASO andNSO.
Assigning NISC groups as shown in Table 3 we can achieve the hierarchical

Role-based administration 209

Table 3. Simulating group hierarchy

GROUP NAME GROUP MEMBERS

SSO Alice
JSO Bob, @SSO
ASO Chris, @JSO
NSO Dave, @JSO

structure of NISC groups. We say a user is anexplicit member of a group if the
user is explicitly assigned as a member of the group. A user is animplicit member
of a group if the user is an explicit member of some senior group. For example,
Alice can be anexplicit member ofSSO, in which case she is also animplicit
member ofJSO, ASO, andNSO. We have showed how to construct hierarchical
structure between NISC groups so far. Now we should set up the ownership and
access rights for each table in NISC with hierarchical structure of NISC groups
since the hierarchical NISC groups itself do not mean that senior group can do
more than junior group(s). We need to modify group ownership of NISC table
objects and set access rights for each table as shown in Table 4. That is, member
users of a table’s group owner can have special privileges to that object.

Firstly, we have to modify a table’s group ownership usingnischgrp com-
mand. For example, we use the following statement tochange networks table’s
group ownership toNSO.

nischgrp NSO.list.gmu.edu. networks.org dir.list.gmu.edu.

Secondly, we modify access rights to an NISC table. It ensures that certain
NISC group(s) can have special privilege over an NISC table. In order to change
access rights to an NISC table, we useC/� operator and an indexed name with
nischmod command. The following statement addsread and modify rights to
group owner for an entry in thenetworks.org dir.list.gmu.edu. table.

nischmod gCrm networks.org dir.list.gmu.edu.

In order to prevent other classes of principal such asNobody andWorld from
accessing the entry of an NISC table, we may need to remove the default access
right from them usingnischmod command with the� option. For example, we
removemodify, create, anddestory rights from group owner for an entry in
the networks.org�dir.list.gmu.edu. table.

nischmod g-mcd networks.org dir.list.gmu.edu.

As shown in Table 4, we can add several junior administrators to theASO group
so that they can only modify the password and credential tables, but they would
be unable to modify any other tables. AndJSO can access all tables whichASO
and JSO can access but cannot accessauto master table which onlySSO can

210 G. J. Ahn and R. Sandhu

Table 4. Example of the selected table

Access Rights
Table GROUP

Nobody Owner Group World

host table JSO r--- rmcd rmcd r---
passwd table ASO r--- rmcd rmcd r---
cred table ASO r--- rmcd rmcd r---
netmasks table NSO r--- rmcd rmcd r---
networks table NSO r--- rmcd rmcd r---
auto�master table SSO r--- rmcd rmcd r---

access. By setting access right like this table, we can simulate group hierarchy
supporting inheritance of access rights from junior to senior.

We can usenisls andniscat commands to confirm the current configuration
in NISC. The following scripts shows the list of current NISC groups. Currently,
NISC group consists of four admin groups (actually role) such asSSO, JSO, ASO,
andNSO.

% nisls groups dir

groups dir.list.gmu.edu: SSO

JSO

ASO

NSO

The following scripts displays the description of NISC group NSO and it shows
the list of all members such as Dave and all members ofJSO.

%niscat -o NSO.groups dir

Object Name : NSO

Directory : groups�dir.list.gmu.edu.
Owner : list.list.gmu.edu.

Group : NSO.list.gmu.edu.

Access Rights : ----rmcdr---r---

Time to Live : 1:0:0

Creation Time : Thu Jul 30 03:31:55 1998

Mod. Time : Thu Jul 30 07:12:31 1998

Object Type : GROUP

Group Flags :
Group Members :

Dave.list.gmu.edu.

@JSO.list.gmu.edu.

We can also check the properties of NISC table. This last scripts presents the
NISC table networks which is table object and hasNSO as its group owner,
including access rights which are allowed group ownerNSO to perform.

Role-based administration 211

%niscat -o networks.org dir

Object Name : networks

Directory : org�dir.list.gmu.edu.
Owner : list.list.gmu.edu.

Group : NSO.list.gmu.edu.

Access Rights : ----rmcdrmcdr---

Time to Live : 12:0:0

Creation Time : Thu Jul 30 03:32:55 1998

Mod. Time : Thu Jul 30 07:13:31 1998

Object Type : TABLE

Table Type : networks�tbl
Number of Columns : 4
Character Separator : :
Search Path :

In this section, we showed that we can construct the hierarchical structure
between NISC groups assigning recursive groups as a NISC group and we can
simulate group hierarchy supporting inheritance of access rights from junior to
senior by setting access rights and appropriate group ownerships.

In order to make this work more convenient we developed two graphical user
interfaces (GUIs) which interact with NISC command to add a user (or group)
to NISC group and remove a user (or group) to NISC group. The graphical user
interfaces are illustrated in Figs 5 and 6 and are calledNISC Administrator

Tool 1 andNISC Administrator Tool 2 respectively.NISC Administrator

Tool 1 is used to initiate NISC command. AndNISC Administrator Tool

2 is used to look up the NISC tables. These interfaces are convenient for
administrative groups to do their tasks.7

5. Conclusion

In this paper, we described the overview of Network Information Services which
allows networked machines to have a common interface regardless of the work-
station that a user logs into. We have also described our experiment to provide a
useful extension to the NISC group mechanism by means of recursive group
and setting appropriate access rights and group ownerships. Our case study
indicated that we can simulate hierarchical decentralized administration of NISC
table. Also we could distributeadministrator’s powerin NISC using Role-based
administration.

In summary, this case study will be one step towards making current access
control such as Role-based access control (RBAC) more acceptable to adminis-
trators as an enabling and empowering technology.

7 Most of NISC commands which reveal the important credentials were blocked to prevent non-
administrator from executing NISC commands.

212 G. J. Ahn and R. Sandhu

Figure 5. User interface:TOOL 1.

Figure 6. User interface:TOOL 2.

Role-based administration 213

References

1. A. D. Birrell 1985. Secure communication using remote procedure calls.ACM Transactions on
Computer Systems, 3(1):1–14, 1992.

2. D. K. Hess, D. R. Safford and U. W. Pooch 1992. A Unix network protocol security study:
Network information service.Technical report, Texas A&M University.

3. Sun Microsystems Inc. 1987.XDR: External Data Representation Standard. ARPA Network
Information Center, June 1987. RFC 1014.

4. Sun Microsystems Inc. 1988.RPC: Remote Procedure Call Protocol Specification. ARPA
Network Information Center, April 1988. RFC 1050.

5. R. Ramsey 1994.All about Administering NISC. Prentice Hall.
6. R. Sandhu. Roles versus groups. InProceedings of the 1st ACM Workshop on Role-Based Access

Control. ACM, 1997 pp. 25–27.
7. R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman 1996. Role-based access control

models.IEEE Computer, 29(2):38–47.

Gail-Joon Ahn received his BS degree in Computer Science from
SoongSil University, Seoul, Korea in 1994 and MS degree in Computer
Science from George Mason University at Fairfax, Virginia in 1996. He
joined the Laboratory for Information Security Technology since 1996,
and was actively involved in rearch in information security. During 1999
he received the doctoral fellowship to continue his PhD studies from
School of Information Technology and Engineering, George Mason Uni-
versity. His research interests include access control, security, distributed
objects, and secure information system.

Ravi Sandhuis professor of Information and Software Engineering
at George Mason University, Fairfax, Virginia; and director of the
Laboratory for Information Security Technology at GMU. His principal
research and teaching interests are in information and systems security.
Sandhu received PhD and MS degrees from Rutgers University, New
Jersey, and BTech and MTech degrees from IIT Bombay and Delhi, India,
respectively. Sandhu chairs ACM’s Special Interest Group on Security
Audit and Control.

	1. Introduction
	2. Overview of NIS and NIS C
	Figure 1.
	Figure 2.
	Table 1.

	3. Roles in Network Information Systems
	Figure 3.
	Table 2.
	Figure 4.

	4. Implementation of role-based NIS C
	Table 3.
	Table 4.

	5. Conclusion
	Figure 5.
	Figure 6.

	References

