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Abstract. We present several e�cient algorithms for sorting on the uniform

memory hierarchy (UMH), introduced by Alpern, Carter, and Feig, and its paral-

lelization P-UMH. We give optimal and nearly-optimal algorithms for a wide range of

bandwidth degradations, including a parsimonious algorithm for constant bandwidth.

We also develop optimal sorting algorithms for all bandwidths for other versions of

UMH and P-UMH, including natural restrictions we introduce called RUMH and

P-RUMH, which more closely correspond to current programming languages.

1 Introduction

In many large-scale computer systems, memory progresses from very small but very

fast registers to successively larger but slower components, such as several layers of

cache, primary memory, disks, and archival storage. In order to achieve optimal
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2 1 INTRODUCTION

performance on such a computer, it is often necessary for the algorithm designer to

take into account the physical characteristics of the memory hierarchy. Unfortunately,

there are too many possible variables to consider (e.g., the block size of each level,

the number of blocks at each level, the bandwidth between one level and the next)

to allow the design of general algorithms; hence some degree of abstraction of the

memory hierarchy is required.

Several interesting and elegant hierarchical memory models have been proposed

recently to model the many levels of memory typically found in large-scale computer

systems. The HMM model of Aggarwal, Alpern, Chandra, and Snir [AAC] allows ac-

cess to individual location x in time f(x). The BT model of Aggarwal, Chandra, and

Snir [ACSa] represents a notion of block transfer applied to HMM; in the BT model,

access to the t+1 records at locations x�t, x�t+1, . . . , x takes time f(x) + t. Typ-

ical access cost functions are f(x) = log x and f(x) = x�, for some � > 0.1 A model

similar to the BT model that allows pipelined access to memory in O(log n) time was

developed independently by Luccio and Pagli [LuP]. Optimal sorting algorithms for

each of these models have been developed [AAC, ACSa, LuP].

In this paper we concentrate on a newer hierarchical memory model introduced

by Alpern, Carter, and Feig [ACF, ACSb], called the uniform memory hierarchy

(UMH), which o�ers an alternative model of blocked multilevel memories. In the

UMHb(`) model (for integer constants �; � � 2), the `th memory level (as illustrated

in Figure 1) consists of ��` blocks, each of size �`; it is connected via buses to levels

` � 1 and ` + 1. Each individual block on level ` can be randomly accessed as a

unit and transferred to or from level ` + 1 at a bandwidth of b(`); that is, each block

transfer takes time �`=b(`). The CPU resides at level 0.

A model for parallel hierarchies was introduced by Vitter and Shriver, in which P

hierarchies are connected at their base level via an interconnection network as shown

in Figure 2. Communication between the P hierarchies takes place at the base memory

level (call it level 0), which consists of location 1 from each of the P hierarchies. The P

base memory level locations are interconnected via a network such as the hypercube or

cube-connected cycles so that the P records in the base memory level can be sorted

1We use the notation logx, where x � 1, to denote the quantity maxf1; log
2
xg.
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Figure 1: The uniform memory hierarchy (UMH), pictured here for the case � = 3,
� = 2. The `th memory level contains ��` blocks, each of size �`. It is connected

via buses to levels ` � 1 and `+ 1. Each level ` block can be randomly accessed and
transferred to level `+ 1 at a bandwidth of b(`) (that is, in �`=b(`) time).

in O(log P ) time (perhaps via a randomized algorithm [ReV]). Vitter and Shriver

introduced optimal randomized sorting algorithms for P-HMM and P-BT [ViSa]. The

algorithms were based on their randomized two-level partitioning technique applied to

the optimal single-hierarchy algorithms for HMM and BT developed in [AAC, ACSa].

We can consider parallel UMH hierarchies (analogous to P-HMM and P-BT), and

we call the resulting model P-UMH. (This is fundamentally di�erent from the parallel

type of UMH called UPHM mentioned in [ACF].) The initial input of N elements

resides at level s = d1
2
log�

N
�P
e.

A UMH or P-UMH \program" consists of a schedule of choreographed block trans-

fers and computations. If a RAM program that runs in T (N) steps can be scheduled

in UMH in � T (N) time, the program is said to be parsimonious; note that the
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Figure 2: A parallel hierarchical memory. The P individual memory hierarchies are

all of the same type, such as HMM, BT, or UMH. The P CPUs can communicate
among one another via the interconnection network (which can be a hypercube or
cube-connected cycles, for example).

constant factor must be 1. If the UMH program runs in time O(T (N)), it is said to

be e�cient . A UMH program whose running time is within a constant factor of best

possible for that problem in the UMH model is said to be optimal.

In Section 2 we give optimal and near-optimal sorting algorithms for UMH and

P-UMH for a wide range of bandwidth rates b(`), and we present a parsimonious

schedule for merge sort for the case b(`) = 1. In Section 3 we also introduce a natural

and easy-to-program restriction of UMH, called random-access UMH (or RUMH), for

which we have optimal upper and lower bounds for all bandwidths and amounts of

parallelism, and a sequential model of UMH called SUMH, for which we do the same.
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2 Sorting in UMH and its Parallelization

Optimal sorting in O(N logN) time in UMH is possible only when the bandwidth b(`)

at level ` is 
(1=`), or else the time required just to access theN records will be greater

than O(N logN). Many buses may be active simultaneously in the UMH model, so

conceivably it is possible to sort in O(N logN) time even with small bandwidth b(`) =

1=(` + 1).

Recently other authors announced an e�cient UMH sorting algorithm for the case

b(`) = 1=(`+1), based on the optimal two-level distribution sort algorithm of [AgV],

but their UMH1=(`+1) algorithm turned out to be ine�cient, with a running time of


(N logcN), for c > 3. Whether or not an O(N logN)-time UMH1=(`+1) algorithm

exists is still open.

In this section we give a near-optimal sorting algorithm for the small bandwidth

case b(`) = 1=(`+1), and optimal sorting algorithms for several other bandwidths. For

the special case of constant bandwidth, we present a parsimonious algorithm. Since

optimal sorting seems to require nonoblivious UMH programs, the oblivious UMH

model of [ACF] must be modi�ed in a reasonable way. In Theorem 1, we assume that

the `th level of the hierarchy can initiate a transfer from the (` + 1)st level without

involving the CPU when one of its blocks becomes empty. In the remaining theorems,

we assume that the CPU can originate the transfer of a block at level ` given the

address of the block, with suitable delay.

The fastest oblivious algorithm we have found for sorting in UMH1=(`+1) is based

on a simple schedule of Batcher's bitonic sort [Akl] where each of the log2N par-

allel time steps is implemented in O(N logN) time for an overall running time of

O(N log3N). It is also possible to schedule a recursive version of Columnsort [Lei]

on UMH1=(`+1) in a manner that is e�cient with respective to the RAM algorithm,

but this observation is not very useful since both algorithms have running time that

is O(N logcN), where c � 3:4.
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2.1 Parsimonious sorting in UMH1

Theorem 1 A variant of merge sort can be scheduled in UMH1 parsimoniously, as-

suming � � 2 and �� � 6.

Proof : The basic idea is to schedule a systolic binary merge sort in such a way that

the CPU is always kept busy (after a small initial delay and with a small �nal delay

for propagating the results back). After the initial delay, the CPU (level 0) reads one

element from each of the two lists. At every time step after the initial delay, the CPU

writes the smaller element to the output list and then reads the next element from

the list that had the smaller element at the previous step. We use a double-bu�ering

scheme so that level `, for ` � 1, contains room for two blocks from each of the

two lists being merged. It also has two blocks for the output list. When level ` � 1

requests a subblock from one of the lists, and this request causes level `'s bu�er to

be emptied, then level ` requests the next block from level `+ 1. In this way, level `

always has at least one sub-block for level ` � 1 available on demand. The output

blocks �ll up at a known rate, so they can be scheduled in advance (again using

double-bu�ering to keep an empty subblock available for writing from level ` � 1).

At the end of each list, we immediately begin to send a new list down for the next

merge. The CPU can keep track of how many elements have been read from each

list, so that when one list is �nished it knows to copy the rest of the other list to the

output. The number of wasted CPU cycles is only O(logN) = o(N logN), so the

schedule is parsimonious. 2

2.2 Sorting in P-UMH

Theorem 2 Distribution sort algorithms can be scheduled on P-UMH with the fol-

lowing running times. The algorithms for nonconstant P for the �rst two bandwidth

cases are randomized.

�

�
N

P
logN

�
if b(`) = 1;

O

 
N

P
logN log

 
logN

logP

!!
if b(`) =

1

`+ 1
;

�

 �
N

P

�1+c=2

+
N

P
logN

!
if b(`) = ��c`, c > 0.
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Proof : The lower bound for the �rst case b(`) = 1 follows from the conventional


(N logN) serial bound for sorting on a RAM. With P processors, the P-UMH

sorting time can be at most P times faster, giving a 
((N=P ) logN) lower bound.

The best known lower bound for the case b(`) = 1=(`+1) is the same as when b(`) = 1.

To prove the lower bound when b(`) = ��c`, we assume that the N records reside

initially in level s = d1
2
log�

N
�P
e. It then follows that it takes 
((N=P )1+c=2) time to

get the N records from level s to level s� 1, thus completing the lower bound for the

third case.

The algorithm that achieves the upper bound for the �rst case b(`) = 1 is based

on a simulation of the P-BT algorithm for access cost function f(x) =
p
x given

in [ViSb]. The time for the simulation is bounded by a constant times the P-BT

running time. Let us consider moving any b+ 1 elements from locations x� b; . . . ; x

to locations y � b; . . . ; y in the BT model with access cost function f(x) =
p
x. The

amount of time taken for this transfer is
p
x +

p
y + b. It can be shown that the

amount of time taken by a UMH to do the same transfer, with multiple levels of the

hierarchy active concurrently, is

p
x+ (�� 1)

p
x� 1�pyp

�
+ b;

which is bounded by c(
p
x+

p
y + b) for all c � �=

p
�.

The other simulations presented in this paper are a bit trickier, since they require

that e�ective use be made of blocking in the UMH simulation, and therefore that the

algorithm meet certain constraints. A su�cient constraint is that operations in the

algorithm process all the elements at any level in the hierarchy consecutively. It may

be convenient for the algorithm to describe the elements as comprising groups that

may be unrelated to the block size for that level, but as long as all the elements are

accessed consecutively, the intermediate levels of the hierarchy can act as bu�ers to

allow reblocking to occur as needed without losing e�ciency, as long as � � 3. The

algorithms given in [ViSb] all meet this constraint.

For the second case b(`) = 1=(` + 1), the upper bound is related to the P-HMM

approach for f(x) = log x [ViSb]. The P-HMM algorithm needs to be modi�ed to
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reblock the buckets prior to sorting them recursively by substituting Step 8 of the P-

BT algorithm of [ViSb] into the P-HMM algorithm. The cost of accessing an element

at location x in the HMM model is log x; the amortized cost of accessing the same

element in the UMH model when an entire block is brought to the base memory level

is log(x=�)= log �, which is within a constant factor of the HMM cost.

The upper bound third case b(`) = ��c` makes use of an algorithm based on

deterministic, two-way merge sort. This algorithm gives rise to the recurrence relation

S(N) =

8>><
>>:

2S

�
N

2

�
+ k

�
N

P

�c=2+1

if N > P ;

O(logN) if N � P;

which gives the stated bound. 2

The algorithms are optimal, except for the middle b(`) = 1=(` + 1) case, which

is o� from the best known lower bound of �((N=P ) logN) by a log((logN)= log P )

factor.

3 Sorting in SUMH and RUMH and their Paral-

lelizations

The UMH model can be di�cult to program because many buses can be active simul-

taneously. An earlier version of [ACF] introduced a sequential UMH model, appro-

priately called SUMH, that allowed at most one bus to be active at a time. However,

the SUMH restriction can be regarded as too severe, since it forfeits much power of

the UMH model.

We introduce the following more natural and less severe restriction that �ts in

nicely with feasible and easy-to-use programming languages: We require that the

UMH program correspond exactly to a RAM program in which the RAM instruction

set is augmented with a block move command that can move t contiguous memory

elements in time t, for arbitrary t. Each such block transfer can be implemented in

UMH by a coordinated series of transfers in which several buses are simultaneously

active but cooperating on that single transfer. We call this natural variant of UMH the

random-access UMH model, or simply RUMH. For example, a block of
p
N elements
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can be moved from the top memory level all the way down to the CPU (or anywhere

in between) in �
p
N time in UMH1 and RUMH1, but it requires �(

p
N logN) time

in SUMH1.

The parallel versions of RUMH and SUMH are called P-RUMH and P-SUMH,

respectively. Theorems 3 and 4 give matching upper and lower bounds for sorting

in the RUMH and SUMH models and their parallelizations. The structures of the

formulas in Theorems 3 and 4 suggest several di�erent relationships between the

RUMH and SUMH models on the one hand and the HMM, BT, and two-level models

on the other hand (cf. Theorems 5 and 6 in [ViSa]); accordingly the upper and lower

bounds combine in an interesting way several techniques from [AAC, ACSa, AgV,

ViSa].

Theorem 3 The running times mentioned in Theorem 2 are matching upper and

lower bounds for sorting in P-RUMH. The algorithms for nonconstant P for the �rst

two bandwidth cases are randomized.

Proof : The upper bounds all follow directly from the proof of Theorem 2, since all

the algorithms given there are P-RUMH algorithms.

The lower bounds for b(`) = 1 and b(`) = ��c` are the same as and follow directly

from those for P-UMH. When b(`) = 1=(` + 1), we can prove a tight lower bound by

simulating RUMH1=(`+1) by HMM with access cost function f(x) = log x. Speci�cally,

any block transfer of �`�1 elements from level ` to level `0 where ` > `0 will take an

amount of time that is

�`�1((`� 2)(� � 1) � 1)� �`
0

((`0 � 1)(�� 1)� 1)

(�� 1)2
+ `�`�1 = �(`�`�1):

Doing the same move in the HMM model requires time at most

�`�1(log(��2`) + log(��2(`
0+1))) = O(`�`�1);

so the simulation by HMM is bounded by a constant times the RUMH1=(`+1) running

time. Hence, the lower bound for P-HMM for f(x) = log x given in [ViSb] also holds

for P-RUMH1=(`+1). 2
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Theorem 4 The following bounds are matching upper and lower bounds for sorting

in P-SUMH. The algorithms for nonconstant P for the �rst two bandwidth cases are

randomized.

�

 
N

P
logN log

 
logN

logP

!!
if b(`) = 1;

�

�
N

P
logN log

N

P

�
if b(`) =

1

`+ 1
;

�

 �
N

P

�1+c=2

+
N

P
logN

!
if b(`) = ��c`, c > 0.

Proof : We prove the lower bounds using an approach similar to that of [ViSb]. Let

us de�ne the \sequential time" of a P-SUMH algorithm to be the sum of its time

costs for each of the P hierarchies. The sequential time can be at most P times the

P-SUMH running time. We superimpose on the P-SUMH model a sequence of one-

disk, two-level memories of the type studied in [AgV, ViSb], in the following way: For

1 � ` � 1

2
log�(N=�P ), the `th two-level memory has one disk, internal memory size

M` = P�(�2(`+1) � 1)=(�2 � 1), and block size B` = �`. An I/O in the `th two-level

memory corresponds to a single block transfer between levels ` and ` + 1 in one of

the hierarchies in the P-SUMH model, which requires sequential time

C` =

8>>>>>><
>>>>>>:

B` if b(`) = 1;

B` logB` if b(`) =
1

` + 1
;

B1+c
` if b(`) = ��c`, c > 0.

The minimum number of I/Os required for sorting in the `th two-level memory is




0
@N

B`

log N
B`

log M`

B`

� M`

B`

1
A ;

as shown in [AgV]. Each such I/O contributes Ci to the sequential time in the P-

SUMH model, since in the P-SUMH model only one level can be active at a time in

each hierarchy. This gives a lower bound on the P-SUMH sequential time:

T (N) = 


0
B@ X

1�`� 1

2
log�(N=�P )

C`

0
@N

B`

log N
B`

log M`

B`

� M`

B`

1
A
1
CA :
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We get the desired lower bound on the P-SUMH time by substituting the values of

M`, B`, and C` for the three cases into the above summation, and then dividing by P .

The b(`) = ��c` case in addition requires the use of the the conventionalN logN serial

bound for sorting.

The upper bounds for the �rst two cases b(`) = 1 and b(`) = 1=(`+1) are achieved

by simulating the optimal P-HMM algorithm of [ViSb], for access cost functions

f(x) = log x and f(x) = log2 x, respectively. Since a UMH in each case can simulate

an HMM with the appropriate cost function in a running time that is at most a

constant times the HMM time, the P-HMM bound holds for the P-UMH simulation.

The upper bound for the b(`) = ��c` case is achieved by the same deterministic merge

sort as the previous theorems. 2

4 Conclusions

We have given optimal or near-optimal sorting algorithms for UMH and its paral-

lelization that we have introduced called P-UMH. We have derived tight matching

upper and lower bounds for sorting in the restricted models RUMH and SUMH and

their parallelizations. Some of the algorithms are randomized. The RUMH model

is particularly useful because it is easy to visualize and it matches well with current

programming languages and compilers.

An interesting open problem is whether it is possible to sort in O(N logN) time

with the UMH1=(`+1) model. The related FFT computation can be done in UMH1=(`+1)

in O(N logN) time. Another open problem is whether a parsimonious oblivious al-

gorithm can be found to replace our non-oblivious one in UMH1, or whether deter-

ministic algorithms can be found to replace the randomized ones.
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