What to Draw? When To Draw?
An Essay on Parallel Program Visualization

Barton P. Miller
Technical Report #1 103

July 1992

-1-

What to Draw? When to Draw?
An Essay on Parallel Program Visualization

Barton P. Miller
bartecs.wisc.edu

Computer Sciences Department
University of Wisconsin—Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

1. INTRODUCTION

Parallel programs are difficult to understand and the research community is determined to provide tools to
help improve that understanding. As a result, there is intense interest in using visualization to understand the execu-
tion of parallel programs. But visualization is like the surgeon’s knife: properly used it will quickly cut to the essen-
tials; improper use brings colorful but disastrous results. The results from a visualization are almost always visually

appealing, but I claim that they only occasionally are useful in debugging a program Or improving its performance.

In this essay, I share opinions and experiences that I have formed while developing tools for understanding
execution of parallel programs. I try ©0 codify some of the implicit rules that have guided my research efforts. Asa
result, T will criticize some approaches to visualization, but I will not direct these criticisms at specific projects or
tools (except my own). The intent of this essay is to provide a basis for evaluating our work and to encourage dialo-

gue within the parallel programming tool community.

2. WHY IS VISUALIZATION IMPORTANT?

Almost everyone seems 10 agree that visualization is an important tool in understanding complex processes.
Physical scientists have been using visualization successfully for several years. In the classroom, computer scien-
tists have been using it to teach such subjects as data structures. As motivation, 1 present two examples from my

experiences where pictures were worth much more than a thousand words (or even a megabyte).

The first example comes from the world of aviation. As a pilot flying in stormy weather, you will occasion-

ally hear the air traffic controllers broadcast a message such as:

This work was supported in part by National Science Foundation grants CCR-8815928 and CCR-9100968, and Office of Naval Research
grant NO0014-89-J-1222.
Copyright © 1992 Barton P. Miller

-2

There is an area of intense thunder showers covering an area bounded by
315 degrees at 25 miles from Madison 10

360 degrees at 10 miles to

045 degrees at 35 miles to

135 degrees at 30 miles to

225 degrees at 20 miles,

moving southeast at 30 mph.

This message is obviously of great potential interest and you quickly want to decide if you need to point your aif-
craft in a different direction. After you hastily transcribed the message, you find your map and locate your position
and direction of flight, then attempt to outline the area described in the broadcast. With digital telemetry, weather

radar, and moving-map displays, instead you might see:

......
s
-

SRR S

van
.
‘e,
..
~,
~,
-,

o
\S
:
4
o
o
o
»
’
.
’
.
i
I
H
H
H
H
Cweme

L
.
P
-

e,
.,
e,
e
~.
e
......

It only takes a few moments to evaluate your situation and take action.

A second example comes from a programming job that I had many years ago. We were building computer
controls for a facility such as a refinery. Microprocessor~bascd graphic display computers were the main user inter-
face. We had abug in the system that appeared as random noise in the bottom right corner of the screen and worked
its way across the screen. It continued across the next line, and the next, until it filled the entire screen. Any of our
programming team that watched this view quickly exclaimed, Hey, that's a stack overflow! The visual manifesta-

tion was compelling.

Most experienced programmers have come across some similar circumstance. In both of the examples that 1

presented, the visual information was used to guide the pilot or programmer in their task. They were able to more

quickly and easily do their job by using visual information.

So why are tool builders for parallel programs having such a difficult time developing useful visualizations?
A more cynical person than I would ask “are we really are trying to produce useful displays or are wWe just trying to

be colorful?”

3. WHY IS VISUALIZATION DIFFICULT?

Drawing useful pictures is difficult. 1t is much easier to draw a visually attractive picture than it is to draw a

useful one. You know that you have goofed when you hear: that looks really neat, what does it mean?

There are two basic problems in visualization. First you have to have a model of the system who’s behavior
you are trying 0 understand. Second (and only after the first problem is solved), you can then try to invent good
ways to illustrate this model. Physical scientists have a physical reality behind their work. Even if the physical
behavior is complex, they can still use their models to appeal to our intuition on how these behaviors should work.

These scientists only have to worry about the second problem (how 0 illustrate the behavior).

Visualization of parallel programs is difficult because we cannot appeal to a physical model. In computer sci-
ence, our constructs are mostly artificial (¢.8-, what does a process look like?). Even when we precisely specify our
model (for example, the definition of a process), it may not appeal to our intuition. Unlike physical properties that
(presumably) have a single physical reality, computer constructs can be realized in many fotms. So a picture that

appeals to one person’s mental model may have litde in common with the models held by others.

Computer scientists try to use some physical properties in visualizing their programs, €.8., the interconnection
architecture of a message-based multicomputer. While this has some benefit, most programming tools try t0
abstract away from the physical model, gaining simplicity and portability. This level of programming abstraction

limits the usefulness of such models.

Given a model, we still have to design a picture t0 represent it. Computer scientists and physical scientists
deal with multivariate, time-varying data that has complex internal correlations. Both groups ar® looking for pat-
terns that will describe essential behaviors ata level of abstraction that will neither obscure with detail nor obscure
by being vague. If we can get past the first stage and find an intuitive model with wide appeal, then we might be

able to share techniques with other fields.

— 4

4. HOW CAN WE EVALUATE A VISUALIZATION?

This section addresses two questions. First, what characterizes a useful program visualization? These charac-
terizations can help to evaluate current techniques and may help in the design of future ones. Second, how do we
evaluate new visualizations? Evaluation based on visual appeal is not satisfactory; we must be able to determine

usefulness.

4.1. What are criteria for a good visualization?

Visualizations should guide, not rationalize:

“Guide” means that the visualization leads you to discover things that you did not already know. “Rational-
ize” means that it lets you illustrate things that you already know. If a visualization is used to demonstrate a system
that is already understood (e.g., for marketing, sales, or teaching), then a rationalizing display is sufficient. If the
visualization is meant to help a programmer discover new things about their program, it must guide. In research

presentations and papers, it is important to make this distinction.

A major difference between guiding and rationalizing is the organization of the information. If the visualiza-
tion tool can provide interesting and informative displays without detailed control by the user, it has potential to
guide the user. If the user has o give the tool detailed instructions on how to select and organize the data, then the

user may have to already know how the program is working to geta display on how the program is working.

An example of that was presented at a workshop several years ago. A tool was developed that had a circular
display. Process ID’s (integers) were arranged around the circumference of the circle. Colored lines connected the
processes to represent communication levels; red showed intense communication between a pair, violet showed tit-
tle communication. In this presentation, the speaker showed a figure with a clear geometric pattern in the communi-

cation.

It was impressive that information about the dynamic structure of the program was readily apparent from the pic-
ture. The speaker was then asked: “how did you know how to arrange the processes around the edge to produce a
useful picture?” The answer was something like: “well, I knew something about the structure of the program, then
played with it for a while until I got something that I recognized.” The disappointing part of this answer was that it
seemed that they were using the visualization to show things that they already knew. This example is not an iso-

lated one; it has been repeated at many meetings.

Visualizations should be appropriate to your programming model:

If a programmer uses procedures, explicit process creation (e.g., fork) and explicit synchronization (e.g.,
semaphores), then your displays can be in terms of these operations. Metrics such as blocking time for a process
and context switching rates make sense for these objects. If the programmer is using a language such as Fortran-D
with automatically parallelized loops, explicit data distribution and alignment, then results based on processes would
be meaningless. It would be more useful to present the data in terms of blocking time for an array update, based

how much time was spent moving specific parts of other arrays (a data view, rather than a control view).

Scalability is crucial:

Visualizations should have few inherent limits. A picture that works well for up to 16 processors may be

sufficient for the current system, but this can change quickly with new versions of the software or hardware. Any

-

visualization tool that is based on processes, threads, or procedures will have to deal with hundreds, even thousands,
of objects. A display might deal with scale by inherently being able to organize large amounts of data. This type of
display is hard to find. Alternatively, a display might deal with scale through alternate views; the user starts with a

course level of detail, then adds new displays with finer details for selected parts of the program.

In IPS-2, we use a display that is inherently scalable (to very large numbers of objects), easy to understand,
and easy to draw. Unfortunately, it is not a picture but a table! Our tables that present procedure profile data sort
the data by having the procedures with the largest values at the top and the rest in descending order. Given
thousands of procedures, you still have the most significant ones at the top. If you want to look further down, a sin-

gle scroll bar is sufficient.

If you want to display a profile table graphically, you might encode this data in a pie chart. But this display
can quickly get cluttered with small wedges and too many labels. A histogram is another reasonable alternative, but

this display is also subject to clutter with a large number of objects.

Color should inform, not entertain:

Color should either (1) increase the information density, (2) accent important cases, or (3) aide in
identification. In our performance tool (IPS-2), we have a display that we call the “time histogram”. This display
plots the values of one or more metrics over a time period (often called a “strip plot”). Our experience has shown
that a user can distinguish up to three curves in black & white (using different line styles) and up to six or seven

curves in color.

IPS-2 also displays data for each procedure in a sorted profile table. We have several different ways of calcu-
lating profiles, but the basic table display is the same. Even though each different kind of profile is labeled with a
different banner label, it is easy to misread these labels. We give each different kind of profile table a different
banner color, allowing you to quickly identify the type of information that you are using. Color can also be useful

to correlate related information contained in different displays (e.g., by giving it the same color or shape).

Color is appealing, but should be used only when it adds information. Avoid (as described in the New

Hacker's Dictionary) pictures that look like “angry fruit salad”.

A visualization should be interactive:

A visualization that tries to provide all information in one view can be overwhelming. Parallel programs are
complex and there are many aspects o the behavior of the program. The visualization should help you decide what
information you need to see next. The complexity of understanding a visualization should be less than the complex-
ity of the program.

There are three dimensions over which you can refine your visualization. First, you should be able to refine
your view by looking at a different part of the program or system. Second, you should be able to change your level

of detail, such as moving from the procedure level down to basic blocks or up to processes. Third, for a given part

of the program and level of detail, you should be able to select different types of performance data.

You might be able to display data from across one of these dimensions in a single visualization, for example,
many performance metrics for a specific set of procedures. But trying to vary more dimensions in a single visuali-

zation can result in unmanageable detail.

Visualizations should provide meaningful labels:

A visualization should provide a means for identifying the program or system objects that are being described.
The simplest approach is to identify objects by explicitly labeling them in the display. In this way, both perfor-
mance data and identification are simultaneously visible. Alternatively, you can provide an interactive facility that

lets the user use a mouse to request the presentation of labeling information.

Default visualizations should provide useful information:

The programmer should not require sophisticated knowledge nor have to select from a myriad of parameters
to create a display. This rule follows from the “guide, not rationalize” rule. If you give users the opportunity to
carefully select many interesting views, they can as easily select a confusing one. A visualization tool should pro-
vide a set of useful default views. These views should, in most cases, be sufficient for programmers to find their

problems.

Avoid the “watchmaker’s fascination” :

When you remove the back cover from a mechanical watch, you see a fascinating and elegant collection of

gears, levers, jewels, and springs. There is an almost hypnotic pleasure in watching the action of the mechanism.

-8

Unfortunately, it is difficult (though not impossible) to tell the time by looking at the gears. The users of a watch
prefer a more abstract and simplified display; they understand the time abstraction and have no idea how to map the

low-level gear abstraction on to it.

There is a great temptation with visualization tools to show all the low-level details. As with the watch, typi-
cally the user is unaware of the meaning of most of these details and would have to work hard to understand them

(though, they may look pretty when displayed).

Visualization controls should be simple:

Make sure that the display controls on your visualization tools have fewer buttons and gauges than an F-16
fighter. The trend in aircraft over the past 20 years has been to reduce significantly the numbers of things that the
pilot has to watch and understand at any given moment. If our tools follows the previous rule, then we have no (or

little) need for complex controls.

A tool will often have dozens of options that can be set, but only a relatively few combinations of these
options may be sensible. The controls can be much simpler (and much easier to obtain useful results) with fewer

choices.

If you want to provide an escape mechanism for those users who want (or think that they want) these controls,
hide these options until requested. A nice technique is to have a “back-up control panel” that is not needed or
displayed in most cases. The determined users can request it to appear and then use its features. After they are

done, they can hide it again.

4.2. How do we evaluate our visualizations?

Once we produce a new visualization tool, we need to provide a fair evaluation of its usefulness. It is not
sufficient to try the tool on a familiar program and see if it gives the expected results (though this is a reasonable
first step). If our evaluation of a new visualization tool is based on studies of toy programs that we wrote ourselves,
the results may be self-serving. We must test our tools on real programs. Taking a new parallel program that was

written to accomplish a real computation allows us to understand the strengths (and weaknesses) of a tool in finding

real problems.

-9

We also must have other people use our tools on their programs. Users do the most unusual things. When we
design a visualization, it fits our own mental models. We then must allow other programs to use the tool to see if the

model has a broader appeal.

In IPS-2, we designed an interesting feature that automatically divides a time-histogram into phases. The goal
is to have IPS-2 split the execution into time periods so that the performance of each period (phase) can be studied
separately. This idea was well received by audiences and reviewers, but proved useless in practice (manual selec-
tion of phases proved much more useful). Only experience with real users could provide this type of feedback on

our design,

A difficult question is: how do we get real users to base the progress of their research on a flakey research
prototype? To provide this level of testing and experience, we have to polish our tools beyond the fragile state
sufficient to use them in our own research group. This extra polish takes time and resources that might be spent
developing new ideas or writing more papers. The funding agencies for such research need to be sensitive to these

requirements.

5. SUMMARY

We should not stop working on parallel program visualization; it is a difficult problem and requires a lot of
creative effort. But we should not be seduced by pretty pictures nor should we mistake attractive results for useful
ones. We should encourage new ideas but, at the same time, ask hard questions about the usefulness of these ideas.

ACKNOWLEDGEMENTS

I am grateful to Bruce Irvin and Jeff Hollingsworth for their comments and suggestions on this essay.

