
NASA Contractor Report 189680

ICASE Report No. 92-30

/;!/_/

_/6 _/_

ICASE
A SWEEP ALGORITHM FOR MASSIVELY PARALLEL

SIMULATION OF CIRCUIT-SWITCHED NETWORKS

Bruno Gaujal

Albert G. Greenberg
David M. Nicol

Contract Nos. NAS 1-18605 and NAS1-19480

July 1992

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by .the Universities Space Research Association

I I/ SA
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

p..

frl

I
N

z

to

u
c

,t
,#
,4"
,o

O

,.o

A SWEEP ALGORITHM FOR MASSIVELY PARALLEL

SIMULATION OF CIRCUIT-SWITCHED NETWORKS

Bruno Gaujal

Rutgers University, Dimacs Center

and AT&T Bell Laboratories

Albert G. Greenberg

AT&T Bell Laboratories

and

David M. Nicol 1

College of William and Mary

ABSTRACT

A new massively parallel algorithm is presented for simulating large asymmetric circuit-

switched networks, controlled by a randomized-routing policy that includes trunk-reservation.

A single instruction multiple data (SIMD) implementation is described and corresponding

experiments on a 16384 processor MasPar parallel computer are reported. A multiple instruc-

tion multiple data (MIMD) implementation is also described and corresponding experiments

on an Intel IPSC/860 parallel computer, using 16 processors, are reported. By exploiting

parallelism, our algorithm increases the possible execution rate of such complex simulations

by as much as an order of magnitude.

_Research was supported by the National Aeronautics and Space Administration under NASA Con-

tract Nos. NASl-18605 and NASl-19480 while the author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

Research was also supported in part by NASA grants NAG-l-1060, NAG-I-995, NSF Grants ASC 8819373
and CCR-9201195, and was initiated during a visit to AT&T Bell Laboratories.

I
|
!
i
!
!
i
_W

|

!
J
!

i
|

!
|
l
i

|
|
|
i
m

|
i

1 Introduction

Discrete event simulation is an indispensable tool for the design and analysis of large telecommunication

systems [12]. Unfortunately, such simulations present a very large computational burden; the execution

duration of a typical simulation run is often measured in hours. In this paper we consider the problem of call

by call simulation of large circuit-switched networks controlled by a simple state dependent, randomized-

routing policy. We present a new massively parallel simulation method for such networks, and discuss

the algorithm's implementation and performance on SIMD (single instruction multiple data) and MIMD

(multiple instruction multiple data) parallel machines. Our algorithm executes an order of magnitude faster

on these machines than can be expected from an optinaized serial simulation, on a workstation with a

tremendously large memory.

Without loss of generality, we consider completely connected circuit-switched networks having N nodes

and N(N - 1)/2 bi-directional links. A call between a node-pair is either accepted and routed along a path

connecting the node-pair, or blocked (i.e., rejected and lost). A link's capacity is counted ill trunks, equal to

the number of calls that the link can simultaneously carry. If accepted, the call simultaneously seizes a single

trunk from each link of its route at the time that the call arrives, and simultaneously releases these trunks at

the time that the call finishes. Typical parameters for a large network, such as the AT&T circuit-switched

network, are N _ 100, with almost all of the _ 5000 links having non-zero capacity, and a total of _ 1

million trunks. (We will use the AT&T network as a guide for constructing realistic simulation scenarios.

However, the routing policy we consider is different, being far simpler, than the policy used in the AT&T

network.)

Call routing involves alternate-routing and trunk-reservation mechanisms [7]. Alternate-routing allows

for the sharing of excess capacity:

• A call between a node-pair {i, j} is accepted on link {i, j} if that link is not full to capacity.

* Otherwise, a third node v, termed the via, is selected, and the call is accepted on the two link path

{i, v}, {v,j}, if both links are not reserved.

• Otherwise, the call is blocked.

Under randomized-routing, the choice of via v is made by independent sampling from a probability distri-

bution over the N - 2 possibilities, which may dopend on the parameters of node-pair {i,j}, but not on

the network state describing the calls in progress. Thus, whether or not the call is offered to an alternate

!

i

I

2.
|

two-link path depends on the network state, but the choice of path does not. As mentioned in Section 2,

randomized-routing can be adapted to approximate more complex routing policies where the choice of via

node is state dependent.

Roughly, the function of trunk-reservation is to put a link into a "reserved" state when the number of

calls holding on the link nears the link's capacity. While in the reserved state the link can be used only

to carry only calls between its endpoints. This simple control is remarkably effective [7] in steering the

network away from scenarios where the network blocking becomes unreasonably high because calls routed

on multilink paths consume capacity that might otherwise be used to carry a larger number of calls routed

on single link paths:

A key difficulty in the design of a massively parallel simulation of the network is coping with asymmetries.

In realistic networks, the call arrival rates may vary by three orders of magnitude over the node-pairs.

Similarly, the link capacities may vary widely. On the other hand, general purpose parallel computers are

typically quite regular. Identical processors with identical memory capacities are linked in a symmetric

interconnection network.

We cope with this mismatch as follows. The computation is decomposed into separate (but coupled)

computations for each node-pair. Each node-pair computation is simple, regular, and highly parallel. All
L:

the node-pair computations can be carried out together in a manner well-suited for SIMD architectures,

which are characterized by large numbers of processors, each with moderate speed and memory capacity. As

illustrated in the top half of Figure 1, we may dedicate a larger number of processors to a node-pair whose

parameters indicate the likely receipt of a larger number of events. The experiments of Section 6 show that

this mapping of node-pairs to processors leads to performance that scales with the aggregate capacity of the

network (i.e., the total number of trunks), and so uncovers massive parallelism.

It is not hard t%adapt the algorithm for MIMD architectures, characterized by a moderate number of

high speed processors, each with a large memory capacity. In this case, we map each node-pair to only

one processor. In large networks, involving 100 or more nodes, the computational load can be effectively

balanced by assigning a group of node-pairs to each processor. This is illustrated in Figure 1 as the MIMD

mapping.

Related Work

Our approach has much in common with an approach based on synchronous relazation, proposed in [2, 3],

and applied and implemented as'a SIMD circuit-switched simulation method in [11]. In the synchronous

SIMDMapping:

0 0 0 0 0 0 0 0 0 0 • • • 0 0 0 0 0 0

large number of

moderate speed processors

node-pairs

MIMD Mapping:

0 Q ... 0
moderate number of

high speed processors

node-pairs

Figure 1: A node-pair is represented as a line segment whose length is proportional to the rate of events

at the node-pair. Under the SIMD mapping a group of processors is assigned to each node-pair, using a

heuristic that attempts to give each processor the same event rate. Under the MIMD mapping a group of

node-pairs is assigned to each processor, again using a heuristic that attempts to give each processor the

same event rate.

relaxation approach, the computation is also decomposed into separate computations for each node-pair,

and these computations are mapped into the machine in much the same way as described here (Section

5). However, the node-pair computations are completely different. As described in Section 5, in the sweep

algorithm, the node-pair computations require that time be partitioned into intervals so that each call

arriving within an interval departs after the interval. In [11], a method related to that described in [4], is

used for these computations, which does not require time to be partitioned in this way. The advantage of

the sweep algorithm is its simplicity.

Typically, parallel simulation methods are classified as either "conservative" or "optimistic" [5]. Conser-

vative methods are characterized by the property that no event e is computed before all earlier events on

which e depends are computed. Optimistic methods allow dependent events to be computed out of order.

This may lead to temporary errors, which are corrected later by some form of rollback or relaxation. On

applications where conservative methods work well, they typically incur less overhead than optimistic meth-

ods. On the other hand, optimistic methods have the potential for exploiting a higher degree of parallelism.

Our sweep algorithm is a hybrid with some of the advantages of both conservative and optimistic methods.

To uncover massive parallelism the method allows dependent events to be computed out of order, like an

optimistic method. However, unlike an optimistic method, no mistakes are made. Instead, we generate

a superset of all possible events (some of which are mutually exclusive) within a small time window, and

then use fast parallel operations to identify the correct subset of real events. At most a bounded number of

messages are generated for each real event.

Plan

|
i

!
!
g

In Section 2, the network model is fully specified. In tile following section, the particular network scenarios

used to evaluate the performance of the sweep algorithm are described. In Section 4, the sweep algorithm

is described at a high level, and in Section 5 the details are provided. In Section 5.3, we briefly discuss

adapting the algorithm for a MIMD implementation. In Section 6, we report on performance of the SIMD

and MIMD codes.

2 Network Model

A circuit-switched network consists of N nodes, where the link from any pair of nodes i and j has finite

capacity Ci,j > 0 counted in trunks. A trunk represents the resources needed to carry a single call. A call

between nodes i and j is either accepted and routed on a path in the network between i and j, or blocked

(i.e., rejected and lost). An accepted call makes exclusive Use Of one trunk on each of the links of its route

for the duration of the call. We assume here that all paths are of length one (using one link) or two (using

two links). As the number of trunks used to carry a call equals its route length, allowing routes of lengths

greater than two typically adds nothing to network performance, and the restriction to lengths < 2 is almost

always made in practice.

We assume that, for each node-pair (i, j], CaHarrlval times are described by a Poisson process with fixed

rate £i,j. We assume that each call's holding time is an independent, identically distributed random variable:

C+E,

where C (0 _< C < 1) is a fixed constant and E is exponentially distributed with mean 1 - C. Thus, the

average holding time is one, and the units of the arrivai rate are "erlangs" [7]. Typically, in switched network

simulation studies one assumes purely exponential holding times (C = 0). However, it is more realistic to

allow for an initial constant delay C. Furthermore, we will see later that including this delay actually

improves the efficiency of the parallel simulation of the system. As shown in Section 6, system performance

measures such as blocking, turn out to be rather insensitive to C.

The routing Scheme we consider belongs to the Class of schemes that use state dependent alternale-

routing to share idle capacity and trunk-reservation to ensure that the network does not become loaded

inefficiently with _calls routed on multilink pa}]{S. "For.........eac](]ink {i, j} there is a trunk reservation parameter,

ri,j, 0 <_ rij <_ Ci,j. Suppose a new call is offered between nodes i and j at time t. Let n_,_ denote the

numberof callsholdingonanylink {u,v} at this instant. If the number of trunks in use on link {i, j} is

less than the link capacity (ni,j < Ci,j) then the call is accepted on the direct one link path from i to j.

Otherwise, an intermediate node v, called the via, is selected and the call is offered to the two-link path:

{i, v}, {v, j}. The call is accepted on this path if neither link is reserved; that is, if Ci,,, - ni,v > ri,_ and

C,,,j - n,,,j > r_,j. Otherwise, the call is blocked; i.e., rejected and forever lost.

Under randomized-routing, for each call blocked on its direct path {i, j}, the choice of via node is made

by independent random selection of one of the N-2 possible nodes v -¢ i, j, from a distribution that depends

on {i, j}, but not on the network state describing the calls currently in progress. We note that randomized-

routing can be adapted to approximate some routing policies where the choice of via node depends on the

network state by the simple device of biasing the random selection in accordance with a recent sample of

the network state. For example, under the aggregated least busy alternative (ALBA) routing policy, each

via is assigned a load state in a small, bounded range, 0,..., K, where the lower values indicate roughly a

greater number of free trunks on the two-link path determined by the via. To approximate ALBA, the load

states can be periodically sampled, and randomized-routing adapted to choose uniformly at random from

those vias in the minimal load state.

3 Simulation Scenarios

To evaluate the performance of the parallel simulation, we consider two types of scenarios:

• symmetric networks where each of the N * (N - 1)/2 links have identical capacity, and

• a 114 node network, modeled after a realistic fiber cut scenario for the AT&T switched network.

To completely specify the randomized-routing policy, in the symmetric network, we assume each choice of

via is made uniformly at random from the N - 2 possibilities. In the asymmetric network scenarios, we

assume the choices are biased in accordance with the end to end capacity of each two-link alternate path.

Specifically, consider a node-pair {i,j}, and let cap,,v and cap,,,j denote the capacities of links {i,v} and

{v, j}. Via v is chosen with probability proportional to rain{cap,,,,, cap,,,j }.

In Section 6, the symmetric network scenarios are used as a simple means of testing how performance of

the simulation scales with the network size, measured as its total capacity.

In practice, the main role of simulation is in evaluating the performance of the network under stress:

typically traffic surges and equipment failures, such as fiber cuts. In practice networks are asymmetric, and

becomemoresoafterequipmentfailures.In the114nodenetworkweconsider,thetotal capacityisabout

740,000trunks,but thelink capacitiesvarywidelyfrom0to 4000withameanof_ 100.Similarly,thetotal

arrivalrateisabout530,000erlangs,but thearrivalratesvaryoverthenode-pairsfrom1to 2500witha

meanof _ 80.As aresultof thefibercutseveralhundrednode-pairshavearrivalratessignificantlygreater

thanthecorrespondingdirectlink capacities.It turnsoutthat callblockingishighlyfocusedonabout500

of themorethan6000links.

4 The Sweep Algorithm

In this section, we give a high level description Of the sweep algorithm, leaving some of the details to Section

5.

Arrival events at a given node-pair {i, j} are of One of two types:

!

|

• direct-arrival (A), marking the starting time of a call between i and j offered on link {i, j},

• via-arrival (V), marking the starting time of a call between another node-pair ({i, k} or {k, j)) offered

on an alternate two-link path that includes link {i, j}.

By the nature of the routing algorithm, a via-arrival for a given call is not offered unless the corresponding

direct-arrival is blocked. However, let us take the view that all possible arrival events are tentatively offered.

That is, for every call generated between a node-pair {i,j} all three possible events are offered: a direct-

arrival at {i, j) and a via-arrivaIat each of the two links of the alternate path the ca!! would take if blocked on
±

the direct path. This is possible because the choice of via node and the duration of the call are independent

of the network state. In the parallel simulation methodl a state is associated with each arrival event. The

method is iterative. Each iteration sweeps through the offered events, updating associated state information,

and possibly rejecting and l:emoving some offered events. On termination, the remaining offered events are

exactly those events that actually occur.

Towards this end, we partition time into consecutive intervals, termed windows, which are simulated

serially. We construct the windows in a way that allows us to apply simple, massively parallel algorithms

(described below) to simulate them. Specifically, let s denote the start of a window; initially s = 0. Let

l denote the greatest time > s such that no Call arrival offered anywhere in the network after time s has

a finishing time less than t. Thus, each call that arrives in the interval [s,t) departs after it. A window

starting at time s can be chosen as any enclosed interval [s, u); u g t.

i
!
|

!
!
B

3 Node Network Example: # trunks= 1

trunks reserved =0

trunks=2

trunks reserved =0

trunks= 1

trunks reserved =0

{a,c}

{a.c}

{b,c}

{a,b}

{a,b}

{a,b}

{b,c}

window = [s,t)

Time

Figure 2: A line segment represents an offered call, with its left endpoint marking the arrival time and the

right endpoint the departure time. As there are just three nodes in the network, the via associated with

each of the calls is forced; for example the via associated with the two calls arriving to link {a, b} within the

window [s, t) must be c.

Figure 2 depicts a simple example for a three node network. The first three events within the window

[s, t) are departures of calls that arrived earlier, and so do not enter into the calculation of the extent of the

window. The window has maximal extent l, terminating with the departure of the second call offered to a, b

within the window.

It is natural to ask how many arrivals fall into the maximal window [s, t). Recall that a call's minimum

holding time is C. Decompose [s, t) into an initial part [s, s + C) and a final part [s + C, t). The distribution

of arrivals within the initial part is Poisson with mean ,_C, where

A = Z ,_i,j

is the aggregate call arrival rate in erlangs. The analysis of the final part [s + C, t) requires a bit more work.

In brief, the idea is to consider an absorbing Markov process describing the number of calls present that

have completed the deterministic C delay in their holding times: when k are present, one of the k finishes

(thereby stopping the process) at rate k(1 - C), whereas another such call arrives at rate A. Analysis of this

process provides the expected number of events within [s + C, t) as

"°=0 B()_(1 ' c) + i, k + 1)i,k(i-- C)]k+l/k[= _/A(1 - C)_r/2 + O(1/v_) as A ---, o¢,

where B(., .) is the Beta-function. Summarizing, the expected number of events within the window is

,,XC+ x/),(1 - C)7r/2 + O(1/x/_).

For large networks, such as the AT&T network, the aggregate call arrival rate ,_ is on the order of 1 million

erlangs, and the number of events in the window will be large, even for small C, as will be seen in Section 6.

An iterative method is used to simulate the window. As alluded to above, an iteration operates on the

offered events, updating associated state information. An event rejected in the course of an iteration is

not offered at the next. An iteration involves a separate computation for each node-pair, addressing the

feasibility of each arrival event on the corresponding link. We say a direct-arrivaloffered to node-pair {i, j}

is feasible if at least 1 trunk is free (i.e., unused) on link {i, j} at the time of the arrival, and is not feasible

otherwise. Similarly, a via-arrival offered to node-pair {i,j} is feasible if at least ri,j trunks are free on the

link at the time of arrival, and is not feasible otherwise.

Feasibility decisions are combined so as to implement the logic of the routing policy. A call arrival

at node-pair {i,j} offers three events: one direct-arrival at {i,j} and two via-arrivals at some node-pairs

{i, v} and {v,)}. If the direct-arrival is feasible then this event should be accepted and the two via-arrivals

rejected: the call should be routed direct. If not and both via-arrivals are feasible then the direct-arrival

should be rejected and the two via-arrivals accepted: the call should be routed on the alternate two-link

path.Otherwise, all of the events should be rejected: the call should be blocked.

In the computation for node-pair {i, j}, the events offered to link {i, j} are scanned in chronological order.

On scanning each arrival event, an associated state may be updated, summarizing information collected thus
--2
|

|

3
_=

!
Q

i

__=

|

!

far on the feasibility of the tllree events of the associated call arrival. Specifically, for a direct-arrival at

node-pair {i,j}, the state is a 2-tuple whose first component is one of {yes, no, 7}, according to whether the

call is feasible on link {i, j}, is not feasible on the link, or is not yet decided. Similarly, the second component

is one of {yes, no, ?}, according to whether the call is feasible on both links of the two-link alternate path,

is not feasibleonat leastoneof thesetwolinks,or isnot yetdecided.Thestateof a via-arrival is a 3-

tuple, where each component is of the same form, describing the feasibility information for the corresponding

direct-arrival, the event itself, and the other corresponding via-arrival.

All state components are initially blank; i.e., set to "?". An event's state is final if the feasibility

information determines whether or not the event should be accepted or rejected. For a direct-arrival, these

accepted states are (yes, X), for Xc{yes, no, ?} (meaning the call is feasible on the direct path), and the

single rejected state is (no, no) (meaning the call is not feasible on the direct nor on the alternate path). For

a via-arrival, the single accepted state is (no, yes,yes) (meaning the call is not feasible on the direct path,

but is feasible on the alternate path), and the rejected states are (yes, X, Y), (no, no, X), and (no, X, no),

for X, Ye{yes, no, ?}.

The correctness of the simulation follows from the correctness of each iteration and the fact that each

iteration makes progress. In particular, the earliest event not in a final state at the start of an iteration is

guaranteed to be driven into a final state during the iteration.

5 Implementation

An implementation of the sweep algorithm must address:

• the mapping of possibly unbalanced node-pair computations into the parallel computer, and

• the arrival event feasibility and state computations associated with the node-pairs.

We discuss these two issues in turn. Adaptations for a MIMD implementation are described in Section 5.3.

5.1 The Mapping

Impose an order on the processors in the parallel computer, and an order on the N(N - 1)/2 node-pairs.

We dedicate a fixed number Pi,j _> 1 of consecutive processors to node-pair {i,j}; the index of the first of

these is obtained by summing the values P_,_ for node-pairs (u, v} earlier than {i, j} in the node-pair order.

To simplify the discussion, consider one node-pair {i, j}. Suppose the current simulation window is [s, t).

To map the events of node-pair {i, j} into the P = Pi,j processors, assign the U h in the processor order to

store and manage all events that fall into the U h subwindow Is + (k - 1)(t - s)/P, s + k(t - s)/P), for k = l,

..., P. In this way, each event, identified by a node-pair {i,j} and a time u within the window s < u < t,

maps into a unique processor.

In ourimplementation,wefurtherrestrictthemappingbysettingtheextentof eachwindowto C, the

extent of the constant portion of the call holding time, which we assume is non-zero. Thus, the jth window

is the interval [(j - 1)C, jC). Under this restriction, the window spans an average of _C call arrivals, where

is the aggregate call arrival rate; without the restriction the span would include O(v/)_(1 - C)) additional

arrivals. This disadvantage is offset by removing the need to compute the greatest lower bound of the window

boundary. In general, the current window contains departure events (D) corresponding to calls accepted at

previous windows. Generating the random call arrivals and departures is straightforward. Initializing the

set of events offered within the window:

1. Each processor independently generates the departure times for direct-arrivals and via-arrivals accepted

at its link at the previous window, and creates a departure event at the appropriate processor. Those

departure events that fall within the window are included in the computations to follow.

2. Each processor independently generates the call arrivals within its subwindow, at the appropriate

Poisson rate, and creates a direct-arrival event locally, and two via-arrival events remotely at the

appropriate processors.

To ideally balance the computational and communications load, Pi,j should be chosen proportional to

the rate at which events are offered at link {i,j}. At the outset of the simulation, this rate is unknown

because we do not know which calls are accepted, and so do not know which departure events are offered.

However, we do know the rate at which direct-arrivals and via-arrivals are offered to link {i, j}:

oq,j = Ai,j + _)q'iP(selecting via j at link {i,k}) + E)_kjP(selecting via i at link {k,j}),

and this is within a factor of two of the total event arrival rate. In our implementation, we take Pi,j

proportional to (_i,j, with an adjustment to ensure Pi,j >_ 1. We found that heuristics determining Pi,j as

linear functions of the link capacity capi.j and the offered call arrival rate _i.j performed nearly as well.

i It turns out that the node-pair computations involve parallel prefix [9] computations, which can exploit =_-locality within the interconnection network of the parallel processor. All other communications patterns are

essentially balanced, random patterns.

5.2 A Single Iteration

In this section, we describe the individual node-pair computations that make up a single iteration of the

sweep algorithm.

i i
10 i

! -_ j

At thestartof eachiteration,thesetofofferedeventsconsistsof

• all deparlures that fall in the window (corresponding to calls accepted before the start of the window),

and

• all dired-arrivals and via-arrivals that (i) fall within the window and (ii) were not rejected at an earlier

iteration.

The structure of the computation is simple. As described in the previous section, the events offered to each

node-pair {i,j} are distributed across Pid processors, so that each processor is responsible for a unique

node-pair over a unique subwindow. At each iteration, each processor takes as input

• a local lower bound f--1 on the number of free trunks available at the start of its subwindow,

• a local upper bound fl on the number of free trunks available at the at the start of its subwindow,

• and its list of events offered within the subwindow.

In the course of the iteration, each processor scans its list of events in chronological order. On scanning its

k th event, the processor computes local lower and upper bounds]'k+l and fk+l on the actual number of free

trunks fk+l available just before the next event. In addition, if the k th event is a direcl-arrivalor via-arrival

then the processor may locally update the event's state and may remotely update the states of the two other

arrival events associated with the same call, where the updates depend in part on --fk and]k. At the end

of the iteration, a parallel prefix computation [9] is carried out that determines new local lower and upper

bounds fl and fl for the next iteration. The events offered at the next iteration are those that have not

been rejected at this or any earlier iteration.

First, let us consider the computation of the bounds fk and fk. Consider a processor dedicated to node-

pair {i,j}, having trunk reservation parameter r = rid. m via-arrival is needed if the corresponding call

cannot be carried on the direct path. By construction, each accepted via-arrivalis needed, but a via-arrwal

in any other state may or may not be needed--at this point we don't know. As a result, in general we cannot

compute the fk exactly, as the k th event is scanned. However, by assuming that all via-arrivals are needed

we obtain a lower bound f--k < fk, and by assuming all that have not been accepted are not needed we obtain

an upper bound fk -> fk:

L = (1)

= (2)

11

!

)
)

i

i

!

!

|

i

=

I

i
|

m

i

where (z) + denotes max{z, 01 and

/'-1_ =

0

/1-1
0

if the k th event is a departure

if (f___> 1 and the k th event is a direct-arrival)

or (fk -> v and the k th event is a via-arrival)

otherwise

if the k th event is a departure

if f-k > 1 and the k th event is a direct-arrival

or an accepted via-arrival

otherwise

(3)

(4)

Consider the three node network example of Figure 2. For link {b, c} (having reservation parameter r = 0),

the events initially offered within the window and the corresponding lower and upper bounds are

index k 1 2 3 4

event type D V A V

7k o I I o

-fk 0 I o 0

The two via-arrivals (V) are associated with the two calls offered to link {a,b} within the window. The

uncertainty as to whether the first via-arrival is needed leads to the gap between f-.3 and 73.

Using the bounds, we obtain the following rule for the feasibility of the k th event:

feasible not feasible

direct-arrival f k > 0 -f _ = 0

via-arrival f _ > r "-fk < r

On scanning its k th event the processor may locally update the event's state and the states of the two other

arrival events _sociated with the same call. Figures 4 and 5 describe these updates in complete detail. (To

obtain a simple and regular layout of the state transition diagrams, we include transitions out of final states;

these do not occur in the implementation.) The rules are rather transparent. An event's state is just a finite

memory that keeps track of the feasibility (yes, no, or ?) of the event on the link at which it is offered, and

the feasibility of the two other events associated with the same call. For direct-arrivals, two components

of this memory are Collapsed to one, by an "and;" we need only determine whether both of the associated

via-arrivals are feasible.

Figure 3 describes the operation of the sweep algorithm on the three node network example of Figure 2,

assuming that each of the three node-pairs is assigned to a different processor. In this case, nothing is needed

following an iteration to reinitialize the local bounds -fl and 71; these retain Lheir initial values, namely, the

number of calls in progress at the start of the window. Note that in this network each link's reservation

parameter r is 0. We assume tha_ the processors operate in lockstep, as in a SIMD architecture. At the n th

12

List of events on each node-pair:

node-pair Events

{a,b} A4 D5 V_ A7

{b,c} Da V2 As V72

{a,c} D1 02 V_ V_ V7a

Description of the iterations:

Step 1 y f
b,b} 0 o

{b,c} 0 0

{a,c} 0 0

Step 2

(a,b} 0 0
{b,c} 1 1

{a,c} 1 1

Step 3

{a,b} 1 1

{b,c} 1 0

iteration 1

Local Updates

A4 (no,?)

D3

D1

Remote Updates

Y2 (no, ?, 7)
v:(.o, ?, ?)

05

V_ (no,yes,?) V42 (no,?,yes)

D2

V 1 (?,yes,?)

A6 (?,?)

{a,c} 2 2 V42 (no,yes,yes)

Step 4

{a,b} 1 0 A7(?,?)

{b,¢} 0 0 V¢ (?,no,?)

{a,c} 1 1 V62 (?,yes,yes)

Step 5

{a,b}
{b,c}
{a,c} 1 0 V71 (?,?,no)

Vd (?,?,yes)

V_ (no,yes,yes)

A4 (no,yes)

A7 (?,no)

V 2 (?,yes,yes)

A6 (?,yes)

iteration 2

_f , Local Updates

0 0 A4 (no,yes)

0 0 D3

0 0 D1

0 0 Ds

1 1 V41 (no,yes,yes)

1 1 D2

1 1 V1 (?,yes,yes)

0 0 A6 (no,yes)

1 1 V_ (no,yes,yes)

0 0 A7 (no,no)

0 0 V72 (no,no,?)

1 1 V_ (no,yes,yes)

0 0 V1 (no,no,no)

Remote Updates

!/61 (no,yes,yes)

V_ (no,yes,yes)

V7_ (no,no,?)

V_ (no,?,no)

Figure 3: Sweep algorithm applied to the 3 node network example discussed earlier. Calls are numbered

from 1 to 7 in chronological order of their arrival times. A, D, and V represent direct-arrival, via-arrival,

and departure events, respectively. Subscripts identify the calls. Superscripts 1 and 2 distinguish the two

via-arrivals associated with the same call. One processor is assigned to each node-pair. At step n ,the n th

event on each node-pair is processed, as functions of the bounds f, and f__, triggering local and remote

updates. In the local update column, at each step, the state of a direet-arrivalor via-arrival is shown, even

if no change is made.

13

stepof eachiteration,eachscansits n th event. A rejected event is left in the list, and skipped during the

sweep; that is, a processor scanning such an event just drops out for the current step. It turns out that the

simulation of the window [s, t) converges after two iterations.

To be sure this example is clear, let us walk through the first three steps of the first iteration. We will only

describe actions taken on processing direct-arrivals and via-arrivals. Departures trigger increments to the f {
- t

and 7 but no state updates. Let P(a, b), P(a, c), and P(b, c) denote the processors assigned to node-pairs t

{a, b}, {a, c}, and {b, c}, respectively.

At the first step, processor P(a, b) scans the direct-arrival event A4 (and simultaneously, P(b, c) scans

" D3 and P(a,c) scans D1). As the upper bound on the number of free trunks 71 < r = 0, A4 is found to be

infeasible. Accordingly, the state of A4 is updated from its initial value (?,?) to (no,?), and the states of the
1

! corresponding via-arrivals V4x and V_ on node-pairs {b, c} and {a, c} are both updated to (no,?,?). At the
i
i
{ second step, processor P(b, c) scans via-arrival V4I. As]'2 > r = 0, we find that 1/41 is feasible. Its state is

' updated from (no,?,?) to (no,yes,?) and the state of its counterpart V42 is updated to (no,?,yes). l
.: J

Last, consider the third step. Processor P(a, b) scans via-arrival V_. As [-3 > r = 0, we know the event

is feasible, and so the processor updates its state from (?,?,?) to (?,yes,?), and updates the state of its

= counterpart V_ to (?,?,yes). Processor P(b, c) scans the direct-arrivalA6. The bounds f--3 = 0 and 73 > 0 do '
2 "."
I

not decide feasibility, so no updates are made. Processor P(a, c) scans the via-arrival V_. Since 73 > r = 0 !
| .*

_ the event is feasible. As a result, processor P(a, c) updates the event's state from (no,?,yes) to (no,yes,yes), -'

| and updates the state of A4 to (no,yes), and V41 to (no,yes,yes). At this point, the three events associated '
- |

i with the arrival of call 4 are in final states: A4 is rejected, and both V41 and V_ are accepted, meaning the i{
call is carried on its alternate route. !

i It remains only to describe how to initialize the local lower and upper bound computations for the i

i

• next iteration, when more than one processor is assigned to a node-pair. Let us consider the lower bound; '

: _he_pperb___dishand_edana__g_us_y.F___s__n_de-pair{i_j}_wi_heven_sdi__ributeda_r_ssP=Pij {

processors, which we number 1,2,..., P. Let n(k) denote the number of events that map to the k th processor. I

i As consecutive processors hold the events of consecutive subwindows, we can think of all the events offered

to the node-pair asdistributed across the processors in chronological order in a single list of n = _ n(k)

i events. To compute the lower bound on the number of free trunks before the t th event, for any t = 1 to n,

we need only solve recurrence

ft = (ft I -{-x-t-I)+ (5)

' {
, {

Transitions Taken on Remote Updates

I
direct-feasible = yes [

Ialternate-feasible = yes

¢
I feas.
I
I
I

direct-feasible =yes

altemate-feasible = ?
!

I
I
i not feas.

direct-feasible = yes

altemate-feasible = no

direct-feasible =7

alternate-feasible = yes

! feas.
I
!
I

direct-feasible = ?

alternate-feasible = ?
!

!
!
! not leas.

direct-feasible = ?

alternate-feasible = no I I

I
direct-feasible = no [

Ialternate-feasible = yes

I feas.
I
I
I

direct-feasible =no

altemate-feasible = ?
!

!
!
! not feas.

direct-feasible = no

alternate-feasible = no

leas.
Both via-arrivalsare

are feasible.

not feas.
At least one of the via-arrivals

is not feasible.

direct-feasible = yes

alternate-feasible = yes

Transitions Taken on Local Updates

not

direct-feasible = ?
alternate-feasible = yes I I

I
direct-feasible = no [

Ialternate-feasible = yes

l
direct-feasible = yes
alternate-feasible = ?

I not I
direct-feasible = ? [feas.*_
alternate-feasible = ? direct-feasible =no [alternate-feasible =7

direct-feasible =yes __altemate-feasible =no

not

direct-feasible = ?

V---qalternate-feasible = no

I
direct-feasible = no [

Ialternate-feasible = no

feas. ** The direct-arrival is not feas. *
g,, = feasible. (Do a

"feas." remote update

tobothvia-arrivals.)

The direct-arrival is not

feasible. (Do a

"not feas." remote update

to both via-arrivals.)

Figure 4: State transition diagram for a direct-arrival event. The via-arrivals mentioned in the figure are

the two associated with the same call.

15

Transitions Taken on Remote Updates

direct-feasible = yes

locally-feasible = X

other via-feasible = yes

A
t
! leas.
I

direct-feasible = yes

locally-feasible = X

other via-feasible = ?

|

!
0 not feas.
¥

direct-feasible = yes

locally-feasible = X

other via-feasible = no

feas. Th_e o__er via- arrival

is feasible.

not leas. The other via-arrival is
lu m _DID

not feasible.

_eas.

feas.

leas.

direct-feasible = 9.

locally-feasible = X

other via-feasible = yes

A
!
o feas.

direct-feasible = ?

locally-feasible -- X

other via-feasible = ?

I

!
I not feas.
v

direct-feasible = ?

locally-feasible = X

other via-feasible = no

not feas.

feas. __ T'o._edirect-arrival is

feasible.

not feas. The direct-arrival is

not feasible.

Transitions Taken on Local Updates

direct-feasible = Y

locally-feasible = yes

other via-feasible = ?

T feas. **

direct-feasible = Y

locally-feasible = ?

other via-feasible = 9.

not feas. *

direct-feasible = Y

locally-feasible = no

direct-feasible = Y

locally-feasible = yes

other via-feasible = yes

I feas. ***

direct-feasible =Y

locally-feasible = ?

other via-feasible =yes

not leas. *

direct-feasible = Y

locally-feasible = no

direct-feasible = no

locally-feasible -- X

other via-feasible = yes

A
I
I leas.
I

direct-feasible = no

locally-feasible = X

other via-feasible = ?

I not leas.
¥

direct-feasible = no

locally-feasible = X

other via-feasible = no

(X = yes, no or ?)

direct-feasible = Y

locally-feasible = yes

other via-feasible = no

Tfeas
direct-feasible = Y

locally-feasible = ?

other via-feasible = no

not feas. *

direct-feasible = Y

locally-feasible = no

other via-feasible = yes other via-feasible = ? other via-feasible = no __

feas. *** This via-arrival is feasible, feas. This via-arrival is

= (Do a 'feas,*' remote update to the ._ = feasible. (No remote

other via-arrival and the direct-arrival.) update.) (Y = yes, no or ?)

feas. ** This via-arrival is not feas. * This via-arrival is

= feasible. (Do a "leas." _ = not feasible. (Do a "not feas."

remote update to the other via-arrival.) remote update to the other via-arrival

and to the direct-arrival.)

Figure 5: State trans[ti6n diagram for a via.abrivdlevent. Each half of the Figure encodes three pictures,
v ?obtained by arying X or 3(through {yes, n0,-i)i The other via-arrival and the direct-arrival mentioned in

the figure are the two other arrival events associated lv_ith_the same call.

i

for t = 1 to n, using the values z_ computed as described earlier, considered in this new order. The value

= Y'_t=x n(k), that is, theneeded to initialize the next iteration for the k th processor is J'_(k)' where s(k) k-1

lower bound on the number of free trunks available after the last event of the previous processor.

Solving (5) reduces to parallel prefix computation [9]. Given inputs Zl, ..., zn, and an associative operator

o, the parallel prefix problem is to compute the n partial products: Zl, Zl o z2, ..., zl o z2 o... o zn. To put

(5) in this form, we recast it as a matrix recurrence in the semiring where max is the addition operator with

identity -ee and + is the multiplication operator with identity 0. Under this interpretation, the distributive

law is a + max{b, c} = max{a + b, a + c}, and (5) is expressible as

v_ = M,v__l (6)

where

and the usual rules of vector and matrix multiplication apply but with scalar addition and multiplication

taken to be max and +, respectively. Telescoping (6) we obtain

v_ = MtMt-1... M_vl.

Hence to compute the -ft' it suffices to:

1. solve the parallel prefix problem of computing the partial matrix products M_ = M2, M_ = MaM2,

..., M" = M,_M,,_I...M2

2. compute vt = M[vl, for t = 1 to n.

The first step dominates the computational cost. Kruskal et al. [8] show that on a shared memory

model, it is possible to solve the parallel prefix problem in O(log n) time using O(n/log n) processors. Their

algorithm is easily adapted to the situation at hand, where the n inputs are distributed across P processors.

Taking into account that the distribution of events is random, it can be shown that the computational cost

is O(ai,j/P + log P) with high probability where aij (defined in Section 5.1) is the rate at which node-pair

{i, j} receives events. If P = Pi,j is taken proportional to ai,j the time becomes O(log P).

5.3 Adaptations for a MIMD Implementation

The implementation just described is well-suited for SIMD architectures, and we refer to it as the SIMD im-

plementation. The sweep algorithm has also been implemented on a MIMD architecture, the Intel iPSC/860

17

(whichis identicalto theiPSC/2[1],exceptit isbasedonthei860processor).Thereareonlytwosignificant

differencesbetweentheMIMD andSIMDimplementations:themappingof node-pairsto processors,and

thehandlingof interprocessorcommunication.Eachof theseisdescribedin turnbelow.

TheMIMD versionmapsmultiplenode-pairsto eachprocessor.Thus,agivennode-pair'seventsare

alwaysall on thesameprocessor.Weaccepta node-pair'scallarrivalrateasa reasonableestimateof the

node-pair'sworkload,andthenviewthemappingproblemasidenticaltoamultiprocessorschedulingproblem

whereweseektominimizethemakespanofasetofindependent,non-preemptabletasks.Ourimplementation

usesaminorvariationofthewell-knownlongest processing time first list scheduling algorithm, first analyzed

in [6]. We order the node-pairs in decreasing order of arrival rate, then step through the list assigning the

next node-pair to the most lightly loaded processor. Our variation (included to balance memory utilization)

limits a processor to no more than 2N/P node-pairs. On the scenarios studied with 16 and 32 processors,

the processors received very nearly identical numbers of node-pairs. Observe that this algorithm makes no

explicit attempt to balance communication, an issue that could become important on larger MIMD machines

such as the Intel Touchstone Delta[10].

To initialize the simulation of a window starting at time s, the processors first determine the maximal

span of the window Is, t). A simple iterative procedure whose cost is negligible suffices. Next, each processor

builds an event list representing all call arrivals and departures within the window Is, t), for each of its

assigned node-pairs.

In the SIMD version, one processor communicates with the other by directly modifying the other's state

information. Our MIMD version assumes no such capability. Node-pairs communicate with each other using

messages, even if the communicating node-pairs are assigned to the same processor. An identifier is associated

with every new call arrival. The identifier is passed to the associated via node-pairs, and serves to uniquely

identify the call arrival on its node-pair, or a via arrival on its node-pair. During window initialization a

binary search tree is constructed for each node-pair, recording the identifiers for all its call and via arrival

events. Presented a with message, a processor probes the appropriate search tree to find the event receiving

the communication.

Our message-passing strategy attempts to minimize the number of message startup costs, by amortizing

a startup cost over as long a message as possible. Towards this end, any time our MIMD algorithm generates

a message between node-pairs on different processors, that message is actually buffered internally until all

node-pairs have been swept over. All messages destined for a given processor i are stored in a contiguous

18

bufferastheyaregenerated.A messagesentby onenode-pairto anotheron thesameprocessoris not

buffered,ratherit is "received"immediately.Interprocessorcommunicationis performedin twosteps.

Processorsnotifyeachotherof thelengthsofmessagesabouttobesent,whichallowseachprocessorto pre-

allocatethebufferspaceintowhichthemessageswill beread(withoutthisstepanunanticipatedmessage

mustbeacceptedin systemspace,andthencopiedto userspacewhenrequested).Followinga global

synchronization,theaggregatemessagesaresent,oneperprocessor,to eachprocessor.Whilethisstrategy

doesamortizestartupsandminimizememory-to-memorycopying,it doesnot utilizethecommunication

networkbandwidthparticularlywell. Our strategyis finewhenthe numberof processorsis moderate

(_ 16),sothat thecomputation/communicationratioishigh.Forlargernumbersof processorsoneought

to adoptastrategyofsendingsmallermessagesmorefrequently,inaneffectto reducecontentionandbetter

usethecommunicationnetwork.

6 Experiments

Next we present the results of experiments performed on symmetric and asymmetric networks, on both the

MasPar MP-1 and Intel iPSC/860.

6.1 SIMD

There are a number of different performance issues we might examine in the SIMD version. The first of

these is scalability--does overall performance increase as the problem size and architecture size grows? The

table below records the estimated number of calls processed per minute, as a function of the number of

processors used, and the number of nodes in a symmetric network. 1 Each link is assumed to have 200

trunks, an arrival rate of 210 erlangs, and 5 reserved trunks. We have observed that performance is weakest

in this situation where the ratio of arrival rate to capacity is close to 1. The table shows that the problem

is naturally massively parallel. Nearly three million calls are processed each minute on the largest problem,

on the largest architecture.

1 To convert to events processed per minute--the actual measurement, multiply each number by 4 (one arrival, 2 via arrivals,

1 departure).

19

o
i

m

0 2 4 6 8

of events per window

Figure 6: ttistogram plotting the number of events per window per processor for a 50 node subnetwork of the

114 node network of the fiber cut scenario, with C = 0.2. Low variance proves the quality of the partitioning.

2

Processors

1,000

2,000

5,000

10,000

15,000

Number of Calls Simulated per Minute

10 nodes

(_ 10,000 trunks)

147,720

213,720

284,880

330,300

337,680

32 nodes

(_ 100,000 trunks)

306,840

458,880

779,340

1,124,400

1,368,600

100 nodes

(_ 1,000,000 trunks)

1,114,560

2,348,520

2,964,600

The partitioning of processors among the node-pairs is done using the arrival rate and routing parameters

as described inSection5.1. This choice is validated bythe histogram in figure(6.1), which depicts the observed

number of events per window per processor. The quality of the partitioning is inferred from the low variance

in the histogram.

i A key ingredient for top performance is the use of a small constant C in the call holding time. However,

does the constant appreciably alter network performance statistics? It appears that the answer is no. The

next table gives network and performance statistics as a function of C, on the realistic fiber cut scenario
u.

where the parameters are based on the AT&T network. First, observe that network statistics (average

percentage calls rerouted, blocked) are relatively insensitive to C (the C = 0.05 statistics are nearly identical

to C = 0 statistics measured on a different implementation). Now consider performance. An "iteration"

comprises one scan through the offered events, as described in Section 5.2. Two natural metrics are the

i

2

2O

averagenumbersof eventsprocessedperwindow,andtheaverageiterationsrequiredto bringa windowto

converge.However,notethat asC increases, the latter average increases. This comes as no surprise, as the

total number of events in the window increases in C. A normalized metric is to measure the iterations per

event; the lower that number, the lower the per-event cost of simulation. Finally, we are also interested in

the raw number of calls processed per minute.

C

0.05 3.36

0.1 3.37

0.2 3.39

0.3 3.42

0.4 3.43

% rerouted % blocked events/window iterations/window iterations / event calts/min

7.46

7.48

7.50

7.62

7.70

104,367

215,944

413,316

620,005

826,148

7.24

8.81

10.62

12.35

13.16

7.01 10 -s

4.15 10 -s

2.57 10 -s

1.99 10 -s

1.59 10 -s

1.22M

1.51M

2.0M

1.98M

1.97M

We see that the percentage of blocked calls varies in a range of 2 % while the speed of the simulation

varies in a range of 40 %. For C = 0.2, where the performance peaks, the variation in the percentages of

blocked and rerouted calls over C = .05 is very smalll There is much to be gained performance-wise from a

substantial C, with little cost to accuracy. As further evidence of insensitivity to C, Figure (6.1) compares

the blocking statistics for a C = 0.05 run, and a C = 0.4 run. For each node-pair with arrival rate > 100

erlangs, we plot a point (x, y) where x is the node-pair's measured blocking frequency for C = 0.05, and y

is the corresponding statistic for C = 0.4. (Limiting the data to node-pairs with arrival rates of at least 100

erlangs removes the Monte Carlo error; node-pairs with fewer erlangs may have received few arrivals in the

runs from which the data was collected.) Insensitivity to C is observed by noting that most points lie on the

diagonal, i.e., z _ y.

Another important performance factor is the ratio of a node-pair's arrival rate to its capacity. When

there is imbalance between the two, the computation for the node-pair quickly discovers it is able to accept,

or able to reject its calls. This is reflected in relatively smaller numbers of iterations required per window

for the computation to converge. As shown in Figure 8 more iterations are required when the arrival rate

and capacity are close to each other.

We found no one part of the computation crops up as a bottleneck. Only about 25% of the time is spent

on interprocessor communications. The number of events processed per window is large and the number

of iterations needed per window to converge is small. In absolute terms, on the realistic fiber cut scenario,

using C = 0.2 we achieve eight million events/minute, equivalently, two million calls / minute. A useful run

requires about 20 million calls to be simulated, which we an achieve in a few minutes. As discussed below,

21

O

I!

¢D

OD

¢.D

O

,,@

d

O

O

O
I I i !

0.0 0.2 0.4 0.6 0.8

Blocking, C = 0.05

Figure 7:114 node fiber cut. scenario; measured blocking frequencies for node-pairs with arrival rates at least

100 erlangs.

i

!

!

|
|

|i
=_

i

C

.9

"6

E
¢-

9

8

7

6

5

4 o o

o

o o

o

0
o

0

0 o

o

0

! | ! i

0.50 1.00 2.00 4.00

arrival rate in erlangs / capacity

Figure 8: Variati0n of tile number of iterations with the ratio rate of arrival / capacity, measured in the

simulation of a 50 node symmetric network.

22

it appearsthat this is abouttentimesfasterthananoptimizedserialsinmlationrunningona powerful

workstationwithmemorylargeenoughto retainthesimulationin core.

6.2 MIMD Performance

Manyof theperformancemetricsexaminedin theSIMDcasereflecteventdensitiesandsweepcounts.Such

metricsare(forthemostpart)notarchitecturedependent,andsoareveryclosein bothSIMDandMIMD

versions.Theprincipledifferencebetweentheversionsis theeventprocessingrate,whichweexaminebelow.

In theSIMDcaseweobservethat rawperformanceincreasesonsymmetricnetworksasthesizeof the

problemandthenumberof processorschanges.ThecorrespondingdatafortheMIMDversion(onthesame

simulations)isgivenbelow.Emptyentriescouldnotbefilledowingto memoryexhaustion.

Processors
1
2
4
8
16

NumberofCallsSimulatedperSecond
10nodes 32nodes 100nodes

(_ 10,000trunks) (._ 100,000trunks)(_ 1,000,000trunks)
96,935

163,495
244,909
281,703
228,999

172,312
324,755
570,376
953,646 1,570,680

LiketheSIMDversion,weobserveincreasingcallprocessingratesasbothproblemsizeandnumberof

processorsincreases.

Wealsoconsideredtheperformanceof theasymmetricAT&T networkexample.Herewemeasure

variousmetricsasa functionof C. Utilization generally measures the fraction of time a processor spends

doing "useful" work, which is measured in this case as the time not spent in inter-processor synchronization

and message passing.

C

0.0 3,966

0.01 25,000

0.05 110,715

0.1 217,695

0.2 431,892

events/window iterations/window iterations/event calls/rain utilization

4.56

6.58

12.03

22.93

46.34

1.2510 -3

2.510 -4

1.110 -4

1.0510 -4

1.0510 -4

0.63M

1.20M

1.22M

0.98M

0.73M

75%

83%

87%

88%

89%

The table above exhibits a curious anomaly. We see that the event processing rate increases in C for a

time, then drops off. At the same time the processor utilization does not diminish. We hypothesize that the

phenomenon is due to the behavior of the binary search tree routines used in message passing. These trees are

probed both for interprocessor messages, and intraprocessor messages; as C changes the relative proportion

23

!

x

|

of interprocessor to intraprocessor messages remains constant. The time spent handling an interprocessor

message is counted as overhead, whereas the time spent handling a intraprocessor message is not (the coarse

resolution of the timer disallows a more uniform treatment). However, since the window size grows, the

number of messages in the search trees grows, thereby increasing the cost of the probe. This may explain

why raw performance turns down, while the relative fraction of on-processor to off-processor related work

does not.

The data presented here shows that a 16 processor iPSC/860 can deliver over a million calls per minute on

the AT&T example. Compared to an ordinary workstation, this is excellent. An optimized serial simulation

of the AT&T network, running on an ordinary Spare workstation, required over 8 hours running time to

simulate 10M calls . Most of this was due to handling page faults; the problem needs a very large memory

(and of course, one of the advantages of parallel architectures is the enlarged memory space). However, one

does wonder how fast an optimized serial implementation would execute on an i860 based processor with

sufficient memory. While we have not answered that particular question, we have measured the execution

rate of a large optimized network simulation on one iPSC/860 node to be 0.2M calls/rain. One expects that

simulation to process calls faster than on the full AT&T problem, as its event list management costs are

somewhat lower. If we use this rate as a serial baseline, we see that our parallel AT&T code achieves a

speedup of at least six. In reviewing this data, one should remember two things. First, that our algorithm

provides a way to exploit the larger memory of a distributed memory machine; on the order of 128 Mbytes

are needed to simulate our largest example. Secondly, our algorithm requires more computation than an

optimized serial version. This is the price we pay to exploit parallelism.

7 Concluding Remarks

The massive parallelism of SIMD architectures offers significant computational advantages for large prob-

lems. However, one of the real challenges of SIMD parallelism is to find algorithms that effectively exploit

parallelism within the SIMD paradigm. This paper develops a new SIMD algorithm for the discrete-event

simulation of circuit switched networks. Our algorithm introduces two innovations. Using the notion of

sweeps, we straddle the gap between optimistic and conservative parallel simulation methods, showing how

one can compute events out-of-order, and yet never commit to an event in error. The second innovation is

in showing how to effectively distribute the workload of a highly heterogeneous network model.

An SIMD version algorithm we propose was implemented on a MasPar MP-1, and a MIMD version on

24

theIntel iPSC/860.Theformerarchitectureusing16Kprocessorsis ableto simulateasmanyasthree

millioncallsperminute,the latter (using16processors)cansimulateat halfthat rate. Theseprocessing

ratesareanorderof magnitudefasterthanwhatonecouldexpectfromanoptimizedserialimplementation

runningonai860-basedprocessorwithhugememory.Giventhatrunningtimesof realisticsimulationsare

oftenmeasuredinhours,ouralgorithmsoffertheabilityto simulatelargermodels,faster,thanis nowthe

practice.

|

J

References

#

i
i

i

|
|

[1] L. Bomans and D. Roose. Benchmarking the iPSC/2 hypercube multiprocessor. Concurrency: Practice

and Experience, 1(1):3-18, September 1989.

[2] S. Eick, A.G. Greenberg, B.D. Lubachevsky, and A. Weiss. Synchronous relaxation for parallel simula-

tions with applications to circuit-switched networks. In Proceedings of the 1991 SCS Multiconference,

Simulation Series; vol. 23, no. 1, pages 151-162. SCS, 1991.

[3] S. Eick, A.G. Greenberg, B.D. Lubachevsky, and A. Weiss. Synchronous relaxation for parallel simula-

tions with applications to circuit-switched networks. To appear in ACM Transactions on Modeling and

Computer Simulation, 1992.

[4] T. Feder, A.G. Greenberg, M. Rausch, V. Ramachandran, and L.-C. Wang. Complexity of the telephone

connect problem. To be submitted to Information and Computation.

[5] R.M. Fujimoto. Parallel discrete event simulation. Communications of the ACM, 33(10):31-53, 1991.

[6] R.L. Graham. Bounds on multiprocessing timing anomalies. SlAM]. Appl. Math., 17(2):416-419,

March 1969.

[7] F.P. Kelly. Loss networks. The Annals of Applied Probability, 1(3):319-378, August 1991.

[8] C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix. IEEE Transactions on Computers,

C-34(10), October 1985.

[9] R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of the ACM, 27:831-838, 1980.

[10] Sigurd L. Lillevik. The Touchstone 30 gigaflop DELTA prototype. In Distributed Memory Computer

Conference 91, pages 671-677. IEEE PRESS, April 1991. The Paragon is not discussed.

[11] A.G. Greenberg B.D. Lubaehevsky and L.-C. Wang. A synchronous relaxation method for massively

parallel discrete simulation of circuit-switched networks. To be submitted to ACM Transactions on

Modeling and Computer Simulation.

[12] R.B. Wolf. Advanced techniques for managing telecommunications networks. IEEE Communications

Magazine, 28(2):76-81, October 1990.

26

|

l

!

1

z

l

Form ApprovedREPORT DOCUMENTATION PAGE oMg,vo, o7o4-o,8s

:'vbhC .eoort,,'g burae_ _or !h,_ :c_e::lon =:' _for_'a_on :s PStF_a_Pd_C_eracje : hour oer -es_rse nc _dl_g the _ t_e for ev4ew,ng instructions _ea_ch ng e=_t=ng aata sources.
gathering _nd _a_tal_lnQ th, =_a_a _e.ecIe_, ard c_.mo_et_ 3"_ t_'_ev_ _.] '.he :oi]ecI,_on of infor_nal_on ¢_end_ommen_s tegatd,r,_ th,$ burden estimate or any 3_ner a_oe_ of thp_
¢ckiecI_on of _nforma_c=r ,nc;udln_ su_E.sl_On_ _O_re(=ur_n_ _h.Sb_raen tc Cva_nmg_on ,_ea(_auar_e?_Services, Dlreclorate for nfo_rnal_on Op_ratlon_ and ReD.r%, 121S _eHerson
[_awsN_'wa_, Suite 204 _,_-_g_3r, _- 222_2-*_]C2 ar_atc_=O*f_.e.z,_Manacem?_-tandBuo,3e paDerworv, Redudo_Prc_eci(O7G4.018B),Washlngton, DC 2050]

1. AGENCY USE ONLY (Leave blank) i 2. REPORT D_TE 3. REPORT TYPE AND DATES COVERED

! July 1992 _ontractor _p_rt
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A SWEEP ALGORITHM FOR MASSIVELY PARALLEL SIMULATION C NASI-18605

OF CIRCUIT-SWITCHED NETWORKS NASI-19480

6. AUTHOR(S)

Bruno GauJal

Albert G. Greenberg

David M. Nicol

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

!9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 92-30

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-189680

ICASE Report No. 92-30

It. SUPPLEMENTARYNOTES

Langley Technical Monltor: Michael F.

Final Report

Card Submitted to Journal of Parallel

and Distributed Computing

12a. DISTRIBUTION/AVAILABILtTY STATEMENT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum200words)

A new masslvely parallel algorithm is presented for simulating large asy_metrlc

circuit-swltched networks, controlled by a randomlzed-routing policy that includes

trunk-reservatlon. A single instruction multiple data (SI_) implementation is

described and corresponding experiments on a 16384 processor MasPar parallel com-

puter are reported. A multiple instruction multiple data (MIMD) implementation Is

also described and corresponding experiments on an Intel IPSC/860 parallel computer,

using 16 processors, are reported. By exploiting parallelism, our algorithm in-

creases the possible execution rate of such complex simulations by as much as an
order of magnitude.

14. SUBJECTTERMS

simulation; networks; parallel processing; SIMD algorithms

m,
17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE
Unclassified Unclassified

N5N 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

28
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
_rescr_i:)ed by _,N_I r_td Z]9-_8
298-102

NASA-Langley, 1992

