16 Y5

NASA Contractor Report 189680
ICASE Report No. 92-30 // >

ICASE

A SWEEP ALGORITHM FOR MASSIVELY PARALLEL
SIMULATION OF CIRCUIT-SWITCHED NETWORKS

Bruno Gaujal

Albert G. Greenberg A
David M. Nicol N w3
™ o <
I - 0
N ¥ -
o c ~
z > o
4
0
~
3
Contract Nos. NAS1-18605 and NAS1-19480 T
July 1992 Z
&
o
Institute for Computer Applications in Science and Engineering S
NASA Langley Research Center <
Hampton, Virginia 23665-5225 %
x
Operated by the Universities Space Research Association v a
< o
N

NASAN

National Aeronautics and
Space Administration

(ICASE)

Langley Research Center
Hampton, Virginia 23665-5225

FOR MASSIVELY PARALLEL SIMULATION
OF CIRCUIT-SWITCHED NETWORKS Final

(NASA-CR-189680)

Report

Ll

}

A SWEEP ALGORITHM FOR MASSIVELY PARALLEL
SIMULATION OF CIRCUIT-SWITCHED NETWORKS

Bruno Gaujal
Rutgers University, Dimacs Center
and AT&T Bell Laboratories

Albert G. Greenberg
AT&T Bell Laboratories

and

David M. Nicol'
College of William and Mary

ABSTRACT

A new massively parallel algorithm is presented for simulating large asymmetric circuit-
switched networks, controlled by a randomized-routing policy that includes trunk-reservation.
A single instruction multiple data (SIMD) implementation is described and corresponding
experiments on a 16384 processor MasPar parallel computer are reported. A multipleinstruc-
tion multiple data (MIMD) implementation is also described and corresponding experiments
on an Intel IPSC/860 parallel computer, using 16 processors, are reported. By exploiting
parallelism, our algorithm increases the possible execution rate of such complex simulations

by as much as an order of magnitude.

TResearch was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NAS1-18605 and NAS1-19480 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
Research was also supported in part by NASA grants NAG-1-1060, NAG-1-995, NSF Grants ASC 8819373
and CCR-9201195, and was initiated during a visit to AT&T Bell Laboratories.

O T AR T S AR IO O

Hift - PTSPTT eT ™t Ty T

1 Introduction

Discrete event simulation is an indispensable tool for the design and analysis of large telecommunication
systems [12]. Unfortunately, such simulations present a very large computational burden; the execution
duration of a typical simulation run is often measured in hours. In this paper we consider the problem of call
by call simulation of large circuit-switched networks controlled by a simple state dependent, randomized-
routing policy. We present a new massively parallel simulation method for such networks, and discuss
the algorithm’s implementation and performance on SIMD (single instruction multiple data) and MIMD
(multiple instruction multiple data) parallel machines. QOur algorithm executes an order of magnitude faster
on these machines than can be expected from an optimized serial simulation, on a workstation with a
tremendously large memory.

Without loss of generality, we consider completely connected circuit-switched networks having N nodes
and N(N — 1)/2 bi-directional links. A call between a node-pair is either accepted and routed along a path
connecting the node-pair, or blocked (i.e., rejected and lost). A link’s capacity is counted in trunks, equal to
the number of calls that the link can simultaneously carry. If accepted, the call simultaneously seizes a single
trunk from each link of its route at the time that the call arrives, and simultaneously releases these trunks at
the time that the call finishes. Typical parameters for a large network, such as the AT&T circuit-switched
network, are N ~ 100, with almost all of the ~ 5000 links having non-zero capacity, and a total of = 1
million trunks. (We will use the AT&T network as a guide for constructing realistic simulation scenarios.
However, the routing policy we consider is different, being far simpler, than the policy used in the AT&T
network.)

Call routing involves alternate-routing and {runk-reservation mechanisms [7]. Alternate-routing allows

for the sharing of excess capacity:
e A call between a node-pair {4, j} is accepted on link {7, j} if that link is not full to capacity.

e Otherwise, a third node v, termed the wviq, is selected, and the call is accepted on the two link path

{1, v}, {v,j}, if both links are not reserved.

e Otherwise, the call is blocked.

Under randomized-routing, the choice of via v is made by independent sampling from a probability distri-
bution over the N — 2 possibilities, which may depend on the parameters of node-pair {i,j}, but not on

the network state describing the calls in progress. Thus, whether or not the call is offered to an alternate

PRI W SA—.—

|

R

L bl

I 11 S

TP T T W ™ g

1001 JNBIwheR:d

two-link path depends on the network state, but the choice of path does not. As mentioned in Section 2,
randomized-routing can be adapted to approximate more complex routing policies where the choice of via
node is state dependent.

Roughly, the function of trunk-reservation is to put a link into a “reserved” state when the number of
calls holding on the link nears the link’s capacity. While in the reserved state the link can be used only
to carry only calls between its endpoints. This simple control is remarkably effective [7] in steering the
network away from scenarios where the netwofk blocking becomes unreasonably high because calls routed
on multilink”paitr.hs consume capacity that might otherwise be used to carry a larger number of calls routed
on single lini(paths;

A key difficulty in the design of a massiyely parallel simulation of the network is coping with asymmetries.
In realistic networks, the call arrival rates may vary by three orders of magnitude over the node-pairs.
Similarly, the link capacities may vary widely. On the other hand, general purpose parallel computers are
typically ";i]irte regular. Identical processors with identical memory capacities are linked in a symmetric
interconnection network.

We copeﬁwrirthit]éis mismatch as follows. The computation is decomposed into separate (but coupled)
computations for each node-pair. Each node-pair computation is simple, regular, and highly parallel. All
the naag-pair computations can bé carried out tbé;ether inra r;ri'airiner well-suited for SIMD architectures,
which are characterized by large numbers of processors, each with moderate speed and memory capacity. As
illustrated in the fop half of Figure 1, we may dedicate a larger number of processors to a node-pair whose
parameters indicate the likely receipt of a larger number of events. The experiments of Section 6 show that
this mappi;lé éf node-pairs to procéssors leads to performance that scales with the aggregate capacity of the
network (i.e., the total number of trunks), and so uncovers massive parallelism.

It is not Vh'ar'd 7torardapt the algorithm for MIMD architectures, characterized by a moderate number of
hlgh speed prncessors each with a large memory capacity. In this case, we map each node-pair to only
One processor. In large networks, involving 100 or more nodes, the computational load can be effectively

balanced by assigning a group of node-pairs to each processor. This is illustrated in Figure 1 as the MIMD
mapping.
Related Work

Our approach has much in common: withr anz;pproach based on synchronoﬁé relazation, proposed in [2, 3],

andai)plled and implemefltea as'a SIMD circuit-switched simulation method in [11]. In the synchronous

et |

IO ¢ il 1 o

hImAs T N

NN 101 O 11

Lo il

SIMD Mapping:
large number of

O 0O 00O OO O OO O o o o o o o moderate speed processors

— node-pairs

MIMD Mapping:
apping moderate number of

O O - O high speed processors

node-pairs

Figure 1: A node-pair is represented as a line segment whose length is proportional to the rate of events
at the node-pair. Under the SIMD mapping a group of processors is assigned to each node-pair, using a
heuristic that attempts to give each processor the same event rate. Under the MIMD mapping a group of
node-pairs is assigned to each processor, again using a heuristic that attempts to give each processor the
same event rate.

relaxation approach, the computation is also decomposed into separate computations for each node-pair,
and these computations are mapped into the machine in much the same way as described here (Section
5). However, the node-pair computations are completely different. As described in Section 5, in the sweep
algorithm, the node-pair computations require that time be partitioned into intervals so that each call
arriving within an interval departs after the interval. In [11], a method related to that described in [4], is
used for these computations, which does not require time to be partitioned in this way. The advantage of
the sweep algorithm is its simplicity.

Typically, parallel simulation methods are classified as either “conservative” or “optimistic” [5]. Conser-
vative methods are characterized by the property that no event e is computed before all earlier events on
which e depends are computed. Optimistic methods allow dependent events to be computed out of order.
This may lead to temporary errors, which are corrected later by some form of rollback or relaxation. On
applications where conservative methods work well, they typically incur less overhead than optimistic meth-
ods. On the other hand, optimistic methods have the potential for exploiting a higher degree of parallelism.
Our sweep algorithm is a hybrid with some of the advantages of both conservative and optimistic methods.
To uncover massive parallelism the method allows dependent events to be computed out of order, like an
optimistic method. However, unlike an optimistic method, no mistakes are made. Instead, we generate
a superset of all possible events (some of which are mutually exclusive) within a small time window, and
then use fast parallel operations to identify the correct subset of real events. At most a bounded number of

messages are generated for each real event.

v wavmas b bbb+

LIUL T 1T S T i

Plan

In Section 2, the network model is fully specified. In the following section, the particular network scenarios
used to evaluate the performance of the sweep algorithm are described. In Section 4, the sweep algorithm
is described at a high level, and in Section 5 the details are provided. In Section 5.3, we briefly discuss
adapting the algorithm for a MIMD implementation. In Section 6, we report on performance of the SIMD
and MIMD codes.

2 Network Model

A éircpip-switched network gohjsi;stsr pf' Nﬁpodgs,rwrhere the link from any pai: of nodes i and j has finite
capacity C;; > 0 counted in trunks.r A trunk represents the resourges needed to carry a single call. A call
between nodes 7 and j is either acceptéd and routed on a path in the network between ¢ and j, or blocked
(i.e., rejected and lost). An accepted call makes exclusive use rt?f one trunk on each of the links of its route
for the duration of the call. We assume here that all paths are of length one (using one link) or two (using
two links). As the number of trunks used to carry a call eduals its route length, allowing routes of lengths
greater than two typically adds nothing to network performance, and the restriction to lengths < 2 is almost
always made in practice.

We assume that, for each node-pair {7, j}, call arrival times are described by a Poisson process with fixed

rate A; ;. We assume that each call’s holding time is an independent, identically distributed random variable:
C+E,

where C (0 < C < 1) is a fixed constant and E is exponentially distributed with mean 1 — C. Thus, the
average holding time is one, and the units of the arrival rate are “erlangs” [7]. Typically, in switched network
simulation studies one agsil;nes purely exponential holding times (C = 0). However, it is more realistic to
allow for an initial constant delay C. Furthermore, we will see later that including this delay actually
improves the efficiency of the parallel simulation of the system. As shown in Section 6, system performance
measures such as blocking, turn out to be rather insensitive to C.

The routing scheme we consider belongs to the class of schemes that use state dependent alternate-
rouling to share idle capacity and trunk-reservation to ensure that the network does not become loaded
inefficiently with calls routed on multilink paths. For each link {i, j} there is a trunk reservation parameter,

rij, 0 < rij £ Ci;. Suppose a new call is offered between nodes ¢ and j at time {. Let n,, denote the

number of calls holding on any link {u,v} at this instant. If the number of trunks in use on link {i,j} is
less than the link capacity (n;; < C;;) then the call is accepted on the direct one link path from ¢ to j.
Otherwise, an intermediate node v, called the vig, is selected and the call is offered to the two-link path:
{i,v}, {v,j}. The callis accepted on this path if neither link is reserved; that is, if Ci v — niv > Tip and
Cy,j — Mv,j > Tv,j. Otherwise, the call is blocked; i.e., rejected and forever lost.

Under randomized-routing, for each call blocked on its direct path {i, j}, the choice of via node is made
by independent random selection of one of the N —2 possible nodes v # i, j, from a distribution that depends
on {i,j}, but not on the network state describing the calls currently in progress. We note that randomized-
routing can be adapted to approximate some routi’ng policies where the choice of via node depends on the
network state by the simple device of biasing the random selection in accordance with a recent sample of
the network state. For example, under the aggregated least busy alternative (ALBA) routing policy, each
via is assigned a load state in a small, bounded range, 0, ..., K, where the lower values indicate roughly a
greater number of free trunks on the two-link path determined by the via. To approximate ALBA, the load
states can be periodically sampled, and randomized-routing adapted to choose uniformly at random from

those vias in the minimal load state.

3 Simulation Scenarios

To evaluate the performance of the parallel simulation, we consider two types of scenarios:
e symmetric networks where each of the N « (N — 1)/2 links have identical capacity, and
e a 114 node network, modeled after a realistic fiber cut scenario for the AT&T switched network.

To completely specify the randomized-routing policy, in the symmetric network, we assume each choice of
via is made uniformly at random from the N — 2 possibilities. In the asymmetric network scenarios, we
assume the choices are biased in accordance with the end to end capacity of each two-link alternate path.
Specifically, consider a node-pair {i,j}, and let cap;, and cap, ; denote the capacities of links {i,v} and
{v,7}. Via v is chosen with probability proportional to min{cap; ,,cap, ;}-

In Section 6, the symmetric network scenarios are used as a simple means of testing how performance of
the simulation scales with the network size, measured as its total capacity.

In practice, the main role of simulation is in evaluating the performance of the network under stress:

typically traffic surges and equipment failures, such as fiber cuts. In practice networks are asymmetric, and

el

G ATV T T

become more so after equipment failures. In the 114 node network we consider, the total capacity is about
740, 000 trunks, but the link capacities vary wndely from 0 to 4000 with a mean of & 100. Similarly, the total
arrival rate is about 530, 000 erlangs, but the arrival rates vary over the node-pairs from 1 to 2500 with a
mean of &~ 80. As a result of the fiber cut several hundred node-pairs have arrival rates significantly greater
than the correspon;iing direct link capacities. It turns out that call blocking is highly focused on about 500
of the more than 6000 links.

4 The Sweep Algoritl

In this section, we give a high level description of the sweep algorithm, leaving some of the details to Section

5.

Arrival events at a given node-pair {¢, j} are of one of two types:
e direct-arrival (A), marking the starting time of a call between i and j offered on link {7, 5},

o via-arrival (V), marking the starting time of a call between another node-pair ({i, k} or {k, j}) offered

on an alternate two-link path that includes link {7, j}.

By the nature of the routing algorithm, a via-arrival for a given call is not offered unless the corresponding
direct-arrivalis blocked. However, let us take the view thaf all possible arrival events are tentatively offered.
That is, for every call geﬁéiated between a node-pair {i,j} all three possible events are offered: a direct-
arrivalat {i,j} and a via-arrivalat each of the two links of the alternate path the call would take if blocked on
the direct path. Thls is posmble because the choice of via node and the duration of the call are independent
of the network state In the parallel simulation method a state is associated with each arrival event. The
method is iterative. Each iteration sweeps through the offered events, updating associated state information,
and possibly rejecting and removing some offered events. On termination, the remaining offered events are
exarcrzﬂtlyr those events that actually oceur.

Towards ti‘lié enrcil,r werp:artition time into consecutive intervals, termed windows, which are simulated
serially. We cénstruct the windows in a way that allows us to apply simple, massively parallel algorithms

(described below) to simulate them. Speciﬁcally, let s dre:niort'e the start of a window; initially s = 0. Let

"t denote the greatest time > s such that no call arrival offered anywhere in the network after time s has

a finishing tlme less than t. Thus, each call that arrives in the interval [s,t) departs after it. A window

starting at time s can be chosen as any enclosed interval [s, u); u < t.

o 00 i

3 Node Network Example: # trunks=1 # trunks=2

trunks reserved =0 # trunks reserved =0

b # trunks=1 €
trunks reserved =0
{a.c}
—————— {a,c}
{b.c}
{a.b}
{a.b}
{b.c}
— {a.b}
window = [s,t)
Time
s t

Figure 2: A line segment represents an offered call, with its left endpoint marking the arrival time and the
right endpoint the departure time. As there are just three nodes in the network, the via associated with
each of the calls is forced; for example the via associated with the two calls arriving to link {a, b} within the
window [s,t) must be e.

Figure 2 depicts a simple example for a three node network. The first three events within the window
[s,t) are departures of calls that arrived earlier, and so do not enter into the calculation of the extent of the
window. The window has maximal extent ¢, terminating with the departure of the second call offered to a, b
within the window.

It is natural to ask how many arrivals fall into the maximal window [s,¢). Recall that a call’s minimum
holding time is C. Decompose [s,t) into an initial part [s, s + C) and a final part [s + C,t). The distribution

of arrivals within the initial part is Poisson with mean AC, where

A= Zx\;,j

fudd b

mh oW

e

is the aggregate call arrival rate in erlangs. The analysis of the final part [s + C,t) requires a bit more work.
In brief, the idea is to consider an absorbing Markov process describing the number of calls present that
have completed the deterministic C' delay in their holding times: when k are present, one of the k finishes
(thereby stopping the process) at rate k(1 — C), whereas another such call arrives at rate A. Analysis of this

process provides the expected number of events within [s + C,t) as

Z:kOB(,\(l—C)+lk+1)[,\(1 C)"“/k' = VA1=C)1/2+0(1/V}) as A — o,

where B(-,-) is the Beta-function. Summarizing, the expected number of events within the window is

AC 4+ VA1 = C)r/2 + O(1/VA).

For large networks, such as the AT&T network, the aggregate call arrival rate A is on the order of 1 million
erlangs, and the number of events in the window will be large, even for small C, as will be seen in Section 6.

An iterative method is used to simulate the window. As alluded to above, an iteration operates on the
offered events, updating associated state inforrrrnration. An event rejected in the course of an iteration is
not offered at the mext. An iteration involves a separate computation for each node-pair, addressing the
feasibility of each arrival event on the corresponding link. We say a direci-arrival offered to node-pair {1, j}

is feasible if at least 1 trunk is free (i.e., unused) on link {7, j} at the time of the arrival, and is not feasible

otherwise. Similarly, a via-arrival offered to node-pair {3, j} is feasible if at least r; ; trunks are free on the

linkhat the time of arrival, and is not feasible otherwise

Feasibilityr decisions are combined so as to implement the logic of the routing policy. A call arrival
at node-pair {i,} offers three events: one direct-arrival at {i,j} and two vig-arrivals at some node-pairs
{i,v} and {v j} If the direct-arrival is feasible then this event should be accepted and the two vig-errivals

re_]ected the call should be routed dn‘ect If not and both wvig-arrivgls are feasible then the direct-arrival

should be reJected and the two wig-arrivals accepted the call should be routed on the alternate two-link

'path OtherWISe all of the events should be rejected the call should be blocked.

In the computation for node—pair {i,7}, phe eyents offered to link {1, 7} are scanned in chronological order.

On scanning each arrlva] event, an assocxated stale may be updated, summarlzmg mformat:on collected thus

" far on the feambxhty of the three events of the associated call arrival. Specifically, for a direct- arrzval at

node palr {z il the state is a 2 tuple whose ﬁrst componem is one of {yes, no,?}, according to whether the
call is feasible on Imk {z,]}, is not feasible Or‘,fhgl}ﬂk’ or is not yet decided. Similarly, the second component

is one of {yes,no, 7}, according to whether the call is feasible on both links of the two-link alternate path,

LI TR TN R TR T

is not feasible on at least one of these two links, or is not yet decided. The state of a wvig-arrivel is a 3-
tuple, where each component is of the same form, describing the feasibility information for the corresponding
direct-arrival, the event itself, and the other corresponding via-arrival.

All state components are initially blank; i.e., set to “?”. An event’s state is final if the feasibility
information determines whether or not the event should be accepted or rejected. For a direct-arrival, these
accepted states are (yes, X), for Xe{yes,no,?} (meaning the call is feasible on the direct path), and the
single rejected state is (no, no) (meaning the call is not feasible on the direct nor on the alternate path). For
a via-arrival, the single accepted state is (no, yes, yes) (meaning the call is not feasible on the direct path,
but is feasible on the alternate path), and the rejected states are (yes, X,Y), (no,no, X), and (no, X, no),
for X, Ye{yes, no, ?}.

The correctness of the simulation follows from the correctness of each iteration and the fact that each
iteration makes progress. In particular, the earliest event not in a final state at the start of an iteration is

guaranteed to be driven into a final state during the iteration.

5 Implementation

An implementation of the sweep algorithm must address:
e the mapping of possibly unbalanced node-pair computations into the parallel computer, and
e the arrival event feasibility and state computations associated with the node-pairs.

We discuss these two issues in turn. Adaptations for a MIMD implementation are described in Section 5.3.

5.1 The Mapping

Impose an order on the processors in the parallel computer, and an order on the N(N — 1)/2 node-pairs.
We dedicate a fixed number P;; > 1 of consecutive processors to node-pair {i,j}; the index of the first of
these is obtained by summing the values P, , for node-pairs {u, v} earlier than {i, j} in the node-pair order.
To simplify the discussion, consider one node-pair {i,j}. Suppose the current simulation window is [s,?).
To map the events of node-pair {i, j} into the P = P, ; processors, assign the k" in the processor order to
store and manage all events that fall into the k'* subwindow [s + (k — 1)(t — s)/P, s+ k(t — s)/P), for k = 1,
..., P. In this way, each event, identified by a node-pair {7, j} and a time u within the window s < u <1,

maps into a unique processor.

W

ookl Ao Lo

b b

b bl 1

4
1

AT BT T T T Y

i SN LER BN |

[T RN T T 0 T

In our implementation, we further restrict the mapping by setting the extent of each window to C, the
extent of the constant portion of the call holding time, which we assume is non-zero. Thus, the j!* window
is the interval [(j — 1)C, 7C). Under this restriction, the window spans an average of AC' call arrivals, where
A is the aggregate call arrival rate; without the restriction the span would include O(V(1 = C)) additional
arrivals. This disadvantage is offset by removing the need to compute the greatest lower bound of the window
bouhdary. In general, the current window contains departure events (D) corresponding to calls accepted at
previous windows. Generating the random cail arrivals and departures is straightforward. Initializing the

set of events offered within the window:

1. Each processor independently generates the departure times for direct-arrivalsand via-arrivals accepted
at its link at the previous window, and creates a departure event at the appropriate processor. Those

departure events that fall within the window are included in the computations to follow.

2. Each processor independently generates the call arrivals within its subwindow, at the appropriate
Poisson rate, and creates a direci-arrival event locally, and two wig-arrival events remotely at the

appropriate processors.

To ideally balance the computational and communications load, P;; should be chosen proportional to
the rate at which events are offered at link {i,j}. At the outset of the simulation, this rate is unknown
because we do not know which calls are accepted, and so do not know which departure events are offered.

However, we do know the rate at which direct-arrivals and via-arrivals are offered to link {7, j}:

@ij = Ay + 3 MixP(selecting via j at link {i,k}) + Y Ax j P(selecting via i at link {k, j}),

and this is within a factor of two of the total event arrival rate. In our implément:éﬁioh, we take P ;
proportional to ai,j', with an Vad'ju'srtment to ensure P;; > 1. We found that heuristics determining P as
linear functions of the link capacity cap; ; and the offered call arrival rate A; ; performed nearly as well.

VIt turns out that thé 7171($de-parir computatioilé involve parallel prefix [9] computations, which can exploit
locality within the interconnection network of thé parallel processor. All other communications patterns are
essentially balanced, random patterns.
5.2 A Single Iirz'gration

In this section, we describe the individual node-pair computations that make up a single iteration of the

sweep algorithm.

10

U O 0 HEDONOO 11 W 95 O MO BV D A OB 11 1 11 DNMOONI1 € 13 WO L0 o 0110 DO 0 1 I DM i

J A]

At the start of each iteration, the set of offered events consists of

o all departures that fall in the window (corresponding to calls accepted before the start of the window),

and

o all direct-arrivals and via-arrivals that (i) fall within the window and (ii) were not rejected at an earlier

iteration.

The structure of the computation is simple. As described in the previous section, the events offered to each
node-pair {i,j} are distributed across P;; processors, so that each processor is responsible for a unique

node-pair over a unique subwindow. At each iteration, each processor takes as input
e a local lower bound il on the number of free trunks available at the start of its subwindow,
e a local upper bound Tl on the number of free trunks available at the at the start of its subwindow,
¢ and its list of events offered within the subwindow.

In the course of the iteration, each processor scans its list of events in chronological order. On scanning its

kt? event, the processor computes local lower and upper bounds f . and 7k+1 on the actual number of free

k41
trunks fi41 available just before the next event. In addition, if the kth event is a direct-arrival or via-arrival
then the processor may locally update the event’s state and may remotely update the states of the two other
arrival events associated with the same call, where the updates depend in part on f, and f,. At the end
of the iteration, a parallel prefix computation [9] is carried out that determines new local lower and upper
bounds f, and 7, for the next iteration. The events offered at the next iteration are those that have not
been rejected at this or any earlier iteration.

First, let us consider the computation of the bounds lk and f,. Consider a processor dedicated to node-
pair {i,j}, having trunk reservation parameter r = r;;. A vig-arrivalis needed if the corresponding call
cannot be carried on the direct path. By construction, each accepted via-arrivalis needed, but a via-arrival
in any other state may or may not be needed—at this point we don’t know. As a result, in general we cannot
compute the f; exactly, as the k'* event is scanned. However, by assuming that all via-arrivals are needed

we obtain a lower bound Lc < fi, and by assuming all that have not been accepted are not needed we obtain

an upper bound f, > fi:

£k-1)+ (1)

+
fi = (o +m-0)b, (2)

1
:

;|

TGRSR 1 i

where (z)* denotes max{z,0} and

(1 if the k** event is a depariure

-1 if (f, > 1and the k** event is a direct-arrival) 3)
or (f, > r and the k" event is a via-arrival)

0 otherwise

l
|

(1 if the &' event is a departure
7 = -1 if _f_k > 1 and the‘ kth e.vent is a direct-arrival (4)
or an accepted wia-arrival

0 dthérwise

Consider the three node network example of Figure 2. For link {b, ¢} (having reservation parameter r = 0),

the events initially offered within the window and the corresponding lower and upper bounds are

index k

e
L

1

event type D
0
0

ok < [%]
O - ;> o

The two via-arrivals (V) are associated with the two calls offered to link {a,b} within the window. The
uncertalnty as to whether the first via-arrival is needed leads to the gap between f,and fs.

Using the bounds, we obta}n the following rule for the feasibility of the k** event:

feasible not feasible
direct-arrival f, >0 fi= 0
via-arrival f,>r fi<r

On scanning its k'* event the processor may locally update the event’s state and the states of the two other

“arrival events associated with the same call. Figures 4 and 5 describe these updates i in complete detail. (To

obtam a SImple and regu]ar Iayout of the state transition dlagrams we include transitions out of final states;

these do not occur in the 1mplementatlon) The rules are rather transparent, An event’s state is just a finite

memory that keeps track of the feas1b1hty (yes no, or "') of the event on the link at which it is offered, and

the feamblllty of the two other events assocnated with the same call. For direci-arrivals, two components

of this memory are col]apsed to one, by an and we need only determine whether both of the associated

via-arrivals are feasﬂ)le

Flgure 3 descnbes the operatlon of the sweep algonthm on the three node network example of Figure 2,

assummg that each of the three node—pau‘s is assigned to a different processor. In this case, nothing is needed

following an iteration to reinitialize the local bounds il and 71; these retain their initial values, namely, the
number of calls in progress at the start of the window. Note that in this network each link’s reservation

paraﬁleter r is 0. We assume that the processors operate in lockstep, as in a SIMD architecture. At the nt?

12

List of events on each node-pair:

node-pair | Events
{a,b} A4 D5 Vﬁl A7
{b,c} D3 V41 As V72
{a,c} | Dy D, %5 |73 2

Description of the iterations:

iteration 1

iteration 2

Step 1 || f Local Updates | Remote Updates || f Local Updates | Remote Updates
{a,b} || O A4 (n0,7) Vi(no,?,? 0 A4 (no,yes)
Vi(no,?,7)
(e} | o Ds 0 Ds
{a,c} 0 D1 0 D1
Step 2
{ab} || 0 Ds 0 Ds
{be} |11 Ve (no,yes,?) V.2 (no,?,yes) 1 Vi (no,yes,yes)
{a,c} 1 D2 1 D2
Step 3
{a,b} 1 Ve (?,yes,?) V2 (?,2,yes) 1 Va (?,yes,yes)
{b,c} 1 As (1,7 0 Ag (no,yes) Vg (no,yes,yes)
VZ (no,yes,yes)
{a,c} || 2 V2 (no,yes,yes) | V] (no,yes,yes) 1 V2 (no,yes,yes)
A4 (no,yes)
Step 4
{ab} || 1 A7 (2,7) 0 Az (no,no) Vi (no,no,?)
V4 (no,?,no)
{bye} 10 VZ (7,n0,7) Az (?,no) 0 V# (no,no,?)
{ac} |I1 V2 (?,yes,yes) | Vi (7,yes,yes) 1 V& (no,yes,yes)
As (?.yes)
Step 5
{a,b}
{b.c}
{a,c} || 1 V2 (?,7,n0) 0 V# (no,no,no)

Figure 3: Sweep algorithm applied to the 3 node network example discussed earlier. Calls are numbered
from 1 to 7 in chronological order of their arrival times. A, D, and V represent direct-arrival, via-arrival,
and departure events, respectively. Subscripts identify the calls. Superscripts 1 and 2 distinguish the two
via-arrivals associated with the same call. One processor is assigned to each node-pair. At step n ,the nth
event on each node-pair is processed, as functions of the bounds f, and [, triggering local and remote
updates. In the local update column, at each step, the state of a direct-arrival or via-arrival is shown, even
if no change is made.

13

1

| (e

step of each iteration, each scans its n'® event. A rejected event is left in the list, and skipped during the
sweep; that is, a processor scanning such an event just drops out for the current step. It turns out that the
simulation of the window [s,) converges after two iterations.

To be sure this example is clear, let us walk through the first three steps of the first iteration. We will only
describe actions taken on processing direct-arrivals and via-arrivals. Depariures trigger increments to the f
and f but no state updates. Let P(a,b), P(a,c), and P(b,c) denote the processors assigned to node-pairs
{a,b}, {a,c}, and {b, c}, respectively. ”

At the first step, processor P(a,b) scans the direci-arrival event A4 (and simultaneously, P(b, ¢) scans
D3 and P(a,c) scans Dy). As the upper bound on the number of free trunks 71 <r=290, A is found to be
infeasible. Accordingly, the state of A4 is updated from its initial value (?,?) to (no,?), and the states of the
corresponding via-arrivals V! and V2 on node-pairs {b,c} and {a,c} are both updated to (x;o,?,?). At the
second step, processor P(b,c) scans via-arrival V. As f, > =0, we find that V. is feasible. Its state is
updated from (no,?,?) to (no,yes,?) and the state of its counterpart V,? is updated to (no,?,yes).

Last, consider the third step. Processor P(a,b) scans vig-arrival V. As £3 > r = 0, we know the event
is feasible, and so the processor updates its state from (?,7,?) to (?,yes,?), and updates the state of its
counterpart V2 to ?,7,yes). Processor P(b,c) scans the direct-arrival Ag. The bounds f,=0and f3>0do
not decide feasibility, so no updates are made. Processor P(a,c) scans the via-arrival V2. Since fa>r=0
the event is feasible. As a result, processor P(a,c) up&afes the event’s state from (no,?,yes) to (no,yes,yes),
and updatmés” the state of A4 to (no,yes), and V! to (no,yes,yes). At this point, the three events associated
With the arrival of céll 4 are in final states: Ay is tejected, and both V! and V2 are accepted, meaning the
call is carried on its alte}'nate route.

It rema,irﬂlsrorrlly 7tro éééci-ibe how to initialize the local lower and upper bound computations for the
next iteration, when more than one processorr 1s assigned to a node-pair. Let us consider the lower bound;
the upper bound is handled analogously. Focus on node-pair {4, j}, with events distributed across P = P ;

processors, which we number 1,2,..., P. Let n(k) denote the number of events that map to the k** processor.

~ As consecutive processors hold the events of consecutive subwindows, we can think of all the events offered

to the node-pair as distributed across the processors in chronological order in a single list of n = = n(k)
events. To compute the lower bound on the number of free trunks before the t'* event, for any t = 1 to n,

we need only solve recurrence

Lz(it-x +£t-1)+ (5)

14

Transitions Taken on Remote Updates

direct-feasible = yes direct-feasible =7 direct-feasible =no
alternate-feasible = yes alternate-feasible =yes alternate-feasible = yes
1 D N
: feas. : feas. : feas.
] ' I
L -] 1
direct-feasible = yes direct-feasible =17 direct-feasible =no
alternate-feasible =7 alternate-feasible =7 alternate-feasible =7
]] T
| | I
1 ' 1
: not feas. : not feas. : not feas.
y y y
direct-feasible =yes direct-feasible =7 direct-feasible =no
alternate-feasible =no alternate-feasible =no alternate-feasible =no
- E: 38'_> — Bothvia-arrivals are -2 Etfei’:s; — Atleastone of the via-arrivals
are feasible. is not feasible.
Transitions Taken on Local Updates
p
not
. . . . feas.* . .
direct-feasible = yes feas. ** | direct-feasible =1 direct-feasible =no
1 3 v
alternate-feasible = yes alternate-feasible = yes alternate-feasible = yes
not
direct-feasible = yes feas. ** | direct-feasible =17 feas.* | direct-feasible =no
fe—————1 3 .
alternate-feasible =? alternate-feasible =? alternate-feasible =7
not
. . . - feas.* . .
direct-feasible = yes feas. **| direct-feasible =1? direct-feasible =no
alternate-feasible = no alternate-feasible =no alternate-feasible =no
feas. ** The direct-arrival is . The direct-arrival is not
eas. feasible. (Do a not feas.)
—— = : —_— = feasible. (Doa

‘‘feas.”” remote update
to both via-arrivals.)

‘‘not feas.”” remote update
to both via-arrivals.)

Figure 4: State transition diagram for a direct-arrival event. The via-arrivals mentioned in the figure are

the two associated with the same call.

15

10 N A 11 1 8111110 skl

Transitions Taken on Remote Updates

direct-feasible =yes :
eas
locally-feasible =X = [eeessneees
other via-feasible = yes
H
s feas.
|
direct-feasible = yes ‘
eas.
locally-feasible =X o XCEELLTTH
other via-feasible =7?
1]
1 not feas.
direct-feasible = yes f
eas
locally-feasible =X = [eccseeees
other via-feasible = no

feas.

The other via-arrival

direct-feasible =1 direct-feasible =no
not feas.
locally-feasible =X~ peee===-- o | locally-feasible =X
other via-feasible = yes other via-feasible = yes
3 3
y feas. y feas.

— '] |
direct-feasible =1 not feas. direct-feasible =no
locally-feasible =X~ feesceee & | locally-feasible =X
other via-feasible =7 other via-feasible =17

L] [}
t []
| not feas. 3 not feas.
4 Y
direct-feasible =17 direct-feasible =no
not feas.
locally-feasible =X~ p---=---- | locally-feasible =X
other via-feasible = no other via-feasible =no
féarsﬁ.' o The direét-am'val is
feasible. (X = yes, noor ?)
not feas, The direct-arrival is

 Transitions Taken on Local Updates

-——— =
is feasible.
not feas. The other via-arrival is
= not feasible.
direct-feasible =Y

locally-feasible = yes
other via-feasible = yes

T feas. ***

direct-feasible =Y
locally-feasible =7
other via-feasible = yes

lnot feas. *

direct-feasible =Y
locally-feasible =no
other via-feasible = yes

feas, ***

feas, **

This via-arrival is feasible.

(Do a ‘feas.”” remote update to the

= pot feasible.

direct-feasible =Y
locally-feasible = yes
other via-feasible = ?

direct-feasible =Y
locally-feasible = yes
other via-feasible = no

T feas. **

T feas.

direct-feasible =Y
locally-feasible =7
other via-feasible = ?

direct-feasible =Y
locally-feasible =7
other via-feasible =no

l not feas. *

lnot feas. *

direct-feasible =Y
locally-feasible = no
other via-feasible =?

direct-feasible =Y
locally-feasible =no
other via-feasible =no

feas.
—

other via-arrival and the direct-arrival.)

This via-arrival is
feasible. (Do a “‘feas.”

not feas. ¥
_’

remote update to the other via-arrival.)

This via-arrival is
feasible. (No remote

update.)

(Y=yes,noor?)

This via-arrival is

not feasible. (Do a *‘not feas.”’
remote update to the other via-arrival
and to the direct-arrival.)

Figure 5. State transmon dxagram for a via- arrwal event. Each half of the Figure encodes three pictures,

obtained by varying XorY through {yes,no, ?}. The other via-arrival and the direct-arrival mentioned in

the figure are the two other arrival events assoc1ated1\é'1th the same call.

o e

T T T ——)

AR T o o 1

[T T

v Il 1118

1 0 90111 A OO 1 0 DR

for ¢ = 1 to n, using the values z computed as described earlier, considered in this new order. The value
needed to initialize the next iteration for the k' processor is .f..;(k)’ where s(k) = Zf__fll n(k), that is, the
lower bound on the number of free trunks available after the last event of the previous processor.

Solving (5) reduces to parallel prefix computation [9]. Giveninputs 21, ..., z,, and an associative operator
o, the parallel prefir problem is to compute the n partial products: 21, 21023, ...,210230...02z,. To put
(5) in this form, we recast it as a matrix recurrence in the semiring where max is the addition operator with

identity —oo and + is the multiplication operator with identity 0. Under this interpretation, the distributive

law is a + max{b, c} = max{a + b,a + ¢}, and (5) is expressible as

vt = Mﬂ)g_l (6)

—_ it — zt 0
e[| 50

and the usual rules of vector and matrix multiplication apply but with scalar addition and multiplication

where

taken to be max and +, respectively. Telescoping (6) we obtain
Uy = MtMt—l - Mg’ul.
Hence to compute the £, it suffices to:

1. solve the parallel prefix problem of computing the partial matrix products M) = M,, M = M3M,,
e M =M M, .. M,

2. compute v; = Mjv;, fort =1 to n.

The first step dominates the computational cost. Kruskal et al. [8] show that on a shared memory
model, it is possible to solve the parallel prefix problem in O(logn) time using O(n/logn) processors. Their
algorithm is easily adapted to the situation at hand, where the n inputs are distributed across P processors.
Taking into account that the distribution of events ié random, it can be shown that the computational cost
is O(ci j/ P +log P) with high probability where a; ; (defined in Section 5.1) is the rate at which node-pair

i, j} receives events. If P = P; ; is taken proportional to ¢; ; the time becomes O(log P).
J J g

5.3 Adaptations for a MIMD Implementation

The implementation just described is well-suited for SIMD architectures, and we refer to it as the SIMD im-

plementation. The sweep algorithm has also been implemented on a MIMD architecture, the Intel iPSC/860

17

bl

KD VRSNG| . WG V01 G L |

(which is identical to the iPSC/2(1], except it is based on the i860 processor). There are only two significant
differences between the MIMD and SIMD implementations: the mapping of node-pairs to processors, and
the handling of interprocessor communication. Each of these is described in turn below.

The MIMD versjon maps multiple node-pairs to each processor. Thus, a given node-pair’s events are
always all on the same processor. We accept a node-pair’s call arrival rate as a reasonable estimate of the
node-pair’s workload, and then view the mapping problem as identical to a multiprocessor scheduling problem
where we séek to minimize the makespan of aset of independent, non-preemptable tasks. Our implementation
uses a minor variation of the well-known longest processing time first list scheduling algorithm, first analyzed
in [6]. We order the node-pairs in decreasing order of arrival rate, then step through the list assigning the
next node-péir to the most lightly loaded processor. Our variation (included to balance memory utilization)
limits a processor to no more than 2N/P node-pairs. On the scenarios studied with 16 and 32 processors,
the processors received very nearly identical numbers of node-pairs. Observe that this algorithm makes no
explicit attempt to balance communication, an issue that could become important on larger MIMD machines
such as the Intel Touchstone Delta[10].

To initialize the simulation of a window starting at time s, the processors first determine the maximal
span of the window [s,t). A simple iterative procedure whose cost is negligible suffices. Next, each processor
builds an event list representing all call arrivals and departures within the window [s,1), for each of its
assigned node-pairs. - |

In the SIMD version, one processor communicates with the other by directly modifying the other’s state
information. Our MIMD version assumes no such capability. Node-pairs communicate with each other using
messages, even if the communicating node-pairs are assigned to the same processor. An identifier is associated
with every new céliérrival.rThe identifier is passed to thg associated via node-pairs, and serves to uniquely
identify the call arrival on its node-pair, or a via arrival on its node-pair. During window initialization a
binary search tree is constructed for each node-pair, recording the identifiers for all its call and via arrival
events. Presented a with message, a processor probes th.e appropriate search tree to find the event receiving
the communication,

Our messragre'-t;é;s'ing strategy attempts to minimize the number of message startup costs, by amortizing
a startup cost over as ldﬁg a message as possible. Towards this end, any time our MIMD algorithm generates
a message between node-pairs on different processofs, that message is actually buffered internally until all

node-pairs have been swept over. All messages destined for a given processor i are stored in a contiguous

18

WA ANMON B IID o AR 1w it AP [M1

-y

T T

T oA Db

o

o

buffer as they are generated. A message sent by one node-pair to another on the same processor is not
buffered, rather it is “received” immediately. Interprocessor communication is performed in two steps.
Processors notify each other of the lengths of messages about to be sent, which allows each processor to pre-
allocate the buffer space into which the messages will be read (without this step an unanticipated message
must be accepted in system space, and then copied to user space when requested). Following a global
synchronization, the aggregate messages are sent, one per processor, to each processor. While this strategy
does amortize startups and minimize memory-to-memory copying, it does not utilize the communication
network bandwidth particularly well. Our strategy is fine when the number of processors is moderate
(= 16), so that the computation/communication ratio is high. For larger numbers of processors one ousht
to adopt a strategy of sending smaller messages more frequently, in an effect to reduce contention and better

use the communication network.

6 Experiments

Next we present the results of experiments performed on symmetric and asymmetric networks, on both the

MasPar MP-1 and Intel iPSC/860.

6.1 SIMD

There are a number of different performance issues we might examine in the SIMD version. The first of
these is scalability—does overall pérformance increase as the problem size and architecture size grows? The
table below records the estimated number of calls processed per minute, as a function of the number of
processors used, and the number of nodes in a symmetric network.! Each link is assumed to have 200
trunks, an arrival rate of 210 erlangs, and 5 reserved trunks. We have observed that performance is weakest
in this situation where the ratio of arrival rate to capacity is close to 1. The table shows that the problem
is naturally massively parallel. Nearly three million calls are processed each minute on the largest problem,

on the largest architecture.

1To convert to events processed per minute—the actual measurement, multiply each number by 4 (one arrival, 2 via arrivals,
1 departure).

19

T

=N

3

§°°

g

o

a &

wo-ﬁ'

*

o -

0 2 4 6 8

of events per window

Figure 6: Histogram plotting the number of events per window per processor for a 50 node subnetwork of the
114 node network of the fiber cut scenario, with C = 0.2. Low variance proves the quality of the partitioning.

Number of Calls Simulated per Minute

10 nodes 32 nodes 100 nodes
Processors | (= 10,000 trunks) | (= 100,000 trunks) | (= 1,000,000 trunks)
1,000 147,720 306,840
2,000 213,720 458,880
5,000 284,880 779,340 1,114,560
10,000 330,300 1,124,400 2,348,520
15,000 337,680 1,368,600 2,964,600

The partitioning of processors among the node-pairs is done using the arrival rate and routing parameters

asdfggbed in Srecﬂt;ion:é.j l . ThlS choice is validatégi by the hlstogram in figure(6.1), which depicts the observed

numBe; ofeventspe}ww;lndow per processor. The qlrlrérlit'y of the partitioning is inferred from the low variance

“in the Thistogram.

A ké; ihgredientﬁ for top performance is the use of a small constant C in the call holding time. However,

does the constant af;;pféic'iégljy éit;ér network perforfﬁaﬁce'statisi_@‘i;s? It appears that the answer is no. The

next table gives network and performance statistics as a function of C, on the realistic fiber cut scenario
whe;erthe parameters are based on the AT&T network. First, observe that network statistics (average
pércentage calls rerouted, blocked) are relatively insensitive to C (the C' = 0.05 statistics are nearly identical
to C = 0 statistics measured on a different implementation). Now consider performance. An ‘“iteration”

comprises one scan through the offered events, as described in Section 5.2. Two natural metrics are the

20

T T

o o g0 11

a1

P

R W W 11 1] OO 110 |

average numbers of events processed per window, and the average iterations required to bring a window to
converge. However, note that as C increases, the latter average increases. This comes as no surprise, as the
total number of events in the window increases in C. A normalized metric is to measure the iterations per
event; the lower that number, the lower the per-event cost of simulation. Finally, we are also interested in

the raw number of calls processed per minute.

C | % rerouted | % blocked | events/window | iterations /window | iterations / event | calls/min
0.05 3.36 7.46 104,367 7.24 7.01 1073 1.22M
0.1 3.37 7.48 215,944 8.81 4.15107° 1.51M
0.2 3.39 7.50 413,316 10.62 2.57107° 2.0M
0.3 3.42 7.62 620,005 12.35 1.99 103 1.98M
0.4 3.43 7.70 826,148 13.16 1.59 103 L9T™

We see that the percentage of blocked calls varies in a range of 2 % while the speed of the simulation
varies in a range of 40 %. For C = 0.2, where the performance peaks, the variation in the percentages of
blocked and rerouted calls over C' = .05 is very small. There is much to be gained performance-wise from a
substantial C, with little cost to accuracy. As further evidence of insensitivity to C, Figure (6.1) compares
the blocking statistics for a C = 0.05 run, and a C' = 0.4 run. For each node-pair with arrival rate > 100
erlangs, we plot a point (z,y) where z is the node-pair’s measured blocking frequency for C = 0.05, and y
is the corresponding statistic for C = 0.4. (Limiting the data to node-pairs with arrival rates of at least 100
erlangs removes the Monte Carlo error; node-pairs with fewer erlangs may have received few arrivals in the
runs from which the data was collected.) Insensitivity to C' is observed by noting that most points lie on the
diagonal, ie, z =~ y.

Another important performance factor is the ratio of a node-pair’s arrival rate to its capacity. When
there is imbalance between the two, the computation for the node-pair quickly discovers it is able to accept,
or able to reject its calls. This is reflected in relatively smaller numbers of iterations required per window
for the computation to converge. As shown in Figiire 8 more iterations are required when the arrival rate
and capacity are close to each other.

We found no one part of the computation crops up as a bottleneck. Only about 25% of the time 1s spent
on interprocessor communications. The number of events processed per window is large and the number
of iterations needed per window to converge is small. In absolute terms, on the realistic fiber cut scenario,
using C = 0.2 we achieve eight million events/minute, equivalently, two million calls / minute. A useful run

requires about 20 million calls to be simulated, which we an achieve in a few minutes. As discussed below,

21

N S N N L

TS OB | 1.1

TEET V0N

0.6
%9%
%

C=04

0.2

0.0

H ¥ T ¥ L}

0.0 0.2 04 0.6 0.8

Blocking, C = 0.05

Figure 7: 114 node fiber cut scenario; measured blocking frequencies for node-pairs with arrival rates at least
100 erlangs.

9 1 o]
o ©

8 1 o
[2]
5
5 7] 0
2 o '
o 6 -
3
g 5 1 0
c o o

4400

o)
(o}
- 0.50 1.00 2.00 4.00

arrival rate in erlangs / capacity

Figure 8: Variation of the number of iterations with the ratio rate of arrival / capacity, measured in the
simulation of a 50 node symmetric network.

22

1 —— 0 ————

R AL D P TR TR

AN A 118 130D e AN AL N

IR

IO NS 0O COMRT (14 |1 1 AN 0 NI ORI W 10 N) WONL1 9 10 e+ I O 1 ool

it appears that this is about ten times faster than an optimized serial simulation running on a powerful

workstation with memory large enough to retain the simulation in core.

6.2 MIMD Performance

Many of the performance metrics examined in the SIMD case reflect event densities and sweep counts. Such
metrics are (for the most part) not architecture dependent, and so are very close in both SIMD and MIMD
versions. The principle difference between the versions is the event processing rate, which we examine below.

In the SIMD case we observe that raw performance increases on symmetric networks as the size of the
problem and the number of processors changes. The corresponding data for the MIMD version {on the same

simulations) is given below. Empty entries could not be filled owing to memory exhaustion.

Number of Calls Simulated per Second

10 nodes 32 nodes 100 nodes
Processors | (= 10,000 trunks) | (& 100,000 trunks) | (= 1,000,000 trunksL
1 96,935
2 163,495 172,312
4 244,909 324,755
8 281,703 570,376
16 228,999 953,646 1,570,680

Like the SIMD version, we observe increasing call processing rates as both problem size and number of
PIOCeSsOrs increases.

We also considered the performance of the asymmetric AT&T network example. Here we measure
various metrics as a function of C. Utilization generally measures the fraction of time a processor spends

doing “useful” work, which is measured in this case as the time not spent in inter-processor synchronization

and message passing.

C || events/window | iterations/window | iterations/event | calls/min | utilization
0.0 3,966 4.56 1251073 | 0.63M | 75%
0.01 25,000 6.58 2,510~ 1.20M 83%
0.05 110,715 12.03 1.110-* 1.22M 87%
0.1 217,695 22.93 1.0510~* 0.98M 88%
0.2 431,892 46.34 1.0510~* 0.73M 89%

The table above exhibits a curious anomaly. We see that the event processing rate increases in C for a
time, then drops off. At the same time the processor utilization does not diminish. We hypothesize that the
phenomenon is due to the behavior of the binary search tree routines used in message passing. These trees are

probed both for interprocessor messages, and intraprocessor messages; as C' changes the relative proportion

23

i
!
!
:
a
!
i
i
i

[11T WA T

It

A A O RRKCEIEL L |

of interprocessor to intraprocessor messages remains constant. The time spent handling an interprocessor
message is counted as overhead, whereas the time spent handling a intraprocessor message is not (the coarse
resolution of the timer disallows a more uniform treatment). However, since the window size grows, the
number of messages in the search trees grows, thereby increasing the cost of the probe. This may explﬁin
why raw performance turns down, while the relative fraction of on-processor to off-processor related work
does not.

The data presented here shows that a 16 processor iPSC/860 can deliver over a million calls per minute on
the AT&T example. Compared to an ordinary workstz;t.ion, this is excellent. An optimized serial simulation
of the AT&T network, running on an ordinary Sparc workstation, required over 8 hours running time to
simulate 10M calls . Most of this was due torhand]ing page faults; the problem needs a very large memory
(and of course, one of the advantages of parallel architectures is the enlarged memory space). However, one
does wonder how fast an optimized serial implementation would execute on an i860 based processor with
sufficient memory. While we have not answered that particular question, we have measured the execution
rate of a large optimized network simulation on one iPSC/860 node to be 0.2M calls/min. One expects that
simulation to process calls faster iihan on the full AT&T problem, as its event list management costs are
somewhat lower. If we use this rate as a serial baseline, we see that our parallel AT&T code achieves a
speedup of at least six. In reviewing this data, one should remember two things. First, that our algorithm
provides a way to exploit the larger memory of a distributed memory machine; on the order of 128 Mbytes
are needed to simulate our largest example. Secondly, our algorithm requires more computation than an

optimized serial version. This is the price we pay to exploit parallelism.

7 Concluding Remarks

The massive parallelism of SIMD architectures offers significant computational advantages for large prob-
lerns. However, éne of the real challenges of SIMD parallelism is to find algorithms that effectively exploit
parallelism within the SIMD paradigm. This paper devélops a new SIMD algorithm for the discrete-event
simulation of circuit switched networks. Our algorithm introduces two innovations. Using the notion of
sweeps, we straddle the ga:prbetween optimistic and conservative parallel simulation methods, showing how
one can compute events oprt—of-order, and yet never commit to an event in error. The second innovation is
in showing how to ef[;ect{;/ely: distribute the workload of ra rhirgrhly héterogeneous network model.

An SIMD version algorithm we propose was implemented on a MasPar MP-1, and a MIMD version on

24

Toarnn ey

W L

bt L

the ‘Intel iPSC/860. The former architecture using 16K processors is able to simulate as many as three
million calls per minute, the latter (using 16 processors) can simulate at half that rate. These processing
rates are an order of magnitude faster than what one could expect from an optimized serial implementation
running on a i860-based processor with huge memory. Given that running times of realistic simulations are
often measured in hours, our algorithms offer the ability to simulate larger models, faster, than is now the

practice.

25

H
H
H

U —

e

WA W

g
=

References

[1] L. Bomans and D. Roose. Benchmarking the iPSC/2 hypercube multiprocessor. Concurrency: Practice

and Ezperience, i(l):3—18, September 1989.

[2] S. Eick, A.G. Greenberg, B.D. Lubachevsky, and A. Weiss. Synchronous relaxation for parallel simula-
tions with applications to circuit-switched networks. In Proceedings of the 1991 SCS Mulliconference,

Simulation Series; vol. 23, no. 1, pages 151-162. SCS, 1991.

[3] S. Eick, A.G. Greenberg, B.D. Lubachevsky, and A. Weiss. Synchronous relaxation for parallel simula-
tions with applications to circuit-switched networks. To appear in ACM Transactions on Modeling and

Compuler Simulation, 1992.

[4] T. Feder, A.G. Greenberg, M. Rausch, V. Ramachandran, and L.-C. Wang. Complexity of the telephone

connect problem. To be submitted to Information and Compulation.
[5] R.M. Fujimoto. Parallel discrete event simulation. Communications of the ACM, 33(10):31-53, 1991.

[6] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math., 17(2):416-419,

March 1969.
(7] F.P. Kelly. Loss networks. The Annals of Applied Probability, 1(3):319-378, August 1991.

[8] C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix. I[EEE Transactions on Compulers,
C-34(10), October 1985.

[9] R.E. Ladner and ‘M.J. Fischer. Parallel prefix computation. Journal of the ACM, 27:831-838, 1980.

(10] Sigurd L. Lillevik. The Touchstone 30 gigaflop DELTA prototype. In Distribuled Memory Compuler
Conference 91, pages 671-677. IEEE PRESS, April 1991. The Paragon is not discussed.

[11] A.G. Greenberg B.D. Lubachevsky and L.-C. Wang. A synchronous relaxation method for massively
parallel discrete simulation of circuit-switched networks. To be submitted to ACM Transactions on

Modeling and Compuler Simulation.

[12] R.B. Wolf. Advanced techniques for managing telecommunications networks. JEEE Communications

Magazine, 28(2):76-81, October 1990.

26

(UL T DT TR T R VT TORE T TN T L T TR T R TR Ry e 1

PRy

[T

WA TR 1 |

TR0 1SN MY A 0 | G0 G b

|

"

[N T T

1wl (D

B

REPORT DOCUMENTATION PAGE rorm Approved

OMB No. 0704-0188

Public reporting burden for this icliection of Afarmation i estimated tG 3verage | hour per resporse. including the time fOr reviewing iNSTructions, searching existing data sources,
Jathening and maintaining the data ceeded, and (Cmoteting angd ravisw rg the tollection of information Send comments regarding this burden estimate or any Sther aspect of this
cctlection of informatior irtiuding suggestions 107 reduring (hs burgen 12 Wasmingron rieadquarters Services, Directorate for infGrmation Operations and Reports, 1215 jefferson

Davis Highway, Suite 1204 Lengtan ', 2 222024302 ana 1o the Ofice of Management and Budjet Paperwork Reduction Proyest (0764-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank} Z. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1992 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A SWEEF ALGORITHM FOR MASSIVELY PARALLEL SIMULATION C NAS1-18605
OF CIRCUIT-SWITCHED NETWORKS NAS1-19480
6. AUTHOR(S) WU 505-90-52-01

Bruno Gaujal
Albert G. Greemberg
David M. Nicol

7. PERFORMING ORGANIZATION NAME(S}) AND ADDRESS(ES) 8. PERBOF;MWG ORGANIZATION
REPORT NUMBER
Institute for Computer Applications in Science
and Engineering

Mail Stop 132C, NASA Langley Research Center ICASE Report No. 92-30
Hampton, VA 23665-5225

9. SPONSORING / MONITORING AGENCY NAME{S) AND ADDRESS(ES) 10. SP%N%ORIN&O/N_}ONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Langley Research Center

NASA CR-189680
Hampton, VA 23665-5225

ICASE Report No. 92-30

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to Journal of Parallel
Final Report and Distributed Computing
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

A new massively parallel algorithm is presented for simulating large asymmetric
circuit-switched networks, controlled by a randomized-routing policy that includes
trunk-reservation. A single instruction multiple data (SIMD) implementation is
described and corresponding experiments on a 16384 processor MasPar parallel com-
puter are reported. A multiple instruction multiple data (MIMD) implementation is
also described and corresponding experiments on an Intel IPSC/860 parallel computer,
using 16 processors, are reported. By exploiting parallelism, our algorithm in- -
creases the possible execution rate of such complex simulations by as much as an
order of magnitude.

14. SUBJECT TERMS 15. NUMBER OF PAGES
simulation; networks; parallel processing; SIMD algorithms 28
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 {Rev 2-89)
;;éés(lréged by ANSI S1d Z39-18

NASA-Langley, 1992

WA n——

1M DR e e

£
1
;
€

