
-- --

0

Jing-Fu Jenq Sartaj Sahniand
University of Minnesota University of Florida

Abstract
We develop parallel algorithms to compute the Hough
transform on a reconfigurable mesh with buses (RMESH)
multiprocessor. The p angle Hough transform of an N×N
image can be computed in O (plog(N/p)) time by an N×N
RMESH, in O ((p/N)logN) time by an N×N 2 RMESH with N
copies of the image pretiled, in O ((p/√

���
N)logN) time by an

N 1.5×N 1.5 RMESH, and in O ((p /N)logN) time by an N 2×N 2

RMESH.

Keywords and Phrases
Hough transform, reconfigurable mesh with buses, parallel
algorithms, complexity.

1 IntroductionLet (xi ,yi) be any point on a straight line L in two dimen-
sional space (Figure 1). The normal to L is a straight line that
orignates at the origin (0,0), terminates at a point on L, and is
perpendicular to L. Let θ be the angle between the normal and
the x-axis and let r be the length of the normal. From Figure 1,
we see that regardless of the position of (xi ,yi) on L, the fol-
lowing equality holds:

xicosθ + yisinθ = r (1)
This equality may be used to detect straight lines or

edges in images. In the Hough transform method this is done
by trying out a set {θj

�
 0 ≤ j < p } of p possible angles for the

normal. An angle θj and point (xi ,yi) uniquely define the line L
and its normal. For any angle θj all image points that have the
same normal length r as computed by Equation (1) lie on the
same line L. If for a given θj we know how many image
points have the same normal length r, we can determine the
probability that these points actually define an edge of the
image. Lines with many points on them have a higher likeli-
hood of defining an edge in the image than those with fewer
points.Let I [0..N −1,0..N −1] be an N×N image such that I [i, j] = 1
iff the point (i, j) is a candidate for an edge point of the image.
I [i, j] = 0 otherwise. The p angle Hough transform of I is an
array H such that:
H [r, j] =

�
{(x,y)

�
 r =

��
xcosθj + ysinθj

��
θj =

p
π__(j +1), and I [x,y] = 1}

�

* This research was supported in part by the National Science Fundation under grants DCR- 84-20935 and MIP 86-
17374

-- --

(0,0) x

y
normal

L

θ
xicosθ

yisinθ

(xi ,yi)

Figure 1 A line L and its normal

The second coordinate of H, j, corresponds to the p
angles and is in the range 0 through p −1. Since

θj =
p
π__(j +1), and 0 ≤ j < p, 0 < θj ≤ π. Furthermore, since the

image point coordinates x and y are in the range 0 ≤ x, y < N.
r =

��
xcosθj + ysinθj

�� is in the range −√
� �
2 N through √

� �
2 N.

Hence H is at most a 2√
� �
2 N×p array. Pairs (r, j) for which

H [r, j] is greater than some threshold value define likely
edges. The pair (r, j) defines the unique line L whose normal
has length r and angle θj.On a single processor computer, the Hough transform is
easily computed in O (N 2p) time. Parallel algorithms for mesh
connected computers have been proposed by Rosenfeld et al.
[ROSE88], Cypher et al. [CYPH87], Guerra and Hambrush
[GUER87], and Silberberg [SILB85]. The algorithm of
Cypher et al. uses a pipelined technique and has complexity
O (N +p) on an N×N mesh. Fisher and Highnam [FISH87] con-
sider a scan line array. Their algorithm has time complexity
O (N 2p) and is suitable for VLSI implementation. The proces-
sor array size is O (N) and each PE requires O (p) space. Ranka
and Sahni [RANK90] develop two O (p +logN) SIMD hyper-
cube algorithms to compute H. Both of these use an N 2 pro-
cessor SIMD hypercube. One uses O (1) memory per proces-
sor while the other uses O (logN) memory per processor. They
also develop algorithms for an MIMD hypercube and present
experimental results on an NCUBE hypercube. The

-- --

2

computation of the Hough transform on an SIMD tree
machine is considered by Ibrahim et al. [IBRA86]. Rather
than deal in (r,θ) space, their work uses the (m,c) space where
m is the slope and c is the y-axis intercept of the line (i.e., the
straight line equation y = mx + c is used). A Hough transform
algorithm for a polymorphic torus is developed in [LI89,
MARE88, and MARE89] and a fast Hough transorm algo-
rithm is given in [LI86].In this paper we consider a variant of the mesh con-
nected computer. This variant called "reconfigurable mesh
with buses" (RMESH) was introduced by Miller, Prasanna
Kumar, Resis, and Stout [MILL88abc]. We develop algo-
rithms to compute the p angle Hough transform of an N×N
image on different size RMESHs. Our algorithm for an N×N
RMESH has complexity O (plog(N /p)) which is a significant
improvement over the O (p + N) complexity for an N×N mesh
when p << N. On an N×N 2 RMESH we can compute the
Hough transform in O ((p /N)logN) time with N copies of the
image pretiled over the RMESH, and in times O (p /√���N logN)
and O ((p /N)logN) on N 1.5×N 1.5 and N 2×N 2 RMESHs, respec-
tively.

2 The RMESH ModelThe important features of an RMESH are [MILL88abc]:

(0,0)

(3,3)

: Processor

: Switch

: Link

Figure 2 4×4 RMESH

-- --

3

1 An N×M RMESH is a 2-dimensional mesh connected
array of processing elements (PEs). Each PE in the
RMESH is connected to a broadcast bus which is itself
constructed as an N×M grid. The PEs are connected to
the bus at the intersections of the grid. A 4×4 RMESH is
shown in Figure 2. Each processor has up to four bus
switches that are software controlled and that can be
used to reconfigure the bus into subbuses. The ID of
each PE is a pair (i, j) where i is the row index and j is
the column index. The ID of the upper left corner PE is
(0,0) and that of the lower right one is (N −1,M −1).

2 The up to four switches associated with a PE are labeled
E (east), W (west), S (south) and N (north). Notice that
the east (west, north, south) switch of a PE is also the
west (east, south, north) switch of the PE (if any) on its
right (left, top, bottom). Two PEs can simultaneously
set (connect, close) or unset (disconnect, open) a partic-
ular switch as long as the settings do not conflict. The
broadcast bus can be subdivided into subbuses by open-
ing (disconnecting) some of the switches.

3 Only one processor can put data onto a given sub bus at
any time

4 In unit time, data put on a subbus can be read by every
PE connected to it. If a PE is to broadcast a value in
register I to all of the PEs on its subbus, then it uses the
command broadcast(I).

5 To read the content of the broadcast bus into a register
R the statement R := content(bus) is used.

6 Row buses are formed if each processor disconnects
(opens) its S switch and connects (closes) its E switch.
Column buses are formed by disconnecting the E
switches and connecting the S switches.

7 Diagonalize a row (column) of elements is a command
to move the specific row (column) elements to the diag-
onal position of a specified window which contains that
row (column). This is illustrated in Figure 3.

3 N 2 Processor RMESHAs is the case in the algorithms of [CYPH87],
[GUER87], and [RANK90], our N 2 processor RMESH algo-
rithm divides the p angles into four classes C1-C4 as below:

C1 = {θj
�
 0 < θj ≤ π/4}

C2 = {θj
�
 π/4 < θj ≤ π/2}

C3 = {θj
�
 π/2 < θj ≤ 3π/4}

C4 = {θj
�
 3π/4 < θj ≤ π}

-- --

4

1 3 5 4 2

1

3

5

4

2

1

3

5

4

2

(a) 4th row (b) 1st column (c) diagonalize

Figure 3 Diagonalize 4th row or 1st column elements of a
5×5 window

The algorithms for each of these classes are quite similar. So,
we provide the details for just one of these, i.e., C3. The
number of angles in each class is q = p /4 (for simplicity, we
assume that 4 divides p). For any θj we may define a matrix V
of normal vector lengths for lines that go through points (a,b),
0 ≤ a, b < N and whose normal angle is θj. This matrix is
defined as below:

V [a,b] = �� acosθj + bsinθj �� , 0 ≤ a,b < N

For any N×N image I, the j’th column, H [*, j], of the Hough
transform matrix can be computed using the equality

H [r, j] = � {(a,b) � V [a,b] = r and I [a,b] = 1} �
We first consider some properties of V for the case
π/2 < θj ≤ 3π/4. Figure 4 shows a line L whose normal angle is
in this range. The following properties are easily established
[RANK90, CYPH87, and GUER87].
P1: If V [a,b] = V [a,b +z] for any z > 0, then z = 1.
P2: If V [a,b] = V [a +1,c], then c = b or c = b +1.
P3: If V [a,b] = V [a,b +1] = V [a +1,c], then c = b +1.
P4: If V [a,b] ≠ V [x,b +1] for x > a, then V [a,b] ≠ V [x,y] for
y > b.Suppose we consider computing H [r, j] for a fixed r and j
such that θj ∈ C3 by sending a token through every point (a,b)
such that V [a,b] = r. This token begins with the value 0 and is
incremented by 1 each time it visits a point (a,b) with
I [a,b] = 1. Since I [a,b] ∈ {0,1} we may simply increment the
token by I [a,b] each time it reaches a point (a,b) with
V [a,b] = r. Since for every r the corresponding line L must
cross the left or bottom boundaries of the image and since

� cosθ � and � sinθ � are in the range [0,1], V [0..N −1,0] and
V [0,0..N −1] cover the range of possible r values in

-- --

5

V [0..N −1,0..N −1].

normal

L

θ

Figure 4 A line L with normal angle in the range [π/2,3π/4]

Hence we may start our token for H [r, j] at a left or bot-
tom point (a,b) such that V [a,b] = r. From properties P1 - P4 it
follows that the token needs to move according to the rule
given in Figure 5.

Let (a,b) be the current position of the token.
Let r = �� acosθj + bsinθj �� .

if r = �� acosθj + (b +1)sinθj ��
then move the token to (a,b+1)
else if r = �� (a +1)cosθj + bsinθj ��

then move the token to (a +1,b)
else move the token to (a +1,b +1)

Figure 5 Rule to move a token

The token is moved until it falls off the image. This will
happen after the token reaches either the top or right boundary
of the image. At this time the token’s value is H [r, j].Rather than send a single token through the array, we can
simultaneously send several. The discipline we adopt is that at
any time all active tokens in a column correspond to the same
angle θj. A token becomes inactive when a move according to
the rule of Figure 5 would cause it to fall off the image. For
convenience, we assume that the processors in the N×N
RMESH are indexed such that PE (i, j) corresponds to the
image point (i, j) (see Figure 6).Let us consider the token movement strategy for the case
of a single angle θj , π/2 < θj ≤ 3π/4. This is described in Figure
7. We assume one processor per pixel. The tokens for θj begin

-- --

6

(0,0) (N −1,0)

(0,N −1) (N −1,N −1)

•

• •

•

•

•

•

•

•

•

•

•

Figure 6 PE indexing scheme

in column 0. Each token corresponds to a distinct r value.
From P1 we know that two image points in the same column
can have the same r value only if they are adjacent. In step 1
of Figure 7 one token for each unique r in column 0 is created.
These newly created tokens have the value 0. In step 2 the
tokens are moved through all points (a,b) with the same V [a,b]
value. After incrementing the token values to account for the
image values at their current locations in column k, the tokens
that also correspond to the image point one up in the same
column are moved one up and incremented. In case this
requires the token in row N −1 to move, this token is deac-
tivated as the move would cause it to fall off the image.
Because of property P1, the tokens in column k are not to be
moved to any other positions in the column.The tokens now need to be moved to column k +1 (unless
k = N −1). A token in PE (k,a) moves to either (k +1,a) or
(k +1,a +1). This is resolved by computing the r value for posi-
tion (k +1,a). At column k +1 it is possible that position (k +1,0)
corresponds to a new line. This is true if and only if PE
(k +1,0) does not receive a token from column k. In this case
this PE initializes a new token with value 0.Following step 2 we have at most one deactivated token
in each of the PEs in row N −1 (i.e., top row of PEs) and at
most one active token in each of the PEs in column N −1 (i.e.,
right most column of PEs). These tokens correspond to dis-
tinct r values and define the column of the Hough transform
matrix that corresponds to θj.The computation for all angles θj, π/2 < θj ≤ 3π/4, can be
done in a pipelined fashion. Following the movement of the

-- --

7

Step 1
[Initialize column 0 tokens]
PE (0,i) creates a token with value 0 if��

isinθj

�� ≠
��
(i −1)sinθj

�� , 1 ≤ i < N

PE (0,0) creates a token with value 0

Step 2
[Update and move tokens]
for k := 0 to N −1 do
begin
{tokens are in column k }
the PEs in column k that have a token, add their I value to it;
{ move some tokens up the column by 1 }
PE (k,i) determines if

��
kcosθj + isinθj

�
� =

��
kcosθj + (i +1)sinθj

�
� .

This is done by all PEs in column k that have a token.
If the equality holds, the PE sends its token to PE (k,i +1)
unless i +1 = N.
In this latter case PE (k,i) saves the token as a deactivated
token.
{ Increment moved tokens }
Each PE (k,i) in column k that received a token adds its I value
to it;
{ token updating for column k has been completed }
{ advance tokens to next column }
if k ≠ N −1 then
begin
every PE (k,i) that has an active token determines if��

kcosθj + isinθj

�� =
��
(k +1)cosθj + isinθj

�� .

If so, it sends its token to PE (k +1,i).
Otherwise it sends it to PE (k +1,i +1) except when i +1 = N.
In this latter case the token is saved as a deactivated token by
PE (k,i).
If PE (k +1,0) does not receive a token, it creates one with
value 0;

end;
end;
Figure 7 Token movement and updating for angle θj

tokens for θj from column 0 to column 1, column 0 can initiate
the tokens for the next angle θj. The scheme of Figure 7 is
easily modified so that the PEs in a column know θj (or cosθj

and sinθj) for the tokens they currently hold. With this

-- --

8

pipelining the Hough transform may be computed in O (N +p)
time. This is essentially the strategy of [CYPH87] and
[GUER87].The performance can be improved by employing the
above strategy on N×(p /4) sub RMESH’s only. Recall that we
have assumed that the number of angles in each of C1, C2,
C3, and C4 is p/4. We consider the N×N image as 4N/p
independent N×(p/4) subimages and compute the Hough
transform for each independently. Then the 4N/p Hough
transforms are combined to get the Hough transform for the
original N×N image (actually this will only get us the
transform for angles in C3; similar algorithms need to be run
to get the Hough transform for the remaining angles).Assume that following the application of Figure 7, in a
pipelined fashion, for all θj in C3, the Hough transform matrix
is stored in columns 0 through p/4−1 of each N×(p/4) sub
RMESH. For this, when the tokens for the j’th angle reach
column p/4−1 of the sub RMESH, they are broadcast along
row buses to the processors in column j of the sub RMESH.
Also, when tokens get deactivated in row N −1 they are
transmitted to processors in columns dedicated for their angles
(column j processors of each sub RMESH are dedicated to the
j’th angle in C3). Note that the tokens that get simultaneously
deactivated in row N −1 correspond to different angles in C3 as
at most one token deactivates in each row N −1 processor at
any time and each column corresponds to a different angle.
The deactivated token (if any) in processor (k,N −1) of the sub
RMESH is routed to processor (j,k) of the sub RMESH where
θj is the angle corresponding to the token. This is accom-
plished in O(1) time as in Figure 8.Once the computation for all p/4 angles in C3 has been
completed, each PE in column j of each N×(p/4) sub RMESH
contains at most two token values. One received from the
rightmost column in the sub RMESH and one from row N −1.
The first is an active token and the latter a deactivated token.
All tokens in column j of the sub RMESH correspond to the
j’th angle in C3. The time needed to accomplish this is O (p).Now we need to combine together the partial Hough
transform values computed in each N×(p/4) sub RMESH.
Column j of each sub RMESH contains partial Hough
transform values for the j’th angle in C3, 0 ≤ j < p/4. Across
these columns, we need to add together values that correspond
to the same r. Each processor has at most two tokens: active
and deactivated. There are two quantities associated with
each token. One is the r value and the other is a count of the
number of pixels that have contributed to this token (this
count has so far been referred to as the token value). Let us
call these quantities token.r and token.count, respectively. The
sum of the token.count’s for the same angle and token.r values
can be obtained in O (plog(N/p)) time by computing these sums
for one angle at a time. This corresponds to considering all

-- --

9

Step 1
Set up column buses

Step 2
Each PE (k,N −1) of the sub RMESH broadcasts its deactivated
token together with the corresponding r and j values;

Step 3
PEs (i,i) of the sub RMESH, 0 ≤ i < p/4 read their bus and are
now the only PEs in the sub RMESH with deactivated tokens;

Step 4
Set up row buses local to each sub RMESH;

Step 5
The PEs with deactivated tokens broadcast tokens and the
corresponding r and j values;

Step 6
All PEs read their bus. However, a PE stores the deactivated
token value and r value read only if the PE is in column j of
the sub RMESH (j is the third value read from the bus);

Figure 8 Redistributing deactivated tokens

columns j with j mod (p/4) = k for a fixed k in (0,p/4−1) at the
same time and adding together the token.counts in these
columns for tokens that have the same r values. This summa-
tion is done in O (log(N/p)) time by first summing up pairs of
columns in adjacent blocks; then pairs of these results are
summed, etc. Figure 9 shows the strategy for the case of 8
blocks each of size N×(p/4). The column j tokens of each
block are to be summed. The leaves of the summation tree are
labeled by the block number they represent. Blocks of the
RMESH are numbered left to right 0 through 4N/p−1. The
input for each summation consists of two columns of tokens.
The columns are initially p/4 processors apart; then, at the
next level, they are p/2 processsors apart, then p; then 2p; and
so on. One of the two token columns is to the left of the other.
This is called the L column and the other column is called the
R column. On input, each processor contains at most two
tokens; one active and one deactivated. The output of the
summation operation is left in the input processor column
corresponding to L. Again, each processor in this column will
have at most two tokens; one active and the other deactivated.
Furthermore the r values corresponding to the deactivated
tokens (active tokens) decrease as we go down a column and
the deactivated tokens have a larger r value than do the active
tokens. When the columns being merged are p/4 apart (i.e.,
leaves of Figure 9), the sets of deactivated and active tokens

-- --

10

are as defined earlier. For a pair of columns L and R, these
sets at the parent node (cf. Figure 9) are given by the equali-
ties:
deactivated (L∪R) = deactivated (L) ∪ deactivated(R)
active (L∪R) = active (R)

+

+ +

+ + + +

0

0 4

0 2 4

0 1 2 3 4 5 6 7

Figure 9 Summing the j’th column of 8 blocks

Let Z be a summation node (i.e., internal node) of Figure
9. Let the distance between the two columns L and R being
summed at Z be s, s ∈ {p/4,p/2, . . . ,N/2} It is easy to see that

�
deactivated (Z)

�
 ≤ 2s ≤ N and

�
active (Z)

�
 ≤ N. We assume that

each token has two values: count and r associated with it.
Count is the number of pixels that has contributed to it and r is
the length of the normal to the line represented by this token.
We observe that the count value of the deactivated tokens of L
does not change as a result of the summation. In fact the count
values can change only for those tokens that are deactivated
or active tokens of R. To get the new count values for the
deactivated tokens of R, we use the processor columns L and R
together with the s −1 columns between them. Thus an
N×(s +1) sub RMESH is used. The code for such a sub
RMESH is given in Figure 10. Its complexity is O(1). The
deactivated tokens of R can next be compacted to lie in con-
secutive rows of L immediately following the last row of L that
contains a deactivated token. This requires us to rank the
deactivated tokens of R and then route these to row w of L
where w is the token rank plus the number of deactivated
tokens already in L. We assume that the deactivated tokens of
L lie in consecutive rows of L beginning at row 0. This is not
true for the leaf nodes of Figure 9. However, the deactivated
tokens in these nodes may be compacted in O(1) time using
the ideas used to route the deactivated tokens of R to L. The

-- --

11

Step 1
Use column and row buses in the sub RMESH to obtain the
data configuration:
PE (i, j) of the N×(s +1) sub RMESH contains the deactivated
token (if any) from the row i processor of column R and the
active token (if any) from the row j processor of column L,
0 ≤ i < s +1, 0 ≤ j < N.

Step 2
if PE (i, j) of the sub RMESH has two tokens and both have the

same r value
then update the count of the deactivated tokens to be the sum

of the two token counts and destroy the active token of L
by sending a signal down row bus j,
0 ≤ i < s +1, 0 ≤ j < N.

Step 3
if PE (i, j) has a deactivated token with updated count
then the updated count is reported back to the PE in row i

of column R.
Figure 10 Updating the count for deactivated tokens of R

Step 1
if PE (R,k) has a token
then it broadcasts it and the token’s rank on its row bus,

0 ≤ k < s PE (i, j) reads its bus, 0 ≤ i < (s +1), 0 ≤ j < s.
Step 2
PE (i, j) retains the token (if any) read in Step 1 only if i
equals the token rank, 0 ≤ i < s +1, 0 ≤ j < s.

Step 3
The PEs that have tokens, broadcast these along column buses.

Step 4
Let t be the number of deactivated tokens in column L.
PE (j,t +j), 0 ≤ j < q where q is the number of deactivated
tokens in R, reads its bus.

Step 5
PE (j,t +j), 0 ≤ j < q broadcasts the token read on its row bus.

Step 6
PE (L,t +j), 0 ≤ j < q reads its bus.

Figure 11 Routing deactivated tokens of R to L

-- --

12

ranking and routing of the deactivated tokens of R can be done
in O(1) time using the N×(s +1) processor sub RMESH
comprised of columns L and R and the s −1 processor columns
between them. The ranking takes O (1) time (Appendix A) as
we are ranking at most s tokens, one token to a row, in an
s×(s +1) sub RMESH (the deactivated tokens lie in the first s
rows of R). The routing scheme is described in Figure 11.

Step 1
PE (R,i) broadcasts its token’s (if any) count and r values
to all processors on row i using a row bus, 0 ≤ i < N

Step 2
PE (L,i) broadcast its token’s (if any) count and r values
to PEs (L +q,i +q), 0 ≤ q ≤ min{N −1−i,2s} using the bus
structures of Figure 13, 0 ≤ i < N

Step 3
Set up row buses.

Step 4
Each PE (i, j) in the N×(2s) sub RMESH that has two tokens
with the same r value adds their count and disconnects its W
switch and then broadcasts the new count and r value to PE
(R, j).

Step 5
PE (R, j) broadcast its r and count values, 0 ≤ j < N.

Step 6
PE (L, j) reads r and count from the row bus, 0 ≤ j < N

Figure 12 Updating counts for active tokens of R

To update the count of the active tokens in R a different
strategy is used. First note that the set of active tokens in R
includes the remaining active tokens of L (i.e., those not des-
troyed in step 2 of Figure 10). Also, note that as tokens pro-
gress through the image (see algorithm of Figure 5), they can
move up by at most two rows for each column they move
right. Hence, if a token of L has the same r value as a token in
R, then the two tokens must reside in rows of L and R that are
at most 2s apart (recall that L and R are s columns apart). To
update the active tokens of R, we employ the PEs in the two
blocks which L and R belong to by moving L to the left most
column in its block and R to its right most column in its block.
So, a total of 2s processor columns (i.e., an N×(2s) sub
RMESH) are used. For the update, we need to bring active
token pairs from L and R that have the same r value together.
This is done using the strategy of Figure 12. We assume that L
and R are the 2 extreme columns of the combined block. The
broadcasting of step 2 is done in two stages. First, all PEs

-- --

13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L R L R

(a) (b)

Figure 13 Bus structures used in step 2 of Figure 12

[L,i] with i odd do this and then those with i even do it. Figure
13 (a) gives the bus structure used for the first stage and Fig-
ure 13 (b) gives the structure used in the second stage.The complexity of the algorithm described to compute
the Hough transform for the angles in C3 is O (plog(N /p)). The
time needed for the angles in each of the remaining sets C1,
C2, and C4 is the same. So, the over all complexity of our N 2

processor RMESH Hough transform algorithm is O(plog(N/p)).

4 NN 3 Processor RMESHIf the RMESH is configured as an N×N 2 array with one
copy of the image in each N×N sub RMESH, then the Hough
transform can be computed in O ((p /N)logN) time by having
each N×N sub MESH compute the transform for p /N angles
using the algorithm of Section 2. In case the RMESH is
configured as a N 1.5×N 1.5 array with one pixel in each √���N ×√���N
sub MESH, the Hough transform can be computed in
O ((p/√���N)logN) time. For this, p/√���N passes are made. In each,
the Hough transform for √���N angles is computed. The Hough

-- --

14

transform for √
���

N angles can be computed in O (logN) time by
having PE (i,i) of each √

���

N ×√
���

N sub RMESH initiate a token
with value equal to that of the image value at the correspond-
ing point. The r value for the token in PE (i,i) is obtained by
using the i’th angle. Now we need to add up the token values
of all tokens with the same r and θ values. This can be done
by combining tokens in pairs of sub RMESHs at a time. The
strategy employed is similar to that used in [JENQ90]. Two
kinds of combinations are needed: horizontal and vertical. In
horizontal combining two sub RMESHs each containing k×k
√
���

N ×√
���

N sub RMESHs are combined to get a single sub
RMESH which is a k×(2k) configuration of √

���

N ×√
���

N sub
RMESHs. In a vertical combining, two k×(2k) arrays of
√
���

N ×√
���

N sub RMESHs are combined to get a single 2k×2k sub
RMESH.The initial configuration for a horizontal combine has the
tokens in the PEs on the antidiagonals of the two k×k √

���

N ×√
���

N
sub RMESHs (Figure 14). As in the discussion of Section 2,
assume that θj is in the range π/2 < θj ≤ 3π/4. So, r is in the
range [−√

� �

2 N/2,N]. However for any fixed θj in the above
range at most √

� �

2 N distinct integer r values are possible. The
maximum number of tokens in each PE is therefore √

� �

2 k√
���

N (at
most √

� �

2 k per angle and √
���

N angles). The number of PEs on
each antidiagonal is k√

���

N . So, using k PEs per angle we need
to store at most √

� �

2 < 2 tokens in each PE. The final
configuaration has at most 2√

� �

2 k√
���

N tokens stored at most 4 per
PE in the antidiagonal PEs of the left sub RMESH A.

θ1

θ2

θ3

k

k

kk√
���

N

Sub RMESH A Sub RMESH B

Figure 14 Initial configuration for horizontal combining

For a vertical combine, the initial configuration is the
final configuation of a horizontal combine and the final
configuration is the initial configuation of a horizontal

-- --

15

combine. We shall describe how to go from the initial
configuration of a horizontal combine to its final configuration
in O (1) time. The method for a vertical combine is similar.
Since O (logN) parallel combine steps suffice to combine all
tokens, the complexity is O (logN).A horizontal combine for any angle θj, uses the PEs on
the k rows dedicated to this angle. So, a k×2k √

���

N sub RMESH
is available. Since π/2 < θj ≤ 3π/4, the r values of the tokens in
the k rows of the left sub RMESH A (call this sub RMESH KA)
are ≥ the r values of the tokens in the same k rows of the right
sub RMESH B (call this sub RMESH KB). Using column and
row buses confined to the k×2k √

���

N sub RMESH formed by A
and B we can obtain, in O (1) time, a configuration in which PE
(i, j) of a k×k sub RMESH of A contains the at most 2√

� �

2 tokens
in the i’th row of KA and j’th row of KB. In an additional O (1)
time, this PE can check if any of the tokens it has from KA
have the same r value as any of the tokens it has from KB. If
so, the KA token is deleted and the value of the KB token
incremented by the value of the deleted KA token. The KA and
KB tokens can be ranked in O (1) time using the available pro-
cessors and packed into the k antidiagonal processors of KA
packing no more than four tokens per processor in an addi-
tional O (1) time. Hence the horizontal combine can be com-
pleted in O (1) time.

5 NN 4 ProcessorsWhen N 4 processors are available, there is a rather
straightforward O((p /N)logN) algorithm to compute the Hough
transform. We assume that the RMESH is configured as an
N 2×N 2 array with the N 2 pixel values initially in row 0. Since
there are only 2√

� �

2 N different r values possible, we compute
the Hough transform for N /(2√

���

2) angles simultaneously.
Thus, 2√

� �

2 p /N iterations are needed. Each row of the N 2×N 2

RMESH is assigned the task of obtaining the value of H(r, j)
for one pair (r, j). Since we are working with N /(2√

���

2) angles
simultaneously, the number of (r, j) pairs is N 2 which equals
the numbers of rows. The image can be broadcast to each row
using column buses. The processors in a row use the assigned
angle to obtain the r for their pixel. If this equals the r value
assigned to that row and if the pixel value is 1, the processor
sets its count variable to 1; otherwise it sets it to 0. Adding the
count variables in a row gives the Hough transform value for
the (r, j) pair assigned to the row.

6 References

[CYPH87] R. E. Cypher, J. L. C. Sanz, and I. Snyder, "The
Hough transform has O (N) complexity on SIMD
N×N mesh array architectures", Proceedings of

-- --

16

IEEE 1987 Workshop on Computer Architecture
for Pattern Analysis and Machine Intelligence,
pp 115-121, 1987.

[FISH87] A. Fisher and P. Highnam, "Computing the
Hough transform on a scan line array processor",
Proceedings of IEEE 1987 Workshop on Com-
puter Architecture for Pattern Analysis and
Machine Intelligence, pp 83-87, 1987.

[GUER87] C. Guerra and S. Hambrush, "Parallel algorithms
for line detection on a mesh", Proceedings of
IEEE 1987 Workshop on Computer Architecture
for Pattern Analysis and Machine Intelligence,
pp 99-106, 1987.

[IBRA86] H. A. Ibrahim, J. B. Kender, and D. E. Shaw,
"On the application of massively parallel SIMD
tree machine to certain intermediate-level vision
tasks", Computer Vision, Graphics, and Image
Processing, 36, 1986, pp 53-75.

[JENQ90] J. Jenq and S. Sahni, "Reconfigurable mesh
algorithms for the area and perimeter of image
components and histogramming", submitted.

[LI86] Li, Lavin, and LeMaster, "Fast Hough transform:
A hierarchical approach", Computer Vision,
Graphics, and Image Processing, 36, 3, Dec.
1986.

[LI89] Li, and Maresca, "Polymorphic-torus architec-
ture for computer vision", IEEE Trans. on PAMI,
11, 3, March 1989.

[MARE88] Maresca, Lavin, and Li, "Parallel Hough
transform algorithms on polymorphic torus", in
High Level Vision in Multicomputers, Levialdi,
(ed), Academic Press, 1988.

[MARE89] Maresca, Li, and Sheng, "Parallel computer
vision on polymorphic torus architecture", Intl.
Jr. on Computer Vision and Applications, 2, 4,
Fall 1989.

[MILL88a] R. Miller, V. K. Prasanna Kumar, D. Resis and
Q. Stout, "Data movement operations and appli-
cations on reconfigurable VLSI arrays",
Proceedings of the 1988 International Confer-
ence on Parallel Processing, The Pennsylvania
State University Press, 1988, pp 205-208.

[MILL88b] R. Miller, V. K. Prasanna Kumar, D. Resis and
Q. Stout, "Meshes with reconfigurable buses",

-- --

17

Proceedings 5th MIT Conference On Advanced
Research IN VLSI, 1988, pp 163-178.

[MILL88c] R. Miller, V. K. Prasanna Kumar, D. Resis and
Q. Stout, "Image computations on reconfigurable
VLSI arrays", Proceedings IEEE Conference On
Computer Vision And Pattern Recognition,
1988, pp 925-930.

[RANK90] S. Ranka and S. Sahni, Hypercube algorithms
with applications to image processing and pat-
tern recognition, Springer-Verlag, New York,
1990, pp 145-166.

[ROSE88] A. Rosenfeld, J. Ornelas, and Y. Hung, "Hough
transform algorithms for mesh-connected SIMD
parallel processors", Computer Vision, Graphics,
and Image Processing, 41, 1988, pp 293-305.

[SILB85] T. M. Silberberg, "The Hough transform in the
geometric arithmetic parallel processor",
Proceedings IEEE Workshop on Computer
Architecture and Image Database Management,
1985, pp 387-391.

Appendix A: O(1) RankingConsider an N×N RMESH in which each PE has a
Boolean variable selected. If selected (i, j) is true then rank (i, j)
is the number of PEs with selected (i, j) true that precede it in
the defined linear ordering. If selected (i, j) is false, then
rank (i, j) is undefined. Suppose that all the PEs with
selected (i, j) = true are on row 0 (i.e. selected (i, j) = false, i > 0).
Hence, at most, N elements are to be ranked.
rank (0, j), 0 ≤ j < N, can be computed in O (1) time using the
steps of Figure A1.

Step 1 [rank even columns]

Compute r (0, j) for j even where r is defined as
r (0, j) =

�
{q � q is even and selected (0,q) and q ≤ j}

�
Step 2 [rank odd columns]

Compute r (0, j) for j odd where r is defined as
r (0, j) =

�
{q � q is odd and selected (0,q) and q ≤ j}

�
Step 3 [combine]

rank (0, j)=

�� �
r (0, j) + r (0, j −1) − 1
r (0,0) − 1

j > 0
j = 0

Figure A1 Steps in Ο(1) ranking

-- --

18

The algorithms for steps 1 and 2 are similar. So we
describe the algorithm only for step 1. To compute r (0, j), for
even j, we set the bus switches as in Figure A2 (a) in case
selected (0, j) is true and as in Figure A2 (b) in case it is not.
The switch settings are similar to those used to compute the
exclusive or of 1’s in [MILL88]. In this figure e denotes an
even index and o an odd index. So, (e, j) denotes all PEs (i, j)
with even i. Note that since j is even (e, j) is equivalent to (e,e)
and (e, j +1) to (e,o). Solid lines indicate connected (closed)
switches and blanks indicate disconnected (open) switches.

(e, j)

(o, j)

(o, j +1)

(e, j +1)

(e,e)

(o,e)

(o,o)

(e,o)

(a) Settings for selected (0, j) = true

(e, j) (e, j +1) (e,e) (e,o)

(o, j) (o, j +1) (o,e) (o,o)

(b) Setting for selected (0, j) = false

Figure A2 Switch settings to compute r (0, j) for j even

The algorithm to implement this strategy is given in Fig-
ure A3. Its complexity is readily seen to be O (1). As men-
tioned earlier, the algorithm for step 2 is similar. Step 3 sim-
ply requires a rightward shift of 1 which can be easily done in
O (1) time. Hence the entire ranking can be done in O (1) time.

-- --

19

{ Compute r (0, j) for j even }

Step 1 t (0, j) := selected (0, j), 0 ≤ j < N;
Step 2 Set up column buses;
Step 3 Broadcast t (0, j) on column bus j, 0 ≤ j < N;
Step 4 t (i, j) := content(bus); 0 ≤ i, j < N;
Step 5 {send t (i, j) for j even to t (i, j) for j odd }

All PEs (i, j) with j even disconnect their N, S,
W switches and connect their E switch;
All PEs (i, j) with j even broadcast t (i, j);
All PEs (i, j) with j odd set t (i, j) to their bus
content;

Step 6 { set switches as in Figure A2 }
if t(i,j) then case (i,j) of

(odd,odd),(even,even): PE (i, j) disconnects
its E switch and connects its S switch;
else PE (i, j) connects its E switch and
disconnects its S switch;
endcase

else case i of
odd : PE (i, j) disconnects its E and S
switches;
else : PE (i, j) connects its E switch and
disconnects its S switch;

endcase;
Step 7 PE (0,0) broadcasts a special value on its bus;
Step 8 All PEs (i, j) with i and j even read their bus;

If the special value is read, then they set their S
value to true and r value to i/2 + 1;

Step 9 Set up column buses;
Step 10 PE (i, j) puts its r value on its bus if S (i, j) is true;
Step 11 r (0, j) = content(bus), j even;

Figure A3 RMESH algorithm to compute r (0, j) for j even

-- --

