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Abstract
We develop parallel algorithmsto compute the Hough
transform on areconfigurable mesh with buses (RMESH)
multiprocessor. Thep angle Hough transform of an NxN

image can be computedin O (plog(N/p)) time by an NxN
RMESH, in O((p/N)logN) time by an NxN? RMiSheivith N
copies o/t

eima iled, O((p/\/N)I timeby an
Nt>xN1> RMES ' )l ogt

RMESH.
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computation of the Hough transform on an SIMD tree
machine is considered by Ibrahim et al. [BRA86]. Rather
than deal in (r,0) space, their work uses the (m,c) space where
misthe slope and c isthe y-axis intercept of theline (i.e., the
straight line equation y = mx + cisused). A Hough transform
algorithm for a polymorphic torusis developed in [L189,
MARES88, and MARES89] and afast Hough transorm algo-
rithml rstinsgoepref W8eajonsider a variant of the mesh con-
nected computer. Thisvariant called "reconfigurable mesh
with buses' (RMESH) was introduced by Miller, Prasanna
Kumar, Resis, and Stout [MILL88abc]. We develop algo-
rithms to compute the p angle Hough transform of an NxN
image on different size RMESHSs. Our algorithm for an NxN
RMESH has complexity O (plog(N/p)) which is a significant
improvement over the O (p + N) complexity for an NxN mesh
when p < N. On an NxN? RMESH we can compute the
Hough transform in O ((p/N)logN) time with N copies of the
image pretiled over the RMESH, and in times O (p/VNIogN)
and O ((p/N)logN) on N15xN® and N2xN2 RMESHS, respec-
tively.

2 ThHeRheSehiMerates of an RMESH are [MILL88abc]:

(0,0)

(33

. Processor

O 1 Switch

—— : Link
Figure 2 4x4 RMESH




1 AnNxM RMESH isa 2-dimensional mesh connected
array of processing elements (PES). Each PE in the
RMESH is connected to a broadcast bus which isitself
constructed as an NxM grid. The PEs are connected to
the bus at the intersections of the grid. A 4x4 RMESH is
shown in Figure 2. Each processor has up to four bus
switches that are software controlled and that can be
used to reconfigure the businto subbuses. The ID of
each PE isapair (i,j) wherei istherow index and j is
the column index. TheID of the upper left corner PE is
(0,0) and that of the lower right oneis (N-1,M -1).

2 The up to four switches associated with a PE are labeled
E (east), W (west), S (south) and N (north). Notice that
the east (west, north, south) switch of aPE isalso the
west (east, south, north) switch of the PE (if any) onits
right (left, top, bottom). Two PEs can simultaneously
set (connect, close) or unset (disconnect, open) a partic-
ular switch aslong as the settings do not conflict. The
broadcast bus can be subdivided into subbuses by open-
ing (disconnecting) some of the switches.

3 Only one processor can put data onto a given sub bus at
any time

4 In unit time, data put on a subbus can be read by every
PE connected to it. If a PE isto broadcast avaluein
register | to all of the PEson its subbus, then it uses the
command broadcast(1).

5 To read the content of the broadcast businto a register
R the statement R := content(bus) is used.

6 Row buses are formed if each processor disconnects
(opens) its S switch and connects (closes) its E switch.
Column buses are formed by disconnecting the E
switches and connecting the S switches.

7 Diagonalize arow (column) of elementsisacommand
to move the specific row (column) elements to the diag-
onal position of a specified window which contains that
row (column). Thisisillustrated in Figure 3.

3  NXFstbessaseRMVESHIgorithms of [CY PHS7],
[GUERS7], and [RANK90], our N2 processor RMESH algo-
rithm divides the p angles into four classes C1-C4 as below:

Cl= {6;] 0<6;<14}
C2= {6;| W4<6; <12}
C3= {6 W2< 6; <34}
C4= {6 3m4<0;<Tg
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Figure 3 Diagonalize 4th row or 1st column elements of a
5x5 window

The algorithms for each of these classes are quite similar. So,
we provide the details for just one of these, i.e.,, C3. The
number of anglesin each classisq = p/4 (for smplicity, we
assumethat 4 dividesp). For any 8; we may define a matrix vV
of normal vector lengths for lines that go through points (a,b),
0<a, b < Nand whose normal angleis6;. Thismatrix is
defined as below:

V[a,b] = |acosb; + bsin;|,0<ab< N

For any NxN image I, the j’th column, H[*,j], of the Hough
transform matrix can be computed using the equality

Hr,jl1= [{(ab)| V[a,b] =r and I [a,b] = 1}|

We first consider some properties of V for the case

T2 < 8; < 3174. Figure 4 showsaline L whose normal angleis
in thisrange. The following properties are easily established
[RANK90, CYPH87, and GUERS7].

P1: If V[a,b] = V[a,b+z] forany z> 0, thenz = 1.

P2:1f V[a,b] = V[a+1,c],thenc=borc=b+1.

P3:1f V[a,b] = V[a,b+1] = V[a+1,c], thenc = b+1.

P4 If V[a,b] #V[x,b+1] for x > a, then V[a,b] # V[x,y] for

y > b.Suppose we consider computing H[r,j] for afixedr and j
such that 6; O C3 by sending a token through every point (a,b)
such that V[a,b] = r. Thistoken beginswith the value O and is
incremented by 1 each timeit visitsa point (a,b) with

I[a,b] = 1. Sincel[a,b] O{0,1} we may simply increment the
token by I [a,b] each timeit reaches a point (a,b) with

V[a,b] =r. Since for every r the corresponding line L must
cross the left or bottom boundaries of the image and since
|cosB| and |sinB| are in the range [0,1], V[0..N-1,0] and
V[0,0..N-1] cover the range of possibler valuesin



V[0.N-1,0.N-1].
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Figure 4 A line L with normal angle in the range [1v2,3174]

Hence we may start our token for H[r,j] at aleft or bot-
tom point (a,b) such that V[a,b] = r. From properties P1 - P4 it
follows that the token needs to move according to the rule
givenin Figure 5.

Let (a,b) be the current position of the token.
Letr = {acosej + bsinejJ .

ifr = {acosej ¥ (b+1)sjnejJ

then move the token to (a,b+1)

elseif r = {(a+l)cosej ¥ bsinejJ

then movethe token to (a+1,b)
else movethetokento (a+1,b+1)

Figure 5 Rule to move a token

The token ismoved until it falls off the image. Thiswill
happen after the token reaches either the top or right boundary
of théiatlagethan tasdiawtpbttblemsiebuglhsthig gy, we can
simultaneously send several. The discipline we adopt isthat at
any time all active tokensin a column correspond to the same
angle 6. A token becomes inactive when amove according to
the rule of Figure 5 would cause it to fall off the image. For
convenience, we assume that the processors in the NxN
RMESH are indexed such that PE (i,j) corresponds to the
imagé poud ¢onsicee thigtokdd) movement strategy for the case
of asingleangle 6;, W2 < 6; < 374. Thisisdescribed in Figure
7. We assume one processor per pixel. The tokens for 6; begin



(O,N-1) . N-1,N-1
(0,0) . (N-1,0)

Figure 6 PE indexing scheme

in column 0. Each token corresponds to adistinct r value.
From P1 we know that two image pointsin the same column
can have the samer value only if they are adjacent. Instep 1
of Figure 7 one token for each uniquer in column O is created.
These newly created tokens have the value 0. In step 2 the
tokens are moved through all points (a,b) with the sameV[a,b]
value. After incrementing the token values to account for the
image values at their current locations in column k, the tokens
that also correspond to the image point one up in the same
column are moved one up and incremented. In case this
requires the token in row N-1 to move, thistoken is deac-
tivated as the move would cause it to fall off the image.
Because of property P1, the tokensin column k are not to be
movette mkeothm\porbde ivetheegetlrarcolumn k+1 (unless
k = N-1). A token in PE (k,a) movesto either (k+1,a) or
(k+1,a+1). Thisisresolved by computing ther value for posi-
tion (k+1,a). At columnk+1 it ispossible that position (k+1,0)
corresponds to anew line. Thisistrueif and only if PE
(k+1,0) does not receive atoken from columnk. In thiscase
this AEol tothalhgest eprzwy édhaarevet thmod a0 deactivated token
in each of the PEsinrow N-1 (i.e., top row of PEs) and at
most one active token in each of the PEsin column N-1 (i.e.,
right most column of PEs). These tokens correspond to dis-
tinct r values and define the column of the Hough transform
matriX hieataopesgondsdo 8. angles 6;, W2 < 6; < 3174, can be
done in a pipelined fashion. Following the movement of the



Step 1

[ Initialize column O tokens ]

PE (0,i) creates atoken with value O if
{isinGjJ £ {(i —l)sinejJ 1<i<N

PE (0,0) creates atoken with value O

Step 2
[ Update and move tokens |
for k:=0toN-1do
begin
{tokensare in column k }
the PEsin column k that have a token, add their | valuetoit;
{ move some tokens up the column by 1}
PE (ki) determines if {kcosej " isinejJ - {kcosej + (i+1)sing; | .
Thisisdone by all PEsin column k that have a token.
If the equality holds, the PE sendsitstoken to PE (k,i +1)
unlessi+1= N.
Inthislatter case PE (k,i) saves the token as a deactivated
token.
{ Increment moved tokens }
Each PE (k,i) in column k that received atoken addsits| value
toit;
{ token updating for column k has been completed }
{ advance tokensto next column }
if k#N-1then
begin
every PE (k,i) that has an active token determines if
|kcos8, + isin| = | (c+ cost; + ising |
If so, it sendsitstoken to PE (k+1,i).
Otherwise it sendsit to PE (k+1,i +1) except wheni+1= N.
In thislatter case the token is saved as a deactivated token by
PE (k,i).
If PE (k+1,0) does not receive atoken, it creates one with
value 0;
end;
end,;
Figure 7 Token movement and updating for angle 6;

tokens for 8; from column 0 to column 1, column O can initiate
the tokens for the next angle 6;. The scheme of Figure 7 is
easily modified so that the PEsin a column know 6; (or cosb;
and sing;) for the tokens they currently hold. With this



pipelining the Hough transform may be computed in O (N +p)
time. Thisisessentially the strategy of [CYPH87] and
[GUBR®ERerformance can be improved by employing the
above strategy on Nx(p/4) sub RMESH’s only. Recall that we
have assumed that the number of angles in each of C1, C2,
C3, and C4 isp/4. We consider the NxN image as 4N/p
independent Nx(p/4) subimages and compute the Hough
transform for each independently. Then the 4N/p Hough
transforms are combined to get the Hough transform for the
original NxN image (actually thiswill only get usthe
transform for angles in C3; similar algorithms need to be run
to getAbauirmitiatt fahshanimof tne lappbcaiomohRoyese 7, in a
pipelined fashion, for all 8; in C3, the Hough transform matrix
isstored in columns O through p/4-1 of each Nx(p/4) sub
RMESH. For this, when the tokens for the j’th angle reach
column p/4-1 of the sub RMESH, they are broadcast aong
row buses to the processors in column j of the sub RMESH.
Also, when tokens get deactivated in row N-1 they are
transmitted to processors in columns dedicated for their angles
(column j processors of each sub RMESH are dedicated to the
j'th anglein C3). Note that the tokens that get simultaneousy
deactivated in row N-1 correspond to different anglesin C3 as
at most one token deactivates in each row N-1 processor at
any time and each column corresponds to a different angle.
The deactivated token (if any) in processor (k,N-1) of the sub
RMESH isrouted to processor (j,k) of the sub RMESH where
8; isthe angle corresponding to the token. Thisisaccom-
plishednced@(d)cbmeuatatioRiturel8p/4 angles in C3 has been
completed, each PE in column j of each Nx(p/4) sub RMESH
contains at most two token values. One received from the
rightmost column in the sub RMESH and one from row N-1.
Thefirst is an active token and the latter a deactivated token.
All tokens in column j of the sub RMESH correspond to the

j’ th aNghe iwé3eetdhe tomeimeeded)tthacdtwphinat i sasgh(p).
transform values computed in each Nx(p/4) sub RMESH.
Column j of each sub RMESH contains partial Hough
transform values for the j’th angle in C3,0< j < p/4. Across
these columns, we need to add together values that correspond
to the samer. Each processor has at most two tokens: active
and deactivated. There are two quantities associated with
each token. Oneisther value and the other isa count of the
number of pixelsthat have contributed to thistoken (this
count has so far been referred to as the token value). Let us
call these quantities token.r and token.count, respectively. The
sum of the token.count’s for the same angle and token.r values
can be obtained in O (plog(N/p)) time by computing these sums
for one angle at atime. This corresponds to considering all



Step 1
Set up column buses
Step 2
Each PE (k,N-1) of the sub RMESH broadcasts its deactivated
token together with the corresponding r and j values;
Step 3
PEs (i,i) of thesub RMESH, 0<i < p/4 read their busand are
now the only PEsin the sub RMESH with deactivated tokens;
Step 4
Set up row buseslocal to each sub RMESH;
Step 5
The PEswith deactivated tokens broadcast tokens and the
corresponding r and j values;
Step 6
All PEsread their bus. However, a PE stores the deactivated
token value and r value read only if the PE isin column j of
the sub RMESH (j isthe third value read from the bus);
Figure 8 Redistributing deactivated tokens

columnsj with j mod (p/4) = k for afixed k in (0,p/4-1) at the
same time and adding together the token.countsin these
columnsfor tokens that have the samer values. Thissumma
tion isdone in O (log(N/p)) time by first summing up pairs of
columnsin adjacent blocks; then pairs of these results are
summed, etc. Figure 9 showsthe strategy for the case of 8
blocks each of size Nx(p/4). The column j tokens of each
block are to be summed. The leaves of the summation tree are
labeled by the block number they represent. Blocks of the
RMESH are numbered |eft to right 0 through 4N/p-1. The
input for each summation consists of two columns of tokens.
The columns are initially p/4 processors apart; then, at the
next level, they are p/2 processsors apart, then p; then 2p; and
so on. One of the two token columnsisto the left of the other.
Thisiscalled the L column and the other column is called the
R column. On input, each processor contains at most two
tokens; one active and one deactivated. The output of the
summation operation isleft in the input processor column
corresponding to L. Again, each processor in this column will
have at most two tokens; one active and the other deactivated.
Furthermore the r values corresponding to the deactivated
tokens (active tokens) decrease as we go down a column and
the deactivated tokens have alarger r value than do the active
tokens. When the columns being merged are p/4 apart (i.e.,
leaves of Figure 9), the sets of deactivated and active tokens
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are as defined earlier. For apair of columnsL and R, these
sets at the parent node (cf. Figure 9) are given by the equali-
ties:

deactivated (L[ ]R) = deactivated (L) [] deactivated(R)
active (L[ ]R) = active (R)

Figure 9 Summing the j’th column of 8 blocks

Let Z be asummation node (i.e., internal node) of Figure
9. Let the distance between the two columnsL and R being
summed at Z be's, s 0 {p/4,p/2, - - - \N/2} It is easy to see that
| deactivated (Z)| < 2s <N and |active(Z)| <N. We assume that
each token has two values: count and r associated with it.
Count isthe number of pixelsthat has contributed toitandr is
the length of the normal to the line represented by this token.
We observe that the count value of the deactivated tokens of L
does not change as a result of the summation. In fact the count
values can change only for those tokens that are deactivated
or active tokens of R. To get the new count values for the
deactivated tokens of R, we use the processor columnsL and R
together with the s—1 columns between them. Thusan
Nx(s+1) sub RMESH isused. The code for such a sub
RMESH isgivenin Figure 10. Itscomplexity isO(1). The
deactivated tokens of R can next be compacted to lie in con-
secutive rows of L immediately following the last row of L that
contains a deactivated token. Thisrequires usto rank the
deactivated tokens of R and then route these to row w of L
where w isthe token rank plus the number of deactivated
tokens already in L. We assume that the deactivated tokens of
L liein consecutive rows of L beginning at row 0. Thisisnot
true for the leaf nodes of Figure 9. However, the deactivated
tokensin these nodes may be compacted in O(1) time using
the ideas used to route the deactivated tokensof RtoL. The
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Step 1
Use column and row busesin the sub RMESH to obtain the
data configuration:
PE (i,j) of the Nx(s+1) sub RMESH contains the deactivated
token (if any) from the row i processor of column R and the
active token (if any) from the row j processor of columnL,
O<i<s+1,0<j<N.
Step 2
if PE(,j) of the sub RMESH has two tokens and both have the
samer value
then update the count of the deactivated tokens to be the sum
of the two token counts and destroy the active token of L
by sending asignal down row busj,
O0<i<s+l1l,0<j<N.
Step 3
if PE(i,j) has adeactivated token with updated count
then the updated count is reported back to the PE in row i
of column R.
Figure 10 Updating the count for deactivated tokens of R

Step 1
if PE (R k) has atoken
then it broadcasts it and the token's rank on itsrow bus,
O<k<sPE(,j) readsitsbus,0<i < (s+1),0<j<s.
Step 2
PE (i,j) retains the token (if any) read in Step 1 only if i
equalsthetokenrank, 0<i <s+1,0<j<s.
Step 3
The PEsthat have tokens, broadcast these along column buses.
Step 4
Let t be the number of deactivated tokensin column L.
PE (j,t+]), 0<j < qwhere qisthe number of deactivated
tokensin R, readsits bus.
Step 5
PE (j,t+]), 0<j < q broadcasts the token read on itsrow bus.
Step 6
PE (L,t+j), 0<j < qreadsitsbus.
Figure 11 Routing deactivated tokens of Rto L
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ranking and routing of the deactivated tokens of R can be done
in O(1) time using the Nx(s+1) processor sub RMESH
comprised of columnsL and R and the s-1 processor columns
between them. The ranking takes O(1) time (Appendix A) as
we are ranking at most s tokens, one token to arow, in an
sx(s+1) sub RMESH (the deactivated tokensliein thefirst s
rows of R). The routing scheme is described in Figure 11.

Step 1
PE (R,i) broadcasts itstoken's (if any) count and r values
to al processorson row i usingarow bus, 0<i < N
Step 2
PE (L,i) broadcast itstoken's (if any) count and r values
to PEs(L+q,i +q), 0< g <min{N-1-i,2s} using the bus
structures of Figure 13,0<i < N
Step 3
Set up row buses.
Step 4
Each PE (i,j) in the Nx(2s) sub RMESH that has two tokens
with the samer value adds their count and disconnects its W
switch and then broadcasts the new count and r value to PE
(R
Step 5
PE (R,j) broadcast itsr and count values, 0<j < N.
Step 6
PE (L,j) readsr and count from therow bus,0<j < N
Figure 12 Updating counts for active tokens of R

To update the count of the active tokensin R a different
strategy is used. First note that the set of active tokensinR
includes the remaining active tokens of L (i.e., those not des-
troyed in step 2 of Figure 10). Also, note that as tokens pro-
gress through the image (see algorithm of Figure 5), they can
move up by at most two rows for each column they move
right. Hence, if atoken of L hasthe samer value as atoken in
R, then the two tokens must reside in rows of L and R that are
at most 2s apart (recall that L and R are s columns apart). To
update the active tokens of R, we employ the PEsin the two
blocks which L and R belong to by moving L to the left most
column inits block and Rto its right most column in its block.
So, atotal of 2s processor columns (i.e., an Nx(2s) sub
RMESH) are used. For the update, we need to bring active
token pairs from L and R that have the samer value together.
Thisisdone using the strategy of Figure 12. We assume that L
and R are the 2 extreme columns of the combined block. The
broadcasting of step 2 isdonein two stages. First, al PES
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Figure 13 Bus structures used in step 2 of Figure 12

[L,i] withi odd do thisand then those withi even doit. Figure
13 (a) givesthe bus structure used for the first stage and Fig-
ure 13 Kie)agives ek ptofiche elgssdthnthiesecbed stegempute
the Hough transform for the angles in C3 isO (plog(N/p)). The
time needed for the anglesin each of the remaining sets C1,
C2, and C4 isthe same. So, the over all complexity of our N?
processor RMESH Hough transform algorithm is O(plog(N/p)).

4 NP tedessERHRIY EERfigured as an NxN?2 array with one
copy of the image in each NxN sub RMESH, then the Hough
transform can be computed in O ((p/N)logN) time by having
each NxN sub MESH compute the transform for p/N angles
using the algorithm of Section 2. IncasetheRMESHis
configured as aN1°xN™*> array with one pixel in each VN xVN
sub MESH, the Hough transform can be computed in
O((p/VN)logN) time. For this, p/vVN passes are made. In each,
the Hough transform for VN angles is computed. The Hough
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transform for VN angles can be computed in O (logN) time by
having PE (i,i) of each VN xVN sub RMESH initiate a token
with value equal to that of the image value at the correspond-
ing point. Ther value for thetoken in PE (i,i) is obtained by
using thei’th angle. Now we need to add up the token values
of all tokenswith the samer and 6 values. Thiscan be done
by combining tokensin pairs of sub RMESHs at atime. The
strategy employed is similar to that used in [JENQ90]. Two
kinds of combinations are needed: horizontal and vertical. In
horizontal combining two sub RMESHSs each containing kxk
VNxVN sub RMESHs are combined to get a single sub
RMESH which isakx(2k) configuration of VN xVN sub
RMESHSs. Inavertical combining, two kx(2k) arrays of
VNxVN sub RMESHSs are combined to get a single 2kx2k sub
RMEBSRe initia configuration for ahorizontal combine has the
tokens in the PEs on the antidiagonals of the two kxk VN xVN
sub RMESHSs (Figure 14). Asin the discussion of Section 2,
assumethat 8; isinthe range W2 < 6; < 34. So, r isinthe
range [-V2N/2,N]. However for any fixed 8; in the above
range at most V2N distinct integer r values are possible. The
maximum number of tokensin each PE istherefore v2kvVN (at
most v2k per angle and VN angles). The number of PEson
each antidiagonal iskvN. So, using k PEs per angle we need
to store at most V2 < 2 tokensin each PE. Thefina
configuaration has at most 2vV2kVN tokens stored at most 4 per
PE in the antidiagonal PEs of the left sub RMESH A.

kVN

6,

0,

Sub RMESH A Sub RMESH B
Figure 14 Initial configuration for horizontal combining

For avertica combine, the initial configuration isthe
final configuation of a horizontal combine and the final
configuration isthe initial configuation of a horizontal
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combine. We shall describe how to go from the initial
configuration of a horizontal combine to itsfinal configuration
inO(1) time. Themethod for avertical combineissimilar.
Since O(logN) parallel combine steps suffice to combine all
tokend, toeizomipl esotybe @ flogby angle 8;, uses the PEson
the k rows dedicated to thisangle. So, akx2kVN sub RMESH
isavailable. Since w2 < 6; < 3174, ther values of the tokensin
the k rows of the left sub RMESH A (call this sub RMESH KA)
are > ther values of the tokens in the same k rows of the right
sub RMESH B (call thissub RMESH KB). Using column and
row buses confined to the kx2k VN sub RMESH formed by A
and B we can obtain, in O (1) time, a configuration in which PE
(i,j) of akxk sub RMESH of A contains the at most 2v2 tokens
inthei’th row of KA and j’th row of KB. In an additional O(1)
time, this PE can check if any of the tokens it has from KA
have the samer value as any of the tokensit has from KB. |If
S0, the KA token is deleted and the value of the KB token
incremented by the value of the deleted KA token. The KA and
KB tokens can be ranked in O (1) time using the available pro-
cessors and packed into the k antidiagonal processors of KA
packing no more than four tokens per processor in an addi-
tional O(1) time. Hence the horizontal combine can be com-
pleted in O (1) time.

5 NAYReosESmiosessors are available, there isarather
straightforward O((p/N)logN) algorithm to compute the Hough
transform. We assume that the RMESH is configured as an
N2xN? array with the N? pixel valuesinitially in row 0. Since
there are only 2V2N different r values possible, we compute
the Hough transform for N/(2v2) angles simultaneously.

Thus, 2V2p/N iterations are needed. Each row of the N2xN?
RMESH is assigned the task of obtaining the value of H(r,j)
for one pair (r,j). Since we are working with N/(2v2) angles
simultaneously, the number of (r,j) pairsisN? which equals
the numbers of rows. The image can be broadcast to each row
using column buses. The processorsin arow use the assigned
angle to obtain ther for their pixel. If thisequalsther value
assigned to that row and if the pixel valueis 1, the processor
setsitscount variable to 1; otherwise it setsit to 0. Adding the
count variables in arow gives the Hough transform value for
the (r,j) pair assigned to the row.
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Appeddinsi der @Y RamirESH in which each PE has a

Boolean variable selected. |If selected (i,j) istrue then rank (i, j)

isthe number of PEswith selected (i, ) true that precede it in
the defined linear ordering. If selected (i,j) isfalse, then
rank(i,j) isundefined. Suppose that all the PEswith

selected (i,j) = true areonrow O (i.e. selected (i,j) = false, i > 0).

Hence, at most, N elements are to be ranked.
rank (0,j), 0<j < N, can be computed in O (1) time using the
steps of Figure Al.

Step1l [ rank even columns]
Computer (0,j) for j even wherer isdefined as
r(0,j)= |{dqiseven and selected (0,q) and q < j}|
Step 2 [ rank odd columns]
Computer (0,j) for j odd wherer is defined as
r(0,j)= |{dqisodd and selected (0,q) and q < j } |
Step 3 [ combine]
r(0,0)-1 j
J

. =0
rank(0,j)= [r(o,j) +r(0j-1)-1 j>0

Figure Al Stepsin O(1) ranking
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The algorithmsfor steps 1 and 2 are similar. Sowe
describe the algorithm only for step 1. To computer (0,j), for
even j, we set the bus switches asin Figure A2 () in case
selected (0,j) istrue and asin Figure A2 (b) in case it is not.
The switch settings are similar to those used to compute the
exclusive or of 1'sin[MILL88]. Inthisfigure e denotes an
even index and o an odd index. So, (e,j) denotes all PEs (i, j)
with eveni. Notethat sincejiseven (e,j) isequivaent to (e e)
and (e,j +1) to (e,0). Solid linesindicate connected (closed)
switches and blanks indicate disconnected (open) switches.

(&) (e

(0,j+1) - (0,0)
(0.]) — (09

(ej+1) (e0)

(a) Settings for selected (0,j) = true

(&) (ej+1) S (ee) (e0)
O O — O O
(@J) (0j+1) S (0e) (00
O O O — O O O

(b) Setting for selected (0,j) = false
Figure A2 Switch settings to computer (0,j) for j even

The agorithm to implement this strategy isgiven in Fig-
ure A3. Itscomplexity isreadily seento be O(1). Asmen-
tioned earlier, the algorithm for step 2 issimilar. Step 3 sim-
ply requires arightward shift of 1 which can be easily done in
O(1) time. Hence the entire ranking can be donein O (1) time.
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{ Computer (0,j) for j even }
Step1 t(0,j) := selected (0,j), 0<j < N;
Step 2 Set up column buses,
Step 3 Broadcast t(0,j) on column busj,0<j < N;
Step 4 t(i,j) := content(bus); 0<i,j < N;
Step5 {sendt(i,j)forjeventot(i,j)forj odd}
All PEs (i,j) with j even disconnect their N, S,
W switches and connect their E switch;
All PEs (i,j) with j even broadcast t(i,j);
All PEs (i,j) with j odd set t(i,j) to their bus
content;
Step 6 { set switchesasin Figure A2}
if t(i,)) then case (i,j) of
(odd,odd),(even,even): PE (i,j) disconnects
its E switch and connects its S switch;
else PE (i,j) connects its E switch and
disconnects its S switch;
endcase
elsecasei of
odd : PE (i,j) disconnectsitsE and S
switches;
else: PE (i,j) connects its E switch and
disconnects its S switch;
endcase;
Step 7 PE (0,0) broadcasts a specia value onits bus;
Step 8 All PEs(i,j) withi and j even read their bus;
If the special value isread, then they set their S
valueto trueand r valuetoi/2 + 1;
Step 9 Set up column buses,
Step 10 PE (i,j) putsitsr value onitsbusif S(i,j) istrue;
Step 11 r (0,j) = content(bus), j even;
Figure A3 RMESH algorithm to computer (0,j) for j even




