
An Efficient Algorithm for Gray-to-Binary
Permutation on Hypercubes

Citation
Ho, Ching-Tien, S. Lenart Johnsson, and M.T. Raghunath. 1992. An Efficient Algorithm for Gray-
to-Binary Permutation on Hypercubes. Harvard Computer Science Group Technical Report
TR-20-92.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25811008

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25811008
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Efficient%20Algorithm%20for%20Gray-to-Binary%20Permutation%20on%20Hypercubes&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=3a028e33929e9f0d881c5cf48caa8c83&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

An E�cient Algorithm for

Gray{to{Binary Permutation on

Hypercubes

Ching-Tien Ho

S. Lennart Johnsson

M.T. Raghunath

TR-20-92

September 1992

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

An E�cient Algorithm for Gray{to{Binary

Permutation on Hypercubes

Ching-Tien Ho

IBM Almaden Research Center

San Jose, CA 95120

ho@almaden.ibm.com

M.T. Raghunath

Computer Science Division

University of California at Berkeley

Berkeley, CA 94720

mtr@cs.berkeley.edu

S. Lennart Johnsson

Harvard University and

Thinking Machines Corp.

Cambridge, MA

johnsson@harvard.edu

Abstract

Both Gray code and binary code are frequently used in mapping arrays into hy-

percube architectures. While the former is preferred when communication between

adjacent array elements is needed, the latter is preferred for FFT-type communica-

tion. When di�erent phases of computations have di�erent types of communication

patterns, the need arises to remap the data. We give a nearly optimal algorithm

for permuting data from a Gray code mapping to a binary code mapping on a hy-

percube with communication restricted to one input and one output channel per

node at a time. Our algorithm improves over the best previously known algorithm

[6] by nearly a factor of two and is optimal to within a factor of n=(n � 1) with

respect to data transfer time on an n-cube. The expected speedup is con�rmed by

measurements on an Intel iPSC/2 hypercube.

1 Introduction

The availability of run-time systems and libraries supporting a shared address space,

such as Express (by ParaSoft) [5], or a shared memory programming model, such as

Linda [2], for programming distributed memory architectures, makes parallel program-

ming transparent with respect to the physically distributed memory. The utility of these

programming systems depends critically on the e�cient implementation of the underlying

communication primitives [1, 4, 7, 13] on each individual architecture.

Consider a one{dimensional array partitioned into N blocks allocated evenly to the

nodes of an N = 2

n

node hypercube. For the binary{code mapping of the N blocks, block

1

i, where 0 � i < N , is allocated to node i. For the Gray code mapping, block i is allocated

to node G(i), the i-th code in the Gray code. For instance, for a binary{re
ected Gray

code [11] mapping on a 3{cube, blocks 0 through 7 are allocated to nodes 0; 1; 3; 2; 6; 7; 5

and 4, respectively. Thus, block i is adjacent to blocks i � 2

j

for all 0 � j < n with

the binary{code mapping, and is adjacent to blocks (i � 1) mod N and (i + 1) mod N

with the Gray code mapping. While the adjacency o�ered by the binary{code mapping is

preferred for FFT{type communications, the adjacency o�ered by the Gray code mapping

is preferred for communications between neighboring blocks. The need to change between

these two types of mappings arises when di�erent phases of a computation exhibit di�erent

data reference patterns.

In this paper, we give two practical algorithms for the permutation of a one{dimensional

array from a binary{re
ected Gray code mapping to binary code mapping (termed Gray{

to{binary permutation). The new algorithms apply to communication systems restricted

to communication on one channel per node at a time, known as one{port communica-

tion. The fastest of the two new algorithms improves upon the data transfer time of the

one{port algorithm in [6] by a factor of 2(n� 1)=n at the expense of one additional com-

munication step. Implementation results on a 64 node iPSC/2 con�rm our complexity

analysis.

2 Preliminaries

2.1 Notation and de�nitions

N = 2

n

is the size of the hypercube. The least signi�cant bit is the 0th bit. Subcube

0

j

is the set of nodes whose jth bit is zero. Subcube 1

j

is similarly de�ned. Let i =

(i

n�1

i

n�2

� � � i

0

) and j = (j

n�1

j

n�2

� � � j

0

), then the Hamming distance between i and j is

Hamming(i; j) =

P

n�1

m=0

(i

m

� j

m

), where \�" is the bitwise exclusive{or operator. The

concatenation symbol is\jj".

2.2 Communication model

In a distributed memory multiprocessor, nodes communicate with each other by sending

and receiving messages. We denote the overhead associated with each internode commu-

nication (send or receive) by � , and the data transfer time per byte by t

c

. We assume that

each communication channel between a pair of nodes can transmit data in both directions

at the same time. In an n{dimensional hypercube, each node has n output and n input

ports. We assume the one{port communication model, in which only one output port and

one input port per node can be active at a given time. In the all{port communication

model each node can send and receive messages concurrently on all its ports. All{port

Gray{to{binary permutation algorithms are given in [6, 10]. The communication time

for sending an m byte message to a nearest neighbor is T = � + mt

c

. We refer to the

term associated with t

c

as the \data transfer time", and to the term associated with �

2

as the \startup time". The number of bytes per node subject to the Gray{to{binary

permutation is K.

We do not make any assumption as to whether the router of the hypercube supports

store{and{forward, circuit{switched, wormhole, or virtual cut{through routings. Our al-

gorithms use only nearest{neighbor (in fact, one{dimension{at{a{time) communications.

However, the complexity comparisons and the derivation of the lower bound on the time

complexity are based on store{and{forward routing.

2.3 Gray{to{binary permutation

Let

^

G

n

be the sequence of n{bit binary{re
ected Gray codes, i.e.,

^

G

n

= (G

n

(0); G

n

(1);

� � � ; G

n

(2

n

� 1)).

De�nition 1 [11] The binary{re
ected Gray code can be de�ned recursively as follows:

^

G

1

= (G

1

(0); G

1

(1));where G

1

(0) = 0; G

1

(1) = 1:

^

G

n+1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0jjG

n

(0)

0jjG

n

(1)

.

.

.

0jjG

n

(2

n

� 2)

0jjG

n

(2

n

� 1)

1jjG

n

(2

n

� 1)

1jjG

n

(2

n

� 2)

.

.

.

1jjG

n

(1)

1jjG

n

(0)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

For convenience, we refer to the binary{re
ected Gray code just de�ned simply as

Gray code. From the above de�nition, the following well-known lemma can be derived.

Lemma 1 [11] Let i = (i

n�1

i

n�2

� � � i

0

), i

n

= 0 and G(i) = (g

n�1

g

n�2

� � � g

0

). Then,

i

m

= g

n�1

� g

n�2

� � � � � g

m

and g

m

= i

m+1

� i

m

for all 0 � m < n.

2.4 Previous algorithms

In [6], Johnsson gives an algorithm for Gray{to{binary permutation consisting of n � 1

exchanges along the sequence of cube dimensions n� 2; n� 3; � � � ; 0. Johnsson also shows

that for all{port communication, pipelining of the communication steps can be used to

reduce the communication complexity by a factor of n. In [8] Johnsson gives algorithms

for Gray{to{binary and binary{to{Gray permutation with exchanges proceeding in both

ascending and descending order of dimensions. In [9], Johnsson and Ho show that the

3

permutation can be realized by exchanges in cube dimensions f0; 1; � � � ; n�2g in arbitrary

order. Later, this was also proved by Edelman, Heller and Johnsson using an algebraic

framework [3].

Algorithm GB1 [6] performs n�1 exchanges in ascending order of cube dimensions [8],

i.e., along the sequence of cube dimensions 0; 1; � � � ; n� 2. We refer to the n� 1 exchange

steps as step 0 through step n�2, where during step i exchange operations are performed

for a subset of edges in dimension i. The subset is determined as follows. Let g

�1

i

be the

i-th bit of G

�1

(pid), the inverse Gray code of the node address, pid. Then, during step i,

an exchange is performed for nodes whose g

�1

i+1

value is 1.

Figure 1 shows the three exchange steps of Gray{to{binary permutation on a 4{cube.

In the �gure, a 4{cube annotated with \step i, dimension i" is the scenario right before

exchange step i. The arrows show the subset of edges in dimension i that are subject to

an exchange operation across dimension i during the next step. The number at a node

is the rank of the block allocated to the node initially (by Gray code mapping). The

communication complexity for Algorithm GB1 [6] is

T

GB1

= (n� 1)(� +Kt

c

): (1)

3 Gray{to{binary permutation

3.1 Lower bound

We now derive the lower bound for the Gray{to{binary permutation with respect to a

store{and{forward routing. We �rst compute the (Hamming) distance distribution be-

tween all n{bit binary strings and their corresponding Gray codes. From the distribution,

the required communication bandwidth can be computed.

Let S(n; j) be the number of n{bit strings for which the binary and Gray code mapping

is a Hamming distance j apart, i.e., S(n; j) is the cardinality of the set fijHamming(i;G(i)) =

j; 0 � i < 2

n

g.

De�ne

�

n

j

�

= 0 if j < 0 or j > n.

Lemma 2 S(n; j) = 2

�

n�1

j

�

for all n � 2 and 0 � j � n.

Proof: There are 2

n

di�erent n{bit strings. Thus, for n � 2, if we show that S(n; j) =

2

�

n�1

j

�

for 0 � j < n, then it follows that S(n; n) = 0 (because

P

n�1

j=0

2

�

n�1

j

�

= 2

n

).

We prove that S(n; j) = 2

�

n�1

j

�

by induction on n. For the basis n = 2, we have

S(2; 0) = S(2; 1) = 2. For the induction hypothesis, we assume S(k; j) = 2

�

k�1

j

�

for all

0 � j � k � 1. From De�nition 1, we have S(k + 1; j) = S(k; j) + S(k; j � 1), which, by

the induction hypothesis, yields 2

�

k�1

j

�

+ 2

�

k�1

j�1

�

= 2

�

k

j

�

. This observation completes the

proof.

4

From Lemmas 1 and 2, i = G(i) if and only if i = 0 or i = 1. Also, ifHamming(i;G(i)) =

n� 1, then i = (11 � � � 1) and G(i) = (100 � � � 0), or i = (11 � � � 10) and G(i) = (100 � � � 01).

Thus, each of these two nodes must send their data to a node at a distance of n � 1 in

the Gray{to{binary permutation. It is easy to derive a lower bound from the preceding

lemma as follows.

Lemma 3 [9] The lower bound for Gray{to{binary permutation with respect to a store{

and{forward routing and a one{port communication model is max((n� 1)�; (n� 1)

K

2

t

c

).

Proof: Clearly, the start{up time is at least (n� 1)� , because the maximum Hamming

distance between i and G(i) is n� 1. The total number of element transfers required by

the permutation is

n

X

j=0

j � S(n; j) �K =

n

X

j=0

2j

n� 1

j

!

K

= 2(n � 1)K

n�2

X

j=0

n� 2

j

!

= (n� 1)2

n�1

K:

In each step up to 2

n

directed links can be used in the one{port communication model.

Thus, at least a time of (n� 1)

K

2

t

c

is needed for transferring the data.

3.2 Algorithm GB2

We now introduce two new algorithms for Gray{to{binary permutation for one{port com-

munication. The algorithms exchange half of the local data set per step at the expense

of two additional communication steps for Algorithm GB2 compared to Algorithm GB1,

and only one additional step for Algorithm GB3. Although Algorithm GB2 is always

inferior to Algorithm GB3, the description of GB2 facilitates the understanding of GB3.

Both Algorithm GB2 and GB3 are based on the observation that Algorithm GB1

uses only half of the communication channels in dimensions 0; 1; : : : ; n � 2. In Figure 1,

consider any two adjacent nodes i and j in subcube 0

3

, and the corresponding two nodes

i

0

and j

0

in subcube 1

3

. Let i and j di�er in the dth bit, where 0 � d � 2. If an exchange

is performed between nodes i and j in step d, then there is no exchange between nodes

i

0

and j

0

. Similarly, if an exchange is needed between nodes i

0

and j

0

during step d, then

there is no exchange between nodes i and j during the same step. Thus, exactly one of

the two pairs (i; j) and (i

0

; j

0

) performs an exchange along dimension d during step d [10].

The property can be stated as follows:

Lemma 4 [10] In Algorithm GB1 for the Gray{to{binary permutation, if two nodes ex-

change their data in subcube 0

n�1

(respectively, 1

n�1

), then the corresponding two nodes

in subcube 1

n�1

(respectively, 0

n�1

) do not exchange data during the same step.

5

Proof: In Algorithm GB1, the value of bit g

�1

j+1

(i) determines if node i must exchange its

data with node i�2

j

during step j, for all 0 � j � n�2. Thus, we only need to show that

g

�1

j+1

(i)� g

�1

j+1

(i� 2

n�1

) = 1 for all 0 � j � n� 2. Let g

�1

j+1

(i) = x and g

�1

j+1

(i� 2

n�1

) = y.

Then, by Lemma 1, x = i

n�1

� i

n�2

� � � � � i

j+1

and y =

�

i

n�1

� i

n�2

� � � � � i

j+1

. Thus,

x� y = 1.

Lemma 4 implies that only half of the edges in dimension 0; 1; : : : ; n� 2 are used for

the permutation. This lemma was used in [10] to devise an all{port algorithm requiring

2

3

K element transfers, an improvement over the algorithm in [6] by a factor of

1

3

K.

In the following, we refer to the n � 1 exchanges in Algorithm GB1 as normal{

exchanges. In Algorithm GB2 each node �rst exchanges half its data along dimension

n�1. Then, normal{exchanges are performed along dimensions 0; 1; � � � ; n�2 as in Algo-

rithm GB1, except that when a node in subcube 0

n�1

would not have exchanged data in

Algorithm GB1, it exchanges the data it received from its neighbor in cube 1

n�1

and vice

versa. Hence, each subcube not only performs the Gray{to{binary permutation for half

of its data, but also performs the permutation for half of the data of the other subcube.

Finally, an exchange along dimension n � 1 undoes the �rst exchange. We refer to the

exchanges before and after the normal{exchanges as pre{exchange and post{exchange, re-

spectively. These exchanges allow all edges of the hypercube in dimension 0; 1; : : : ; n� 2

to be used in each step. Further, during each step only half of the local data set is

exchanged. Thus, the communication complexity is

T

GB2

= (n+ 1)(� +

K

2

t

c

): (2)

Figure 2 shows an example of Algorithm GB2 on a 4{cube. In the two 4{cubes anno-

tated with pre{exchange and post{exchange, an arrow between subcube 0

3

and subcube

1

3

represents exchanges across all edges in dimension 3. Each data block, say of rank i,

of the global array is partitioned into two subblocks of size K=2 each, denoted i and i

0

,

respectively, in the �gure.

3.3 Algorithm GB3

Algorithm GB3 is similar to Algorithm GB2, except that the pre{exchange and post{

exchange steps are performed in dimension n� 2, i.e., the exchanges are made in dimen-

sions n � 2; 0; 1; � � � ; n � 2. We show later that, by doing the pre{ and post{exchanges

in dimension n � 2, the post{exchange step can be combined with the last step of the

normal{exchanges. The size of the combined data set remains K=2.

Formally, consider the four subcubes 00; 01; 10 and 11 de�ned by dimensions n � 1

and n � 2. For each of the �rst n� 2 normal{exchange steps of GB1 (i.e., on dimension

0; 1; � � � ; n� 3), if there is an exchange between nodes i and j in subcube 00 (01, 10 and

11, respectively), then there is no exchange between their corresponding nodes in subcube

01 (00, 11 and 10, respectively). By exchanging half of the data across dimension n � 2

before and after these n � 2 exchanges, only K=2 elements need to be exchanged for

6

each of these n � 2 normal{exchanges. To complete the Gray{to{binary permutation,

the normal{exchange step of Algorithm GB1 in dimension n� 2 must also be performed.

We now show that the post{exchange and the normal{exchange in dimension n � 2 can

be combined into one exchange of K=2 elements. For subcube 0

n�1

, there is no normal{

exchange needed in dimension n�2 for Algorithm GB1 (i.e., if no pre{exchange had been

made). For subcube 1

n�1

, the post{exchange requires that K=2 elements be exchanged

in dimension n � 2, while for Algorithm GB1 (no pre{exchange), K elements must be

exchanged in the normal{exchange in dimension n � 2. Thus, in Algorithm GB3, due

to the pre{exchange in dimension n � 2, only K=2 elements are subject to exchange in

dimension n� 2 in both the 0

n�1

and 1

n�1

subcubes, in the last exchange step.

Figure 3 shows an example of the algorithm (GB3) on a 4{cube. The complexity of

the algorithm is

T

GB3

= n(� +

K

2

t

c

): (3)

3.4 Complexity comparison

From Figure 4-(a) it can be seen that the estimated performance of Algorithm GB3 is

better than that of Algorithm GB1 for large data sets. The estimated performance of Al-

gorithm GB3 is always better than that of Algorithm GB2. To demonstrate the feasibility

of our algorithms, we implemented all three on a 64 node Intel iPSC/2. Although the

Intel iPSC/2 uses circuit{switched routing, we only use nearest{neighbor communication

for our implementation. Figure 4-(b) compares the measured times on the Intel iPSC/2

for Algorithms GB1, GB2 and GB3. All measured times on the Intel iPSC/2 are averaged

over at least 100 runs. The improvement of Algorithm GB3 over Algorithm GB1 increases

as the message size increases and approaches 2(n � 1)=n, asymptotically.

For small data sets, however, Algorithm GB1 performs better than Algorithm GB3

because it needs n�1 communication steps instead of n steps. The measured break{even

point for the 64 node iPSC/2 is at about K = 485 bytes, while the complexity estimates

predict a break{even around K = 1:4 kbytes.

The speedup of Algorithm GB3 over Algorithm GB1 is expected to increase as the

cube dimension increases. Figure 5 compares the measured times of the three algorithms

on the iPSC/2 as a function of cube dimensions. The measured speedup of Algorithm

GB3 over Algorithm GB1 increases from 1.63, 1.67 to 1.79 as the dimension increases

from 4 to 6.

3.5 Circuit{switched routing

All the Gray{to{binary permutation algorithms discussed so far only use nearest{neighbor

communication and thus do not assume a particular routing policy. From Algorithm GB1,

one can easily observe that the paths from all nodes i to their corresponding destinations

G

�1

(i) are edge{disjoint (in the directed edge sense). Thus, on a circuit{switched hy-

percube, such as the Intel iPSC/2, all data can be sent directly to their corresponding

7

destinations with one communication startup without congestion. (In fact, by [9] and

[12], the congestion{free property remains true for any routing with any �xed order of

hypercube dimensions.)

For circuit{switched routing, where each node can send and receive at least two mes-

sages at a time, it is possible to apply our technique to achieve a better complexity than

for a direct{route. The complexity of sending a K byte message without congestion is

� + Kt

c

in a circuit{switched routing, regardless of the number of hops that must be

traversed. We partition each local data set into 3 blocks of equal size, called blocks 0, 1

and 2. In the �rst step, each node i sends block 0 to node G

�1

(i) and concurrently sends

block 1 to node i

0

, where i

0

is the neighbor of i across dimension n�1. In the second step,

node i sends block 2 to node G

�1

(i), and concurrently node i

0

forwards block 1 of node i

to node G

�1

(i). (The description is made from the viewpoint of the data originating in

node i.) The same idea was used in [10] for an all{port algorithm. It can be easily shown

that for both steps there is no congestion between the blocks of size K=3 each. Thus, the

total time is 2� +

2K

3

t

c

(compared to � +Kt

c

for the direct{route alternative).

4 Concluding remarks

We have presented two algorithms for the permutation between binary{re
ected Gray code

mapping and binary code mapping on hypercubes. Algorithm GB3 improves upon the

data transfer time of the previous algorithm for one{port communication [6] (Algorithm

GB1) by a factor of 2(n�1)=n on an n{cube, at the expense of one additional startup. The

data transfer time of the new algorithm is optimal within a factor of n=(n�1) on an n{cube

with store{and{forward routing. The break{even point is measured at about 485 bytes on

a 64 node iPSC/2. The improvement increases as the message size increases, the cube size

increases, or the startup cost decreases. For a 64 kbyte message and a 64 node iPSC/2,

the measured time of the improved algorithm is about 56% of the previous algorithm.

For a circuit{switched hypercube, where each node can send and receive at least two

messages at a time, our technique can be applied to achieve a communication complexity

of 2� +

2K

3

t

c

(compared to � + Kt

c

for a naive routing). With all{port communication

(such as on the Connection Machine systems CM{2 and CM{200 [14]), the algorithms

discussed in [10] can be used. Finally, it should be noted that although all algorithms

were described for Gray{to{binary permutation, corresponding algorithms of the same

complexities for binary{to{Gray permutation can be easily derived (including the model

of circuit{switched, 2{port and routing in ascending order of cube dimensions (e{cube

routing)).

Acknowledgments

The authors wish to acknowledge that an algorithm similar to our Algorithm GB2 has

independently been proposed by Steve Heller of Thinking Machines Corp. We also wish

to thank Oak Ridge National Laboratories and Michael Leuze, Director of the Parallel

Computation Facility, for providing access to a 64 node Intel iPSC/2. The work by

8

Lennart Johnsson has, in part, been supported by AFOSR grant AFOSR-89-0382 with

Yale and Harvard Universities, and in part by NSF and DARPA under contract CCR-

8908285 also with Yale and Harvard Universities.

References

[1] D. P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis. Opti-

mal communication algorithms for hypercubes. Journal of Parallel and Distributed

Computing, 11:263{275, 1991.

[2] Nicholas Carriero and David Gelernter. Linda in context. Comm. of ACM, 32(4):444{

458, April 1989.

[3] Alan Edelman, Steve Heller and S. Lennart Johnsson. Index Transformation Algo-

rithms in a Linear Algebra Framework. Thinking Machines Corp. Technical Report

TMC-223, March 1992.

[4] Geo�rey C. Fox and Wojtek Furmanski. Optimal communication algorithms for

regular decompositions on the hypercube. In Proceedings of the Third Conference on

Hypercube Concurrent Computers and Applications, pages 648{713. ACM, 1988.

[5] K. Ikudome, G.C. Fox, A. Kolawa, and J.W. Flower. An automatic and symbolic

parallelization system for distributed memory parallel computers. In The Fifth Dis-

tributed Memory Computing Conference, pages 1105{1114. IEEE Computer Society,

April, 1990.

[6] S. Lennart Johnsson. Communication e�cient basic linear algebra computations on

hypercube architectures. J. Parallel Distributed Comput., 4(2):133{172, April 1987.

[7] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broad-

casting and personalized communication in hypercubes. IEEE Trans. Computers,

38(9):1249{1268, September 1989.

[8] S. Lennart Johnsson. Optimal Communication in Distributed and Shared Memory

Models of Computation on Network Architectures. In Models of Massively Parallel

Computation. Morgan Kaufmann, San Mateo, CA, 1990, pages 223-389.

[9] S. Lennart Johnsson and Ching-Tien Ho. The complexity of reshaping arrays on

Boolean cubes. In The Fifth Distributed Memory Computing Conference, pages 370{

377. IEEE Computer Society, April 1990.

[10] S. Lennart Johnsson and Ching-Tien Ho. On the conversion between binary code

and binary{re
ected Gray code. Technical Report TR-20-91, Harvard University,

July 1991.

[11] E M. Reingold, J Nievergelt, and N Deo. Combinatorial Algorithms. Prentice-Hall,

Englewood Cli�s. NJ, 1977.

9

[12] Arch D. Robison. A group of permutations with edge-disjoint paths on hypercubes.

In The Third IEEE Symp. on Parallel and Distributed Processing, pages 746{749.

IEEE, 1991.

[13] Quentin F. Stout and Bruce Wagar. Intensive hypercube communication: Prear-

ranged communication in link-bound machines. Journal of Parallel and Distributed

Computing, 10:167{181, 1990.

[14] CM{200 Technical Summary Thinking Machines Corp., 1991.

10

final distributionexchange step 2, dim. 2

exchange step 1, dim. 1exchange step 0, dim. 0

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

7 7

7 7

6 6

6 6

8 8

8

8

9 9

9

9

10

10

10

11 11

11

11

12 12

12

12

13 13

13

13

14 14

14

14

15 15

15

15

10

Figure 1: An example of Algorithm GB1 on a 4{cube.

11

0,0’ 1,1’

2,2’3,3’

4,4’ 5,5’

6,6’7,7’ 8,8’ 9,9’

10,10’11,11’

12,12’ 13,13’

14,14’15,15’ 0,15’ 1,14’

3,12’ 2,13’

4,11’ 5,10’

6,9’7,8’ 8,7’ 9,6’

10,5’11,4’

12,3’ 13,2’

14,1’15,0’

0,14’ 14,0’1,15’ 15,1’

2,12’ 3,13’

6,8’ 7,9’

4,10’ 5,11’

12,2’ 13,3’

8,6’ 9,7’

10,4’ 11,5’

0,12’ 1,13’

2,14’ 3,15’

4,8’ 5,9’

6,10’ 7,11’

12,0’ 13,1’

14,2’ 15,3’

8,4’ 9,5’

10,6’ 11,7’

0,8’ 1,9’

2,10’ 3,11’

4,12’ 5,13’

6,14’ 7,15’

8,0’ 9,1’

10,2’ 11,3’

12,4’ 13,5’

14,6’ 15,7’

0,0’ 1,1’

2,2’ 3,3’

4,4’ 5,5’

6,6’ 7,7’

8,8’ 9,9’

10,10’ 11,11’

12,12’ 13,13’

14,14’ 15,15’

pre-exchange, dim. 3 exchange step 0, dim. 0

exchange step 1, dim. 1 exchange step 2, dim. 2

post-exchange, dim. 3 final distribution

Figure 2: An example of Algorithm GB2 on a 4{cube.

12

final distribution

exchange step 2 + post-exchange, dim. 2exchange step 1, dim. 1

exchange step 0, dim. 0pre-exchange, dim. 2

0,0’ 1,1’

3,3’ 2,2’

4,4’ 5,5’

6,6’7,7’ 8,8’ 9,9’

10,10’11,11’

12,12’ 13,13’

14,14’15,15’ 0,7’

7,0’

1,6’

6,1’

3,4’

4,3’

2,5’

5,2’

15,8’ 14,9’

12,11’ 13,10’

11,12’ 10, 13’

8,15’ 9,14’

0,6’ 1,7’

2,4’ 3,5’

6,0’ 7,1’

4,2’
5,3’

14,8’ 15,9’

12,10’ 13,11’

8,14’ 9,15’

10,12’ 11,13’

0,4’ 1,5’

2,6’ 3,7’

4,0’ 5,1’

6,2’ 7,3’

12,8’ 13,9’

14,10’ 15,11’

8,12’ 9,13’

10,14’ 11,15’

0,0’ 1,1’

2,2’ 3,3’

4,4’ 5,5’

6,6’ 7,7’

8,8’ 9,9’

10,10’ 11,11’

12,12’ 13,13’

14,14’ 15,15’

Figure 3: An example of Algorithm GB3 on a 4{cube.

13

 GB1

 GB2
� GB3

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

|260

|280

 Predicted time for Gray-to-binary perm. on a 64 node iPSC/2

 Message size (in kbyte)

 ti
m

e
in

 m
se

c

�

�

�

�
������

 GB1

 GB2
� GB3

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|20

|40

|60
|80

|100

|120

|140

|160

|180

|200

|220

|240

|260

|280

 Measured time for Gray-to-binary perm. on a 64 node iPSC/2

 Message size (in kbyte)

 ti
m

e
in

 m
se

c

������
����

�

�

�

�

�

Figure 4: Comparison of the predicted (a) and measured (b) communication times for the

three Gray{to{binary algorithms as a function of message sizes.

 GB1

 GB2
� GB3

|

1
|

2
|

3
|

4
|

5
|

6
|

7

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

|260

|280

 Measured time for Gray-to-binary perm. for a 64 kbyte message on an iPSC/2

 cube dimension

 ti
m

e
in

 m
se

c

�

�

�

�

�

Figure 5: Comparison of the measured communication times for the three Gray{to{binary

algorithms as a function of cube dimensions.

14

