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Abstract

This paper studies the performance implications of architectural synchronization 

support for automatically parallelized numerical programs. As the basis for this work, 

we analyze the needs for synchronization in automatically parallelized numerical pro­

grams. The needs are due to task management, loop scheduling, barriers, and data 

dependency handling. We present synchronization algorithms for efficient execution 

of programs with nested parallel loops. Next, we identify how various hardware syn­

chronization primitives can be used to satisfy these software synchronization needs.

The synchronization primitives studied are test&set, fetch&add, exchange-byte and 

synchronization bus implementation of lock/unlock operations. Lastly, we ran experi­

ments to quantify the impact of various architectural support on the performance of a 

bus-based shared memory multiprocessor running automatically parallelized numerical 

programs. We found that supporting an atomic fetch&add primitive in shared memory 

is as effective as supporting lock/unlock operations with a synchronization bus. Both 

achieve substantial performance improvement over the cases where atomic test&set and 

exchange-byte operations are supported in shared memory.

1 Introduction

Automatically parallelized numerical programs represent an important class of parallel appli­

cations in high-performance multiprocessors. These programs are used to solve problems in 

many engineering and science disciplines such as Civil Engineering, Mechanical Engineering, 

Electrical Engineering, Chemistry, Physics, and Life Sciences. In response to the popular
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demand, parallelizing FORTRAN compilers have been developed for commercial and experi­

mental multiprocessor systems to support these applications [2] [12] [1] [8] [11]. With maturing 

application and support software, the time has come to study the architecture support re­

quired to achieve high performance for these parallel programs.

Synchronization overhead has been recognized as an important source of performance 

degredation in the execution of parallel programs. Many hardware and software tech­

niques have been proposed to reduce the synchronization cost in multiprocessor systems 

[13] [20] [19] [3] [14] [15] [16]. Instead of proposing new synchronization techniques, we address 

a simple question in this paper: does architecture support for synchronization substantially 

affect the performance of automatically parallelized numerical programs?

To answer this question, we start with analyzing the needs of synchronization in par­

allelized FORTRAN programs in Section 2. Due to the mechanical nature of parallelizing 

compilers, parallelism is expressed in only a few structured forms. This parallel program­

ming style allows us to systematically cover all the synchronization needs in automatically 

parallelized programs. Synchronization issues arise in task management, loop scheduling, 

barriers and data dependence handling. A set of algorithms are presented which use generic 

lock()/unlock() and increment() operations. We then identify how several hardware syn­

chronization primitives can be used to implement these generic synchronization operations. 

These synchronization primitives are test&set, fetch&add, exchange-byte, and lock/unlock 

operations . Since these primitives differ in functionality, the algorithms for synchronization 

in parallel programs are implemented with varying efficiency.
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Section 3 describes the experimental procedure and the scope of our experiments. In 

Section 4, the issue of loop scheduling overhead is addressed in the context of hardware 

synchronization support. We present an anlytical model for the effect of loop scheduling 

overhead and loop granularity on execution time. Furthermore we measure loop scheduling 

overhead for different synchronization primitives with simulation.

Synchronization needs of a parallel application depend on the numerical algorithms and 

the effectiveness of the parallelization process, therefore the performance implications of ar­

chitectural synchronization support can only be quantified with experimentation. Section 5 

addresses the issues of granularity and lock locality in real applications. Using programs 

selected from the Perfect Club [6] benchmark set, we evaluate the impact of various architec­

tural support on the performance of a bus-based shared-memory multiprocessor architecture 

in Section 6. We conclude that architectural support for synchronization has a profound 

impact on the performance of the benchmark programs.

Finally, the related work is presented in Section 7 and Section 8 includes the concluding 

remarks.

2 Background

In this section, we first describe how parallelism is expressed in parallel FORTRAN pro­

grams. We then analyze the synchronization needs in the execution of these programs. 

Most importantly, we show how architectural support for synchronization can affect their 

performance.
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DOALL 30 J=1,J1 
X(II1+J) * X(II1+J) * SCI
YCII1+J) = Y(II1+J) * SCI
z(i i i+j) = z(i i i+j) * sci

30 CONTINUE

Figure 1: A DO ALL loop

2.1 Parallel FORTRAN Programs

The application programs used in this study are selected from the Perfect Club benchmark set 

[6]. The Perfect Club is a collection of numerical programs for benchmarking supercomput­

ers. The programs were written in FORTRAN. For our experiments, they were parallelized 

by the Cedar source-to-source parallelizer [11] which generates a parallel FORTRAN dialect, 

Cedar FORTRAN. This process exploits parallelism at the loop level and loop level paral­

lelization has been shown to capture most of the available parallelism for these programs [7]. 

Cedar FORTRAN has two major constructs to express loop level parallelism: DOALL and 

DOACROSS loops. A DOALL loop is a parallel DO loop where there is no dependence be­

tween the iterations. The iterations can be executed in parallel in arbitrary order. Figure 1 

shows an example of a DOALL loop.

In a DOACROSS loop [9], there is a dependence relation across the iterations. A 

DOACROSS loop has the restriction that iteration i can only depend on iterations j  where 

j  < i. Because of this property, even a simple loop scheduling scheme can guarantee deadlock 

free allocation of DOACROSS loop iterations to processors. In Cedar FORTRAN, depen­

dences between loop iterations are enforced by Advance/Await synchronization statements
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[2]. An example of a DO ACROSS loop is shown in Figure 2. The first argument of Advance 

and Await statements is the name of the synchronization variable to be used. The second 

argument of an Await statement is the data dependence distance in terms of iterations. In 

this example, when iteration i is executing this Await statement, it is waiting for iteration 

i — 3 to execute its Advance statement. The third argument of Await is used to enforce 

sequential consistency in Cedar architecture [11]. The third argument implies that upon 

the completion of synchronization, the value of X (I-3 ) should be read from shared memory. 

Similarly, the second argument of Advance statement implies that writing the value X (I) to 

shared memory should be completed before Advance statement is executed.

DOACROSS 40 1=4,IL

AWAIT(1, 3, X(I-3))
X(I) = Y(I) + X(I-3)
ADVANCE (1, X(I))

30 CONTINUE

Figure 2: A DOACROSS loop

2.2 Synchronization Needs

In executing parallel FORTRAN programs, the need for synchronization arises in four con­

texts: task management, loop scheduling, barrier synchronization, and Advance/A wait. Task 

management is used for starting the execution of a parallel loop on multiple processors. In 

this study, task management is implemented by a global task queue. The processor which
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put_task() {
new_loop->number_of_processors = 0 ;
new_loop->number_of-iterations = number of iterations in loop;
new_loop->barrier_counter = 0 ;
new_loop->iteration_counter * 0 ;
lock(task-queue) ;
insert_task_queue(new_loop) ;
task_queue.status * NOT-EMPTY ;
unlock (task-queue) ;

}

Figure 3: Producer algorithm for loop distribution

executes a DOALL or DOACROSS statement places the loop descriptor in the global task 

queue. All idle processors receive this loop descriptor and start the execution of the loop 

iterations. The accesses to the task queue by the processors are mutually exclusive. In our 

implementation, we use a task queue lock to enforce mutual exclusion. Figures 3 and 4 show 

the algorithms for the processor which executes the parallel DO statement and for the idle 

processors respectively. The removal of the loop descriptor from the task queue is addressed 

in the discussion of the barrier synchronization algorithm.

The implementation issues for the functions lock(), unlockO, and increment () with 

different primitives is presented in the next section. By definition lo c k ()  and unlockO 

operations are atomic. Whenever underlined in an algorithm, the increment () operation 

is also atomic and can be implemented with a sequence of lock, read-modify-write, unlock 

operations.

During the execution of a loop, each processor is assigned with different iterations. This 

is called loop scheduling. We used the processor self-scheduling algorithm [18] to implement
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read-taskO {
while (task_queue_status - EMPTY) ; 
lockCtask-queue) ;
current-loop = read_task_queue_head() ;

/* Doesn't remove the loop from the queue */ 
increment (current_loop->number_of .processors) ; 
unlock(task-queue) ;

}

Figure 4: Consumer algorithm for loop distribution

schedule_iteration() {
last-iteration - increment(current_loop->iteration-Counter) ; 
if (last-iteration >= currentJLoop->number_of-iterations) { 

barrier synchronization ;
}
else { ■

execute (last-iteration + 1 )th iteration of loop;
}

}

Figure 5: Self scheduling algorithm for loop iterations

loop scheduling. In processor self-scheduling, each processor executes the self-scheduling code 

before executing a parallel loop iteration. The self-scheduling algorithm shown in Figure 5 is

executed at the beginning of each loop iteration and it uses an atomic increment operation 

on a shared counter. Unless the multiprocessor supports an atomic fetch&add operation, a 

lock is required to enforce the mutually exclusive accesses to the shared counter.

After all iterations of a loop are executed, processors synchronize at a barrier. For barrier 

synchronization, we used a non-blocking linear barrier algorithm which is implemented with
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barrier_synchronization() {
if (current_loop->barrier_counter == 0) { 

lockCtask-queue) ;
if (current.loop == read_task_queue_head()) { 

delete_task_queue_bead() ;
if (task_queue_empty() == TRUE) task_queue_status = EMPTY ;

}
unlock (task-queue) ;

}
if (increment(current_loop->barrier-Counter) == 

current_loop->number_of_processors - 1) {
resume executing program from the end of this loop ;

}
else read_task() ;

Figure 6: Barrier synchronization algorithm

a shared counter (see Figure 6). After all iterations of a parallel loop have been executed, 

each processor reads and increments the barrier counter associated with the loop. The 

last processor to increment the counter completes the execution of the barrier. As in the 

case of loop self-scheduling, unless the multiprocessor system supports an atomic fetch&add 

operation, the mutually exclusive accesses to the shared counter are enforced by a lock.

In this algorithm, the first processor to enter the barrier removes the completed loop 

from the task queue. Using this barrier synchronization algorithm, the processors entering 

the barrier do not wait for the barrier exit signal and can start executing another parallel 

loop whose descriptor is in the task queue. In contrast to the compile time scheduling of 

“fuzzy barrier” [15], this algorithm allows dynamic scheduling of loops to the processors in 

a barrier.
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In its presented form, the last processor to enter the barrier executes the continuation of 

the parallel loop —  the code in the sequential FORTRAN program that is executed after all 

iterations of the current loop are completed1.

This combination of task scheduling, iteration self scheduling and non-blocking barrier 

synchronization algorithms allows deadlock free execution of nested parallel loops with the 

restriction that DO ACROSS loops appear only at the deepest nesting level [18].

The overhead associated with task management and barrier synchronization depends on 

the number of participating processors. When an P  processor system is executing a parallel 

loop with N  iterations, this task can be distributed to at most P  processors. Therefore, at 

most P  processors synchronize at a given barrier. Using processor self-scheduling, the N  

iterations are distributed to processors one at a time.

For the last type of synchronization, the ADVANCE/AWAIT statements are implemented 

by a vector for each synchronization point. In executing a DOACROSS loop, iteration i, 

waiting for iteration j  to reach synchronization point synch_pt, busy waits on location 

V[synch_pt] [ j ] .  Upon reaching point synch.pt, iteration j sets location V[synch_pt] [ j ] .  

This implementation, as shown in Figure 7, uses regular memory read and write operations, 

thus does not require atomic synchronization primitives. This implementation assumes a 

coherent and sequentially consistent memory system. In the presence of a memory system 

with weak ordering, an AWAIT statement can be executed only after the previous memory 

write operations complete execution. For a multiprocessor with software controlled cahce

XBy using a semaphore, the processor which executed the corresponding DOALL/DOACROSS statement 
can be made to wait for the barrier exit to execute the continuation of the loop.
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initialization(syncli_pt) {
for (i = 1 ; i < number_of_iterations ; i++) V[synch_pt] [i] = 0 ;

}

advance (synch-pt) {
V[synch_pt] [iteration-number] ■ 1 ;

}

await (synch_pt, dependence-distance) {
if (iteration-number <= dependence-distance) returnQ ;
else while (V[synch_pt] [iteration-number - dependendence_distance] -- 0) ;

}

Figure 7: Algorithm for ADVANCE/AWAIT operations

coherency protocols, Cedar FORTRAN ADVANCE/AWAIT statements include the list of 

variables whose values should be read from/written to shared memory before their execu­

tion. The implementation details of these statements in multiprocessors with weakly ordered 

memory models or software controlled cache coherency protocols are beyond the scope of 

this paper.

In a multiprocessor which does not support an atomic fetch&add operation, lock accesses 

play an important role in the execution of scheduling and barrier synchronization algorithms. 

The next section discusses the implementation issues of lock accesses in the presence of 

different synchronization primitives.
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2.3 Locks and Hardware Synchronization Primitives

In executing numeric parallel programs, locks are frequently used in synchronization and 

scheduling operations. In the task scheduling algorithm (See Figures 3 and 4), the use of 

locks enforces mutually exclusive access of processors to the task queue. Locks are also used 

to ensure correct modification of shared counters when an atomic fetch&add operation is not 

supported by the architecture. Such shared counters are used both by loop scheduling (See 

Figure 5) and barrier synchronization (See Figure 6) algorithms.

There are several algorithms for implementing lock accesses in cache coherent multipro­

cessors using hardware synchronization primitives [3] [14]. These algortihms have different 

dynamic characteristics. Consider the execution of a linear barrier, which is implemented by 

a shared barrier counter. In the case where all processors arrive at the barrier at the same 

time, a simple spin lock algorithm to enforce exclusive access to the counter will cause ex­

cessive bus traffic. This would slow down the execution of the barrier. However, in the best 

case, processors would arrive at the barrier at different times, causing no lock contention. In 

this case, the latency of a lock operation is important for the overhead in entering a barrier. 

An important tradeoff in lock algorithms is their performance under heavy load versus the 

latency of lock operations. In Section 4 we analyze the implications of using different lock 

algorithms on the performance of loop scheduling.

All existing multiprocessor architectures provide some hardware support for atomic syn­

chronization operations. Functionally, any synchronization primitive can be used to satisfy 

the high level synchronization needs of a parallel program. In practice, different primitives
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may result in very different performance levels. For example, a queuing lock algorithm [3] [14] 

can be implemented efficiently with an exchange-byte or a fetch&add primitive but a test&set 

implementation is more complicated and may be inefficient.

The exchange-byte version of the queuing lock algorithm is shown in Figure 8. In this 

implementation, the exchange-byte primitive is used to construct a logical queue of processors 

which contend for a lock. The variable my_id is assumed to be set at the start of the program 

such that it is value for the ¿th processor is i. The variable queue.ta il holds the I.D. of 

the last processor which tried to acquire this lock. A processor which tries to access the 

lock receives the I.D. of the processor which preceded it and writes its own I.D. into the 

variable queue_tail. This algorithm constructs a queue of processors waiting for a lock 

where each processor waits only on its predecessor for the release of the lock. By mapping 

the elements of synchronization vector f la g s  [] to non-conflicting cache lines, the memory 

accesses in the while loop of this algorithm can be confined to individual caches of processors. 

When a processor releases the lock, only the cache line read by its successor in the queue is 

invalidated.

In implementing the queuing lock algorithm with the test&set primitive, because of the

functional limitations of this primitive, the queue of processors contending for a lock can 

not be constructed with a single atomic operation. This introduces a critical section into 

the implementation of queuing operation, which requires the use of an auxiliary lock. When 

test&set is used to emulate the exchange-byte primitive in the algorithm in Figure 8, the 

queuing operation becomes the sequence of operations
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initializationO {
flags [0] = FREE ; 
flags[1...P] * BUSY ; 
queuejtail = 0 ;

}

lock() {
queueJ.ast = exchange-byte(my _id, queuejtail) ; 
while (flags [queue JLast] == BUSY) ; 
flags [queueJLast] * BUSY ;

}
unlock() {

flags [my_id] = FREE ;
}

Figure 8: Queuing lock algorithm for lock accesses

lock(auxilaryJock) ; read(queue.tail) ; write(myid) ; unlock(auxilary_lock).

Clearly, the lock operations used in the implementation of the queuing lock algorithm need 

to be implemented with a different algorithm like test&test&set (see Figure 9).

In the synchronization algorithms presented in Section 2.2, most of the lock operations 

are used to implement atomic increment operations. The critical section involved in an 

atomic increment operation consists of one memory-read, one addition, and one memory- 

write instruction, which is similar to the critical section used in emulating an exchange-byte 

operation (one memory-read and one memory-write instruction). Therefore, the overhead 

of constructing the lock queue in the test&set implementation of a queuing lock would be 

similar to the overhead in using the test&test&set algorithm to implement lock operations for 

accessing shared counters. Therefore, whenever the architecture supports only the test&set
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lockO {
while(lock == BUSY II test&set(lock) == BUSY) ;

}

unlock() {
lock * CLEAR ;

}

Figure 9: Test&test&set algorithm for lock accesses

primitive, a plain test&test&set algorithm is used in this study to implement all lock opera­

tions 2. For an architecture with the exchange-byte primitive, the queuing lock algorithm is 

used for lock operations.

Due to the emphasis on atomic increment operations, supporting a fetch&add operation 

in hardware can significantly decrease the need for lock accesses in the synchronization 

algorithms. When fetch&add is the main synchronization primitive of a system, we used a 

fetch&add implementation of test&test&set algorithm to support the lock/unlock operations 

in task management. The performance implications of supporting a fetch&add primitive on 

loop scheduling algorithm will be presented in Section 4.

The functionality and sophistication of hardware synchronization support increase the 

cost of a system. In the Alliant FX/8, a separate synchronization bus and a Concurrency 

Control Unit is provided [2] and which can improve parallel program performance by reducing 

the and latency of lock accesses and the memory contention caused by them. Therefore in

“However, We would like to point out that in an environment where critical sections of algorithms in­
volve many instructions and memory accesses, a iest&set implementation of a queuing lock may enhance 
performance.

15



our analysis in Section 4, we also consider the case where a synchronization bus is used 

to implement lock operations. Finally, the cost performance tradeoffs for synchronization 

support can only be decided by evaluating the performance implications of different schemes 

for real parallel applications. These experiments are presented in Section 6.

3 Experimental Method

To evaluate the performance of several parallel processor architectures, we used a high-level 

trace driven simulator. In our approach, we used an abstract model of parallel program exe­

cution which presents a simplified view of the application program while allowing a detailed 

evaluation of synchronization support.

Execution of a sequential program on one of the processors of a shared memory MIMD 

machine can be modeled by-partitioning the program execution time into two sections: the 

execution that is local to the processor (execution of instructions in the CPU and memory 

accesses to the local cache) and the time spent in handling memory requests to the shared 

memory. For computationally intensive numeric applications where I/O  and system calls ac­

count for a small fraction of execution time, this simplistic model can be used to approximate 

sequential program execution time.

Using a RISC based processor model where instruction execution times are defined by 

the architecture, the local execution time of a program can be calculated directly from its 

dynamic instruction count. On the other hand, the time to service the accesses to shared 

memory depends not only on the data and instruction access patterns of the local processor
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but also on the activities of other processors in the system.

Extending this model to parallel processing, a parallel FORTRAN program can be mod­

eled as a collection of program segments, that we will call task-pieces, where each task-piece 

is a sequential part of the application which executes on a single processor. The depen­

dences among task-pieces are enforced by events. The two special events program_start and 

program.end mark the beginning and the completion of a program. With this model, the 

execution of a sequential program consists of a program-start event followed by a task-piece 

which covers the whole of the program execution, and a program.end event. For parallel 

FORTRAN programs, the additional events are: execution of DOALL and DOACROSS 

statements, beginning and end of parallel loop iterations, barriers, and execution of Ad­

vance/ Await statements.

A high level trace is the record of events that took place during execution and the in­

formation about task-pieces executed between pairs of events. In this study, the high level 

traces are collected by manual source code instrumentation of parallelized applications. In 

the trace, each event is identified by its type (DOALL, iteration start, barrier etc.) and 

applicable arguments (e.g., the synchronization point and the iteration number for an Await 

event). The task pieces are represented by the dynamic count of read and write accesses to 

shared data and the approximate number of dynamic instructions executed.

An event driven, bus based shared memory multiprocessor simulator is used to calculate 

the program execution time from a high level trace. The simulator implements the task 

management and synchronization algorithms for different synchronization primitives by using
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Table 1: Relative timing parameters for simulations

component /  operation cycle time
processor (base) 1
memory bus 1
memory module 3
test&set 6
exchange-byte 6
fetch&add 6
lock/unlock (synchronization bus) 1
fetch&add (synchronization bus) 1

the algorithms described in Section2. In our experiments, the atomic operations test&set, 

exchange-byte and fetch&add are implemented in shared memory. The processor memory 

interconnection is a decoupled access bus whose cycle time is equal to the processor cycle 

time. We assumed that shared memory is 8-way interleaved where an access to a module 

takes 3 bus cycles. Atomic operations that are implemented in memory take two memory 

cycles (e.g. a test&set operation takes 6 bus cycles to execute in memory). When support of 

a synchronization bus is evaluated, a single cycle access synchronization bus model is used. 

A summary of the timings parameters is shown in Table 1.

In the simulation model, an invalidation based write-back cache coherence scheme is used. 

The atomic operations implemented in shared memory are assumed to be write-through and 

result in a single word bus transaction. This allows caching of synchronization variables (a 

necessity for efficiency of spin-locks) with reduced bus traffic for atomic operations. The 

event in a parallel program are simulated at the level of individual bus transactions, taking 

into account the contention at the bus and memory module access conflicts.

18



Table 2: Assumptions for memory traffic

parameter value
memory/instruction ratio 0.20
shared data cache miss rate 0.80
non-shared data cache miss rate 0.05

The other component of shared memory traffic is the data needs of task-pieces. The 

shared memory traffic contributed by the application is modelled based on the measured 

instruction count and frequency of shared data accesses. Table 2 lists the assumptions used 

to 'simulate the memory traffic for the task-pieces. We assume that 20% of the instructions 

executed are memory references. In addition, we measured that 6-8% of all instructions 

(approximately 35% of all memory references) are to shared data. We assume that references 

to shared data cause the majority of cache misses (80% shared data cache miss rate and 5% 

non-shared data cache miss rate)3.

The bus transactions due to the cache misses of the task pieces are combined with those 

contributed by the servicing of events to simulate the overall system behavior. The simulation 

is performed on a cycle-by-cycle basis.

4 Analysis of loop scheduling overhead

In the execution of a parallel loop, the effect of loop scheduling overhead on performance 

depends on the number of processors, total number of iterations, and the size of an iteration.

3When we repeated the experiments by lowering the shared cache miss rate to 40%, the speedup figures 
reported in Section 5 changed by less than 2%.
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In this section we will first derive the expressions for speedup in executing parallel loops where 

the loop iterations are large (coarse granularity) and where the loops iterations are small 

(fine granularity). These expressions provide an insight to how loop scheduling overhead 

influences loop execution time, and will be used in analysis of simulation results later in this 

section.

Consider a DO ALL loop with N  iterations where each iteration, without any parallel 

processing overhead, takes ti time to execute. For a given synchronization primitive and 

lock algorithm, let t3Ch be the time it takes for a processor to schedule an iteration. We will 

look at the impact of scheduling overhead for two cases. For the first case we assume that 

when a processor is scheduling an iteration, it is the only processor doing so. When the 

accesses to the shared counter in loop scheduling algorithm are implemented with a lock, 

tsch can be written as

tsch  —  tlock  “ h  tupdate  tunlock

where tiock and tuniock are the time it takes to acquire and release a lock respectively, and 

tupdate is the time for reading and incrementing the shared counter. The execution of several 

iterations of a loop for this case is shown in Figure 10. In the figure, when Px completes the 

execution of the first iteration, it schedules the next iteration without delay.

For any given P  and tsch, the necessary condition for this case is

t i>  (P  -  1) x tsch,

and the time to execute the loop with P  processors can be written as

tp =  ((tsch +  ti) x [TV/P]) +  toh,
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Figure 10: Scheduling of iterations for Case 1
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where tQh is the total task scheduling and barrier synchronization overhead per processor. 

Since the task scheduling and barrier synchronization overhead depends only on the number 

of processors, tQh, is constant for a given P.

The execution time of the sequential version of this loop, tseq, is ti x  N  which is not 

equal to ti — single processor execution time of the parallel loop. We define speedup for P  

processors as the ratio of tseq to tp. The speedup for a DO ALL loop is

speedup = 'seq

tp
UN

((tSch +  U) X \N/P] ) +  t0h

bc/i+fy _L Pxtghti ' Nxti

for N P

speedup P  x
tsch  “b  tl

using t i>  (P  -  1) x t3ch

speedup > P  x — 

> P x

p-T +  il 
P - 1

> P - 1

Therefore, when ti >  (P  — 1) x tsch, the speedup is linear with number of processors hence 

the execution time depends only on P and the total amount of work in the loop, N x t\.
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Now let us consider the case where a processor completing the execution of an iteration 

always has to wait to schedule the next iteration because of another processor scheduling an 

iteration at that time. We will call the scheduling overhead for this case t'sch. This scenario 

is illustrated in Figure 11. In this figure after the completion of the first iteration, Pi waits 

completion of the scheduling operations by other processors before scheduling an iteration. 

In general, t'3ch is different from t3Ch, because of the contention caused by several processors 

trying to schedule an iteration. The necessary condition for this case is

i, < (P - 1) x t’ich,

and the loop scheduling overhead forms the critical path in determining the loop execution 

time. When loop scheduling becomes the bottleneck, execution time is:

tp — N  x  t'sch +  ti,

for N P

t p ^ N  x t'sch.

When the loop scheduling algorithm is implemented with lock operations, scheduling an

iteration involves transferring the ownership of the lock from one processor to the next, and 

reading and incrementing the shared counter. Therefore

lsch  —  llock—transfer  T tupdate-

In the remainder of this section we will first look at how loop execution time varies 

with loop granularity. Since t'sch directly influences the execution time of a loop, we will then
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Figure 11: Scheduling of iterations for Case 2
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measure this loop scheduling overhead for different hardware synchronization primitives using 

our simulation tool.

4.1 Granularity effects

The analysis above shows the existence of two different types of behavior of execution time 

for a parallel loop. Given a multiprocessor system, the parameters P, tsch and t'sch do not 

change from one loop to another. Keeping these parameters constant, the granularity of a 

loop, determines whether scheduling overhead will be significant in overall execution time 

or not.

The architectural support for synchronization primitives influences the execution time of 

a parallel loop in two ways. On one hand, different values of t'sch for different primitives result 

in different execution time when the loop iterations are small (i.e., fine granularity loops). 

On the other hand tsch determines whether a loop is of fine or coarse granularityi In this 

section we present the simulation results on how loop execution time varies across different 

implementations of the loop scheduling algorithm. Since t'sch determines the execution time 

of a fine granularity loops, we quantify how t'3ch changes with synchronization primitives 

used, and the number of processors in the system. In our simulations, the memory access 

characteristics of the loops were modelled as presented in Table 2.

Figures 12-15 show the simulation results for execution time vs. the size of an iteration in 

a DOALL loop. The loop sizes are in terms of the number of instructions, and the execution 

time in terms of CPU cycles. In these simulations, the total amount of instructions in the
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140000

Figure 12: Execution time vs. granularity for test&set primitive

loop is kept constant while changing the number of instructions in an iteration. It can be 

seen in these figures that when loop iterations are very large, the execution time of a loop 

on a given number of processors is that same for diiferent synchronization primitives. There 

is also a monotonie increase in execution time as loop size gets smaller in all cases.

Figure 12 shows that for 16 processors and using test&set primitive, there is a sharp 

increase in execution time when iteration size is less than 550 instructions. This number 

is around 300 for exchange-byte, and 200 for a synchronization bus, see Figures 13 and 14. 

As shown in Figure 15, using the fetch&add primitive, the iteration size where execution 

time starts increasing is around 100 instructions. We observed that in the FORTRAN 

programs we used in our experiments the iteration sizes of the parallel loops vary from 20 to 

1000 instructions. This shows that the choice of a synchronization primitive will influence 

the perrformance of some loops. The distribution of instructions in the dynamic execution
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Figure 13: Execution time vs. granularity for exchange-byte primitive

Figure 14: Execution time vs. granularity for synchronization bus
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Figure 15: Execution time vs. granularity for fetch&add primitive 

traces with respect to loop granularity for the application programs is presented in Section 5.

4.2 Scheduling overhead for fine grain loops

For fine grain loops, the loop execution time Tp is approximated by N  x t'sch. The change of 

execution time with respect to the number of iterations of a loop is shown in Figures 16-19. 

The synthetic loops used in these simulations has a total of 220000 instructions. Therefore, 

the region where iteration size <  50 instructions corresponds to N >  4400 in these figures. 

The common observation from these figures is that when loop iterations are sufficiently 

small (N  is sufficiently large), the execution time increases linearly with N. Also, when 

extrapolated, Tp vs. N  lines go through the origin which validates the linear model

TP =  N x  t'sch

for execution time.
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Figure 16: Execution time vs. number of iterations for test&set primitive

Figure 17: Execution time vs. number of iterations for exchange-byte primitive
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Figure 18: Execution time vs. number of iterations for synchronization bus

Figure 19: Execution time vs. number of iterations for fetch&add primitive
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Figure 20 shows how scheduling overhead per iteration, t'sch, changes for the different 

synchronization primitives as the number of processors increases.

Using the test&set primitive, the scheduling overhead increases with number of pro­

cessors. For the exchange-byte and fetch&add primitives and the synchronization bus, the 

scheduling overhead scales well. Furthermore t’sch shows great variance across primitives. For 

the 16 processor case the average number of cycles to schedule a loop iteration are 98, 31, 

17 and 7 cycles for test&set, exchange-byte, synchronization bus, and fetch&add primitives 

respectively.

The synchronization bus model used in these simulations has single cycle access time 

for free locks and single cycle lock transfer time. Therefore the synchronization bus data 

shows the highest performance achievable by hardware support for lock accesses alone. In 

Section 6, the performance figures for a synchronization bus which also supports single cycle 

fetch&add operation are given. Such a synchronization bus is capable of scheduling a loop 

iteration every clock cycle. Therefore its overall performance can be expected to be better 

than all the primitives analysed in this section.

5 Synchronization Characteristics of Applications

5.1 Loop granularity of application programs

The two applications we used in this study are BDNA and FL052. BDNA is a molecular dy­

namics simulator for biomolecules in water and it uses ordinary differential equation solvers.
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Figure 20: Loop scheduling overhead vs. number of processors

FL052 is a fluid dynamics program which uses multigrid schemes and ordinary differential 

equation solvers. Both programs are vectorizable.

These programs have different parallelism structures and loop granularity. In the BDNA 

program, most of the parallel loops are not nested and the iterations are 200-1000 instructions 

long. Two thirds of all parallel loops in the trace are DOACROSS loops. In the FL052 

program, most of the parallelism exists in the form of nested DOALL loops. The size of the 

innermost loop iterations varies between 20-250 instructions.

The cumulative distribution of instructions executed with respect to the iteration size 

of parallel loops is shown in Figure 21 for both programs. Because the analysis of loop 

scheduling showed that execution of loops with iterations larger than 500 instructions do 

not suffer from scheduling overhead, only the loops with iterations less than 500 instructions 

are of concern. The BDNA curve in Figure 21 shows that for this program only 17% of all
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Figure 21: Cumulative distribution of dynamic instructions for loop iteration size

instructions were executed in loops with iteration size less than 500 instructions. On the 

other hand, more than half of the total computation in FL052 program is done in loops 

where iterations have less than 100 instructions. From the analysis and simulation results in 

the previous section, we can expect the performance of FL052 program be limited by loop 

scheduling overhead.

5.2 Locality of lock accesses in synchronization algorithms

In our simulations, we observed that both programs exhibit very low locality for lock accesses. 

When a processor acquires a lock, we consider it a lock hit if the processor which released 

the lock last is the same processor. Otherwise, acquiring a lock is said to result in a lock 

miss. The measured lock hit rate for the two programs with 4 or more processors was less 

than 0.2%. Such a low value of lock locality can be explained by the dynamic behavior of
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scheduling and synchronization algorithms.

For each parallel loop, every processor acquires the task queue lock and barrier lock only 

once. This results in a round-robin style accesses to these locks. For the same parallel loop, 

the loop counter lock used in the loop self-scheduling algorithm is accessed multiple times 

by each processor. However, a lock hit can occur only when, the last processor which got 

an iteration number finishes execution of that iteration before the executions of previously 

scheduled iterations complete. Due to the very low variance of iteration size among the 

iterations of a parallel loop in these programs, this scenario is unlikely.

In the experiments, because of the low lock hit rate, the atomic memory operations 

are implemented in shared memory. An implementation of atomic operations in caches or 

processors would result in excessive invalidation traffic, and would also increase the latency 

of atomic operations.

6 Experimental Results

In this section we present the experimental results for two programs from the Perfect Club 

benchmark set: BDNA and FL052. Speedup of parallel programs with respect to the ex­

ecution time of the sequential version of the programs is used as the performance metric. 

There is no parallel processing overhead in the sequential version. In Section 6.1 the is­

sues of lock contention and lock access latency are discussed. For this analysis we use the 

test&set atomic operation to implement the test&test&set algorithm and the exchange-byte 

atomic operation to implement the queuing lock algorithm. In Section 6.2, we present the

34



10

8 

6
Speedup

4 

2

0
2 4 6 8 10 12 14 16

Number of Processors

Figure 22: Lock latency and contention effects on BDNA program 

performance implications of more sophisticated synchronization support.

6.1 Lock contention and latency

The first issue we focus on is lock contention. In the first set of simulations, we used the 

test&test&set algorithm to implement lock accesses. The speedup obtained from the two 

programs are shown in Figure 22 and Figure 23. In the BDNA program (Figure 22), using 

the test&test&set algorithm, the peak speedup of 5.75 is reached with 12 processors. In 

FL052 (Figure 23), a speedup of 1.14 is obtained with 4 processors. Increasing the number 

of processors beyond 4 makes the performance worse.

The speedup for the single processor case is 0.86 for BDNA and 0.54 for FL052. This 

data shows that, running on a single processor, FL052 spends almost half of its execution 

time in scheduling and synchronization algorithms.
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Figure 23: Lock latency and contention effects on FL052 program

In the second set of experiments, we used a queuing lock algorithm for lock accesses to 

observe the effect of decreasing lock contention. As shown in Figures 22 and 23, the queuing 

lock significantly increases the performance of both programs when the number of processors 

is large. With 16 processors, the speedup improves by 50% in BDNA and 200% in FL052. 

These results show that controlling lock contention with algorithms such as queuing lock 

does increase program performance.

The next issue we looked at was the importance of lock access latency. The effect of 

doubling the lock access latency in a queuing lock is shown in Figures 22 and 23 (slow 

queuing lock). For the 16 processor case, doubling the lock access latency decreases the 

speed up by 10% for BDNA and by 50% for FL052.

36



10 

8 

6
Speedup

4 

2 

0
2 4 6 8 10 12 14 16

Number of Processors

Figure 24: Performance of BDNA program with the use of synchronization bus and
fetch&add primitive

6.2 Efficient architectural support for synchronization

In the previous section, we pointed out the importance of efficient lock operations. The next 

issue is the effect of using a synchronization bus for lock operations on program performance. 

A synchronization bus allows execution of synchronization operations with minimal latency 

and isolates synchronization traffic from memory traffic.

As shown in Figure 22, the speedup obtained from BDNA using a synchronization bus is 

8.25 for the 16 processor case. The improvement in speedup over the queuing lock case (see 

Figure 22) ranges from 2% to 7% when the number of processors changes from 8 to 16. For 

the FL052 program, from Figure 23 it can be seen that using a synchronization bus has a 

dramatic effect on program execution time. The speedup obtained for 8 or more processors 

is 2.5 which is 60% higher than the speedup in the case of a queuing lock.
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Figure 25: Performance of FL052 program with the use of synchronization bus and
fetch&add primitive

As discussed in Section 2.3, a significant number of the lock accesses required to increment 

the shared counters can be eliminated with the support of a fetch&add primitive in hardware. 

In the next experiment, the fetch&add operation (implemented in shared memory) was 

used for incrementing shared counters in loop self-scheduling and barrier synchronization 

algorithms. The results of these simulations are shown in Figures 24 and 25 for programs 

BDNA and FL052 respectively.

In the BDNA program, the speedup obtained by using a fetch&add primitive implemented 

in hardware is the same as the speedup obtained by using a synchronization bus for lock 

accesses. In FL052, a similar behavior is observed. Therefore, the performance benefits 

of a dedicated synchronization bus for lock accesses can be achieved at a lower cost by 

implementing an atomic fetch&operation in shared memory.

Finally, we considered the case where a synchronization bus is used to implement both

38



lock accesses and fetch&add operation. As shown in Figure 24, this resulted in a marginal 

increase in performance for the BDNA program. However, for the synchronization bound 

program FL052, Figure 25 shows that the performance increase is in excess of 100%, reaching 

5.3 for 16 processors.

7 Related Work

There has been considerable attention paid to the synchronization problem for multiproces­

sors. Brooks proposed the Butterfly Barrier [16] which does not have the hot spots observed 

in linear barriers. Gupta’s “Fuzzy Barrier” improves processor utilization by allowing proces­

sors to do useful work in a barrier as a result of compile time analysis. The barrier algorithm 

we presented overlaps barrier execution with useful work by exploiting parallelism in nested 

parallel loops. An analytical analysis of different barrier synchronization algorithms were 

made by Arenstrof and Jordan [4]. Beckmann and Polychronopoulos studied the effect of 

barrier synchronization and scheduling overhead and presented a similar analytical formula­

tion for execution time characterization for loop scheduling bound execution [5]. They used 

synthetic parallel loops as workload in their experiments. Polychronopoulos also developed 

guided self-scheduling scheme for loop scheduling [17]. In the future, we plan to evaluate per­

formance implications of alternative loop scheduling and barrier synchronization algorithms 

for parallel scientific applications.

Finally, another experimental study on synchronization in real parallel applications was 

done previously by Davis and Hennesey [10]. Their work concentrated on how program
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characteristics change synchronization behavior. For their class of applications, they con­

cluded that implementation of synchronization operations have little effect on program per­

formance.

8 Concluding Remarks

In this paper we demonstrated the feasibility of concentrating on one aspect of parallel pro­

gram execution within the perspective of the overall program performance. We analyzed 

the performance implications of synchronization support for FORTRAN programs paral­

lelized by a state-of-the-art compiler. In these programs, parallelism was exploited at loop 

level where the granularity of loops showed large variance across applications. We addressed 

the task management and synchronization issues that arise in executing these programs at 

different levels of abstraction. We presented dynamic task management and barrier synchro­

nization algorithms for efficient execution of programs with nested parallel loops. The issues 

in implementation of the atomic lock access and counter increment operations that are used 

in loop self-scheduling, task management and barrier synchronization were addressed at the 

level of hardware synchronization primitives.

In the execution of parallel FORTRAN programs, we focused on loop scheduling overhead 

as the potential cause of performance degradation. Loop scheduling overhead was shown to 

determine execution time for fine granularity loops and to vary significantly with the archi­

tectural synchronization support. The synchronization algorithms used in executing these 

programs depend heavily on shared counters. In accessing shared counters, we concluded
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that lock algorithms which reduce bus contention do enhance performance. For the class 

of applications we looked at, due to the importance placed on shared counters, a hardware 

implementation of a fetch&add primitive in shared memory can be as effective as a special 

synchronization bus which handles lock accesses.

We observed that in the execution of parallel FORTRAN programs, there is a very 

low locality of lock accesses. This implies that implementing atomic operations in private 

caches or in processors rather than in shared memory will result in loss of performance and 

additional memory traffic.

The simulation results with real program traces showed that while for an application 

with fine granularity loops the execution time showed large variance across synchronization 

primitives, performance of an application with coarse granularity is less sensitive to the 

particulars of hardware synchronization support. The simulation results with real parallel 

application traces showed that the choice of the hardware synchronization primitive in a 

shared-memory multiprocessor does have a significant effect on overall program performance.

Our assumptions on system architecture were targeted to increase the throughput of 

synchronization operations by implementing them in shared memory, and to decrease the 

interaction between regular memory operations and synchronization primitives by using split 

phase transactions. On architectures with longer memory access latency or where atomic 

operations consume more shared memory bus bandwith, we expect to see a more severe 

performance degredation due to synchronization overhead.
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