A Simulation-based Scalability Study of Parallel Systems”

Anand Sivasubramaniam
Aman Singla
Umakishore Ramachandran
H. Venkateswaran

Technical Report GIT-CC-93/27
April 1993

College of Computing
Georgia Institute of Technology
Atlanta, Ga 30332-0280
Phone: (404) 894-5136

e-mail: rama@cc.gatech.edu

Abstract

Scalability studies of parallel architectures have used scalar metrics to evaluate their perfor-
mance. Very often, it is difficult to glean the sources of inefficiency resulting from the mismatch
between the algorithmic and architectural requirements using such scalar metrics. Low-level
performance studies of the hardware are also inadequate for predicting the scalability of the
machine on real applications. We propose a top-down approach to scalability study that allevi-
ates some of these problems. We characterize applications in terms of the frequently occurring
kernels, and their interaction with the architecture in terms of overheads in the parallel sys-
tem. An overhead function is associated with the algorithmic characteristics as well as their
interaction with the architectural features. We present a simulation platform called SPASM
(Simulator for Parallel Architectural Scalability Measurements) that quantifies these overhead
functions. SPASM separates the algorithmic overhead into its components (such as serial and
work-imbalance overheads), and interaction overhead into its components (such as latency and
contention). Such a separation is novel and has not been addressed in any previous study. We
illustrate the top-down approach by considering a case study in implementing three NAS parallel
kernels on two simulated message-passing platforms.

Key words: parallel systems, parallel kernels, scalability, execution-driven simulation, perfor-
mance evaluation, performance metrics.

*This work has been funded in part by NSF grants MIPS-9058430 and MIPS-9200005, and an equipment grant
from DEC.

1 Introduction

With rapid advances in technology, the past decade has witnessed an evolution of parallel machines,
both in industry as well as in academia. Coupled with this evolution there has also been a growing
awareness in the computer science community to go beyond pure algorithmic work to the actual
experimentation of parallel algorithms on real machines. Algorithmic work has usually been based
on abstract models of parallel machines that may not accurately capture the features of the ar-
chitecture that are important from the performance standpoint. These models have evolved from
their corresponding sequential counterparts. While machine models used in sequential algorithm
design have been extremely successful in predicting the running time on uniprocessors within a
constant factor, experimentation has revealed that parallel systems! do not enjoy the same luxury.
The reason for this disparity is that parallel systems have several additional degrees of freedom
compared to sequential processing, such as task granularity, synchronization, data allocation and
movement, and work imbalance. Analytical models for parallel systems are even more difficult to
build and often use simplistic assumptions about the system to keep the complexity of such models
reasonable for purposes of analysis [28, 18]. Scalability is a notion frequently used to signify the
“goodness” of parallel systems. A good understanding of this notion may be used to: select the
best algorithm-architecture combination for a problem, predict the performance of an algorithm on
an architecture with a larger number of processors, determine the optimal number of processors to
be used for the algorithm and the maximum speedup that can be obtained, and glean insight on
the influence of the algorithm on the architecture and vice-versa to enable us to understand the
scalability of other algorithm-architecture pairs.

Several performance metrics such as speedup [2], scaled speedup [11], sizeup [27], experimentally
determined serial fraction [14], and isoefficiency function [15] have been proposed over the years for
capturing the scalability of parallel systems. While these metrics are extremely useful for tracking
performance trends, they do not provide the information needed to understand the sources of
inefliciency in a given architecture with respect to a given algorithm. An understanding of the
interaction between the algorithmic and architectural characteristics of a parallel system can give
us such information. Studies undertaken by Kung [16] and Jamieson [13] help identify some of these
characteristics from a theoretical perspective but they do not provide any means of quantifying their

effects.

!The term, parallel system, is used to denote an algorithm-architecture combination.

Parallel algorithms designed for an idealized machine model, project asymptotic estimates for
their performance that may not be realizable in practice. Architects are usually concerned with
low-level performance issues such as latency, contention and synchronization. The scalability of
synchronization primitives supported by the hardware [3, 20], the limits on interconnection net-
work performance [1, 21], and the performance of scheduling policies [30, 17] are examples of such
studies undertaken over the years. While such issues are extremely important, it is appropriate
to put the impact of these factors into perspective by considering them in the context of overall
application performance. There are studies that use real applications to address specific issues like
the effect of sharing in parallel programs on the cache and bus performance [10] and the impact of
synchronization and task granularity on parallel system performance [7]. Cypher et al. [9], identify
the architectural requirements such as floating point operations, communications, and input/output
for scientific applications. However, there have been very few attempts at quantifying the effects
of algorithmic and architectural interactions in a parallel system.

Since real-life applications set the standards for computing, it is meaningful to use the same
applications for the evaluation of parallel systems. We call such an application-driven approach
as a top-down approach to scalability study. The main thrust of this approach is to identify the
important algorithmic and architectural artifacts that impact the performance of a parallel system,
understand the interaction between them, quantify the impact of these artifacts on the execution
time of an application, and use these quantifications in studying the scalability of a parallel system
(section 2). To this end, we have developed a simulation platform called SPASM (Simulator for
Parallel Architecture Scalability Measurements), which identifies different overhead functions that
help quantify deviations from ideal behavior of a parallel system (section 3).

The following are the important contributions of this work:
e We propose a top-down approach to the performance evaluation of parallel systems.

o We define the notion of overhead functions associated with the different algorithmic and

architectural characteristics to quantify the scalability of parallel systems.

o We develop a method for separating the algorithmic overhead into a serial component and
a work-imbalance component. We also develop a method for isolating the overheads due
to network latency (the actual hardware transmission time in the network) and contention

(the amount of time spent in the network waiting for a resource to become free) from the

overall execution time of an application. We are not aware of any other work that separates
these overheads, and believe that such a separation is very important for understanding the

interaction between algorithms and architectures.

o We design and implement a simulation platform that incorporates these methods for quanti-

fying the overhead functions.

We illustrate the top-down approach through a case study, implementing a few NAS parallel
kernels [4] on two message-passing platforms (a bus and a binary hypercube) simulated on SPASM.
The algorithmic characteristics of these kernels are discussed in Section 4, details of the two ar-
chitectural platforms are presented in Section 5, and the results of our study are summarized in

Section 6. Concluding remarks and directions for future research are given in Sections 7 and 8.

2 Top-Down Approach

In keeping with the RISC ideology in the evolution of sequential architectures, we would like to use
real world applications in the performance evaluation of parallel machines. However, applications
normally tend to contain large volumes of code that are not easily portable. Moreover, they tend
to contain a level of detail that is not very familiar to someone outside that application domain.
Hence, computer scientists have traditionally used parallel algorithms that capture the interesting
computation phases of applications for benchmarking their machines. Such abstractions of real
applications that capture the main phases of the computation are called kernels. One can go even
lower than kernels by abstracting the main loops in the computation (like the Lawrence Livermore
loops [19]) and evaluating their performance. As one goes lower in the hierarchy, the outcome
of the evaluation becomes less realistic. Our top-down approach uses a hierarchical method to
benchmarking based on the granularity of the benchmarks. The Perfect Club Benchmarks [5],
SPLASH [23] and the NAS Benchmarks [4] are examples of application suites that have been
proposed for studying the performance of parallel machines. Such applications are representative
of real workloads and appear at the top of our hierarchy.

Even though an application may be abstracted by the kernels inside it, the sum of the times
spent in the underlying kernels may not necessarily yield the time taken by the application. There
is usually a cost involved in moving from one kernel to another such as the data movements and

rearrangements in an application that are not part of the kernels that it is comprised of. For

Linear

Algorithmic
Overhead

/ Ideal

Q
S
kS]
(]
2 eads Interaction
Overhead
Contention
| Real |
Execution
Processors

Figure 1: Top-down Approach to Scalability Study

instance, an efficient implementation of a kernel may need to have the input data organized in a
certain fashion which may not necessarily be the format of the output of the preceding kernel in
the application.

Despite its limitations, we believe that the scalability of an application with respect to an
architecture can be captured by studying its kernels, since they represent the computationally
intensive phases of an application. Therefore, we have used kernels in this study, in particular
the NAS parallel kernels [4] that have been derived from a large number of Computational Fluid
Dynamics applications.

One would like to see a performance improvement (speedup) that is linear with the increase in
the number of processors (as shown by the curve for linear behavior in Figure 1). With increasing
number of processors, overheads in the parallel system increase (as shown by the curve for real
execution in Figure 1) causing deviation from linear behavior. The overheads may even dominate
the added computing power after a certain stage resulting in potential slow-downs. Parallel system
overheads may be broadly classified into a purely algorithmic component (algorithmic overhead),
and a component arising due to the interaction of the algorithm and the architecture (interaction
overhead). The algorithmic overhead is due to the inherent serial part [2] and the work-imbalance
in the algorithm, and is independent of the architectural characteristics. For instance, if in certain
parallel phases of an algorithm the number of processors utilized changes then it would create work

imbalance. Isolating these two components of the algorithmic overhead would help in re-structuring

the algorithm to improve its performance. Algorithmic overhead is the difference between the linear
curve and that which would be obtained (the “ideal” curve in Figure 1) by executing the algorithm
on an ideal machine such as the PRAM [29, 25]. Such a machine idealizes the parallel architecture by
assuming an infinite number of processors, and unit costs for communication and synchronization.
Hence, the real execution could deviate significantly from the ideal execution due to the overheads
such as latency, contention, synchronization, scheduling and cache effects. These overheads are
lumped together as the interaction overhead. To fully understand the scalability of a parallel system
it is important to isolate the influence of each component of the interaction overhead on the overall
performance. For instance, in an architecture that has a fully connected interconnection network
there is no contention overhead. The communication pattern of the application would dictate the
latency overhead incurred by it. Thus the performance of an application (on an architecture devoid
of network contention) may lie in between the ideal curve and the real execution curve (see Figure
1).

One can use either simulation or direct experimental evaluation of the applications on the
real hardware to implement the top-down approach. We adopted the latter technique in our ear-
lier studies by experimenting with frequently used parallel algorithms on shared memory [26] and
message-passing [24] platforms. This technique is important and useful in scalability studies of
existing architectures, but has certain limitations: first, the underlying hardware is fixed making it
impossible to study the effect of changing individual architectural parameters; and second, it is dif-
ficult if not impossible to separate the effects of different architectural artifacts on the performance
since we are constrained by the performance monitoring support provided by the parallel system.
Further, monitoring program behavior via instrumentation can become intrusive yielding inaccurate
results. In this study, we use the simulation technique to overcome these drawbacks. Experimen-
tation is used in conjunction with simulation to understand the performance of real applications
on real architectures, and to identify the interesting kernels that occur in these applications for
subsequent use in the simulation studies.

Our simulation platform (SPASM), to be presented in the next section, provides an elegant
set of mechanisms for quantifying the different overheads we discussed earlier. The algorithmic
overhead is quantified by computing the time taken for execution of a given parallel program on
an ideal machine such as the PRAM [29] and measuring its deviation from a linear speedup curve.

Further, we separate this overhead into that due to the serial part (serial overhead) and that due

Deliver
Daemon

Deliver
Daemon

Interconnection Network

Figure 2: Architecture of SPASM

to work imbalance (work-imbalance overhead). As we mentioned earlier, the interaction overhead
should be separated into its component parts. We currently do not address scheduling overheads
by assuming that the number of processes spawned in a parallel program is equal to the number
of processors in the simulated machine, and that a process is bound to a processor and does
not migrate 2 We have also confined ourselves to message-passing platforms in this study, where
synchronization and communication are intertwined. Thus the interaction overhead is quantified
using the latency overhead function (fr(p)) and the contention overhead function (fc(p)) (p is the
number of processors) that are described in the next section. In a shared memory platform, it would
be interesting to consider the impact of communication and synchronization in the algorithm on
latency and contention separately but are outside the scope of this paper. For the rest of this paper,
we confine ourselves to the the only two aspects of the interaction overhead that are germane to

this study, namely, latency and contention.

3 SPASM

SPASM (Simulator for Parallel Architectural Scalability Measurements) is an execution-driven
simulator that enables us to conduct a variety of scalability measurements of parallel applications
on a number of simulated hardware platforms. SPASM has been written using CSIM, a process
oriented sequential simulation package, and currently runs on SPARCstations. SPASM provides
support for process control, communication and synchronization. The implementation of these

mechanisms for each simulated platform is identified by well-defined interfaces to library routines.

2We do not distinguish between the terms, process, processor and thread, and uniformly refer to the term as
processor in this paper.

There is a library for each simulated platform, that is linked to the rest of the simulator modules.

Architectural simulators have normally tended to be very slow, making it tedious to get a whole
range of data points on realistic problems. Simulating the entire instruction set of a processor can
be considerably slow. Since the thrust of this study is to understand the interesting characteristics
of parallel machines and their impact on the algorithm, instruction-level simulation is not likely
to contribute extensively to this understanding. Hence, we have confined ourselves to simulating
the interesting aspects of parallel machines. The bulk of the processor instruction streams is
executed at the speed of the native processor (the SPARC in this case) and only those instructions
that could potentially involve the network are simulated by SPASM. Examples of such instructions
include sends and receives on a message-passing platform, and loads and stores on a shared memory
platform. Such instructions are trapped by our simulator and simulated exactly according to the
semantics of these instructions on each particular platform (through the library routines). SPASM
reconciles the real time with the simulated time using these trapped instructions. Upon such a
trap, SPASM computes the time for the block of instructions that were executed at the native
speed since the previous trap,® and updates the simulation clock of the processor. This strategy
has considerably lowered the time overhead for simulation (the simulation time is at most a factor
of two compared to the real time) for the applications considered. The approach has also been used
in other recent simulation studies [6, 8, 22].

Figure 2 depicts the architecture of our simulation platform. Each node in the parallel machine
is abstracted by a processor (PE), a cache module (Cache) and a network interface (Deliver Dae-
mon). These three entities are implemented as CSIM processes. The CSIM process representing
a processor executes the code associated with the processor. These CSIM processes are spawned
at the start of the program, and execute as co-routines. A CSIM process executes to completion
if there are no more instructions that need to be trapped by the simulator. If not, control is
passed to the next CSIM process ready to execute, while the simulation of the trapped instruction
is performed. The simulation thus keeps the CSIM processes in loose synchrony. On a shared
memory platform, the processor issues load/store requests to its cache module. The cache module
services the request, invoking the deliver daemon if required. Since the shared memory platform
is beyond the purview of this study, we do not discuss any further details of its implementation.

On a message-passing platform, the processor directly interacts with the deliver daemon and the

3Since CSIM executes its processes as co-routines, there is only one CSIM process executing in this time interval.

explicit send/receive in a program are the only instructions that would need this interaction. On
a send, the processor creates a message (a data structure) and places the message in a mailbox.
The daemon waits for a message to arrive on the mailbox associated with its processor. It picks
up the message from the mailbox, determines the routing information, waits for the relevant links
of the network to become free, accounts for the software and hardware overheads, and delivers the
message to the mailbox of the destination processor *. On a synchronous receive, the processor
blocks until a message (delivered by a deliver daemon) appears in its mailbox.

SPASM provides us with a wide range of input parameters and output statistics for understand-

ing the scalability of parallel systems.
3.1 Parameters

The system parameters that can be specified to SPASM are: the number of processors (p), the
clock speed, the hardware setup time for transmission of a message, the hardware bandwidth, the
software latency for transmission of a message and the sustained software bandwidth.

Even though we assume that each processor is a SPARC chip, SPASM allows varying the clock
speed of the simulated processor for the same instruction set. This is useful for understanding the
scalability of parallel systems of the future built with faster processors. It also provides us with a

mechanism for varying the computation to communication ratio of a parallel system.
3.2 Metrics

SPASM provides a wide range of statistical information about the execution of the program. It
gives the total time (simulated time) which is the maximum of the running times of the individual
parallel processors. This is the time that would be taken by an execution of the parallel program
on the target parallel machine. Speedup using p processors is measured as the ratio of the total
time on 1 processor to the total time on p processors.

Ideal time is the total time taken by a parallel program to execute on an ideal machine such
as the PRAM. It includes the algorithmic overhead but does not include the interaction overhead.
SPASM simulates an ideal machine to provide this metric. As we mentioned in Section 2, the

difference between the linear time and the ideal time gives the algorithmic overhead.

*For reasons of efficiency, there is only 1 deliver daemon associated with a processor on start-up. When a processor
finds that its associated deliver daemon is busy delivering a message, it spawns another daemon and passes on the
message to it. The newly spawned daemon dies after it delivers the message while the start-up daemon goes back for
the next message.

A processor may wait for an event (such as a synchronization or a communication operation)
even before the event occurs. For the message passing platform being considered the only events are
the sending and receiving of messages. The difference between the time the receive was posted and
the time the message was sent is due to skews between the processors and is called the wail time
of a processor. In an ideal machine the wait time is entirely due to the work-imbalance overhead,
and is a metric provided by SPASM. The difference between the algorithmic overhead and the
work-imbalance overhead gives the serial overhead in the algorithm.

As mentioned in section 2, we would like to isolate the effects of latency and contention in the
system. If a machine is to have a fully connected network, there would be no contention in the
system and the overhead of a message would be purely due to software and hardware latencies for
communication. Each processor performing a blocking receive is expected to see this latency given
that all other conditions are ideal. The sum of all these overheads seen by a processor is called
the Network Latency. If a processor is to receive messages my, ms, ...my and the latencies of these
messages are I, [3, ...[(includes both software and hardware components), then the network latency
(fi(p)) incurred by a processor is given by fi(p) = S°%_ I;. But this may not necessarily reflect the
real latencies observed by a processor since some of it may be hidden by the overlap of computation
with communication. We call the latency observed by a processor as the latency overhead function
(fr(p)). SPASM gives the network latency of a processor as well as the latency overhead function
seen by a processor. SPASM measures the latter entity by time-stamping messages at the sending
processor. SPASM checks to see if the destination processor posted a receive for the message after
it was sent in which case only a corresponding part of the network latency is accounted for as the
latency overhead. If the destination processor posted a wait for the message before it was sent,
then the entire network latency is charged to it as the latency overhead.

As with latency, SPASM provides information about the network contention (f.(p)) that a
processor is supposed to incur and the contention overhead function (fc(p)) actually observed
by the processor at the receiving end. Network contention incurred by a processor is the sum
of all the waiting times (due to network links not being available) for all the messages that it
receives. If a processor is to receive messages mq,ms,...mp and the amount of time spent by
these messages waiting for links to become free in the network are ¢y, ¢, ... respectively, then
the network contention (f.(p)) incurred by a processor is given by f.(p) = Ele c;. A processor

may choose to hide a part of this contention by overlapping computation with communication, or a

processor may simply find a message already available when it posts a receive (in which case it does
not see any contention). The contention actually observed by a processor is called the contention
overhead function (fc(p)). SPASM calculates this overhead using time-stamped messages and the
time that would have been taken by a message on a contention-free network (i.e. the network
latency).

The wait time experienced by a processor on a real machine includes the work-imbalance over-
head (a purely algorithmic characteristic), as well as processor skews introduced due to the latency
and contention experienced by the messages. Let us denote, the wait times due to work-imbalance,
latency, and contention by W,,, W;, and W,; and the wait times measured by SPASM on an ideal
machine, real machine with a fully connected network, and the real machine by W;, Wy, and W,

respectively. Then the component wait times can be computed using the following expressions:
Wy = W;
W, =Wy — W,
W, = W, — Wy

From the above discussion, it follows that:

Total Time = Ideal Time + fr,(p) + fo(p) + W,

SPASM also provides statistical information about the network. It gives the utilization of
each link in the network and the average queue lengths of messages at any particular link. This
information can be useful in identifying network bottlenecks and comparing relative merits of
different networks and their capabilities. Thus the metrics identified by SPASM quantify the

algorithmic overhead and the interesting components of the interaction overhead.

4 Algorithmic Characteristics

Kernels are abstractions of the major phases of computation in an application that account for
the bulk of the execution time. A parallel kernel is characterized by the data access pattern, the
synchronization pattern, the communication pattern, the computation granularity (which is the
amount of work done between synchronization points), and the data granularity (which is the
amount of data manipulated between synchronization points). The last two together define the

task granularity of the parallel kernel. These attributes are as seen from the point of view of

10

the individual processors implementing the parallel kernel. If the parallel kernel is implemented
using the message-passing style, then the data access pattern becomes unimportant (except for
any cache effects) since all data accesses are to private memory. Further, the synchronization is
usually merged with the communication in such an implementation. On the other hand, if a shared
memory style programming is used, the communication pattern is not explicit and gets merged
with the data access pattern.

The Numerical Aerodynamic Simulation (NAS) program at NASA Ames has identified a set
of kernels [4] that are representative of a number of large scale Computational Fluid Dynamics
codes. In this study, we consider three of these kernels for the purposes of illustrating the top-down

approach using SPASM. In this section, we identify their characteristics in a message-passing style

implementation.
Phase Description Comp. Gran. Data Gran.
1 Local Floating Pt. Opns. Large N/A
2 Global Sum Integer Addition 4 bytes

Figure 3: Algorithmic Characteristics of EP Kernel

Phase Description Comp. Gran. | Data Gran.
1 Local bucket updates Small N/A
2 Global bucket merge Small 8K bytes
3 Local bucket updates Small N/A

Figure 4: Algorithmic Characteristics of IS Kernel

EP is the “Embarassingly Parallel” kernel that generates pairs of Gaussian random deviates and
tabulates the number of pairs in successive square annuli. This problem is typical of many Monte-
Carlo simulation applications. The kernel is computation bound and has little communication
among the processors. A large number of floating point random numbers is calculated and a
sequence of floating point operations is performed on them. The computation granularity of this
section of the code is considerably large and is linear in the number of random numbers (the problem
size) calculated. A data size of 64K pairs of random numbers has been chosen in this study. The
operation performed on a computed random number is totally independent of the other random

numbers. The processor assigned to a random number can thus execute all the operations for that

11

Phase Description Comp. Gran. Data Gran.
1 Local Floating Pt. Opns Medium N/A
2 Matrix-Vector Product
2a Global Vector Merge N/A (11200/p) * 27 in step @
2b Local Matrix-Vector Product Medium N/A
3 Vector-vector dot product
3a Local vector-vector dot product Small N/A
3b Global Sum Floating Pt. Addition 8 bytes
4 Local Floating Pt. Opns Medium N/A
5 same as phase 3
6 Local Floating Pt. Opns Medium N/A

Figure 5: Algorithmic Characteristics of CG Kernel

number without any external data. Hence the data granularity is meaningless for this phase of the
computation. Towards the end of this computation phase, a few global sums are calculated by using
a logarithmic reduce operation. In step ¢ of the reduction, a processor receives data from another
which is a distance 2! away and performs an addition of the received value with a local value. The
size of the data exchanged (data granularity) in these logarithmic communication steps is 4 bytes
(an integer). The computation granularity between these communication steps can lead to work
imbalance since the number of participating processors halves after each step of the logarithmic
reduction. However since the computation is a simple addition it does not cause any significant
imbalance for this kernel. The amount of local computation in the initial computation phase
overshadows the communication performed by a processor suggesting a near linear speedup curve
on most machines (unless the processing speed is to reach unrealistic limits). Figure 3 summarizes
the characteristics of the EP kernel.

IS is the “Integer Sort” kernel that uses bucket sort to rank a list of integers which is an
important operation in “particle method” codes. A list of 64K integers with 2K buckets is chosen for
this study. The input data is equally partitioned among the processors. Fach processor maintains its
own copy of the buckets for the chunk of the input list that is allocated to it. Hence, updates to the
buckets for the chunk of data allocated to a processor is an entirely local operation to the processor.
This computation phase is again linear in the problem size but the granularity of the computation
is not as intensive as in EP. The processing of each list element needs only the update (an integer
addition) of the corresponding local bucket. The buckets are then merged using a logarithmic reduce

operation and propagated back to the individual processors. The logarithmic operation takes place

12

as in EP, the difference being in the computation granularity and the data granularity (size of the
messages exchanged). The message size (data granularity) in the communication steps is 8Kbytes
(2K integers). The computation granularity of the reduction is not a simple addition as in EP, but
involves an integer addition for each of the buckets. This can lead to non-trivial algorithmic work
imbalance depending on the chosen bucket size. The data size is chosen to be 64Kbytes with 2K
buckets to illustrate this work imbalance. Each processor then uses the merged buckets to calculate
the rank of an element in its chunk of the input list. This phase of the kernel exhibits the same
characteristics as the first computation phase (updating the local buckets). Figure 4 summarizes
the characteristics of the IS kernel.

CG is the “Conjugate Gradient” kernel which uses the Conjugate Gradient method to estimate
the smallest eigenvalue of a symmetric positive-definite sparse matrix with a random pattern of
non-zeroes that is typical of unstructured grid computations. A sparse matrix of size 1400X1400
containing 100,300 non-zeroes has been used in the study. This kernel lies between EP and IS with
respect to computation to communication ratio requirements. The sparse matrix and the vectors
are partitioned by rows assigning an equal number of contiguous rows to each processor. The kernel
performs twenty five iterations in trying to approximate the solution of a system of linear equations
using the Conjugate Gradient method. Each iteration involves the calculation of a sparse matrix-
vector product and two vector-vector dot products. These are the only operations that involve
communication. The computation granularity between these operations is linear in the number of
rows (the problem size) and involves a floating point addition and multiplication for each row. The
vector-vector dot product is calculated by first calculating the intermediate dot products for the
elements in the vectors local to a processor. This is again a local operation with a computation
granularity linear in the number of rows assigned to a processor with a floating point multiplication
and addition performed for each row. A global sum of the intermediate dot products is calculated
by a logarithmic reduce operation (as in EP) yielding the final dot product. The computation
granularity in the reduction is a floating point addition and the data granularity is 8 bytes (size
of a double precision number). For the computation of the matrix-vector product, each processor
performs the necessary calculations for the rows assigned to it in the resulting matrix (which are
also the same rows in the sparse matrix that are local to the processor). But the calculation involves
the elements of the input vector that are not local to a processor. Hence before the computation,

the different portions of the input vector present on different processors are merged globally using a

13

logarithmic reduce operation and the complete vector is replicated on each processor. The matrix-
vector operation can then be carried out with entirely local operations. The logarithmic reduce
operation for the merging does not have any computational granularity, but the data granularity
doubles after each step of the operation. Initially the size of the messages is equal to the number
of rows present on each processor (11200/p bytes for 1400/p double precision numbers where p is
the number of processors). After each step, the size of this message doubles since a processor needs
to send the data that it receives along with its own local data to a processor that is at a distance

a power of 2 away. Figure 5 summarizes the characteristics for each iteration of the CG kernel.

5 Architectural Characteristics

A uniprocessor architecture is characterized by: processing power as indicated by clock speed, in-
struction sets, clocks per instruction, floating point capabilities, pipelining, on-chip caches; memory
size and bandwidth; and input-output capabilities. Parallel architectures have many more degrees
of freedom making it difficult to study each artifact. Since uniprocessor architecture is getting
standardized with the advent of RISC technology, we fix most of the processor characteristics by
using the SPARC chip as the baseline for each processor in a parallel system. Such an assumption
enables us to make a fair comparison of the relative merits of the interesting parallel architectural
characteristics across different platforms. Input-output characteristics are beyond the purview of
this study.

To illustrate the top-down approach, we use two message-passing architectures with different
interconnection topologies: the bus and the binary hypercube. The bus platform consists of a num-
ber of nodes that are connected by a single 64-bit wide bus. Each processor in a node consists of a
SPARC processor with local memory. The bus is an asynchronous Sequent-like bus (split transac-
tion) with a cycle time of 150 nanoseconds. The cube platform closely resembles an iPSC/860 in
terms of its communication capabilities. The nodes are connected by serial links with a bandwidth
of 2.8 MBytes/sec in a binary hypercube topology. Message transmission uses a circuit-switched
wormhole routing strategy. We have chosen these two platforms because they provide very different
communication characteristics. The bus provides a much higher bandwidth compared to a single
link of the cube, but the latter is expected to provide more contention free transmission due to its
multiple links. The software overhead incurred is 100 microseconds per message which is keeping

in trend with existing message-passing machines.

14

Both platforms provide an identical message-passing interface to the programmer. They support
blocking and non-blocking modes of message transfer. The semantics of these modes are the same
as those available on an iPSC/860 [12]. A blocking send blocks the sender until the message has
left the sending buffer. Such a send does not necessarily imply that the message has reached the
destination processor or even entered the network. A blocking receive blocks until the message from
a corresponding send is completely in the receiving buffer. A non-blocking send does not guarantee
that the message has even left the user buffer and a non-blocking receive returns immediately to
the user program even if the message has not been received.

Many message-passing parallel programs are easier to write if the underlying system provides
lyped-messages and selective blocking on typed-messages. Typed-messages make it easier to order
messages instead of leaving the burden to the programmer. Both our platforms support this elegant
facility. On a message receive, the processor picks up messages from its mailbox and queues them

up until it finds a message of the type that it needs.

6 Performance Results

The simulations that have been carried out include execution of the three NAS kernels on the two
message-passing platforms. We report results for two different processor speeds: one at the native
SPARC speed and the second at 10 times the native SPARC speed.

Figures 8, 9 and 10 show the speedups of the three NAS kernels on the two hardware platforms.
The curves labeled “ideal” in these Figures have been calculated using the ideal time given by
SPASM. The curves show the maximum possible speedup that could be obtained for the given
parallel program (a purely algorithmic characteristic). As explained by the characteristics of these
kernels in section 4, the “ideal” curve is observed to be almost linear for the EP kernel (Figure
8) and slightly deviates from being linear for the CG kernel (Figure 10) up to 64 processors.
For the IS kernel (Figure 9) with the given problem size, the work imbalance in the program
dominates, yielding maximum performance at around 30 processors. Further increase in number
of processors results in a slowdown. The architectural overheads arise due to the communication
in the problem and result in a deviation from the algorithmically predicted speedup curve (labeled
“ideal”). EP has a high computation to communication ratio thus yielding speedup curve (for both
bus and cube) close to the ideal speedup with the processor running at SPARC speed (1X). CG

is more communication bound showing speedup curves that are significantly worse than the ideal

15

speedup curve. The deviations from the ideal curve for IS lie in-between that for EP and CG.
For this problem, the speedup curves are limited more by the algorithm than by the architectural
overheads. Increasing the processing speed to 10 times the SPARC speed (10X), progressively
reduces the computation to communication ratio for all the kernels, thus yielding worse speedup
curves (see corresponding 1X and 10X curves in Figures 8, 9 and 10). The EP kernel, which uses
short messages (4 bytes) for its prefix computations, shows practically no difference in speedups
between the bus and cube platforms. On the other hand, the poor point-to-point bandwidth of the
cube compared to the bus plays an important role in degrading the performance of the other two
kernels which send messages of much larger lengths (see Bus 1X and Cube 1X curves in Figures 8
and 9).

Figures 11, 12, and 13 show the latency overhead of the architecture on the respective kernels
with the processor running at the native SPARC speed. These curves have been drawn for the
processor that observes the maximum latency in each case. In all the kernels, the network latency
(fi(p)) of a processor is almost identical to the latency overhead function (f(p)) observed by
a processor indicating that there is minimal overlap of computation with communication. The
communication in all three kernels occurs only in the logarithmic reduce operations. The difference
among them is in the size of the messages exchanged in this operation and the bandwidth of the
interconnect. Since the number of messages received by a processor grows logarithmically with the
number of processors, all the curves show a logarithmic behavior. The curves for latencies on the
bus and the cube (see Figure 11) are almost identical for EP. This is due to the short messages (4
bytes) used by EP for its data exchanges. The software overhead of 100 microseconds per message
on both platforms is the more dominating factor obviating the difference in the two hardware
bandwidths. On the other hand, for IS and CG which send longer messages, there is a considerable
disparity between the bus and cube for network latency (see Figures 12 and 13).

Figures 14, 15 and 16 show the contention overhead of the architectures on the respective kernels
with the processor running at the native SPARC speed. A logarithmic reduce operation exchanges
messages between processors that are at a distance a power of two apart. Such an operation can be
elegantly mapped on to the cube to be entirely contention free. On the other hand, all the messages
have to be sequentially handled on the bus giving rise to growing contention with increasing number
of processors. As with latency, the network contention curves (f.(p)) and the contention overhead

curves (fc(p)) are almost identical for the three kernels. There is negligible hiding of contention

17

due to overlap of computation with communication. Only IS exhibits any hidden contention for
the 64 processor case (around 5% of the overall contention). The shape of the curves shows that
the contention overhead on the bus grows faster than linear for all three kernels. Latency, which is
a logarithmically growing function, is soon overtaken by the faster than linear growing contention
function (at around 40 processors for IS and at around 12 processors for CG).

Figures 17, 18 and 19 show the breakup of the times due to the algorithmic and interaction
overheads for the three kernels on the bus. Figures 20, 21 and 22 depict the same information for
the cube. The timings shown are for a representative processor that executes the workload that
is characteristic of the specific kernel. Note that this may not necessarily be the one that takes
the longest time nor the one that experiences the maximum overheads. It is the processor that
spends maximum time for computation among all the parallel processors. For EP, the overheads are
marginal and the bulk of the time is largely due to the computation in the algorithm. For the other
two kernels on the bus, contention becomes a bigger problem than latency with increasing number
of processors as explained earlier. For large number of processors a considerable wait time is seen.
The kernels consist of computation phases and communication phases. All the computation phases
are load balanced among the processors and they arrive at a communication phase around the same
time. The work-imbalance overhead (W),) is mainly due to the logarithmic reduce operation where
the number of processors participating is halved at each step. This intuitively suggests that the
most of the wait time is due to latency (W;) and contention (W,). The measurements (see Figures
6 and 7) confirm this intuition. These measurements are for 64-node bus and cube systems for all

the three kernels.

Kernel W W, W,
EP 0.0% | 100.0% | 0.0%
IS 0.0% | 31.1% | 68.9%
CG 0.4% | 34.4% | 65.2%

Figure 6: Wait Times on the Bus

Figures 17, 18 and 19 also show the relative impact of the latency and contention overhead
functions on performance. For smaller number of processors, latency is a more dominant factor than
contention in limiting performance. But as mentioned earlier, the latency grows logarithmically

(because of the structure of the algorithms) and is soon superseded by the faster than linear growing

20

Kernel W W, W,
EP 0.0% | 100.0% | 0.0%
IS 0.0% | 100.0% | 0.0%
CG 0.2% | 99.8% | 0.0%

Figure 7: Wait Times on the Cube

contention overhead function. This transition occurs at around 40 processors for IS and at around
12 processors for CG on the bus platform. Latency and contention overhead have very little effect
on the performance of EP.

To understand the effect of varying the latency on the contention overhead function, we simulate
a 64-node bus platform and study the three kernels. Figure 23 shows the result of this simulation.
the overheads are given in seconds for CG, in milliseconds for IS and in microseconds for EP. An
interesting observation from this graph is that the contention overhead seen by a processor increases
linearly with an increase in the latency of the underlying hardware. The contention overhead is
affected the least for CG even though the net latency seen by a processor is the maximum of the
three kernels (see Figure 23). IS exhibits the maximum change in contention overhead while EP

falls in between.
6.1 Validation

We validate our simulation by executing the kernels on comparable parallel machines, and present
sample validation results in this subsection. Figures 24, 25 and 26 compare the execution times for
the EP, IS and CG kernels respectively on an iPSC/860 and on SPASM simulating an iPSC/860.
The curves are identical for EP while there is around a 10-15% deviation for CG and around 15-20%
deviation for IS. However, the shapes of the real and simulated curves are very similar indicating
that trends predicted by the simulation are accurate within a constant factor. The deviation
is largely due to inaccuracies in our estimation of the time taken for execution of the processor
instruction streams. As mentioned in section 3, we use the special (simulated) instructions to
update the simulation clock of a processor for the instructions that are executed at the speed of
the native processor. If we are to use UNIX system calls to measure this time interval, then we
are limited by the least count of the UNIX timers. The least count of the UNIX timer calls on the

SPARCstation is in milliseconds and this can severely impact our measurements. Hence, we have

23

resorted to calculating these time quanta manually and introducing the appropriate instrumentation
code in our source programs. These manual measurements may have contributed to the inaccuracies
in the estimation. We propose to use the augmentation technique used in other similar simulation

studies [6, 8] to overcome these inaccuracies.

7 Concluding Remarks

Theoretical and analytical models for studying the scalability of parallel systems have their limita-
tions. We have proposed a new top-down approach to identify and quantify the different overheads
in a parallel system that affects its scalability. We have used a combination of execution-driven sim-
ulation and experimentation to implement this approach. We use experimentation to understand
the performance implications of real applications on real architectures, and to identify interesting
kernels occurring in such applications. The kernels are then used in our simulation to separate
the different overheads that cause non-ideal behavior. We have developed a simulation platform
(SPASM) to conduct this study. SPASM provides an elegant way of isolating the algorithmic
overhead and interaction overhead in a parallel system, and further separating them into their
respective components.

We illustrate our approach by simulating a bus-based and a hypercube-based message passing
platforms on SPASM. Using the NAS parallel kernels we isolate the algorithmic effects such as

serial and work-imbalance overheads and the interaction effects such as latency and contention.

8 Future Work

Currently the physical memory available on the SPARCstations limits the system size as well as the
problem size that can be simulated using SPASM. We are exploring alternative techniques, such
as virtual memory and parallel simulation, for structuring SPASM to overcome this limitation.
There are several interesting directions for extending this work. One is to identify and quantify
other overheads in a parallel system such as scheduling, synchronization, task granularity (com-
putation and data granularity) and caching. Another direction is to include shared memory style

implementations, and incorporate different interconnection network topologies into SPASM.

25

References

[1]

[2]

3]

[4]

[5]

[10]

Anant Agarwal. Limits on Interconnection Network Performance. IFEF Transactions on

Parallel and Distributed Systems, 2(4):398-412, October 1991.

G. M. Amdahl. Validity of the Single Processor Approach to achieving Large Scale Computing
Capabilities. In Proceedings of the AFIPS Spring Joint Computer Conference, pages 483-485,
April 1967.

Thomas E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multi-

processors. [KEE Transactions on Parallel and Distributed Systems, 1(1):6-16, January 1990.

D. Bailey et al. The NAS Parallel Benchmarks. International Journal of Supercomputer
Applications, 5(3):63-73, 1991.

M. Berry et al. The Perfect Club Benchmarks: Effective Performance Evaluation of Super-

computers. International Journal of Supercomputer Applications, 3(3):5-40, 1989.

Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William FE. Weihl. PRO-
TEUS : A high-performance parallel-architecture simulator. Technical Report MIT-LCS-TR-
516, Massachusetts Institute of Technology, Cambridge, MA 02139, September 1991.

D. Chen, H. Su, and P. Yew. The Impact of Synchronization and Granularity on Parallel Sys-
tems. In Proceedings of the 17th Annual International Symposium on Computer Archilecture,

pages 239-248, 1990.

R. G. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair. The Rice parallel pro-
cessing testbed. In Proceedings of the ACM SIGMETRICS 1988 Conference on Measurement
and Modeling of Computer Systems, pages 4-11, Santa Fe, NM, May 1988.

R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural requirements of par-
allel scientific applications with explicit communication. In Proceedings of the 20th Annual

International Symposium on Computer Architecture, May 1993. To appear.

Susan J. Eggers and Randy H. Katz. The Effect of Sharing on the Cache and Bus Performance

of Parallel Programs. In Proceedings of the Third International Conference on Architectural

26

[11]

[12]

[13]

[14]

[15]

[20]

Supporl for Programming Languages and Operating Systems, pages 257-270, Boston, Mas-
sachusetts, April 1989.

John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of Parallel Methods
for a 1024-node Hypercube. SIAM Journal on Scientific and Statistical Computing, 9(4):609—
638, 1988.

Intel Corporation, Oregon. Intel iPSC/2 and iPSC/860 User’s Guide, 1989.

Leah H. Jamieson. Characterizing Parallel Algorithms. In L. H. Jamieson, D. B. Gannon, and
R. J. Douglas, editors, The Characteristics of Parallel Algorithms, pages 65-100. MIT Press,
1987.

Alan H. Karp and Horace P. Flatt. Measuring Parallel processor Performance. Communica-

tions of the ACM, 33(5):539-543, May 1990.

Vipin Kumar and V. Nageswara Rao. Parallel Depth-First Search. International Journal of
Parallel Programming, 16(6):501-519, 1987.

H. T. Kung. The Structure of Parallel Algorithms. Advances in Computers, 19:65-112, 1980.
Edited by Marshall C. Yovits and Published by Academic Press, New York.

Scott T. Leutenegger and Mary K. Vernon. The Performance of Multiprogrammed Multi-
processor Scheduling Policies. In Proceedings of the ACM SIGMETRICS 1990 Conference on

Measurement and Modeling of Computer Systems, pages 226-236, 1990.

Sridhar Madala and James B. Sinclair. Performance of Synchronous Parallel Algorithms with
Regular Structures. [EEE Transactions on Parallel and Distributed Systems, 2(1):105-116,

January 1991.

F. H. McMahon. The Livermore Fortran Kernels : A Computer Test of the Numerical Per-
formance Range. Technical Report UCRL-53745, Lawrence Livermore National Laboratory,
Livermore, CA, December 1986.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65,
February 1991.

27

[21]

[23]

[24]

[25]

[27]

[28]

[29]

Gregory F. Pfister and V. Alan Norton. Hot Spot Contention and Combining in Multistage
Interconnection Networks. IEEE Transactions on Computer Systems, C-34(10):943-948, Oc-

tober 1985.

S. K. Reinhardt et al. The Wisconsin Wind Tunnel : Virtual prototyping of parallel computers.
In Proceedings of the ACM SIGMETRICS 1993 Conference on Measurement and Modeling of

Computer Systems, Santa Clara, CA, May 1993. To appear.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel
Applications for Shared-Memory. Technical Report CSL-TR-91-469, Computer Systems Lab-

oratory, Stanford University, 1991.

Anand Sivasubramaniam, Umakishore Ramachandran, and H. Venkateswaran. Message-
Passing: Computational Model, Programming Paradigm, and Experimental Studies. Tech-
nical Report GIT-CC-91/11, College of Computing, Georgia Institute of Technology, February
1991.

Anand Sivasubramaniam, Umakishore Ramachandran, and H. Venkateswaran. A Computa-
tional Model for Message-Passing. In Proceedings of the Sixth International Parallel Processing
Symposium, pages 358-361, Beverly Hills, California, March 1992.

Anand Sivasubramaniam, Gautam Shah, Joonwon Lee, Umakishore Ramachandran, and
H. Venkateswaran. Experimental Evaluation of Algorithmic Performance on Two Shared Mem-
ory Multiprocessors. In Norihisa Suzuki, editor, Shared Memory Multiprocessing, pages 81-107.
MIT Press, 1992.

Xian-He Sun and John L. Gustafson. Towards a better Parallel Performance Metric. Parallel

Compuling, 17:1093-1109, 1991.

D. F. Vrsalovic, D. P. Siewiorek, Z. Z. Segall, and E. Gehringer. Performance Prediction and
Calibration for a Class of Multiprocessors. IEEE Transactions on Computers, 37(11):1353~
1365, November 1988.

J. C. Wyllie. The Complezity of Parallel Computations. PhD thesis, Department of Computer

Science, Cornell University, 1979.

28

[30] John Zahorjan and Cathy McCann. Processor Scheduling in Shared Memory Multiprocessors.
In Proceedings of the ACM SIGMETRICS 1990 Conference on Measurement and Modeling of
Computer Systems, pages 214-225, 1990.

29

60

50

40

30

Speedup

20 A

10 A

Ideal -o—
Bus (1X) —+-)
Bus (10X) o)
Cube (]_X) ~)
Cube (10X) = P
////
////
/%/
,/’
///’// _/»_/»7/;7;»7<E
/ g —

12

I S S a— —
Processors

Figure 8: EP : Speedup

10 A

Speedup

Ideal ——
Bus (1X) -+-
Bus (10X) =

I S S a— —
Processors

Figure 9: IS : Speedup

16

Speedup

60

Processors

Figure 10: CG : Speedup

Overhead (millisecs)

Overhead (millisecs)

74
6
5_
44 Network Latency (Bus) o
Latency Overhead (Bus) -+
Network Latency (Cube) B
3 Latency Overhead (Cube) <
24
l_
0 1= T T T T T T
0 10 20 30 40 50 60
Processors
Figure 11: EP : Latency
180
160 4
140 4
120 4
100 Network Latency (Bus)
Latency Overhead (Bus)
Networ] Latencgl/ (Cube) -
30 4 Latency Overhead (Cube) <
60
40 A
20 A
082 T T T T T
0 10 20 30 40 50 60

Processors

Figure 12: IS : Latency

18

Overhead (millisecs)

2500

2000

1500

1000

500

Network Latency (Bus) o
Latency Overhead (Bus) -
Network Latency (Cube) B

Latency Overhead (Cube) <
R
T T T T T T
10 20 30 40 50 60

Processors

Figure 13: CG : Latency

Overhead (in microsecs)

Overhead (in millisecs)

20

Network Contention (Bus) -6
Contention Overhead (Bus) —+—
Network Contention (Cube) -
Contention Overhead (Cube) X
15
10
5_
O T T T T T T
0 10 20 30 40 50 60
Processors
Figure 14: EP : Contention
120
Network Contention (Bus) o
Contention Overhead (Bus) —+—
Network Contention (Cube) B
100 4 Contention Overhead (Cube) >
80
60
40 |
20 1
O T T T T T T
0 10 20 30 40 50 60

Processors

Figure 15: IS : Contention

19

Overhead (millisecs)

2500 o

2000

1500

1000

500

Network Contention (Bus) R
Contention Overhead (Bus) —+—
Network Contention (Cube)

Contention Overhead (Cube)

10 20 30 40 50 60
Processors

Figure 16: CG : Contention

Time (in millisecs)

Time (in millisecs)

3500

3000 o

2500

2000

1500 +

1000 +

500 A

Real
Ideal
Latency
Contention
Wait

brete

20 30 40 50 60

Processors

Figure 17: EP : Overheads on Bus

700 +

600

500 +

400 A

300

200 A

100

=i

Latency
Contention

Real
Ideal

rete

Wait

1
20

Processors

Figure 18: IS : Overheads on Bus

21

Time (in millisecs)

45000 A Real -o-
Ideal —+—
Latency 88—
40000 + Contention <—
Wait -—-—
35000 +
30000 +
25000 +
20000 4
15000 A
10000 A
5000 +
O T T T T T T
0 10 20 30 40 50 60
Processors

Figure 19: CG : Overheads on Bus

Time (in millisecs)

Time (in millisecs)

Real -o—
3500 deal
Latency 88—
Contention <
3000 4 Wait -—-—
2500 A
2000 A
1500 A
1000 A
500 A
0 B E— T T T T
0 10 20 30 40 50 60

Processors

Figure 20: EP : Overheads on Cube

700 4 Real -o-
Ideal —+—
Latency &—
Contention >
600 A Wait —-—
500 A
400 A
300 4
200 A
100 A
O T T T T T T
0 10 20 30 40 50 60

Processors

Figure 21: IS : Overheads on Cube

45000 A Real -o-
Ideal —+—
Latency 88—
40000 A Contention = =—
Wait -—-—
35000 A
30000 o
o
[0}
o 25000 -
=
g
5 20000 -~
£ 15000 A
o
10000
5000 +
O T T T T T T
0 10 20 30 40 50 60
Processors
Figure 22: CG : Overheads on Cube
600
EP (64 PEs) in microsecs <
500 4 IS (64 PEs) in millisecs -
OG (64 PEs) in secs =
400
2 300
g
o
3
200
100
2 4‘44*4’4744A5_4_4,4,4_5.44'44—44{
O T T T T
0 0.2 0.4 0.6 0.8
Latency (microsecs)

Figure 23: Effect of Latency on Contention

22

Time (in secs)

Time (in secs)

10

Real ——
Simulated — -+-

8
6
44
24
100
O T T T T T T
1 2 3 4 5 6 7 8
Processors
Figure 24: EP on Cube : Validation
0
0
9]
a
2
5
1.8 A Real ——
Simulated — -+-
1.6 1
1.4 4
i3 0
L2 1 2 3 4 5 6 7 8
Processors
1
0.8 4 \ Figure 26: CG on Cube : Validation
*\\\
0.6 -
T e _
0.4 - T
0.2 A
O T T T T T T
1 2 3 4 6 7 8
Processors
Figure 25: IS on Cube : Validation

24

