
NASA-CR-20181_ - -- ' _01 --G _3

JOURNAL OF PARALLEl. AND DISTRIBUTED COMPUTING 29, 211-218 (1995)

Ensuring Correct Rollback Recovery in
Dish'ibuted Shared Memory Systems I

//t_-

BOB JANSSENS 2 AND W. KENT FUCHS

Center for Reliable and High-Performance Computing, Coordinated Science Laboratory,
University of Illinois, 1308 West Main Street, Urbana, Illinois 61801

Distributed shared memory (DSM) implemented on a cluster
of workstations is an increasingly attractive platform for execut-
ing parallel scientific applications. Checkpointing and rollback
techniques can be used in such a system to allow the computa-
tion to progress in spite of the temporary failure of one or
more processing nodes. This paper presents the design of an
independent checkpointing method for DSM that takes advan-
tage of DSM's specific properties to reduce error-free and roll-

back overhead. The scheme reduces the dependencies that need
to be considered for correct rollback to those resulting from
transfers of pages. Furthermore, in-transit messages can be
recovered without the use of logging. We extend the scheme
to a DSM implementation using lazy release consistency, where
the frequency of dependencies is further reduced. ©t99sAca-
demicPress, lnc,

1. INTRODUCTION

Distributed shared memory (DSM) provides the pro-

gramming advantages of a shared-memory image in scal-

able parallel systems. Checkpointing and rollback are com-
monly used to recover from detected processor errors in

environments where high reliability is essential. Recent

trends toward using workstation clusters for parallel scien-

tific computing make recoverability useful even when relia-

bility demands are less critical. In a workstation network,

a node may kill a process or completely reboot, either due

to a system exception, or due to direct action by a user.

With checkpointing and rollback, an application can re-

cover from such an event without restarting computation

from the beginning. Checkpointing is also useful for pro-
cess migration to reduce adverse impact on other users [18].

In parallel systems, dependencies between processing

nodes can cause the overall system state to be incorrect

when one node rolls back. The problem of rolling back to

a consistent global state has been widely investigated for

This paper contains material previously presented at the 13th SRDS
[13]. This research was supported in part by the Office of Naval Research
under Contract N00014-91-J-1283, and by the National Aeronautics and
Space Administration (NASA) under Grant NASA NAG 1-613, in coop-
eration with the Illinois Computer Laboratory for Aerospace Systems
and Software (ICLASS).

E-mail: janssens@uiuc.edu.

211

message-passing systems. It is possible to directly apply

this research to shared memory, by modeling the system

in terms of message passing. However, previous work in

shared-memory recovery has used a laxer model of de-

pendencies, using the intuition that only messages that

transfer actual application data should cause dependencies.

This assumption simplifies the implementation of a recov-

erable DSM, since many control dependencies can be ig-

nored. Furthermore, the performance overhead of han-

dling dependencies is reduced, and the potential for

rollback propagation is decreased.

This paper presents the design of an independent check-
pointing method for DSM that takes advantage of DSM's

specific properties to reduce error-free and rollback over-

head. By using periodic checkpointing, by ensuring that

a node's interaction with other nodes is atomic, and by

recovering the pagetable independently through ownership

timestamps, the number of dependencies that can cause

rollback propagation is reduced. Additionally, the re-

maining dependencies are unidirectional, allowing the al-

gorithm to handle in-transit messages without the use of

message logging. By using a passive server model of DSM
we show that the dependencies in our recovery algorithm

can be derived from the traditional message-passing model.

We extend our checkpointing method to a DSM with lazy

release consistency [7, 15], further reducing dependencies

to only synchronization interactions. As described, our

schemes are designed for software-implemented DSM

(shared virtual memory) and independent checkpointing.

However the ideas presented can also be extended to hard-

ware implementations and any other distributed system

checkpointing method [14].

To ensure correct recovery in a parallel system, a roll-
back needs to result in a consistent global state [6]. If the

execution is partially deterministic, logging and message

replay can be used, albeit at a high cost [9]. The simplest

recovery method in general nondeterministic parallel sys-

tems is coordinated checkpointing [6, 8], where nodes syn-

chronize both to checkpoint and to roll back. To avoid

coordination overhead, independent checkpointing can be

used [4, 23]. Its main disadvantages are the need to track

all dependencies, the need to implement logging to enable

recovery of in-transit messages, and the potential for roll-

back propagation•

0743-7315/95 $12.00

Copyright © 1995 by Academic Press, Inc.

All rights of reproduction in any form reserved.

212 JANSSENS AND FUCHS

Various distributed system recovery techniques have

been applied to shared memory. Earlier techniques have

used communication-induced checkpointing [2, 5, 12, 24].

Schemes using coordinated checkpointing have also been

developed, both in bus-based systems [2, 3] and in DSM

systems [10, 11]. Various DSM schemes based on logging
and deterministic replay have also been designed [19,

20, 221.

The distributed system model, where every message

causes a dependency between nodes, is too strict for

shared-memory parallel programs. A more relaxed depen-

dency model can be used for rollback recovery in shared

memory only if there is no possibility of deadlock due to

nodes waiting for messages that may never arrive. Recov-

ery schemes designed for bus-based shared memory sys-

tems have generally used the relaxed model. In these sys-
tems deadlock is avoided by the bounded transmission

delay of the bus. In DSM systems, other measures have

to be taken to avoid messaging deadlock if the relaxed

dependency model is used. A dependency pattern and an
atomic interaction model similar to the one described in

this paper has been used to design a coordinated check-

pointing scheme [11].

2. DESIGN OF A RECOVERABLE DSM

Our recoverable DSM algorithm uses a fixed distributed

manager (FDM) protocol for maintaining coherence [17].
In this protocol, every node maintains ownership informa-

tion for a fixed subset of shared pages. A page fault to a

shared page causes a request to its manager, which for-

wards it to the owner. A node's page table indicates that

it has either exclusive write access (W), read access (R),

or invalid access (I) to a page. A copyset of nodes that

have a copy of a page is maintained to allow their invalida-
tion when a node obtains exclusive write access.

Pseudo-code for our checkpointing and rollback recov-

ery algorithm as integrated into the DSM algorithm is

given in Fig. 1. A page fault initiates an interaction, where
a local fault handler is called, which then consults a request

server on the owner via the manager. Every nodes calls

its checkpoint routine every T seconds. Every checkpoint
on a node starts a new checkpoint interval by incrementing

ckp_interval. This value is appended to every message

that transfers a page of data between nodes. The receiving

node uses the value to update its dependency table, which

is used for dependency tracking [4, 23]. When an error is

detected, the rollback initiation routine constructs a consis-

tent global checkpoint by requesting every other node's

current dependency table. It then sends appropriate roll-

back commands to the nodes. These nodes may need to

roll back multiple checkpoint intervals. Unless a garbage

collection algorithm [23] is used, all checkpoints are saved

until the end of program execution. Unlike message-pass-

ing recovery algorithms [4, 23], in-transit messages do not

need to be replayed from a log during reexecution.

2.1. Maintaining Atomicity of Server Events

The recovery algorithm ensures that a node's part of an

interaction is executed atomically. This avoids deadlock

and spurious messages caused by partially completed inter-

actions. When the checkpoint routine is called, check-

pointing is delayed if an interaction is in progress. It is not

possible to delay a rollback if an error is detected during

an interaction. Consider the situation in Fig. 2, where a

request for read access from node A has been forwarded,

by the page's manager on node M, to node B. If node A

rolls back while waiting, it will receive the reply from node

B unexpectedly after rollback. To handle such spurious

replies, a sequence number uniquely identifying the inter-
action is attached to each message. In the example, node

A assigns a unique number to the request message, and B
attaches this number to its reply. When node A rolls back,

it will have no record of the sequence number sent by B,

so it rejects the message.

If node B or node M rolls back to while handling the

request from A, node A will not receive a reply from node

B. To handle such cases of potential deadlock, a node

waiting for a reply that receives a request for dependency
information waits for a fixed amount of time, and if no

reply is received, indicates that it must roll back by setting

the mus t_rb flag in its dependency table. In the example,
if node B decides to roll back before sending the reply, all

other nodes in the system that receives B's request for

dependency information while waiting for a reply set a
timer. In the absence of other rollbacks, all nodes except

A probably receive the reply before timing out. Node A

does time out, sending its dependency table to B with

must rb set. Node B then constructs its consistent global

checkpoint taking into account that node A must roll back.

2.2. Page Table Recovery with Ownership Timestamps

Our design uses an ownership timestamp scheme where

every node keeps track of the last time it became owner

of a page. The scheme allows all directory information

beside the ownership timestamps to be lost after rollback

without affecting correct execution. Every time ownership
is transferred, the old owner sends its current value of

the page's ownership timestamp to the new owner. Upon

receiving the value, the new owner increments it and then
stores it as its ownership timestamp for the page. Periodi-

cally, when the timestamp overflows, all nodes need to

synchronize to reset their timestamps to ensure correct

ordering. Ownership timestamps are saved together with

the state of the user appliation during checkpointing.

After a node rolls back, all the page table information

except for the ownership timestamps is unknown. The first

access to a page after rollback causes a fault. If the manager

did not roll back, the protocol proceeds as usual, restoring

access rights to the requester. If the manager did roll back,

it has no ownership information, and queries all nodes

for their ownership timestamps for the page. It can then
determine the owner of the page by comparing all the

ROLLBACK RECOVERY IN DISTRIBUTED SHARED MEMORY 213

Read Fault Handler Write Fault Handler

send read request to manager of page;

receive page and ckp_interval from owner;

update dependency table;

access = R;

send write request to manager of page;

receive page, copyset, ownership

timestamp and ckp_interval from owner;

update dependency table;

send invalidates to all members of copyset;

increment and save ownership timestamp;

access = W;

Read Request Server Write Request Server

access = R;

add requester to copyset;

send page and ckp_interval to requester;

access = I;

send page, copyset, ownership timestamp

and ckp_interval to requesting node;

Manager Checkpoint

if (owner == unknown)

request ownership timestamps from

all nodes;

owner = node with largest timestamp;

endif

forward request to owner;

if (request == write) owner = requester;

if (in_interaction)

wait for completion;

endif

save dependency table;

save ownership timestamps;

save user state;

increment ckp_interval;

Rollback Initiation Rollback Server

request dependency info from other nodes;

determine recovery line;

send rollback request to other nodes;

if (waiting)

set timeout timer;

if (timer expires) must_rb = I;

endif

send dependency table to initiator;

receive rollback request;

if (rb_interval != current)

restore user state for rb_interval;

reset pagetable;

restore ownership timestamps;

endif

FIG. 1. Pseudo-code for independent checkpointing algorithm.

R(x)

Node A _ \- - waiting

NodeM _ _ askread

forward read _

NodeB _ /

FIG. 2. Situation resulting from an incomplete interaction.

ownership timestamps received. Due to rolibacks on other
nodes, it is possible that the manager has incorrect owner-
ship information. Therefore every node keeps track of the
pages it owns. If a node receives a request to a page it
does not own, it rejects the request, and ownership time-
stamps are used to find the correct owner.

2.3. Performance Impact

Our DSM recovery scheme reduces the two main draw-
backs of independent checkpointing techniques: the high
error-free overhead of message logging and dependency
tracking, and the potentially high overhead of recovery
due to rollback propagation. Dependencies between

214 JANSSENS AND FUCHS

TABLE I
Address Trace Characteristics

Total number of

Program Description references

Data reads Data writes

Total Shared Total Shared

gravsim N-body simulator 92,178,814
fsim Fault simulator 149,918,375

tge n Test generator I 01,264.382

pace Circuit extractor 87,861,165

phigure Global router 132,998,231

33,266,880 12.484,455 6,392,078 251,694

50,950.933 39.326,911 3,958,919 999,127

32,613.809 16.550,450 4,461,889 642.796

23,266.576 1.286,787 7,842.338 348,524

38,244.233 4.281,207 11,530,981 1.876,400

checkpoint intervals can cause a domino effect, where cas-

cading rollbacks force reexecution of a large part of the

program. To determine the reduction in dependencies
caused by using our scheme we performed trace-driven

measurements with multiprocessor address traces from five

parallel scientific programs running on an Encore

Multimax. The traces were generated by the TRAPEDS
address tracer from execution on seven processors. Each

trace contains at least 10 million memory references per

processor [21]. Table I describes the characteristics of the
traces used.

Figure 3 presents simulation results for the frequency

of messages in the DSM applications. There are about
10,000 messages per million memory references, all of

which cause dependencies in a traditional message-passing

approach to independent checkpointing. The frequency of

dependency-carrying messages is decreased by a factor of

about 3.5. This means the overhead of dependency tracking

is decreased. More importantly, the potential for rollback

propagation and the domino effect is reduced. Since our

scheme uses periodic checkpointing, with approximately

the same period on each node, only a small percentage of

dependencies occur between different checkpoint intervals

and cause rollback propagation. The lower the frequency

of dependency-carrying messages, the higher the probabil-

ity that the latest set of checkpoints represents a consistent

global state and can be used for recovery. In traditional

message-passing independent checkpointing schemes, run-

time analysis can be used to avoid logging all but 1% of
these messages [23]. Our scheme does not need to perform

1500C

1ooo
oo

®.o
_ 5000

' 2000

o

H recoverable DSM

o--o all messages
4EY

.9

I I] I

4 16 64 256 1k 4k

page size (bytes)

FIG. 3. Frequency of dependency comparison.

the runtime analysis, nor does it need to incur logging

overhead for any messages.

3. MODELING DSM DEPENDENCIES

In order to reason about the correctness of the DSM

recovery scheme, it is necessary to extend the traditional

message-passing model of execution. We describe our pas-
sive server model for DSM execution with rollbacks, and

then analyze our recovery algorithm for DSM to show that

only page-transfer dependencies remain.

3.1. The Passive Server Model

Program execution in a message-passing distributed sys-

tem is modeled as a set of processes and a set of reliable

channels. Program execution is represented by a pair,
D

P = (E, -----Q, where E is a set of events and _ is the

dependence relation defined over E. Events within a pro-

cess are ordered by the _ (execution order) relation.
Events on different processes are ordered by the _ (mes-

sage) relation where a _ b means event a sent a message
and event b received it. The _ relation is the union of

the other two: _ xo= -----* tj -----,. Every event represents

an atomic action which may change the state in one of

the processes. A special checkpoint event can be inserted
between two events to record the current state of the

process.
When a process needs to roll back, it communicates

with all other processes to determine a consistent set of

checkpoints. Upon receiving notification of a rollback, a

process may either need to roll back to a checkpoint, or

it may continue operation. If it continues, we can treat the
current volatile state as a virtual checkpoint [23]. A global

checkpoint is a set of real and virtual checkpoints, one per

process. Consider two events a and b, where b occurs in
the execution order before the global checkpoint and a

occurs in the execution order after the global checkpoint.

A global checkpoint is consistent if there are no two such
events such that a _ b or b _ a. A global checkpoint

is also consistent if lost messages can be retrieved during
reexecution and there are no two events such that
a u-E-, b.

To simplify reasoning about consistency of global check-
points it is useful to treat the _ relation as bidirectional.

ROLLBACK RECOVERY IN DISTRIBUTED SHARED MEMORY 215

M
To do this we replace every dependency a _ b, by a

c
causal dependency a ----+ b, and a backward dependency
b B a. Consider again two events a and b, where b occurs

in the execution order before a global checkpoint and a

occurs in the execution order after a global checkpoint.

The requirements for consistency are now that there are
c

no two such events such that a ----, b and there are no
B

two such events such that b _ a and the message between

a and b is unlogged.

Our passive server model for DSM systems is derived

from the message-passing model. We model program exe-

cution in DSM systems as a set of client processes which

run the application program and a set of passive server

processes which provide a shared-memory image to the

clients. Events in the servers are always triggered by the

receipt of a request message, either from a client, or an-

other server. A write or read event in a client, together
with the events it causes in the servers may be collectively

called an interaction. The passive server model differs from

the message-passing model in that it collects all the events

in a process during an interaction into one single event.

Figure 4 illustrates the interactions in the FDM algorithm
in terms of the passive server model. For every causal

dependency between processes, there is a backward depen-

dency which is not shown.

3.2. Eliminating Dependencies

We now analyze the FDM recovery algorithm to verify

that all but causal page transfer dependencies can be ig-
nored. Consider the role of the manager in an interaction.

On a read interaction, the state on the manager's node

(node M) is the same before the interaction as afterwards.
If node M rolls back, the ownership information it main-

tains is lost, but it can be recovered by using ownership

timestamps. So all dependencies involving node M in a
read interaction can be eliminated. In a write interaction,

node M changes state; it records the new owner of the

page. If the new owner rolls back, node M may contain

erroneous ownership information. Any request that is

routed to the wrong owner by M will be rejected however,

and the timestamps will be used to find the correct owner.

So again we can ignore all dependencies with node M.

Therefore, by using ownership timestamps, the function

of the manager has been made redundant and does not
have to be considered for rollback to a consistent state.

Having eliminated the dependencies with the node that

contains a page's manager, we can now analyze interactions

solely in terms of the dependence between the local (L)

and remote (R) nodes. In a read interaction to a clean

page (Fig. 4a, when node L rolls back, the state of the

recovery line is the same as if node R also rolled back,

except for the extra member of the copyset. Since the

copyset is allowed to be a superset of all the nodes that

have readable copies, the recovery line is consistent. So
the backward dependency L _ R can be eliminated.

When the read interaction involves a dirty page (Fig. 4b),
a rollback of node L will cause a situation where node R

has lost write permission without guaranteeing that a copy

of the dirty page has been saved on another node. How-
ever, node R is still the owner, so any further requests will

be supplied from its copy of the page. Therefore the
dependency L _ R can again be eliminated. So, in a

read interaction, there remains only the causal depen-

dency, R _5_ L, from the remote node to the local node.

Next, we consider a remote write access (Figs. 4c and

4d). Ignoring invalidations, the interactions for a clean and

dirty write are identical, with the access permission of the

page on the remote node changing from W to I. If node

L rolls back and reexecutes the write access, the request

is directed by the manager to node R. Node R rejects the

request because it has given up ownership. This rejection

will cause the ownership timestamps to be used to find

the correct copy of the page. Therefore, the dependency
(,

L _ R is eliminated. The causal dependency R _ L

remains since it transmits a block of data.

If the block is readable by more than one remote node
when the local node asks for write access, all the copies
in the remote nodes will be invalidated. A node L can

safely roll back past an interaction in which it invalidated

node R'. In the global state after rollback, it will appear

as if node R' has been invalidated spontaneously and at

local

node L

manager
node M

remote

node R

clean dirty
read read

. rec>v(page) _ recv(page)

._page ,_ page

;cs++ L) R
a b

clean
write

cs=O

recv(page)

,__or R -> W

W__> page

C

dirty
write

cs=O

recv(pagR!> W

age

d

FIG. 4. FDM algorithm interactions in terms of the passive server model.

216 JANSSENS AND FUCHS

the next access node R' can ask the owner for a new copy

of the block. Therefore there is no dependency L ---> R'.

If node R' rolls back past the interaction, the access rights

of all its blocks are set to unknown. Therefore any access

to a block that was invalidated before rollback will ask

the owner for a new copy, just as if the block had been

invalidated. So the remaining R' ---> L dependency is elimi-

nated, resulting in a dependency-free invalidation inter-
action.

4. RECOVERABLE DSM WITH LAZY RELEASE

CONSISTENCY

In software DSM systems, false sharing due to large page

sizes, and high per-message overhead can make generating

speedup with traditional protocols difficult. Lazy release

consistency (LRC) successfully overcomes these draw-

backs, approaching the performance of a bus-based multi-

processor on a high-speed workstation network [7, 15]. We

Write Fault Handler

create twin of page;

access = W;

Acquire

send acquire request, vt, and ckp_interval

to lock manager;

receive node id and last_acq timestamp

from lock holder;

increment and save last_acq timestamp;

receive vt, write notices, all dills,

and ckp_interval from last acquirer;

update dependency table;

apply diffs;

Lock Manager

if (last_acq =ffi unknown)

request last_acq timestamp

from all nodes;

last_acq = node with largest timestamp;

endif

forward request to last acquirer;

set last_acq to requester;

Rollback Initiation

request dependency info from other nodes;

determine recovery line;

send rollback request to other nodes;

Interval Creation

create write notices for every

twinned page;

Acquire Server

send node id and last_acq timestamp to

requester;

wait until lock is released;

update dependency table;

send vt, write notices, all dills,

and ckp_interval to requester;

Checkpoint

if (in_interaction)

wait for completion;

endif

save dependency table;

save node state;

Rollback Server

if (waiting)

if (lock holder == unknown)

set timeout timer;

if timer expires must_rb = I;

else if (lock holder == requester)

must_rb = 1;

endif

endif

send dependency table to initiator;

receive rollback request;

if (rb_interval != current)

restore user state;

set last_acq records to unknown;

endif

FIG. 5. Pseudo-code for recoverable LRC algorithm.

ROLLBACK RECOVERY IN DISTRIBUTED SHARED MEMORY 217

acquire acquire

nodeLlocal ._._ ..,i_waiting_ ?i ilcilX°iiiil) ,')_ __

vt vt _ \ last req. timestamp ',
manager (") last req = L write notices
node M diffs

vt

remote __ _> ___>0'
node R waiter = L

release release
a b

FIG. 6. (a) Acquire interaction in LRC algorithm. (b) Extra message to support rollback recovery.

use the low number of messages transmitted in a DSM

with lazy release consistency to develop a recovery algo-
rithm that further reduces the number of dependencies
that need to be considered.

Our algorithm uses a modified version of the lazy update

version of LRC [7}. Instead of using the traditional sequen-

tial consistency ordering of shared memory accesses [16],

LRC only enforces ordering between intervals in the com-

putation delineated by acquire and release synchronization

accesses. As long as the programmer introduces enough

synchronization in the program to avoid data races, the

system is indistinguishable from a sequentially consistent

system [1].

Pseudo-code for our recoverable LRC algorithm is given

in Fig. 5. A multiple writer protocol is used, where a twin

of a page is created locally on a write fault and updates

are propagated to other nodes by comparing a page and

its twin and encoding the result in a diff. Ordering is guar-

anteed by using vector timestamps (vt) [15]. Execution

on processors is divided into intervals by synchronization

accesses. Every processor keeps track of which intervals

it is aware by updating its vector timestamp on any interac-
tion. On an acquire, the vector timestamps are used to

propagate write notices of all modifications to memory

locations that occurred before the acquire. To limit the

dependencies to acquire interactions, unlike the original

LRC algorithm [7], our algorithm also sends all dills to-

gether with the write notices. Periodic garbage collection

deletes write notices have been propagated to all nodes.

There is no concept of ownership of memory blocks; all
the information on the contents of pages is transferred

directly from the releaser to the acquirer of a lock. Locks

are implemented separately from data pages. Every lock

has a manager which keeps a record of its last acquirer in
the last_acq variable.

During checkpointing, all state of the nodes is saved.

However, at recovery, the last_req records in the lock

managers, and any record of a waiter at a lock in a node
are set to unknown. A last_req timestamp, analogous

to the ownership timestamp used for pages in the previous

algorithm, is used to recover unknown lazt_req records.

The only interaction in our algorithm occurs during an

acquire, as illustrated in Fig. 6. To make the interaction
atomic, the node holding the lock replies with its id and

laat_acq timestamp when it first receives the acquire

request (see Fig. 6b). When a rollback request is received,

any node waiting for a lock compares the id of the rollback
initiator with the id of the node holding its lock. If they

are equal, it sets must_rb, guaranteeing that it will roll
back out of the partially completed interaction.

The last req timestamp scheme ensures that all de-

pendencies with the lock manager can be ignored. The

only dependency occurs when a node succeeds in acquiring

a lock. However, since our LRC algorithm does not have

an independent mechanism to recover all coherence infor-

mation, the backward dependency cannot be eliminated.

Rather than logging messages, our algorithm records a

bidirectional dependency on an acquire. Figure 7 shows

the results of simulations with the shared-memory address
traces for our sequential consistency and LRC algorithms.

The LRC algorithm reduces the dependency frequency by
about a factor of 3.

5. CONCLUSIONS

Checkpointing and rollback recovery algorithms for

message-passing systems are grounded in well-established

theory. Research on recoverable shared memory has gen-

erally assumed a looser dependency relation for data trans-

fers only. By using a passive server model, our work shows

that this dependency pattern for shared memory can be

derived from the dependency pattern for message passing,
and therefore can be used in architectures where a shared-

8 3000
.,

"_ _ 2000
c

'o o
_,== 1000
RE

,', 0

_ sequential consistency j.-"
-- lazy release consistency .-_

I] t I i I

4 16 64 256 1k 4k

page size (bytes)

FIG. 7. Dependency frequencies with different memory consis-
tency models.

218 JANSSENS

memory image is provided via physically distributed mem-

ory. The model allows the implementation of efficient re-

coverable DSM algorithms. Since the need for logging is

eliminated, and the potential for rollback propagation

across a set of checkpoints is decreased, our method is

especially applicable to periodic independent check-

pointing. We applied our technique in the design of peri-

odic checkpointing algorithms for both sequential consis-

tency and lazy relaxed consistency memory models.

ACKNOWLEDGMENTS

Our work benefited from discussions with Alain Gefflaut at IRISA

and Gaurav Suri, Yi-Min Wang, Nuno Neves, and Sujoy Basu at Illinois.

REFERENCES

1. Adve, S. V., and Hill, M. D. A unified formalization of four shared-

memory models. IEEE Trans. Parallel Distrib. Systems 4, 6 (June

1993), 613-624.

2. Ahmed, R. E., Frazier, R. C., and Marinos, P. M. Cache-aided rollback

error recovery (CARER) algorithms for shared-memory multiproces-

sor systems. Proc. 20th Int. Syrup. Fault-Tolerant Comput., 1990.

pp. 82-88.

3. Ban_tre, M., et al. An architecture for tolerating processor failures

in shared-memory multiprocessors. Tech. Rep. 707, IRISA, Rennes,

France, Mar. 1993.

4. Barghava, B., and Lian, S.-R. Independent checkpointing and concur-

rent rollback for recovery in distributed systems--an optimistic ap-

proach. Proc. 7th Syrup. Reliable Distributed Syst., 1988, pp. 3-12.

5. Bernstein, P. A. Sequoia: A fault-tolerant tightly coupled multiproces-

sor for transaction processing. Computer 21, 2 (Feb. 1988), 37-45.

6. Chandy, K. M., and Lamport. L. Distributed snapshots: determining

global states of distributed systems. ACM Trans. Comput. Systems

3, 1 (Feb. 1985), 63-75.

7. Dwarkadas, S., et al. Evaluation of release consistent software distrib-

uted shared memory on emerging network technology. Proc. 20th

Int. Syrup. Comp. Arch., May 1993, pp. 144-155.

8. Elnozahy, E. N., Johnson, D. B., and Zwaenepoel, W. The perfor-

mance of consistent checkpointing. Proc. 1 l th Syrup. Reliable Distrib-

uted Syst., 1992, pp. 39-47.

9. Elnozahy, E. N., and Zwaenepoel, W. On the use and implementation

of message logging. Proe. 24th Int. Symp. Fault-Tolerant Comput.,

June 1994, pp. 298-307.

10. Gefflaut, A., Morin, C., and Ban_tre, M. Tolerating node failures in

cache only memory architectures. Proc. Supercomputing '94., Nov.
1994.

I 1. Janakiraman, G., and Tamir, Y. Coordinated checkpointing-rollback

error recovery for distributed shared memory multicomputers. Proc.

13th Symp. Reliable Distributed Syst., Oct. 1994, pp. 42-51.

12. Janssens, B. and Fuchs, W. K. Relaxing consistency in recoverable

distributed shared memory. Proc. 23rd Int. Syrup. Fault-Toerant Corn-

put., Jun. 1993, pp. 155-163.

Received November 1, 1994: revised April 27, 1995; accepted May 8, 1995

AND

13.

FUCHS

Janssens, B., and Fuchs, W. K. Reducing interprocessor dependence

in recoverable distributed shared memory. Proc. 13th Syrup. Reliable

Distributed Syst., Oct. 1994, pp. 34-41.

14. Janssens, B., and Fuchs, W. K. Recoverable distributed shared mem-

ory under sequential and relaxed consistency. Tech. Rep. CRHC-95-

10, Center for Reliable and High-Performance Computing, Univ. of

Illinois, Urbana, IL, May 1995.

15. Keleher, P., et al. Distributed shared memory on standard worksta-

tions and operating systems. Proc. Winter Usenix Conf., Jan. 1994,

pp. 115-131.

16. Lamporl, L. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Trans. Comput. C-28, 9 (Sep.

1979), 690-691.

17. Li, K., and Hudak, P. Memory coherence in shared virtual memory

systems. ACM Trans. Comput. Systems 7, 4 (Nov. 1989), 321-359.

18. Litzkow. M.. and Solomon, M. Supporting checkpointing and process

migration outside the UNIX kernel. Proc. Usenix Winter Conf., 1992.

19. Neves, N., Castro, M., and Guedes, P. A checkpoint protocol for

an entry consistent shared memory system, Proc. 13th ACM Symp.

Principles Distributed Comput., Aug. 1994.

20. Richard, G. G., Ill, and Singhal, M. Using logging and asynchronous

checkpointing to implement recoverable distributed shared memory.

Proc. 12th Syrup. Reliable Distributed Syst., 1993, pp. 58-67.

21. Stunkel, C. B., Janssens, B., and Fuchs, W. K. Address tracking of

parallel systems via TRAPEDS. Microprocessors Microsystems 16, 5

(1992), 249-261.

22. Suri, G., Janssens, B., and Fuchs, W. K. Reduced overhead logging

for rollback recovery in distributed shared memory. Proc. 25th Int.

Symp. Fault-Tolerant Comput., June 1995.

23. Wang, Y.-M., and Fuchs, W. K. Optimistic message logging for inde-

pendent checkpointing in message-passing systems. Proc. llth Symp.

Reliable Distributed Syst., 1992, pp. 147-t54.

24. Wu, K.-L., and Fuchs, W. K. Recoverable distributed shared virtual

memory. IEEE Trans. Comput. 39, 4 (Apr. 1990), 460-469.

BOB JANSSENS is a Ph.D. degree candidate in electrical and com-

puter engineering at the University of Illinois at Urbana-Champaign.

He is a research assistant in the Coordinated Science Laboratory, focusing

on recoverable distributed shared-memory systems. His research interests

and experience include computer architecture, operating systems, parallel

and distributed computing, and fault-tolerant computing. He received

B.S. and M.S. degrees in 1987 and 1991, respectively, from the Department

of Electrical and Computer Engineering at the University of Illinois. He

has held a summer research position at IBM T. J. Watson Research

Center in Yorktown Heights, New York, and a guest scientist position

at Siemens Research in Munich, Germany.

W. KENT FUCHS received the B.S.E. degree from Duke University

in 1977. In 1984 he received the M. Div. degree from Trinity Evangelical

Divinity School in Deerfield, Illinois, and in 1985 he received the Ph.D.

degree from the University of Illinois. He is currently a professor in the

Department of Electrical and Computer Engineering and the coordinated

Science Laboratory at the University of Illinois. He has received several

awards for his research in dependable computing. He has edited special

issues of Computer and IEEE Transactions on Computers. He is currently

a member of the editorial board for IEEE Transactions on Computers

and IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems. He is a fellow of the IEEE.

