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Redundant arrays of distributed disks (RADD) can be used
in a distributed computing system or database system to provide
recovery in the presence of disk crashes and temporary and
permanent failures of single sites. In this paper, we look at the
problem of partitioning the sites of a distributed storage system
into redundant arrays in such a way that the communication
costs for maintaining the parity information are minimized.
We show that the partitioning problem is NP-hard. We then

propose and evaluate several heuristic algorithms for finding
approximate solutions. Simulation results show that significant
reduction in remote parity update costs can be achieved by

optimizing the site partitioning scheme. _ 1996AcademicPress,Inc.

1. INTRODUCTION

Redundant disk arrays are used for the purpose of pro-

viding reliable storage while increasing the I/0 bandwidth

in high performance systems [1,2]. Redundant disk arrays

can also be used in a distributed setting to increase avail-

ability in the presence of temporary site failures, disk fail-

ures, or major disasters. Stonebraker and Schloss have

proposed the redundant arrays of distributed disks
(RADD) scheme [3] as an alternative to multicopy
schemes, which are much more costly in terms of storage

requirements. Cabrera and Long [4] have proposed the
use of redundant distributed disk striping in a high speed

local area network to support such //O-intensive applica-

tions as scientific visualization, image processing, and re-

cording and playback of color video. The RADD concept
can also be used in multicomputer I/0 subsystems such as

the one proposed by Reddy and Banerjee [5] for hyper-
cubes.

The IDA approach proposed by Rabin [6] provides an-

other way to tolerate failures in distributed storage systems

with limited extra storage cost. However, in that approach,

updates are more costly since all the fragments of the

dispersed data are needed to recompute the encoding
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which involves multiple remote accesses. In the case of

RADD, a local update will generate a single remote access

for updating the parity.
When RADDs are used, sites are grouped together to

form a redundant array containing data and parity and

capable of recovering from a single site failure. The size

of each array is fixed and is determined by the tradeoff

between the availability requirements of the system and

the cost of the storage overhead. Hence, a large distributed

data storage system may have to be divided into several

arrays of fixed size. In this paper we look at the problem

of partitioning the distributed storage system into fixed-

size arrays in such a way as to minimize the cost of remote

accesses that have to be performed to update the parity

information. This problem is somewhat related to the prob-
lem of file allocation and replica placement in a distributed

system, which has been studied extensively in the literature

[7, 8]. However, the two problems are different in nature
because, in the RADD case, there is one redundant item

for N data items while in the file allocation problem each

file is replicated several times. More importantly, in the

replica placement problem there is no stringent constraint
on the number of sites "sharing" a replica because. When

the replica becomes unavailable, those sites can access the

second nearest replica while in the RADD case there is a
hard constraint on the number of sites in an array. Note

that the assignment of sites to redundant arrays (parity

groups) can occur after all decisions on placing the data

have been made. Data placement decisions are governed

by a different set of criteria and are more influenced by

the read access patterns since reads are usually more fre-

quent than updates. Decisions on site assignment to redun-
dant arrays are based on the update rate at each site and
the cost of communication between sites and are indepen-

dent of the read access rate. Changing the assignment of

sites to redundant arrays does not change the placement

of the data. The purpose of site assignment is to reduce

the cost of the parity traffic and does not directly affect
the data traffic.

In the following section, we describe the RADD organi-

zation. In Section 3, we present the model used to formu-

late the problem mathematically and we prove that the

problem is NP-hard. In Section 4, heuristic algorithms for

solving the problem are described and results from an
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FIG.

(U = 6).

block Siteo Sitel Site2 Site3 Site4 Site5

0 Po $1 D2o D3o D4o Dso

1 Doo PI S2 O31 D41 O51

2 Dol Dlo P2 $3 D42 D52

3 Do2 Dn D21 P3 $4 D53

4 Do3 DI2 D22 D32 P,* $5

5 So DI3 D23 D33 D43 P5

1. Organization of a distributed redundant disk array

experimental evaluation are presented. In Section 5 we

develop heuristics with guaranteed bounds on the devia-

tion from the optimal cost. In Section 6 we address the

issue of hot spots and non-uniform site capacity and discuss

the use of RADD for disaster recovery in OLTP systems
as well as the issue of when and how often site reassignment
should be initiated.

2. DISTRIBUTED REDUNDANT DISK ARRAY
ORGANIZATION

The RADD organization is shown in Fig. 1. The data
at each site are partitioned into blocks. Data blocks from

different sites are grouped into a block parity group. The

bitwise parity of the data blocks in each parity group is

computed and written at a different site. In Fig. 1, Dij
denotes a data block, Pi denotes a parity block, and Si

denotes a spare block, all at site i. The number under block

in the first column of the figure denotes the physical block

number on disk. Each row in the figure represents a parity

group. The position of the parity block is rotated among

the sites in order to avoid creating a bottleneck at the site

where parity is stored. For every update to one of the data

blocks in the parity group, the parity block needs to be

updated using the following formula:

P._w = (Dold O DnCw) O Pold.

Spare blocks are provided to make it possible to recon-
struct data blocks that become inaccessible due to site

failure. The failed data block is reconstructed by XORing

all other data blocks and the parity block in its parity

group. If K denotes the number of data blocks per parity

group then N -- K + 2 denotes the number of sites in a

distributed disk array. The storage overhead for the parity
and spare blocks required by RADDs is (200/K)% com-

pared to a 100% overhead for the case of two copy schemes.

In terms of performance, both approaches require one

remote access per update, while the RADD scheme may

require two additional local accesses per update to read

the old data and old parity in order to compute the new
parity. Under failure, RADD will perform much worse

than the two-copy scheme because it requires K remote

accesses for reconstructing a data block from a failed site.

However, if failures are expected to be rare, the perfor-

mance degradation associated with RADD may be justifi-

able in light of its significant savings in terms of storage
costs in comparison with the two-copy scheme.

3. THE MODEL

We model the distributed computing system as an undi-

rected connected graph G = (V, E), where V is the set

of sites and each edge e E E represents a bidirectional

communication link between two sites. For each e E E,
we denotes the cost of communication over link e. We

assume that if n is the number of sites in V then n = mN

for some integer m. We assume that the site capacity is
uniform. In Section 6.2 we show how to deal with nonuni-

form site capacity. In the pattern shown in Fig. 1, the parity
blocks of the N - 2 data blocks from site i reside on sites

(i + 1) mod N through (i + N - 2) mod N. If the same

pattern is repeated throughout the range of blocks then

there will be no parity update traffic from site i to site

(i - 1) mod N. In order to make the problem symmetrical
and thus easier to tackle, we assume that for the next set

of N blocks the pattern shown in Fig. 2 is used. In all, there

are N - 1 such patterns obtained by changing the distance

between the parity block and the spare block on a given

row. These N - 1 patterns should alternate throughout
the range of blocks so that update traffic from a given site

is distributed over the remaining N - 1 sites. This will also

provide more load balancing for the parity update traffic
in the array.

Let /zv designate the rate of update accesses to data

blocks at site v. Each update will cause communication

between the site where the update took place and the site

holding the parity for the given data block. At each site

the set of data blocks that have their corresponding parity

blocks on the same remote site is called a data group. To

simplify the model, we assume that the N - 1 data groups
share equally the update rate. This implies that the rate

at which site v sends parity update information to each

other site in its redundant array is Ao = tzv/(N - 1). This

assumption is supported by the fact that consecutive data

blocks have their parity blocks on different sites, which

implies that accesses to a heavily used file that is stored

on consecutive disk blocks will be spread over different

data groups. In Section 6, the above assumption will be re-
moved.

The problem of partitioning the sites into arrays of size
N in such a way that parity update costs are minimized

can be mathematically formulated as follows:

FIG. 2.

block Siteo Sitel Site2 Site3 Site4 Site5

6 Po DI, $2 D34 D44 Ds4

7 Do4 Pl I)24 $3 D4s D55

8 Dos DIS P2 D35 $4 D_

9 Do6 DI6 025 P3 D_ Ss

10 So DI7 D_s D_s P4 D57

11 Do7 S I D27 D37 D47 Ps

Alternative placement pattern for parity and spare blocks.
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Problem 1 (SP). Find a partition of V into m disjoint
subsets V_, V2 ..... Vm of size N such that if d(u, v) denotes

the length of the shortest path between u and v then

Z,'l Z,,cv h,, Z, cv, t,,I d(u, v) is minimum.

THEOREM 1. Problem SP is NP-hard for an), fixed

N>_3.

Proof. We prove that problem SP is NP-hard by show-

ing that there is a polynomial time transformation from

the problem of partitioning a graph into cliques of size N

to problem SP. The partition into cliques of size N (PC)

problem can be stated as follows:

Instance. A graph G = (V, E), with IVI = Nm for some

positive integer m.

Problem. Is there a partition of V into m disjoint sub-
sets Vl, Vz ..... Vm such that the subgraph of G induced by

Vi is a clique of size N (complete graph with N nodes)?

PC is NP-complete for any fixed N - 3 (see partition

into isomorphic subgraphs [9]). To transform an instance
of PC into an instance of SP, it is sufficient to set A_, = 1

for all v E V, and w,, = 1 for all e _ E. Then graph G can

be partitioned into cliques of size N if and only if the cost

of the optimal solution to the above instance of problem

SP is n(N - 1). •

The cost function _" i:1 Z,,cv, A,, ZL,_v I,,I d(u, v) can

be rewritten as ET'lE,,.,_v, ..... (a,, + av)d(u, v) =

Y,i"'l Y_,,,ev, ,,_,, D(u, v), where D(u, v) is defined as D(u,
v) = (A,, + A_,)d(u, v). In this form the general problem is
reduced to a uniform load problem with the pseudo-dis-

tance D replacing d. However, D is not a true distance since

it does not necessarily satisfy the triangular inequality.

4. APPROXIMATION ALGORITHMS

4.1. Description of the Heuristics

The first heuristic is based on a greedy strategy that

consists of satisfying first the sites with the largest update

rate. Let A be the list of update rates for all sites. When

sites are grouped into clusters (redundant arrays) their

update rates are removed from A and replaced by a single

update rate for the cluster. The cluster update rate is the

average update rate of the sites in the cluster.

Algorithm 1

Step 1. Select the largest value in A and let a be the

corresponding site (or cluster). Find the site (or cluster) b

such that merging a and b results in the smallest increase
in the cost function. Merge the two sites (or clusters) if

the resulting cluster has less than N sites and the total
number of clusters does not exceed m. If the clusters cannot

be merged, find the next best choice for b and repeat.

Remove the update rates of the merged sites (or clusters)

from A and replace them with the cluster update rate.

Step 2. Repeat Step 1 until m clusters having N sites
each have been formed.

The computational cost of Algorithm 1 is O(Nn2). But

it requires that the all-pair shortest path algorithm be per-
formed first, which requires O(n 3) operations.

The second approach consists of two stages: in the first

stage m sites are identified to be used as cluster seeds and

in the second stage the rem'aining sites are allocated to the
clusters to form m subsets of N sites each.

Algorithm 2

Step 1. Select the two sites with the largest distance
between them and include them in the set S of cluster seeds.

Step 2. Select the site v with the largest average dis-

tance to the sites already in S and add it to S.

Step 3. Repeat Step 2 above until IS] = m. Each cluster

initially contains one of the m seeds in S.

Step 4. For each of the m clusters, compute the average

update rate of the sites in the cluster. In decreasing order

of their average update rate, allocate to each cluster the
site that is closest to it in terms of the pseudo-distance D.

Step 5. Repeat Step 4 above until all sites have been
allocated to the m clusters.

We use the pseudo-distance metric D in Step 4 because

it provides the actual increase in the cost function of a
cluster when a node is added to it. The computational cost

of the Algorithm 2 is O(Nn2). It also requires that the all-

pair shortest path algorithm be performed first.

The third approach is based on the hierarchical cluster-

ing technique [10]. We use the distance matrix whose en-

tries are d(u, v) for all u, v E V. Clusters are formed by

merging together sites or smaller clusters that are close
to each other. When two sites (or clusters) are grouped

together, the distance matrix is modified by eliminating

the columns and rows corresponding to the merged sites

(or clusters) and replacing them with a single column and

a single row reflecting the average distance between the

merged sites and other sites (or clusters). The procedure
is as follows:

Algorithm 3

Step 1. Find the smallest entry in the distance matrix

and merge the two sites (or clusters) together if the re-

sulting cluster has N sites or less and if the total number
of clusters does not exceed m. If any of the latter conditions

is not satisfied, select the next smallest entry and repeat.

Once two sites (or clusters) have been merged, update the

distance matrix and the number of clusters accordingly.

Step 2. Repeat Step 1 above until m clusters having N
sites each have been formed.

The complexity of Algorithm 3 is O(n3).

After an initial partition has been found, the following

procedure may be used to improve it.
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TABLEI
ComparisonbetweenApproximateSolutionsandtheOptimalSolution

K.,, KA Random Algorithm 1 Algorithm 2 Algorithm 3 Exhaustive

1000, 10 69967 (1157) 53853 (972) 54428 (975) 53732 (963) 48678 (870)
100, 100 67477 (1126) 51606 (950) 52623 (941) 52064 (940) 46761 (848)
10, 1000 98427 (1247) 77964 (1061) 78284 (1046) 77949 (1045) 70741 (931)

Procedure Improve

Step 1. Select the site u with the highest update rate.

For each site v outside site u's partition, compute the

change in cost AC(u, v) if u and v were swapped. Let v*

be the site corresponding to the minimum change in cost:

AC(u, v*) = minv_v,, AC(u, v), where Vu denotes u's parti-
tion. If AC(u, v*) < 0 then swap u and v*.

Step 2. Repeat Step 1 above for all sites in V in decreas-

ing order of their update rate.

The complexity of the above procedure is O(n3). The

procedure may be repeated several times to improve the

total cost. The procedure could be repeated until a local

minimum of the cost function was reached. However, it is

not guaranteed that such a local minimum will be reached

in finite time. The procedure can also be employed as the

basic move in metaheuristics, such as simulated annealing

[11] or tabu search [12], that avoid getting trapped in a
local minimum.

4.2. Experimental Evaluation

We have conducted experiments to evaluate the approx-

imate solutions obtained using the heuristics and to com-

pare the three proposed approaches for site assignment.

In the experiments, we used randomly generated graphs.
The distance on each edge in the graph was drawn from

a uniform distribution over the interval [1, Kw]. The update
rates at each site were drawn from a uniform distribution

over the interval [1, Ka].

In our experiments we found out that Algorithm 2 per-

forms better when the pseudo-distance D is also used in

the first stage of the algorithm. This can be explained by

the fact that using D in the generation of the cluster seeds

ensures that edges with large D(u, v) will not be used

within a cluster, i.e., sites that have large loads and that
are far apart are not placed in the same cluster. The results

shown here for Algorithm 2 were obtained using D instead
of d.

In the first experiment, we compare the approximate

solution provided by the heuristics to the optimal solution.

The optimal solution was obtained using exhaustive search.
N was taken to be equal to 5 and n equal to 15. Table I

shows the results for three situations: one where the edge
weights vary more widely than the site loads, one where

both are picked from the same interval, and one where

the site loads vary more widely than the edge weights.

Each entry represents the average over 1000 randomly

generated graphs. The costs of the approximate solutions

are within 10% of the cost of the optimal solution. In the
first column of the table, we have listed the cost of a random
solution. For each number the half-width of the corre-

sponding 95% confidence interval is shown between paren-
thesis.

Since, in the first experiment, an exhaustive search was

used to find the optimal solution, the number of nodes n

could not be very large. In a second experiment, we com-

pared the performance of the three heuristics for larger
values of n. Figure 3 shows the results for the second

experiment. For clarity of the figure, we plotted the cost

of the approximate solution divided by 1000. For each data

point, the 95% confidence interval is shown. In the case

N = 10, Algorithm 3 outperforms Algorithms 1 and 2 for

all values of n except n = 20, in which case Algorithm 2
performs better. For the first and second environments,

Algorithm 1 outperforms Algorithm 2 for large values of

n, but for the last environment Algorithm 2 outperforms

Algorithm 1. For N = 5, Algorithm 2 does not do very

well except in the last environment in which the range of

site loads is much larger than the range of edge weights.
Algorithm 1 performs best in the first two environments.

The main point that can be deduced from this experiment
is that, in spite of the fact that Algorithm 3 does not use

any information about site loads, it outperforms the other

two algorithms when n and N are relatively large and, in

the other cases, its performance is always close to that of

the best algorithm. This means that, in a large system, it

is more important to minimize the sum of the edge weights

within each cluster than to use the greedy approach that

attempts to assign to the sites with large loads their nearest

neighbors. Since site loads vary with time, the solution

found by Algorithm 3 will remain close to optimal as the
site loads change while solutions based on estimates of site

loads will degrade with time as the site loads deviate from

the estimates. This is especially true for large N. A large
value for N means lower storage costs but also lower relia-

bility and worse performance under failure.

5. HEURISTICS WITH PERFORMANCE GUARANTEES

The heuristics described in Section 4 provide a good

approximate solution. However, there is no guarantee that

the approximate solution will not diverge significantly from
the optimal one in certain cases. In this section, we seek
to find a heuristic that has a bound on the error between

the approximate solution and the optimal one. We develop
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such a heuristic first for the case of a system with balanced

load, Av = A, for all v _ V, and uniform edge weights, then

we look at the more general case of a balanced load system

with arbitrary edge weights. Since a problem with arbitrary

site loads can always be transformed into a problem with

uniform site load as shown in Section 3, then the heuristic

for the balanced load case with arbitrary edge weights

will also provide performance guarantees for the arbitrary

load case.

5.1. Balanced Load and Uniform Edge Weights

The heuristic requires the use of a spanning tree with

many leaves. The problem of finding a spanning tree with

a maximum number of leaves is NP-hard [9], however,

there exist polynomial time algorithms for generating span-

ning trees with many leaves. Typically these methods guar-

antee that a certain fraction of the nodes will be leaves.

The fraction of leaves is a function of the minimum degree

k of the graph. Kleitman and West proved the following

result [13]:

THEOREM 2 (Kleitman-West). lf k is sufficiently large,

then there is an algorithm that constructs a spanning tree

with at least (1 - b In k/k)n leaves in any graph with

minimum degree k, where b is any constant exceeding 2.5.

It was also conjectured that a spanning tree can be con-

structed with a larger fraction of leaves. More specifically,

Linial conjectured that the number of leaves could be at
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FIG. 4. Example of a tree partitioned using the procedure

Partition_Tree.

least (k - 2/k + 1)n + ck. This stronger result was proved

for k = 3 with c3 = 2 and for k = 4 with c4 = 8/5 [13].

Algorithm

Step 1. Find a spanning tree with many leaves.

Step 2. Partition the spanning tree into m clusters of

N nodes each using procedure Partition_Tree described
below.

The partition found for the tree will be used as the

approximate solution for the partitioning problem in the

original graph. We first describe a basic version of the

procedure Partition_Tree which insures that every edge
in the tree is used by at most two clusters. Then we describe

an optimization that reduces the cost in the tree of the
solution but that is not needed to establish the bound on

the cost of the heuristic solution. In the description of

the procedure Partition_Tree, we assume that the tree is

levelized starting from the root. Figure 4 shows an example
of a tree partitioned using this procedure.

Procedure Partition_Tree

The procedure partitions the tree from the bottom up
and from left to right. As the clusters are built, whenever

the size of a cluster reaches N nodes, that cluster is removed

from the tree. Starting from the deepest leaf of the leftmost

branch in the tree, the leaf is assigned to the first cluster.

After a node has been assigned to a cluster, its sibling to

the right is considered next. If no siblings are left to right
of the node then the parent is assigned next. If the sibling

to the right is a leaf, it is included in the cluster, otherwise

the leftmost branch of the subtree rooted at that sibling is

followed to its deepest leftmost leaf and that leaf is in-

cluded in the cluster. Then the procedure continues from

that point moving to the right sibling (if any) or to the

parent in the same fashion. When a node is to be assigned,

it is either assigned to the current cluster if that cluster
has not reached N nodes or a new cluster is formed and

the node assigned to it. The tree remains connected as
newly completed clusters are removed.

THEOREM 3. The cost (HEU) of the approximate solu-

tion found using a spanning tree with many leaves and the

cost (OPT) of the optimal solution satisfy the following rela-

tionship:

HEU N 2
OP---T-< 2c_ + (1 - c_) N - 1'

where o_ is the fraction of leaves in the spanning tree.

Proof. We need to establish an upper bound on the

cost of the approximate solution and a lower bound on

that of the optimal one. The cost in the graph of the approx-
imate solution is at most the cost of that solution in the

tree. We evaluate the cost in the tree by adding up the

contributions of each edge in the spanning tree to the

overall cost. If an edge connects a leaf node to the tree it

will be referred to as a leaf edge, otherwise it will be called

an internal edge. A leaf edge will be used in only one
cluster and it will be used only for communication between

the leaf node and the other (N - 1) nodes in the cluster.

Therefore the contribution of a leaf edge to the overall
cost is 2(N - 1). An internal edge will be used in at most

two clusters and in each cluster it will be used by i nodes
to communicate with the other N - i nodes in the cluster.

If a designates the fraction of leaf nodes in the tree, we have

HEU-< c_n × 2(N- 1) + (n - 1 - otn)

x2× max 2i(N-i)
I<_i<_N-I

<--n(U - 1)(2c_ + (1 - e_)N2/(U - 1)).

For the cost of the optimal solution, an obvious lower

bound is the cost in a complete graph, which is n(N - 1).
Hence, HEU/OPT -< 2c_ + (1 - oONZ/(N - 1). •

As stated in Theorem 2, for large k, a converges to 1 and

the upper bound approaches 2. Note that it is reasonable to

assume that the minimum degree will be large in practice

because the underlying network has to have sufficient con-

nectivity to enable communication under node and link

failures, and hence, has to have a reasonably large mini-
mum degree.

The complexity of the algorithms for generating trees

with many leaves [13] is O(IEI). The complexity of the

Partition_Tree procedure is O(n).

There is an optimization to procedure Partition_Tree

that reduces the cost of the solution in the tree (not neces-

sarily the cost in the original graph) by reducing the num-
ber of tree edges that are used by two clusters. It can be
described as follows: Consider the case where one subtree

has been processed and there remains an incomplete clus-

ter (less than N nodes) and assume that there is a subtree

rooted at the sibling to the right. Procedure Partition_Tree

would complete the cluster using the lowest leftmost nodes

of the right subtree. However, if the right subtree is deep,
a number of intermediate edges will contribute to the cost

of communicating (in the tree) between the two compo-
nents of the newly completed cluster. This can be avoided
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by successively removing from the right subtree complete
clusters formed by connected branches of exactly N nodes
whose removal does not disconnect the tree and then com-

pleting the cluster from the left subtree. After those clus-

ters are removed Partition_Tree proceeds as described

above to complete the cluster with what remains of the

right subtree. The requirement that the removed clusters

be connected ensures that edges remaining in the right

subtree are not used by any of the removed clusters. Those

remaining edges may then be used both by the cluster

formed with nodes remaining from the left subtree and by

a cluster formed with the remaining nodes in the right
subtree.

5.2. Balanced Load and Arbitrary Edge Weights

For arbitrary edge weights the problem of finding a heu-

ristic with guaranteed performance bounds is much harder.

In the following we describe a heuristic for which a worst

case performance bound can be established. The bound is

more significant for systems where link communication

costs (edge weights) do not vary widely. The heuristic

consists of finding a minimum spanning tree, partitioning
the tree into clusters using procedure Partition_Tree and

using that partition as an approximate solution. The follow-

ing result will be used to establish a lower bound on the

cost of the optimal solution.

LEMMA 1. In a complete graph, the average weight of

the edges in a minimum spanning tree is at most the average

weight of all edges.

Proof. We use induction on the number of nodes n.

The lemma is obviously true for n = 2 or n = 3. Suppose

it is true for graphs with n - 1 nodes and consider an n-

node graph. Select node v such that the average weight of

edges incident on v is at least the average weight of all
edges in the graph. Remove v from the graph and find a

minimum spanning tree in the remaining (n - 1)-node

graph. Then add to this spanning tree the lightest edge e*

connecting v to the other nodes to form an n-node spanning

tree. Let MST, 1 and MST,, be the total weights of the

(n - 1)-node and the n-node spanning trees, respectively.

Let #(v) be the set of edges incident on v. Using the

induction hypothesis, we have

MSTn-1 _,,eE-,_(v) we

n - 2 (n - 1)(n - 2)/2'

Therefore

MST,, <- MSTn i + we. -<

_eC, _" ,'(u) We

(n - 1)/2

_eEE ,'(v) We _eE,'(o) We

4
(n - 1)/2 n - 1

+--

2<n-

_ecE We

n/2

n-1 n-1

Hence, the average weight of the edges in the minimum

spanning tree is MST,,/(n - 1) <- _t.: w,J(n(n 1)/2). •

To obtain a lower bound on the cost of the optimal

solution, we consider the optimal partition and we build

a spanning tree by first finding a minimum spanning tree

in each cluster and then replacing each cluster by a single

node and connecting each pair of these nodes by the light-

est edge linking the initial clusters. An intercluster mini-

mum spanning tree is then found. The intracluster spanning

trees along with the intercluster spanning tree form a span-

ning tree for the entire graph.

LEMMA 2. The list of edge weights of the intercluster

minimum spanning tree (ICMST) is included in the list of

edge weights of the global minimum spanning tree (GMST).

Proof. Let e be an edge in the ICMST that does not

appear in the GMST. Let u and v be its endpoints in the

original graph and let w be its weight. The path in the

GMST from u to v induces a path in the intercluster graph

from the cluster of tt to that of v. If the path is a single

edge then this edge must have weight w and could replace

the edge e in the ICMST. If the induced path has more

than one edge then, since the ICMST cannot contain a

cycle, some of the edges on the induced path must not

appear in the ICMST. At least one of these induced edges

that do not appear in the ICMST forms a cycle containing
e when added to the ICMST. Let e' be such an edge; e'

must have weight at most w otherwise it could be replaced

in the GMST by (u, v) to obtain a spanning tree with a
smaller cost. In addition e' cannot have weight less than

w because it would then be possible to replace e by e' in

the ICMST and obtain a smaller intercluster spanning tree.

Hence the weight of e' is w and we could remove e and

replace it with e' in the ICMST. This process can be re-

peated until all edges in the ICMST also appear in the
GMST. •

The following theorem establishes a bound on the cost
of the heuristic based on finding a minimum spanning tree

in the graph and then using Partition_Tree to find a parti-

tioning into clusters.

THEOREM 4. The cost (HEU) of the approximate solu-

tion found using a minimum spanning tree and the cost

(OPT) of the optimal solution satisfy the following rela-

tionship:

HEU MST
---<N
OPT MST- (m - 1)_'

where MST is the total weight of the edges in the minimum

spanning tree and -_ is the average weight of the m - 1

heaviest edges in the minimum spanning tree.

Proof. In evaluating an upper bound on the cost of the

approximate solution, we follow the same procedure as in

the proof of Theorem 3 but we will not distinguish between
leaf edges and internal edges. Each edge e in the tree will
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FIG. 5. Evaluation of the heuristics for the refined model.

be used by at most two clusters and the contribution of

e to the overall cost is bounded by 2 × we × maxl_i__x-i

2i(N - i). Hence, we have HEU -< NeMST.

Let MSTi be the weight of the minimum spanning tree

of cluster i for 1 - i <- m and MSTc be the weight of the

intercluster tree. The intracluster minimum spanning trees

and the ICMST form a spanning tree in the original graph.

The total weight of the edges in that spanning tree is at

least MST: _,i='"l MSTi + MSTc >- MST. By Lemma 2, every

edge in the ICMST is also in the GMST. Hence MST<. -<
m

(m - 1)_. This yields Xi=_ MSTi + (m - 1)W - MST.

Let OPTi be the contribution to the optimal cost by clus-

ter i. The average cost of the edges in cluster i is OFT/

(N(N - 1)) and the average cost of the edges in the cor-

responding spanning tree is MST/(N - 1). Applying

Lemma 1, we have OPT/N -> MST_ therefore OPT ->

N(MST- (m - 1)_). •

Let r be the ratio of the largest edge weight to the

smallest edge weight. A looser but simpler bound than the

one established in Theorem 4 can be derived using the

parameter r. To do so, we first rewrite the bound as follows:

MST
HEU/OPT -< N

MST - (m - 1)_

(m - 1)_ ']: N 1 + MS,_-_]-_ 1)_/

= N 1 + (n - m)_/'
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where N is the average weight of the n - m lightest edges
in the GMST. Since _/-_ <- r and n = raN, we have

HEU/OPT<_N(I + m-1 ).... r <N(1 + r/(N- 1)).
n-m

6. GENERALIZATION AND APPLICATION OF

THE MODEL

6.1. Non-Uniform Load within Site

In our model, we assumed that each site sends parity

updates to each other site in its partition at the same rate.

This implies a uniform update rate to each of the N - 1

data groups of a given site that have parity information
on each of the N - 1 other sites. If the update rate informa-

tion for each data group at each site is available then the
model can be refined to account for the difference in the

rate of parity update requests issued by a given site and

destined to the other sites in the array. The refined model

should yield better results in the presence of static hot

spots. The update rate A,, of site u is replaced by N - 1

update rates A,,.1..... A,,.N 1 corresponding to each of its

data groups. In this case, an obvious optimization would

be to have the parity of the ith most frequently accessed

data group of a given site placed on the ith nearest site in

its partition. We call this optimization LocaIOpt. Note that

LocaIOpt can be implemented without having to reshuffle

the data on disk by saving the permutation describing the

remapping of the N - 1 data groups for each site and using

it to route parity update requests to the proper site. Given

the above optimization, the algorithms of Section 4 with
some minor modifications can still be used to partition the

sites. The site update rate used in Algorithm 1 and 2 is set
to the sum of all N - 1 data group update rates at that

site. We have evaluated the three algorithms of Section 4

in the case of the refined model, along with a new greedy

strategy that looks at data groups instead of sites and tries

to place the parity of the data groups with the largest
update rates on the closest sites. Details of the greedy

algorithm are provided in the Appendix.

Figure 5 shows the results of the comparison between the

four algorithms. The results shown assume that LocalOpt is

performed. The individual data group update rates are

chosen randomly from the interval [1, KA] while the edge

weights are chosen from [1, Kw]. We found that Algorithms

2 and 3 perform best for N = 10 with Algorithm 2 being
the winner for lower values of n while Algorithm 3 is better

for the high values of n. For N = 5 Algorithm 3 performs
best in almost all situations. The reason that Algorithm 3

performs better for N = 5 in this case compared with the

uniform load case (Fig. 3) can be explained by the fact
that the site loads have smaller variance because they are
the sum of N - 1 rates drawn from the uniform distribution

over [1, K_]. The performance of the greedy algorithm
indicates that basing assignment decisions on individual
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FIG. 6. Advantage of optimizing parity placement within a cluster
using LocalOp! (N = 10, K,, 100, and K_ 1(_)).

data group loads produces poorer results than using total
site loads.

We also found that the parity assignment within a cluster

is as important as the problem of partitioning the sites into

clusters. Using LocaiOpt reduces the cost of the solution

by 15 to 20%. This is shown in Fig. 6 for the case N = 10,

Kw = 100, and K_ = 100. Similar results were obtained for
the other environments.

6.2. Non-Uniform Site Capacity

The case of nonuniform site capacity can be handled in

the same fashion as proposed by Stonebraker and Schloss

[3]. We assume that the total number of disks is Np for

some integer 3p and that the number of disks at any given
site is at most p. The system could then be partitioned

using the following procedure.

Step 1. Select the NI_IV_/N3sites with the largest num-

ber of disks and apply one of the partitioning algorithms

described in the previous sections to assign one disk from

each of the selected sites to an array.

Step 2. Remove the assigned disks and remove sites
with no disks left.

Step 3. Repeat the above steps until all disks have

been assigned.

Nonuniform disk capacity can be dealt with by using

logical disks of size B blocks such that the site capacities

are multiples of B [3].

6.3. Disaster Recovery in OLTP Systems

Disaster recovery is an important issue in on-line trans-

action processing (OLTP) systems [14-16]. However, in

such systems, updating the remote parity after each disk

This replaces the assumption that IV] = raN.
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update may be too expensive, especially since these sys-

tems usually have stringent requirements on transaction

response times.

Typically, disaster recovery in OLTP systems is imple-
mented by duplicating the data of a given site at a remote

backup site and shipping redo log information to the

backup site where the updates are applied to the backup

database. There are two approaches used in shipping the

log [17]. In the first approach, the log records are shipped
asynchronously to the backup site. Therefore transaction

response time is not affected by the communication with

the backup. However some transactions may be lost in the

case of a disaster. This configuration is called 1-safe. In

the second approach, log records are sent to the backup
at commit time and the transaction waits for an acknowl-

edgment before it is allowed to commit. No transactions

are lost in this case. This configuration is called 2-safe.

Similar configurations can be implemented using

RADD. In a 1-safe implementation, parity updates (XORs

of old and new data) can be accumulated at the originating

site and shipped to the remote parity locations periodically.

In a 2-safe implementation, the parity updates originated

by a transaction are grouped according to their destination
site and shipped to that site while the transaction waits

for an acknowledgment. If the updates performed by the

transaction involve only one of the N - 1 data groups then
only one remote message has to be sent by the committing

transaction and the delay will be the same as in the tradi-

tional remote backup scheme. The advantage of RADD

over the traditional schemes is that it uses much less storage

space than full duplication.

Our model can still be used to solve the site assignment

problem in both of the above implementations. However,

instead of using the update rate at each site, the frequency

of the periodic updates should be used in the 1-safe case
and the update transaction rate should be used in the 2-

safe case.

Another optimization that might be useful in OLTP

environments consists of using the scheme proposed by

Bhide and Dias in [18] to reduce the number of random

//O's performed in updating the parity at the remote site.

The scheme consists of storing the parity updates in non-
volatile memory or sequentially on a dedicated disk and

then periodically propagating them to their permanent lo-

cations. The scheme was originally proposed for use with

a RAID level 4 organization [1] to reduce the load on the

parity disk. When the parity updates are stored sequen-
tially on a dedicated disk, disk sorting is used to apply the

parity updates to their permanent location.

6.4. Applying the Algorithms

Another important question is when and how often to
apply the algorithm in order to obtain a lower cost site

assignment. Clearly the algorithms can be used when the

RADD scheme is first implemented as long as information

on site loads is available. As these loads change, the perfor-

mance of the system degrades and the site assignment may

need to be modified. Changing the site assignment is a

costly operation. It involves reading large amounts of data

to recompute the new parity and then updating the parity.

This operation should be performed when the following

two conditions are met: (1) the difference between the cost

of the current assignment and the cost of the best solution

found by the algorithms should be large enough, and (2) the

parameters of the system (site loads) should be relatively

stable so that the benefits of the new site assignment last

long enough to offset the cost of performing the reas-

signment.

The cost of reassignment can be reduced if some clusters

are kept unchanged. Hence one might be better off choos-

ing a solution that is not the best possible but that preserves

most of the current clustering. Procedure Improve de-

scribed in Section 4 can be used to perform a limited

number of swaps that decrease the cost of updating the
parity without a full scale reassignment.

7. SUMMARY

We looked at the problem of partitioning the sites of a

distributed storage system into redundant disk arrays while

minimizing the communication costs for updating the par-

ity information. The problem was shown to be NP-hard in

its general form. Several heuristic methods were investi-

gated to obtain approximate solutions to the site parti-

tioning problem. It was found that the heuristic that mini-
mizes the sum of distances between sites within each cluster

(Algorithm 3) performs consistently well in all environ-

ments, especially in large systems with a relatively large

array size. In such systems, the above approach outper-

forms greedy methods that attempt to satisfy first the sites

with the largest loads by placing their nearest neighbors

in their partition. The solutions produced by Algorithm 3

are also more robust because they provide good perfor-

mance under different site loads. Guaranteed upper

bounds were established on the deviation from the optimal
cost for some of the heuristics. It was also found that

modifying the parity assignment within each cluster to

place the parity of the heavily accessed data groups on the

nearest sites within the cluster can significantly decrease

the parity update cost. Finally, we discussed implementa-
tions of the RADD scheme for disaster recovery in OLTP

systems and described various optimizations that can be

helpful in those environments.

APPENDIX

Algorithm Greedy

Let A be the list of update rates for all data groups at
all sites.

Let Pv be the number of site v's partition. Initially pv =
-lforallv E V.

Let ni be the number of sites in partition i. Initially,

ni = 0. Assume n I = 1 throughout.

Let k be the current number of partitions. Initially k = 0.
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Let. I(v) = V - v. for all v E V.
Let l = 0.

Step I. Select the largest value A in A and let u be the

corresponding site. If nt,,, = N go to Step 4.

Step 2. Find the site v in. I(u) that is nearest to u and

satisfies p,, or Pc, ¢: - 1 and nt," + np, <- N or p,, = p,, = - 1
and k < m. If none exist go to Step 4.

Step 3. Remove v from. !(u).

Ifp, =p,. -1 setp,, =p,, l, nz= 2, l= 1 + 1, and
k=k+l.

If Pc, = -1 and p_, _ -1 set p,, = p_, and np, = n_, + 1.

If p,, ¢ -1 and Pc, = -1 set p_, = p, and nt, nt, + 1.
If p,, 4= - 1 and p_, 4= - 1, set the partition number for

every site in v's current partition to p,,, set nv,' rip,, +

nt,,nl, ' = 0, andk = k - 1.

Step 4. Remove A from A.

Step 5. If E, n, < n, go to Step 1, otherwise stop.

The algorithm is similar to Algorithm 1 in that it tries

to satisfy first the nodes with the highest data group update

rates. The complexity of the algorithm is O(Nn2), but as

in the case of Algorithm 1, it requires the all-pair shortest

path algorithm.
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