JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 33, 84-90 (1996)
ARTICLE No. 0027

Routing with Locality on Meshes with Buses!

STEVEN CHEUNG AND FraNcis C. M. Lau

Department of Computer Science, University of California, Davis, California 95616; and Department of Computer Science,
The University of Hong Kong, Hong Kong

Routing with locality is studied for meshes with buses. In
this problem, packets’ distances are bounded by a value, d,
which is less than the diameter of the network. This problem
arises naturally when specific known algorithms are imple-
mented on meshes. Solving this problem in ordinary meshes
requires at least a routing time of d steps. To do better than
this, we propose adding a kind of short bus to ordinary meshes.
By using a technique which we call iterative walk-and-ride, we
show how the routing time can be reduced by approximately
one-third for solving the problem (including the multipacket
version) on one- and two-dimensional short-bus meshes. The
bounds we develop are tlght 0 1996 Academic Press, Inc.

1. INTRODUCTION

Permutation routing on mesh-connected computers has
been extensively investigated [9, 10, 12, 13, 14, 16, 17, 22,
25, 29]. In permutation routing, each processor initially
has a packet to send, and packets have unique destinations.
A good routing algorithm should route packets to their
destinations as quickly as possible and should require as
few buffers at each processor as possible. Among the best
known is the deterministic algorithm by Leighton et al.
[16] which can solve the problem for an n X n mesh in
2n — 2 steps, which is optimal in the worst case since the
mesh’s diameter is 2n — 2. Unfortunately, the buffer size
required by their algorithm is impractically large. The re-
sult has been improved by Rajasekaran and Overholt [22],
Gu and Gu [9], Sibeyn et al. [25], Kaufmann et al. [12],
and Kaufmann et al. [10]. However, these results are no
longer time optimal when the packets only have to travel
a distance less than the diameter, say Vn or n/2. This
routing with locality problem (or restricted distance rout-
ing problem) has been studied in [6, 11, 13, 14]. Routing
with locality problems arises naturally when specific known
algorithms are implemented on the mesh [13] and when
other types of processor or process networks are embedded
onto mesh-connected computers to yield a small dilation.
In fact, one of the goals in designing parallel algorithms
is to try to make distances between related processes as
short as possible [4]. If the maximum distance of all the

! A preliminary version of this paper appears in Proceedings of the 6th
IEEE Symposium on Parallel and Distributed Processing, October 1994.

0743-7315/96 $18.00
Copyright 00 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

packets is bounded by d, the authors have presented in [6]
ad+ O(d/f(d)) step, O(f(d)) buffer size routing algorithm
which is asymptotically optimal if f(d) is chosen to be a
large constant. In our study, we assume all the processors
operate in synchronous MIMD mode. At any time step,
each processor can communicate with all of its grid neigh-
bors and can both send and receive one packet along each
mesh link. In addition, processors can also store packets
in their own queues. This model (hereafter referred to as
the base model) is the same as the ones used in [9, 10,
12-16, 22, 25].

The main disadvantage of the mesh topology is its large
diameter, which has direct impact on the communication
times of many parallel algorithms. Augmenting arrays of
processors with various faster mechanisms has been sug-
gested as a means to speed up communication among the
processors. Examples are meshes with multiple buses
which have a bus in each column and each row [1, 20],
generalized meshes with multiple buses which are com-
posed of smaller meshes with multiple buses [8], meshes
with separable row and column buses in which row/column
buses can be separated into multiple shorter buses through
turning on/off bus switches [24], and reconfigurable meshes
in which links can be connected to form buses [2]. These
enhanced meshes are capable of solving problems that
only require a limited amount of global communication
significantly faster. This paper shows how to utilize these
buses in some “high-bandwidth” routing problems.

In all the related bused mesh models, except reconfigur-
able meshes, broadcast buses are added to the base model.
Each broadcast bus is connected to a set of processors. In
each time step, only one processor attached to a bus can
send a packet via the bus. In addition, a processor can
receive packets from all the buses attached to it in a time
step. A number of proposed bused mesh models assume
the propagation delay of a bus to be a constant which is
independent of the number of processors attached to it.
This assumption is thought to be a reasonable one in practi-
calsituations [1, 2, 3,20, 27]. However, Lu et al. [18] investi-
gated physical implementations of buses and found that
short buses and long buses do have a difference in perfor-
mance and that the constant-delay assumption is more
appropriate with short-bus models. In this paper, we as-
sume the propagation delay of the buses to be one time
step which is also assumed in [1, 8, 17, 27]. As we will see,

ROUTING WITH LOCALITY ON MESHES WITH BUSES 85

—— Link

mmm Bus

FIG. 1. Examples of short-bus meshes.

our algorithms can be tuned to use short, or constant-
length buses.

Upper and lower bounds for unrestricted distance rout-
ing on meshes with fixed and reconfigurable buses can be
found in [7, 17, 21, 26, 28]. For instance, for meshes with
multiple buses, Leung and Shende [17] proved that 2n/3
is a tight worst-case time bound for permutation routing
on an n-processor one-dimensional mesh.

In this paper, we study how and to what extent buses
can help in solving the restricted distance routing problem
on bused meshes. In the following, we first define our short-
bus mesh model, and prove some lower bounds for the
problem. Then we present our routing algorithms for per-
mutation routing with locality in one- and two-dimensional
short-bus meshes. Finally, we state our results on
multipacket routing.

In a two-dimensional short-bus mesh, each row/column
has a sequence of equal-length buses and any two adjacent
buses are incident on a common processor. These short
buses can be active simultaneously. Our short-bus mesh
model can be realized by a simple modification of fixed-
bus meshes like generalized meshes with multiple buses
[8] or reconfigurable-bus meshes like meshes with separa-
ble row and column buses [24]. In generalized meshes with
multiple buses and meshes with separable buses, adjacent
buses do not meet at a common processor. Figure 1 shows
some examples of one- and two-dimensional short-bus
meshes. Short-bus meshes have several advantages over
meshes with multiple row/column buses. First, short buses
have shorter propagation delay. Second, Chung [8] and
Maeba et al. [19] showed that short-bus meshes can solve
certain fundamental problems significantly faster than
meshes with multiple buses. Third, short-bus meshes are
relatively easy to partition into bused submeshes to serve
different computational requests.

2. LOWER BOUNDS

When the maximum distance between the source and
the destination of any packet is d and d = 2n/3, we show
that permutation routing cannot be solved on meshes with
multiple buses in fewer than d steps. The proof, shown
below, is a generalization of Leung and Shende’s 2n/3

time steps lower bound proof for the permutation routing
problem on meshes with fixed buses [17].

For simplicity, we consider a one-dimensional mesh with
a global bus and d is even in the proof, which can be easily
generalized to two- and higher dimensional cases. Consider
processor i, where i € [1, 2, ..., d/2], which has a packet
to send to processor i + d. Moreover, processor i + d also
has a packet to send to processor i. Each of those d packets
must have a bus ride in order to reach its destination within
d steps. However, the bus can only carry one packet during
each time step. Thus, any algorithm needs at least d time
steps for this problem.

We now prove a lower bound for restricted distance
permutation routing on one-dimensional short-bus
meshes. If d < n/2, consider the scenario that all the packets
in a processor subarray of length 2d send a packet to the
processor which has distance d from it and within the same
subarray. In the middle of the subarray, we have 2d packets
crossing a cut of size 3—a bidirectional link and a bus.
Hence the 2d/3 time bound. Note that this lower bound
is valid also for two-dimensional short-bus meshes. It can
be proved by applying this one-dimensional construction
to each row of the meshes. Using the same construction,
we have a 2d-step lower bound for reconfigurable meshes
(because buses are unidirectional) and a d-step lower
bound for the generalized meshes with multiple buses. The
bounds for the latter two types of meshes are due to the
gap between two adjacent buses.

3. ROUTING ON ONE-DIMENSIONAL
SHORT-BUS MESHES

In this section, we present an asymptotically (2d/3)-step
algorithm for the restricted distance permutation routing
problem. The one-dimensional short-bus mesh is assumed
to have buses of length b, where b is an odd integer® and
b < d. In odd-numbered steps, each bus segment will be
used to route packets from left to right, and vice versa for
even-numbered steps. The processors at the ends of buses
are called bus terminals. When packets are transmitted via
buses, they usually travel from bus terminal to bus termi-
nal, except when their destinations are in the middle of a
bus segment, in which case the packets will go directly to
their destinations instead of to the bus terminal at the
other end of the bus. Note that each bus terminal has two
adjacent buses attached to it.

ArLcoriTHM 1 (Iterative Walk-and-Ride Algorithm).
Consider an arbitrary processor P.

Case 1. P is not a bus terminal. If P receives a packet®
* from a mesh link, P forwards the packet by mesh link;

2 In case we have an even b, we can use two additional buffers in each
bus terminal to simulate a virtual neighboring processor.

3 For simplicity, at time 0, every packet is treated as having come from
a mesh link.

86 CHEUNG AND LAU

Packets with destinations 5, 6, & 7 are going from left to right, whereas that with destination 2

is going from right to left.

bus orientation: —=>

>
. 2 [
step 1
2]
1 2 3 4 5 6 7
Buses are used from left to right. 5 is riding a bus. 2, 6, & 7 are walking.
bus orientation: -<—
<2]
step 2 [D) 6>
1 2 3 4 S 6 7
Buses are used from right to left. 2 is riding and reaching its destination. 6 & 7 are walking.
5 is waiting for one time step.
bus orientation: —=>
Dy
Step 3 - = &
1 2 3 4 5 6 7

Buses are used from left to right. 2 has arrived. 7 is riding a bus. 5 & 6 are walking.

FIG. 2. An example of the walk-and-ride algorithm.

* from a bus (that is, P is its destination), P stores the
packet into its local memory.

Case 2. P is a bus terminal. If P receives a packet

* from a mesh link and bus is available in the next time
step, P routes it by bus to the next bus terminal or to its
destination, whichever is nearer;

* from a mesh link but bus is not available in the next
time step, P routes it by mesh link;

 from a bus, the packet has to wait one time step before
it leaves by walking.

The basic idea of Algorithm 1 is to ensure that after a
packet has “walked” (i.e., being transmitted through links)
say for r steps, it can take a bus to cover say s units of
distance. As a result, all packets with source-destination
distance d can reach their destinations in approximately
d X r/(r + s) steps. This walking-riding cycle continues
until the packet reaches its destination. Hence, no packet
will suffer from too long a walk. The lower bound shown
above gives us a cue for the ratio r/s. Algorithm 1 makes
the packets to wait one step after they have ridden a bus
because a bus and a link are available for transporting two
packets in the corresponding direction in those time steps.
Figure 2 shows a few steps of an example of executing this
algorithm. In the example, we have b = 3, nodes 1, 4, and
7 are bus terminals, and packets are identified by their
destination address. At time step 1 (odd), the buses are

oriented for going right, and at time step 2 (even), the
other way around. At time step 2, the packet destined for
node 2 takes a bus ride directly to its destination, which
is not a terminal.

LemMmA 1. Given a permutation routing problem on a
linear array, all packets will have their source-destination
distances reduced by D (or they will reach their destinations
in case their source-destination distance is <D) after running
Algorithm 1 for (D — [D/3b0OX b) + [D/3bOX 2 steps
or less.

Proof. Except the ones that had a bus ride in the previ-
ous step, every packet advances in each time step. Without
loss of generality, consider only those packets that are
moving to the right. Because b is odd, we can ensure that,
in every 2b steps, any packet can reach the left end of a
bus in one of these steps and the corresponding bus will
serve it in the next step. In other words, each packet travels
a distance of 3b in 2b + 2 steps because it only walks 2b
steps and the cost of a bus ride followed by waiting is 2
time steps. Any packet traveling for a distance of D takes
at least CD/3b0bus rides, and it walks for at most (D —
D/3b0 X b) steps. Moreover, it only spends at most
2 X [D/3b0Otime steps for riding buses and waiting at bus
terminals. W

THEOREM 1. For the permutation routing problem on
a linear array with the maximum source—destination dis-

ROUTING WITH LOCALITY ON MESHES WITH BUSES 87

tance d, Algorithm 1 can be used to solve it in approximately
2d/3 time steps and only a constant number of auxiliary
buffers are required per processor.

4. ROUTING ON TWO-DIMENSIONAL
SHORT-BUS MESHES

The algorithm for permutation routing on two-dimen-
sional short-bus meshes has two main ingredients, namely,
sorting and greedy algorithm. Sorting is used to redistribute
the packets so as to ensure that packets destinated at the
same row are routed along many columns. Thus not too
many packets will turn at any processor, and hence the
number of buffers required for each processor is small.
The idea of using sorting to lower buffer complexity was
first proposed by Kunde [14]. The greedy algorithm we
use is as follows: every packet is first routed along its
column (column routing) until it reaches its destination
row. Then it is routed along its destination row (row rout-
ing) to its destination.

Before proving the two-dimensional case, we first define
some notation and prove a result on the one—many routing
problem on a linear array. In one—-many routing, an arbi-
trary number of packets can start as a processor, and pack-
ets have unique destinations. Let b be the length of each
bus and f(d) be a function of d. Let the processors of a
linear array be numbered from 0 to zn. Define a processor
to be of type i, i € {0, 1, 2}, if its ID mod 3 equals i. A
packet is of type i if its destination processor is of type i.
Bus terminals have an extra set of labels and they are
labeled from O to n/b and a type € {0, 1, 2} is assigned to
each of them, similarly based on these labels. Informally
speaking, we want to divide the packets into types and
schedule them according to their types in such a way that
packets of different types do not interfere with each other
and packets of the same type have similar behavior (e.g.,
the paths they travel). For simplicity, we assume 3b divides
d henceforth.*

Next, we will prove a result on one—many routing with
the restriction that all type-i packets reside in type-i termi-
nals initially. Then we will describe how to perform one—
many routing without this restriction.

ALGORITHM 2 (One-Many Routing with Restriction).

1. A packet with source—destination distance (d — x)
starts moving after step [X/3b0 X (2b + 2) + [x —
/360X 3b)/30X 2.

2. The packet performs the following repeatedly until
it reaches its destination:

(a) Walking for 2 segments.
(b) Taking a bus ride to the next terminal. Right-
moving packets wait one step at each bus terminal just

4 As we are interested in the case b < d, so we can make d a multiple
of 3b without causing any significant increase in time complexity.

after each bus ride, while left-moving ones do so before
each ride.’

LEmMmMmA 2. Given a one-many routing problem on a
linear array with maximum source—destination distance d
and all type-i packets residing in type-i terminals initially,
then Algorithm 2 can route all packets to their destinations
in (1 + 1/b)2d/3 time steps.

Proof. Without loss of generality, consider the packets
moving to the right only. Basically, we make packets with
a farther distance start earlier. For packets of the same
type, their distances differ by a multiple of three. For any
two type-i packets with destinations that are three proces-
sors apart, the one with a farther destination will be sched-
uled to leave two steps earlier than the other one. This is
because we enforce that type-i packets can leave type-i
terminals only at odd-numbered steps, while the right to
leave type-i terminals at even-numbered steps is reserved
for packets of type ((i — 1) mod 3), which will be ex-
plained later.

Note that for any segment, there are only two different
types of packets that might walk through it, while the
remaining ones not belonging to those two types take the
bus associated with that segment. Moreover, as each type-
i packet leaves type-i terminals in odd-numbered steps,
while type-((: — 1) mod 3) packets leave type-i terminals
in even-numbered steps, packets of these two different
types will not interfere with each other. This is the case
because the segment length b is chosen to be an odd inte-
ger. Observe that once a packet starts moving, it will never
be delayed by any other packet. Hence it needs at most
(d — x) — (@d — x)/3b0OX b) + d — x)/3b00X 2 more
steps to reach its destination by Lemma 1. Therefore, the
time required for a packet with distance (d — x) to reach
its destination is =<2d/3 + 2d/3b. W

Lemma 2 shows us how to route any one—many problem
in which type-i packets start at type-i bus terminals. In the
following, we make use of this result to route any one—
many problem without this restriction. In short, our strat-
egy is first compute the starting time step of every packet
in the latter problem and then apply the routing scheme
of the former problem. For a type-i packet p whose source
is s, let its virtual source be the nearest type-i bus terminal
in the opposite direction from its destination.® In the fol-
lowing, let packet p be at a distance (d — x) from its
destination and be at a distance y from its virtual source.

ALGorRITHM 3 (One-Many Routing without Re-
striction).

5 Because a bus can take only one packet at a time, left-moving packets
and right-moving packets are scheduled to use the buses in alternate
steps. Alternatively, we can have left-moving packets start one step later
than the right-moving ones. In this case, all packets wait one time step
after each bus ride.

% For packets near the ends that do not have a virtual source, we extend
the array conceptually to create virtual sources for them.

88 CHEUNG AND LAU

1. Packet p starts moving after step [(3b + x — y)/
3b0X (2b +2) + LBb +x —y) — W3b + x — y)/3b0OX
3b)/30% 2 + min{y, 2b}.

2. The path taken by packet p is the portion of the path
starting from s if p were originated at its virtual source
and Algorithm 2 were used.

LEMMA 3. Given a one—many routing problem on a
linear array with maximum source—destination distance d in
which packets are arbitrarily distributed among processors.
Packets can be scheduled so that all of them can reach their
destinations in (1 + 1/b)2d/3 + (2b + 2) time steps.

Proof. This one-many problem is now transformed to
one in which type-i packets are originated from type-i
terminals with maximum distance (d + 3b) as in Algorithm
2. Specifically, we make use of Lemma 2 by pretending
that each packet is originated from its virtual source. If p
were originated from its virtual source, v, its distance from
its destination would be ((d + 3b) — (3b + x — y)), or
it would start at step [(3b + x — y)/3b0X (2b + 2) +
WBb +x —y) — 3 + x — y)/3b0OX 3b)/30X 2 by
Lemma 2. Furthermore, it would leave s min{y, 2b} steps
later. The starting time step of p is calculated by adding
the values of these two expressions. There are two cases
concerning the min{y, 2b} term. If the distance between
v and s is less than 2b, the packet would walk from v to s
in the entire imaginary journey, thus s will transmit this
packet y steps after leaving v. If the distance between v
and s is equal to or more than 2b, s will transmit the packet
over the bus 2b steps after the starting time at v. The stated
time bound follows from Lemma 2. H

In the following, we present an algorithm, the Sort-
ing + Greedy Algorithm, for solving permutation routing
on two-dimensional short-bus meshes.

ALGORITHM 4 (Sorting + Greedy Algorithm).

1. Partition the short-bus mesh into submeshes of size
do/f(dy) X dy/f(dy) each, where dj is the maximum source—
destination distance before sorting. Sort all the packets
within each submesh in row-major ordering’ with respect
to the row-major indexing of the processors.®

2. Perform the following in parallel with row routing
being started (b + 4) steps later than column routing.

(a) Packets not situated in their destination rows par-
ticipate in column routing according to Algorithm 1;

"Let (r, ¢) denote the destination address of a packet, where r and ¢
are the row and column address, respectively, of the destination processor;
then the row-major ordering of two packets with destination addresses
(r1, 1) and (r,, ¢,) is defined as (ry, ¢1) = (r2,) iff r; = ry.

8 The processors are indexed by a one—one mapping onto {1, ..., n*}
and the sorting problem with respect to this mapping is to move the ith
smallest packet to the ith indexed processor. In row-major indexing of
the processors, processor (rq, ¢;) has a smaller index than that of processor
(r2, c2) when either ry < ry,or ry = r; and ¢; < ¢,.

(b) Others participate in row routing as in Algo-
rithm 3.

THEOREM 2. The restricted distance permutation prob-
lem with maximum distance d, on a two-dimensional n X
n short-bus mesh can be solved by Algorithm 4, which has
time complexity 2d(1 + 1/b)/3 + 3b + 6 + O(dy/f(dy))
and buffer complexity O(f(dy)) (per processor), where
d= d() + Zd(]/f(d()).

Proof. After sorting is performed in each submesh, a
packet may be displaced from its destination for a distance
of dy/f(dy) vertically and dy/f(d,) horizontally. Thus the
maximum source—destination distance after sorting, d, is
dy + 2dy/f(dy). Once a packet starts moving, it always
advances to its destination by first moving along column
edges and then along row edges. It is obvious that column
routing and row routing work correctly by their own. To
prove the correctness of this algorithm, we only need to
show that a packet can reach its destination row by the
time it has to start row routing as in Lemma 3. Consider
a packet that has horizontal distance d — d,. By Lemma
1 (instead of considering packets moving in the left and
right directions, we now consider packets moving in the
up and down directions), any packet with vertical distance
d, reaches its destination row after at most 2d,/3 + [d,/
3b0X 2 + b steps (which bounds (d, — L, /360X b) +
[dl,/3b0X 2 from above). From the proof of Lemma 3 and
the fact that row routing is started b + 4 steps later than
column routing, we know that this packet starts row routing
only after step

3b +d, — y)/3bOX 2b+2) + Q(3b + d, — y)
— [3b + d, — y)/3b0X 3b)/30% 2
+ min{y, 2b} + (b + 4) = 2d,/3
+2d,/3b + b + 2.

Thus, we can guarantee that any packet can finish the
column routing on time.

The total time of this algorithm consists of two compo-
nents: Step 1 requires O(dy/f(dy)) time steps [23]; per-
forming column and row routing in parallel requires
2d(1 + 1/b)/3 + 3b + 6 steps—this is because 2d(1 +
1/b)/3 + (2b + 2) steps are needed to complete the row
routing phase and row routing starts (b + 4) steps after
column routing starts. Regarding buffer size complexity,
each processor requires only O(f(d,)) buffers as there are
only O(f(d,)) packets turning at any processor. We omit
the proof of the buffer complexity which can be found
in[6]. W

CoROLLARY 1. Restricted distance permutation routing
with maximum distance d on an n X n short-bus mesh
can be solved in approximately 2d/3 steps with a constant
number of buffers per processor, if b = o(d).

ROUTING WITH LOCALITY ON MESHES WITH BUSES 89

5. k-k ROUTING

A more general version of the permutation routing is
called k—k routing, in which each processor has exactly k&
packets to send and exactly k packets to receive at the
end. If the maximum source—destination distance of all
the packets is d, our lower bound for permutation routing
can be adapted to yield a 2kd/3 bound for k—k routing on
ashort-bus mesh with side length n, where d = n/2. Because
of space limitations, we only state our results for k—k rout-
ing on one- and two-dimensional short-bus meshes below.
Readers are referred to [5] for the details.

THEOREM 3. Given a k—k routing problem on a linear
array, all packets can have their source—destination distance
reduced by D (or they will reach their destinations in the
cases where their source—destination distances are <D)
in =(D — [D/3b0X b)k + [D/3b0OX 2 steps if k is odd,
or =(D — D/3bO0X b)k + D/3bO0X 2 + (D/bO -
D/3b0) steps if k is even.

COROLLARY 2. On a linear array with the maximum
source—destination distance d, if b = o(d), k—k routing can
be solved in approximately 2kd/3 time steps and only a
constant number of auxiliary buffers are required per pro-
cessor.

The main issue in extending our permutation routing
result to k—k routing in the two-dimensional case is that
there could be more than one packet sharing the same
destination, which makes row routing a bit more compli-
cated. As packets may start their row routing phase by
riding buses in the middle of bus segments, we need to
schedule the buses in such a way that no two packets try
to ride the same bus at the same time. We achieve this by
letting each packet know how many other packets share
the same destination with it before it starts its row routing
phase. Therefore, we divide the whole algorithm into ¢
phases, which is a parameter to be tuned.

THEOREM 4. The restricted distance k—k routing prob-
lem with maximum source—destination distance d, on a
two-dimensional n X n short-bus mesh can be solved in
(c/c — 1)((1 + 1/b)2kd/3 + (2b + 2)k) + O(kdy/f(dy)) +
O(cbkf (do)) steps with buffer size O (kf(dy)) per processor,
where d = dy + 2f(dy).

COROLLARY 3. On an n X n mesh with the maximum
source—destination distanced, if b = o(d), k—k routing can
be solved in approximately 2kd/3 time steps with buffer size
O (k) per processor.

6. CONCLUDING REMARKS

We have presented an iterative walk-and-ride technique
for solving routing with locality problems on short-bus
meshes. With respect to ordinary meshes, one third of the
running time is saved after the short buses are employed.
A short-bus mesh can be derived from a fixed-bus mesh

such as the generalized mesh with multiple buses [8] or
from a reconfigurable bus mesh such as the mesh with
separable buses [24]. The results developed in this paper
are also directly applicable to short-bus rectangular meshes
and tori.

ACKNOWLEDGMENTS

We thank Charles Martel for his comments on an earlier version of
this paper. We are also grateful to the referees for their suggestions
and comments.

REFERENCES

1. A. Bar-Noy and D. Peleg, Square meshes are not always optimal.
IEEE Trans. Comput. 40(2) (Feb. 1991), 196-203.

2. Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, The power
of reconfiguration. J. Parallel Distrib. Comput. 13(2) (Oct. 1991),
139-153.

3. S. H. Bokhari, Finding maximum on an array processor with a global
bus. IEEE Trans. Comput. C-33(2) (Feb. 1984), 133-139.

4. M. C. Chen, A design methodology for synthesizing parallel algo-
rithms and architectures. J. Parallel Distrib. Comput. 3(4) (Dec.
1986), 461-491.

5. S. Cheung, Packet routing on mesh-connected computers. M. Phil.
thesis, Department of Computer Science, The University of Hong
Kong, Oct. 1992.

6. S. Cheung and F. C. M. Lau, Mesh permutation routing with locality.
Inform. Process. Lett. 43(2) (Aug. 1992), 101-105.

7. S. Cheung and F. C. M. Lau, A lower bound for permutation routing
on two-dimensional bused meshes. Inform. Process. Lett. 45(5), (Apr.
1993), 225-228.

8. K. L. Chung, Prefix computations on a generalized mesh-connected
computer with multiple buses. IEEE Trans. Parallel Distrib. Systems
6(2), (Feb. 1995), 196-199.

9. Q. P. Gu and J. Gu, Two packet routing algorithms on a mesh-
connected computer. IEEE Trans. Parallel Distrib. Systems 6(4),
(Apr. 1995), 436-440.

10. M. Kaufmann, U. Meyer, and J. F. Sibeyn, Towards practical permuta-
tion routing on meshes. Proc. 6th IEEE Symposium on Parallel and
Distributed Processing. Oct. 1994, pp. 664-671.

11. M. Kaufmann and J. F. Sibeyn, Optimal multi-packet routing on
the torus. Proc. 3rd Scandinavian Workshop on Algorithm Theory,
Lecture Notes in Computer Science 621, Springer-Verlag, Berlin/New
York, July 1992, pp. 118-129.

12. M. Kaufmann, J. F. Sibeyn, and T. Suel, Derandomizing algorithms
for routing and sorting on meshes. Proc. 5th Symposium on Discrete
Algorithms. ACM-SIAM, Jan. 1994, pp. 669-679.

13. D. Krizanc, S. Rajasekaran, and T. Tsantilas, Optimal routing algo-
rithms for mesh-connected processor arrays. Proc. 3rd Aegean Work-
shop on Computing: VLSI Algorithms and Architectures, Lecture
Notes in Computer Science 319. Springer-Verlag, Berlin/New York,
June 1988, pp. 411-422.

14. M. Kunde, Routing and sorting on mesh-connected arrays. Proc. 3rd
Aegean Workshop on Computing: VLSI Algorithms and Architec-
tures, Lecture Notes in Computer Science 319. Springer-Verlag,
Berlin/New York, June 1988, pp. 423-433.

15. M. Kunde and T. Tensi, (k—k) routing on multidimensional mesh-
connected arrays. J. Parallel Distrib. Comput. 11(2) (Feb. 1991),
pp. 146-155.

16. T. Leighton, F. Makedon, and 1. G. Tollis, A 2n — 2 step algorithm
for routing in an n X n array with constant size queues. Proc. 1989
ACM Symposium on Parallel Algorithms and Architectures. pp.
328-335.

90 CHEUNG AND LAU

17. J.Y.T.Leung and S. M. Shende, On multi-dimensional packet routing
for meshes with buses. J. Parallel Distrib. Comput. 20(2) (Feb. 1994),
pp- 187-197.

18. Y. W. Lu, J. B. Burr, and A. M. Peterson, Permutation on the mesh
with rconfigurable bus: Algorithms and practical considerations. Proc.

7th International Parallel Processing Symposium. Apr. 1993, pp.
298-308.

19. T. Maeba, S. Tatsumi, and M. Sugaya, Algorithms for finding maxi-
mum and selecting median on a processor array with separable global
buses. Electron. Comm. Japan Part 111 73(6), (June 1990), pp. 39-48.

20. V. K. Prasanna Kumar and C. S. Raghavendra, Array processor
with multiple broadcasting. J. Parallel Distrib. Comput. 4(2), (Apr.
1987), 173-190.

21. S. Rajasekaran, Mesh connected computers with fixed and recon-
figurable buses: Packet routing, sorting, and selection. Proc. Ist An-
nual European Symposium on Algorithms, Lecture Notes in Computer
Science 726. Springer-Verlag, Berlin/New York, Oct. 1993, pp.
309-320.

22. S. Rajasekaran and R. Overholt, Constant queue routing on a mesh.
J. Parallel Distrib. Comput. 15(2) (June 1992), 160-166.

23. C.P. Schnorr and A. Shamir, An optimal sorting algorithm for mesh
connected computers. Proc. 18th Annual ACM Symposium on Theory
of Computing. 1986, pp. 255-263.

24. M. J. Serrano and B. Parhami, Optimal architectures and algorithms
for mesh-connected parallel computers with separable row/column
buses. IEEE Trans. Parallel Distrib. Systems 4(10) (Oct. 1993), 1073—
1080.

25. J. F. Sibeyn, B. S. Chlebus, and M. Kaufmann, Shorter queues for
permutation routing on meshes. Proc. 19th International Symposium

Received April 19, 1994; revised April 3, 1995; accepted October 2, 1995

on Mathematical Foundations of Computer Science. Springer-Verlag,
Berlin/New York, Aug. 1994, pp. 597-607.

26. J. F. Sibeyn, M. Kaufmann, and R. Ramen, Randomized routing
on meshes with buses. Proc. 1st Annual European Symposium on
Algorithms, Lecture Notes in Computer Science 726. Springer-Verlag,
Berlin/New York, Oct. 1993, pp. 333-344.

27. Q. F. Stout, Mesh-connected computers with broadcasting. /EEE
Trans. Comput. C-32(9) (Sept. 1983), 826-830.

28. T. Suel, Permutation routing and sorting on meshes with row and
column buses. Parallel Process. Lett. 5(1) (March 1995), 63-80.

29. L. G. Valiant and G. J. Brebner, Universal schemes for parallel
communication. Proc. 13th Annual ACM Symposium on Theory of
Computing. 1981, pp. 263-277.

STEVEN CHEUNG received the B.S. and M.Phil. degrees in computer
science from the University of Hong Kong in 1989 and 1992, respectively.
He is currently a Ph.D. student in the Department of Computer Science
at the University of California, Davis. His research interests include
parallel algorithms and computer security.

FRANCIS C. M. LAU received the B.Sc. degree from Acadia Univer-
sity, Canada in 1979 and MMath and Ph.D. degrees from the University
of Waterloo, Canada in 1980 and 1986, respectively. He joined the Depart-
ment of Computer Science at the University of Hong Kong in 1987,
where he is now a senior lecturer. His research interests are in parallel
and distributed computing, object-oriented programming, and operat-
ing systems.

