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Abstract 

W e  present an algorithm t o  map the nodes of a 3- 
. dimensional grid t o  the nodes of i ts  optimal hypercube 

on a one-to-one basis wi th dilation at most  5.  

1 Introduction 

A binary hypercube of dimension n,  is an undirected 
graph of 2" nodes labeled 0 to 2" - 1 in binary where 
two nodes are connected if and only if their labels 
differ in exactly one bit position. Since a hypercube 
has a regular structure with a rich interconnection, 
it is a popular multiprocessor computer architecture. 
An embedding for a 3-D grid into a hypercube can 
be viewed as a high level description of an efficient 
method to simulate an algorithm designed for a par- 
allel computer with a 3-D grid structure on a parallel 
computer with a hypercube structure. Here we are in- 
terested in the problem of mapping the nodes of any 
3-D grid into the nodes of its optimal hypercube (the 
smallest hypercube with at least as many nodes as the 
grid) on a one-to-one basis, so that dilation (the worst 
case distance between grid-neighbours in the hyper- 
cube) is bounded by a small constant. 

It is known that every 2-D grid can be embedded 
into its optimal hypercube with at most dilation 2 
[Cl, CP], [HLV]. This result is optimal as it has been 
proven that over 38 percent of all 2-D grids need at 
least dilation 2 [BSI. However, not much is known 
about the optimal dilation for embedding 3-D grids 
into optimal hypercubes. A non-trivial extension of 
the technique in [Cl ,  C2] for embedding 3-D grids into 
optimal hypercubes with at most dilation 7 was given 
by Chan in [C3]. A dilation-6 embedding scheme was 
derived later in [LH]. In this paper, we introduce a 
simple dilation-5 embedding strategy for embedding 
3-D grids into optimal hypercubes. 

2 General Outline 

Consider a 3-D grid G of size a x p x 7. Our 
objective is to label each node of G with a unique 
[log, a&] -bit binary number, which effectively names 
the node in the optimal [log, apyl-cube to which it 
is mapped. G can be seen as comprising of 7 layers 
of 2-D grids each of size a x p. Let 1 = 21log2 apl. 
To aid the assignment of binary labels, we will parti- 
tion G's nodes into 1 groups, called links, evenly in the 
sense that when counting from layer 0 to layer k (0 5 k 
5 7 - l ) ,  the number of nodes belonging to any par- 
ticular link is either [(k + l )ap/ l ]  or [(k + l )ap / l l .  

Partitioning G's nodes into 1 links is equivalent to 
determining a unique pair of numbers for each node of 
G,  namely, a link-number and a bead-number. A node's 
link-number indicates the link to which a node be- 
longs, while its bead-number tells its position in that 
link. After the partitioning, we will use a node's link- 
number to determine the first log, 1 bits of its binary 
label, which we will call the link-label. And we will use 
a node's bead-number to determine the remaining bits 
of its binary label, which we will call the bead-label. 

3 Preliminaries 

In [HLV], a general embedding strategy for embed- 
ding 2-D grids into 2-D grids (of different sizes) was 
introduced. In particular, it can be used to embed 
an a x /3 guest grid into an a' x p' host grid where 
a' = 2110g2a1 and p' = [ap/a'l. (Note that in 
[HLV], the embedding strategy was described for em- 
bedding a h x w guest grid into a h' x w' host grid 
where w' 5 w and h' = [hw/w'], here we swapped 
the roles of row and column for later convenience.) 

As the embedding is one-one, a'/3' has to be greater 
than ap, and some nodes in the a' x p' host grid do 
not correspond to any node in the a x p guest grid. A 
nice property of this embedding is that any unmapped 
node is only found in the last column of the a' x p' 
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host grid. So we can view the above embedding as one 
that embeds an cy x grid into a jagged grid of cy’ rows 
where each row consists of either P’ or P’-1 nodes, and 
the total number of nodes of the jagged grid is exactly 
ap. Figure 1 shows an example of such an embed- 
ding. It is proven in [HLV] that this method yields 
a dilation-2 embedding for any cy x P guest grid. A 
careful study of the proof will reveal that the method 
actually ensures that any two neighbouring nodes in 
the cy x p grid can only be mapped to one the following 
5 sets of relative positions in the cy’-row jagged grid: 
{[XI YII [XI Y + l l l ,  {[XI Y l ,  [XI Y+2lll {[x, Y l ,  [x+1, Y l l ,  
{[XI Y1, [x+l, Y-lll, {[x, YI! [ X + L  Y + l l l  where [.,?/I 
denotes the position in row t, column y of the jagged 
grid. We will utilize this 2-D grid embedding method 
as the first step of our embedding stratedgy, and we 
will refer to it as the trio’s method. 

The process of partitioning G into 1 links depends 
on a length-1 vector of 1’s and 2’s, v ( a , P )  [C2]. 

Definition 1 Define 

T 

Basically, v is defined so that the 2’s are evenly 
distributed among the 1’s when there are more 1’s 
than 2’s and vice versa when there are more 2’s than 
1’s. The vector v has a Cyclic Sum Property which is 
stated below. 

Definition 2 For 0 5 s 5 1 - 1 and k 2 0, define 

s+k-1 
CYCLIC-SUM(S, I C )  = ~ i ~ ~ d l [ C 2 ]  

i=s 

Fact 1 (Cyclic Sum P r o p e r t y )  
LICcyP/IJ 5 CYCLIC-SUM(s, k )  5 rICcyp/11 
f o r  0 5 s 5 1 - 1, IC 2 0 

To determine the final binary label given to each 
node the binary reflected Gray code sequence is used. 

Definition 3 F o r t  2 0 and 0 5 p 5 2t - 1, define 

G R A Y ( t , p )  = ( p +  1 ) t h  element o f t h e  t-bit  
binary reflected Gray code sequence 

For example, G R A Y ( 3 , 5 )  E 111 since 111 is the 
6th element of (000, 001, 011,010, 110, 111, 101, 100). 

Fact 2 ( G r a y  Code P r o p e r t y )  In  the t-bit binary 
reflected Gray code sequence, for any p such that 0 5 p 
5 2‘- 1 and f o r  any i 2 0, the number of differing 
bits of G R A Y ( t , p )  and G R A Y ( t , ( p f i )  mod 2‘) i s  at 
most i. 

4 Dilation-5 Embedding Strategy 

The following steps are illustrated by Figures 1 to 
4 using a 5 x 5 x 5 grid as an example. 
Let 1 = 2 LlOgz QPJ , a = 2 L k  and 6 = I / & .  

1. Transform to y layers of jagged grids: 
Using the trio’s algorithm, transform all y layers 
of cy x P 2-D grids into y layers of identical 2-D 
jagged grids of & rows. (See Figure 1) 

2. Partition each jagged layer into cells: 
Imagine there is a super-chain spanning all the 
nodes of a layer for each of the 7 jagged layers. 
Divide each super-chain, hence jagged layer, into 1 
cells according to vector V ( Q ,  p) and label the cells 
from 0 to 1 - 1. Therefore the number of nodes in 
cell i should be equal to vi (0 5 i 5 I - 1). (See 
Figure 2) 

3. Determine the link-number of each node: 
For any node N ,  if N is in cell c (0 5 c 5 I - 1) 
of layer k (0 5 IC 5 y - l), its link-number is 

L I N K ( N )  = ( c  - I C )  mod I 

(See Figure 3) 

4. Determine the bead-number of each node: 
For any node N ,  if N is in cell c (0 5 c 5 1 - 1) 
of layer IC (0 5 IC 5 7 - l), its bead-number is 

B E A D ( N )  = CYCLIC-SUM(LINK(N),  k) 
+ & ( N )  

where 6 is defined as follows: let t = c / ( p  + 2)J 
if t is even (odd), 

L 
1 if N has an immediately 

preceding (succeeding) node M 
in its super-chain such that 
L I N I ( ( M )  = L I N I ( ( N )  1 0 otherwise 

6(N) = 

(See Figures 3 and 4) 
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5 Determine the link-label of a node: 
For any node N, define 
LKl(N) = L L I N K ( N ) / , ~ J  and L 1 < 2 ( N )  = 
LINI i ' (N)  mod p, the link-label of N is 

GRAY(log2 &, LKl(N))GRAY(log, 8, L I < 2 ( N ) )  

6. Determine the bead-label of a node: 
For any node N, its bead-label is 

GRAY( [log, (~&1 - log2 I ,  B E A D ( N ) )  

7. Concatenate the link-label and bead-label to get 
the complete binary label for every node. 

5 Dilation Analysis 

We will call any neighbouring nodes in the same 
layer of a 3-D grid G horizontal neighbours and any 
neighbouring nodes a t  the same position of 2 adjacent 
layers of G vertical neighbours. 

Let us consider horizontal neighbours first. 
For any horizontal neighbours and N2 of the 

grid G,  they must be mapped to the same jagged grid. 
Moreover, the trio's method will map them to one of 
the following 5 sets of relative positions: {[x, y], [x, 
Y+111, {[x, Y l ,  [x, Y+21), {[XI Y l ,  [x+l, Y-111, {[x, Y1, 
[x+l, Y l ) ,  {[x, Y1, [x+L Y+ll). 

WLOG, for Lemma 1 to Lemma 5 assume that N I  
is mapped to position [z, y] of a jagged layer, and N I  
is in cell p ,  N2 is in cell q (0 5 p ,  q 

Lemma 1 I f N 2  is mapped to  [e, y + 11 or  [e, y + 21, 
t h e n p s q  L p + 2 .  

Proof outline: Note that each cell contains 1 or 2 
nodes. If N2 is mapped to [I, y + 11, then p 5 q 
< - p +  1. If N2 mapped to [I, y + 21, then p +  1 5 q 
L P + 2 .  0 

1 - 1). 

Lemma 2 If Nz is mappe! to [z + 1, y - 11: [z + 1, y] 
o r [ z + l , y + l ] ,  t h e n p + p - 2  L q  < p + P + 2 .  

Proof outline: We can prove this lemma by counting 
the number of nodes from hll to N2 in their super- 
chain and using the Cyclic Sum Property of the vector 

0 v used in constructing the cells. 

Lemma 3 The number of differing bits of the link- 
labels of Nl and N2 is at most 3 if  p 5 q 5 p + 2 or  
p + $ - 2  sq < p + p + l ,  and is at most 4 i f q  = 
p + p + 2 .  

Proof outline:- Let q = p + i ( i  = 0,1,2,8 - 2 , j  - 
1, p, p + 1 or p + 2 ) .  It can be proved that 

Lli'l(N2) = (LKl(N1) + r )  mod li 

where r = [ i /pJ  or [ i / p ]  

and ( L K 2 ( N 1 )  + (a - i )  mod p) mod 
L1<2(Af2) = ( L K 2 ( N , )  + i mod p )  mod $ 

Substituting i and using the Gray Code Property, the 
results can be proved. 0 

Lemma 4 The number of differing bits of the bead- 
labels of NI and N2 is at most 2. 

Proof outline: By the definition of bead-number and 
the Cyclic Sum Property, 
IBEAD(N1) - BEAD(N2)I 5 2 .  Hence the result 

0 

Lemma 5 If q = p + 8 + 2 ,  the number of diflering 
bits of the bead-labels of NI and N2 is at most 1. 

Proof outline: Note that one of p/(p+2)J and 

[ q / ( p  + 2 ) ]  must be odd and the other must be even. 

(This is the reason why the factor 8 + 2 is used in 
defining the function 6.) Then it can be proved that 
JBEAD(N1) -BEAD(N2)1 5 1 using the Cyclic 
Sum Property. Hence the result by the Gray Code 
Property. 0 

by the Gray Code Property. 

I 

Now, let us consider vertical neighbours. 
For the following 2 lemmas, let M and N be any 

vertical neighbours such that M is above N. Since all 
layers are transformed into jagged grids in the same 
way, M and N will be mapped to the same position 
of 2 adjacent jagged grids. 

Lemma 6 The number of diflering bits of the link- 
labels of M and N is at most 2. 

Proof outline: With some arithmetic manipulation, 
we can show that LI<l (M)  = LI<l(N) mod & or 
(LKl(NJ + 1) mod & and L K 2 ( M )  = ( L K 2 ( N )  + 
1) mod p. Thus the number of differing bits in both 
components of the link-labels of M and N are at most 
1. 0 

Lemma 7 The number of diflering bits of the bead- 
labels of M and N is at most 2. 

Proof outline: Since M and N are mapped to the 
same position of 2 jagged grids, 6 ( M )  = b(N). SO 
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B E A D ( N )  - B E A D ( M )  = 1 or 2. Hence the result 
0 by the Gray Code Property. 

The number of differing bits of the binary labels is 
at most 5 for any horizontal neighbours in G by Lem- 
mas 3 to 5, and is at most 4 for any vertical neight- 
bours by Lemmas 6 and 7. So the strategy described 
gives a dilation-5 embedding for any 3-D grid G. 
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Figure 1: Transform a rectangular grid into a jagged grid 
by the trio's method 

Figu 2: Partition of a jagged grid into 1 cells. Nc e 
that the dotted line represents the super-chain and 
each small circle or oval represents a cell. v ( 5 , 5 )  = 

~~ - 

[ 2 1 1 , 2 , 1 , 2 , ~ 1 ~ 1 ~ , ~ 1 ~ , ~ 1 ~ , ~ 1 ~ , ~ , ~ 1  

layer 0 

layer 1 

layer 2 

layer 3 

layer 4 

Figure 3: An example o f  link-number and bead-number 
assignments. Nodes of link 3 are shown with their bead- 
numbers 

Figure 4: Values of 6 function for the nodes of one layer 

288 

Authorized licensed use limited to: Iowa State University. Downloaded on April 15,2010 at 14:59:31 UTC from IEEE Xplore.  Restrictions apply. 


