
large l. Thus, to the best of our knowledge, this is the first
report of a well-performing assignment heuristic that is both
essentially linear in the number of communication edges, and
better than existing, established heuristics of no better
complexity.  1996 Academic Press, Inc.

1. INTRODUCTION

The use of distributed software and hardware architec-
tures is widespread and accelerating. In order to utilize a
distributed architecture fully, software engineers need to
develop cooperating software modules running on differ-
ent machines. One well-known approach to constructing
distributed applications is through the use of remote proce-
dure calls (RPC’s). The RPC model is based on the so-
called client–server paradigm, and is similar to local proce-
dure calling. A major difference from the local call is that
an RPC allows a program to call procedures on a different
computer or in a different address space on the same com-
puter. The call is sent in the form of a request message to
a remote server process, which sends back a reply message
to the client. In contrast to local procedures, remote proce-
dures cannot share the client program’s address space, and
as a result, input and output parameters have to be copied
between processes. The RPC construct is simple and
powerful because it provides a transparent remote calling
mechanism which is semantically similar or identical to the
traditional local call mechanism.

A great many distributed computer applications have
substantial computation and network communication re-
quirements. For instance, a number of hardware and soft-
ware vendors have recently announced strategic commit-
ments to multimedia computing—a distributed application
area well known for its use of CPU-intensive algorithms
and bulky data for representation, manipulation, and trans-
mission of images, voice, and video [1]. Distributed multi-
media systems can be considered a natural extension
of today’s distributed systems. Typical examples are
computer-supported education, desktop multimedia pro-
cessing, office and hospital information systems, informa-
tion kiosks, point of repair, browse, and sell, and entertain-
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This paper introduces a new load balancing and communica-
tion minimizing heuristic used in the Inverse Remote Procedure
Call (IRPC) system. While the paper briefly describes the IRPC
system, the focus is on the new IRPC assignment heuristic.
The IRPC compiler maps a distributed program to a graph
that represents program objects and their dependencies (due
to invocations and parameter passing) as nodes and edges,
respectively. In the graph, the system preserves conditional and
iterative flows, records network transmission and execution
costs, and marks nodes that have to reside at specific network
sites. The graph is then partitioned by the heuristic to derive
a (sub)optimal node assignment to network sites minimizing
load balancing and network data transport. The resulting pro-
gram partition is then reflected in the physical object distri-
bution, and remote and local object communication is trans-
parently implemented. The compiler and run-time system use
efficient implementation techniques such as type prediction,
inlining, splitting and subprogram passing. The last of these
allows remote code to be copied to local data, as an alternative
to copying data to the remote site, whenever this will reduce
network data transport. The IRPC graph partitioning heuristic
operates in time O(E(log d 1 l 1 log M )), where M is the
number of network sites, E is the number of communication
edges, and d is the maximum degree of a node; l is a parameter
of the algorithm, and can vary between 1 and N, where N is
the number of communicating objects. This complexity is more
nearly independent of M, and considerably better in terms of
E and N, than that of previously known related algorithms,
such as A*, which employs backtracking and is potentially
exponential, or the max-flow/min-cut class of network flow
algorithms or heuristics which tend to be at least of V(MN2E),
and it can be made (by choosing l appropriately) as efficient
as even such fast heuristics as heaviest-edge-first, minimal com-
munication, and Kernighan–Lin. In an extensive quantitative
evaluation, the heuristic has been demonstrated to perform
very well, giving on the average 75% traffic cost reductions for
over 95% of the programs when compared to random parti-
tioning, and outperforming in cost reduction and actual execu-
tion time the three aforementioned fast heuristics, even with a

1 E-mail: alex@rtlab12.njit.edu.
2 E-mail: Jan.Bosch@ide.hk-r.se.
3 E-mail: aksit@cs.utwente.nl.
4 E-mail: marlowe@rtlab12.njit.edu.



The heuristic has complexity O(E(log d 1 l 1 log M),
where M is the number of network sites, E the number of
communication edges, and d the maximum degree of a
node; l is a parameter of the algorithm, and can vary be-
tween 1 and N, where N is the number of communicating
objects. This complexity is largely independent of M, and
the algorithm as a whole is substantially better in terms of
overall complexity than related algorithms and heuristics.

We have also tested the heuristic against three well-
established, ‘‘classic’’ heuristics, namely, heaviest-edge-
first, minimal communication, and Kernighan–Lin, of re-
spective complexity at least V(E log E), V(ME), and
V(N 2E /M) (see [24]). As Section 5 shows, the IRPC heu-
ristic clearly outperforms these other heuristics in practice,
both in terms of quality of solution and actual solution cost.

This paper is organized as follows. In Section 2 we discuss
background and related work. Section 3 briefly presents
the language and system model. Section 3 details program
graph construction. The IRPC heuristic migrates program
objects by partitioning the corresponding program graph,
aiming to balance the execution load while minimizing
network communications. The partitioning is developed,
presented, and evaluated qualitatively in Section 4. In Sec-
tion 5 a detailed, extensive quantitative evaluation of the
IRPC heuristic is reported. Section 6 summarizes our find-
ings and gives directions for further research.

2. BACKGROUND AND RELATED WORK

Our work on the IRPC heuristic is related to graph
partitioning algorithms and to resource allocation and mi-
gration algorithms. In what follows we discuss relevant
background and related work in each of these topics.6

2.1. Graph Partitioning Algorithms

Many practical problems, such as transportation, distri-
bution, and communication systems, are designed and
solved through graph models and graph partitioning algo-
rithms, as summarized, for example, in [32]. Network flow
algorithms address finding the maximum possible flow in
a network. Much work in these algorithms has concen-
trated on networks with a single source and a single sink
node [35]. The seminal max-flow-min-cut algorithm and
theorem of Ford and Fulkerson [10] was followed by the
first polynomial-time optimal algorithm (of O(E 2N),
where E and N are the numbers of edges and nodes, respec-
tively) by Edmonds and Karp [9]. Improved polynomial-
time optimal algorithms followed, among these [5, 7, 11,
12, 17]. Such algorithms’ complexities have remained worse
than O(EN), however; in fact, any practical algorithm
tends to have complexity close to O(EN 2). In real pro-
grams, E tends to grow only slightly faster than linearly in
N, although one can exhibit families even of structured

ment. Some multimedia applications require dedicated
server machines, such as audio and video recorders/com-
posers, to be shared by different application components.
Most RPC mechanisms would encounter serious perfor-
mance problems in dealing with such distributed applica-
tions, due to the unbalanced computation task assignments
and bulky data copying between machines.

One possible solution to these performance problems is
to provide more sophisticated call and task assignment
mechanisms to the programmer so that he or she can bal-
ance the computation load while optimizing remote calls.
This approach, however, has a significant drawback in that
it requires the programmer both to deal with complex
computation and communication semantics which are very
different from the familiar programming model, and to
become an overall performance expert in his or her system.

We believe that the programmer should not be con-
fronted with the details of distribution, task assignment,
and communication and their costs, but that instead, trans-
parent and automatic mechanisms must be provided. One
aspect of distributed systems is the distribution of program
modules, to balance workload and minimize interprocessor
communication. Distribution of program modules is a form
of graph partitioning, whose optimal solution finding is
NP-complete. To address this problem, we introduce a
new accurate, linear heuristic algorithm called the Inverse
Remote Procedure Calls (IRPC’s) heuristic, which gener-
ates a (sub)optimal task-to-processor assignment subject to
simultaneous execution load balancing and communication
cost minimization. The system is called inverse because it
frequently (1) moves procedure code transparently to the
site of the caller (subprogram passing), where the original
program would have copied bulky data objects to the called
procedure site, or (2) when procedures are grouped in
objects, invokes methods of the calling object from the
method/procedure at the called site, which may make ac-
cess to caller data more efficient.

The IRPC system also provides complete compile- and
run-time support for transparent program distribution and
interconnection. As our approach is based on object-
oriented concepts, the IRPC compiler and run-time system
support employ such techniques as type prediction, inlin-
ing, method splitting, and subprogram passing. Moreover,
the system provides language-level stubs for all run-time
distributed calling and communication. While many as-
pects of IRPC—a system which incorporates not only a
heuristic task assignment algorithm but also a compiler, a
stub generator, and a run-time system—are new, in this
paper we focus on the task assignment heuristic.

We have tested the heuristic for a large set of randomly
generated and randomly assigned application programs.5

The IRPC heuristic has performed quite well, finding bet-
ter distributions for over 95% of the programs and decreas-
ing RPC transmission costs on the overall average of 75%.
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5 While the programs have been generated randomly, the generation
parameters have been adapted from a real multi-media distributed system.

6 The IRPC project in general is related to works in remote procedure
calls (RPCs) and some object-oriented systems. A discussion of related
work in these two areas can be found in [23].



programs for which E is V(N 2). Thus, a practical optimal
solution must be worse than order O(N 3), which we con-
sider computationally prohibitive. Moreover, optimal net-
work algorithms do not scale up well to networks with
multiple sources and sinks, as these almost always make
the problem NP-complete.

One other efficient graph partitioning heuristic is due
to Kernighan and Lin [13]. The heuristic essentially repeat-
edly picks a pair of sites and a pair of objects preassigned
to each site and swaps those two objects whose exchange
would decrease the cost at the site the most. The complex-
ity of Kernighan–Lin is V(N 2E /M)), where M is the num-
ber of sites (processors), which is marginal for a practical
algorithm. Other graph partitioning algorithms include
backtracking, which in the worst case considers every parti-
tioning possibility in an exponential, computationally pro-
hibitive fashion, and the A* algorithm, which is a breadth-
first algorithm which starts by creating a number of partial
solutions and then repeatedly advances the most promising
one one step further. We originally considered the A*
algorithm as promising for IRPC. Having implemented an
adapted version of A* for code partitioning, however, we
have observed, that the complexity of the algorithm de-
pends heavily on the type of remote program. While in
the rare best case A* performs well in polynomial time,
in the average and worst cases, its complexity is exponential
in the number of objects due to backtracking. We have
therefore decided against the use of A*, and devised our
own graph partitioning heuristics, of complexity essentially
O(E log M), as described in Section 4.

2.2. Resource Allocation and Migration Algorithms

In the operating systems area, a considerable amount
of work has been carried out in resource migration and
allocation algorithms (compare [8]). In most cases, the
problem is represented as a graph with (weighted) process
nodes and (weighted) communication edges, and the opti-
mal solution either is not decidable or is NP-complete
[15]. Demand-based copying techniques have been used to
reduce network data transfer. For example, Emerald [3]
introduces a technique called call-by-move which transfers
parameter objects only when they are referred to. In the
so-called data shipping technique, used by several distrib-
uted file systems [18], data are delivered automatically to
a process as they are needed. Caching algorithms enhance
demand-based copying by using statistical information.
Again, several distributed systems adopt caching schemes
to reduce the average cost of data transmission [33].

A number of node techniques are actually fast heuristics,
based on either random assignment or finding a local mini-
mum. In random partitioning, nodes are allocated, at ran-
dom, to any processor in which they will fit. In the heaviest-
edge-first algorithm, the nodes connected by the heaviest
edges are allocated to the same processor. In the minimal-
remote-communication algorithm, processes are allocated
in such a way that the total weight of the edges radiating
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from each processor is minimized. Each unallocated pro-
cess is tried on each processor, and is assigned to minimize
the total weight of edges connected to nodes currently
outside the processor. In the quantitative evaluation of
the IRPC heuristic (see Section 5), we first assign nodes
according to random partitioning and then re-assign using,
in turn, four fast heuristics: the IRPC, the heaviest-edge-
first, the minimal-communication, and the Kernighan–Lin
graph partitioning heuristics. Since the IRPC heuristic uses
a combination execution–communication site cost mea-
sure, we actually enhanced the other three heuristics to
use the same measure.

Closely related to our work is processor task/module
assignment, considering interprocessor communication
costs and using network flow algorithms. In a seminal paper
[19], Stone applies an optimal max-flow-min-cut algorithm
(of the order of at least O(N3)) to two-processor assign-
ment, and suggests extensions to handle more than two
processors. To the best of our knowledge, the most efficient
among closely related contributions remain Lo’s O(MEN 2

log N) (where M is the number of processors) heuristics
for task assignment in distributed systems [16]. These have
been shown to achieve optimal multiprocessor assignments
in 22% of a large number of cases and practically never to
produce a suboptimal assignment with cost more than 1.5
times worse than that of the optimal assignment.

One important difference between our approach, on the
one hand, and resource migration and allocation algo-
rithms, on the other, is that we aim at a finer granularity,
assigning objects or procedures to processors rather than
entire processes. Consequently, in our applications the val-
ues of E and N tend to be very large, making the algorithms
and heuristics described above prohibitively expensive. We
thus seek, in the rest of the paper, a well-performing heuris-
tic of order considerably better than V(N 3).

3. PROGRAMMING LANGUAGE AND COSTS OF
DISTRIBUTION, COMMUNICATION, AND

EXECUTION

3.1. The Language Model

We assume that distributed programs are written in an
object-oriented, distributed language, statically scoped and
based on active persistent objects. The language does not
support inheritance nor delegation, but incorporates an
interface concept similar to that of Sina [2, 34]. An applica-
tion consists of type declarations and an application de-
scription. Each type declaration contains internal objects,
methods, an initializer, and a process. The application de-
scription declares all global objects and allows the pro-
grammer to declare environment dependencies of global
objects; that is, objects dependent on processor resources
are bound to machines which support those resources. The
interface specifies exported methods for each object; calls
to local methods or methods exported from subobjects use
a object.method syntax with defaults.



Invocation/Termination. The costs of directing a
method of an object to execute and of returning a method
termination acknowledgement are small although not neg-
ligible. For simplicity of presentation, we assume both costs
to be an identical constant, C cost units, the size of the
smallest network packet.

Execution Cost—General. The compiler performs a
schedulability analysis [27, 30] of each method and process
to estimate the computation time the method/process
will need.

As an object is being compiled, the compiler builds a
directed acyclic execution graph (DAG) for each method,
unrolling loops, splitting and joining the graph where it
finds conditionals, and providing placeholders where meth-
ods of other objects are called. The graphs representing
these external methods are later inlined at the placehold-
ers. As executable machine instructions are generated, the
analyzer looks up their execution times in an execution-
time table (which makes standard assumptions of predict-
able platform timing) and accumulates them in basic graph
nodes, signifying straightline code executions.

Execution Cost—Loops. The number of loop itera-
tions significantly influences object/process execution time.
Moreover, a loop may contain calls. To compare the costs
of alternate assignments, it will be necessary to know the
loop iteration count or bound. We assume that the count/
bound for a while-loop is estimated by yet another func-
tion, also available at partitioning time. For constant-count
loops the function returns a constant value (naturally) and
for others the function returns a profiled (or statistical)
estimate. Recursion, wherever discovered, is treated in the
same way as iteration.

Execution Cost—Calls. A process can call three types
of methods: methods of global objects other than the pro-
cess’ own object, methods of internal objects, and methods
of the process’ own object. The execution cost of a global
method is added to the cost of the object owning the
method. The execution cost of methods of an internal
object is added to that internal object’s total if the internal
object has added to the object itself. The execution cost
of an object’s own methods is, naturally, added to the cost
of the object itself, thus providing an estimate of the overall
object execution time. A method, in turn, can call methods
of global and internal objects only (but not methods of its
own object), and these are handled similarly.

Execution Cost—Contention. In conventional sched-
ulability analysis, the DAGs of the methods are later used
to determine contention among independently executing
processes, through symbolic execution in the back end of
the analyzer. However, for the purposes of guiding assign-
ment, the IRPC and similar heuristics do not normally
require such accurate contention estimates. In fact, we only
accumulate execution times in the absence of contention.

Within a process or method, statements are executed
sequentially. The number of active processes in the system
is bounded from above by the number of objects in the
system, as each object has its own process. For remote
procedure calls, the process of the calling object is blocked
and a new process is created at the called site to execute
the requested method of the called object. After finishing
method execution, the process dies and the return object,
if available, is returned to the blocked calling process.

3.2. Deriving Distribution, Execution, and
Communication Costs

Given an application program, we make a number of
assumptions on object distribution, communication, execu-
tion, and costs. Based on these assumptions, we compute
these costs (on a per method, per process, and ultimately
per object basis), consequently enabling the labeling of the
nodes and the edges of the graph representation of the
entire application (see 3).

Internal Objects and State. Internal objects can be dis-
tributed, although access to internal objects must pass
through the interface of the global object. However, only
internal objects used as a parameter are distributable. It
is the responsibility of any method invoked with an internal
object parameter to make the relevant part of the object
available at the site of the method. In addition, we assume
that any site has enough storage to accommodate any num-
ber of objects.

Operators. All operators are considered to be methods,
whether primitive, user-defined, or available through li-
braries. The compiler and run-time system will make use
of the distinction; the code of primitive methods is auto-
matically available at all sites (and typically inlined), unlike
that of user-defined and library methods. Library code will
in general only be available on sites where the library or
objects of the specific type are placed.

Constants. Constants are provided by run-time support
on every site, and the cost of manipulating constants is
negligible. Thus, constants are never site-dependent, and
never need to be transmitted over the network.

Parameters. For every method invocation, the cost CP

(where CP is a positive integer) of making a particular
object P available at the method is known, via a special
local cost estimate function, at the time of program parti-
tioning.7 This cost only applies if P resides on a different
site from the method, and is treated as zero otherwise. For
convenience of program partitioning, the call to the cost
estimate function—returning the cost of this single invoca-
tion—may be specified, as an optional directive ignored
by the compiler. If the directive is omitted, the system
provides a default value. Details can be found in [4, 22, 23].

120 STOYENKO ET AL.

7 Including per call setup, messaging, switching, and routing—we have
not yet addressed these and other types of communication overhead.



In cases where a conditional splits execution flow, we take
the execution time to be the maximum of the two possi-
ble times.

Constructing the Graph. A graph node represents a
global object, or an internal object which is used as a
parameter during execution. If the object is environment
dependent, meaning that it has to reside at a particular
network site, the node is labeled as such. Dependencies
among objects are represented as graph edges. In our pro-
grams, two types of dependencies may be found. First, a
direct invocation, in the body of a process P1 (or a method
of an object O1), of a method of an object O2 constitutes
a dependency of P1 (or O1) on O2 . Observe that indirect
invocations do not constitute dependencies. Consider the
following example: P1hO2?M1(O4?M1(O6), O5) O3?M1(O7)j.8
In this example, a process P1 makes two calls. The first call
is to the method M1 of object O2 , passing two parameters,
namely (1) the method M1 of object O4 , passing this
method in turn the object O6 as a parameter, and (2) the
object O5. The second call is to the method M1 of object
O3 , passing in turn the object O7 as a parameter. Thus, P1

is dependent on O2 and O3 but not on O4 , O5 , O6 , or O7 .
Second, if an object O1 is passed as a parameter to a

method of an object O2 , then O2 is dependent on O1 . In
our example, O2 is dependent on O4 and O5 , O4 is depen-
dent on O6 , and O3 is dependent on O7 .

We label graph nodes and edges with execution and
communication costs, where per method, per process, and
per object costs are derived—on the basis of compiler-
extracted information and calls to cost estimating func-
tions—as discussed in [24]. Since a node represents a single
object, its cost will be used as the node label. On the other
hand, an edge label may represent the costs due to single
or multiple calls; these costs will only be incurred if the
two nodes incident on the edge are placed on different sites.

The number of calls along a particular execution path
is known since the code of every method and process has
been unrolled. Communication costs (due to the parame-
ters passed) are accumulated as straight sums where there
is no conditional execution flow.9 Should an edge be repre-
senting a dependency discovered inside a branch of an if-
statement (and conditional flow thus be present), the edge
is labeled with the triplet (C, IF, IF#), where the three
elements of the triplet are respectively the edge cost, a flag
indicating the branch of the if-statement (that is, the then-
branch or the else-branch), and a unique number distin-
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guishing this if-statement from all others.10 Duplicate edges
are unified, carrying the union of labels, with the sum of
costs for each label. When two nodes are placed on differ-
ent sites, all edges that make them adjacent are cut.

In the resulting graph, the program is represented as a
disjoint collection of connected subgraphs.11 (While the
graph is derived using directed dependence edges, our
subsequent analysis operates on the underlying undirected
graph. This will result in better load-balancing as measured
and projected during (re-)partitioning, although possibly
in poor actual behavior on some call paths. With the addi-
tion of an outer loop to handle unreached nodes in a weakly
connected component, the algorithm of Section 4 can be
relatively easily adapted to work on the directed graph
with no additional asymptotic complexity.) Since processes
and objects are represented uniformly in the graph, we
omit references to processes in the rest of the paper. There
are no duplicate edges in the graph, though an edge may
have more than one cost label (a straight cost and a triplet
for each conditional branch the edge is involved in). The
nodes corresponding to environment-dependent objects
are labeled as such.

Finally, we use the accumulated information to sort the
edge lists by decreasing worst-case total cost. We first need
to assign a definitive cost to each edge. Since the worst-
case cost on an edge will correspond to the maximum on
any execution path, which will correspond (with appro-
priate loop multipliers) to some set of nested conditionals.
This set of conditionals, and its cost, can be found by
taking maxima on branches in a bottom-up traversal of
the conditional nesting tree: if conditional q is nested in
the true branch of conditional p, we will add the maximum
branch cost for q to the true branch cost for p, and so on.
After this computation, sorting is direct.

While the cost for this processing is O(E log d), where
d is the maximum degree of a node, this is a one-time cost.
It depends only on the code of the program, and not on
the topology, and does not need to be recomputed if the
graph has to be repartitioned.

4. PARTITIONING THE GRAPH

Given a program graph, possibly with some environ-
ment-dependent nodes (that is, objects, such as resource
managers, which must be assigned to specific processors),
we need to partition the graph over available sites. Ideally,
we would like to find a partitioning heuristic that balances
the load evenly over the available processors and aims to

8 For clarity, we omit cost estimate functions in this example.
9 The exact effect of unrolling is as follows. Should an edge represent

a dependency discovered inside a while-loop, the cost of the edge is
computed as the cost returned by the cost estimate function times the
number returned by the number of iterations estimate function (of that
loop). Should an edge represent a dependency due to a conditional expres-
sion in a while-loop, the cost of the edge is computed the estimated
number of iterations plus one (and times C). Recursive calls are un-
rolled similarly.

10 A fourth component could be added for profiling information if
available. We do not consider conditional profiling further in this paper.

11 It is possible to have a MAIN process of some kind, whose job it is
to instantiate every other process at program start time. Then, there
would be a dependency from every other process to the MAIN (and
hence the entire graph would be connected, assuming every object has
a purpose in the program). However, we do not insist on having such
a MAIN.



more travelable edges can be taken, or when a node already
assigned to a site is encountered, or a maximum length l
is attained. Figure 1 presents a number of possibilities for
which the path cannot be developed further. These include
running out of edges (a dead-end), hitting a node in the
path being generated (temporarily assigned to the same
site—a loop), a node permanently assigned to the same
site (a cycle), a node permanently assigned to a different
site (a normal path), or a node which is part of a previously
developed path, or a dead-end, a loop, a cycle, or a normal
path. This last case means that two intersecting paths have
been discovered and cutting is required. A path of length
l not in any of the above is called a partial path. In Fig. 1
and consequent figures that present various cases which
the heuristic encounters, nodes from different sites are
drawn in different planar shapes (e.g. triangles, squares
and ovals) and permanently and temporarily assigned
nodes are presented as solid- and dotted(broken)-outlined
shapes, respectively.

While cutting two intersecting paths is linear in terms
of the total length, the same operation will require back-
tracking and is consequently NP-complete for three or
more intersecting paths. Consequently, whenever two in-
tersecting paths are discovered, they are cut right away.
All nodes in the cut paths are assigned permanently to the
appropriate site (possibly changing their previous tempo-
rary assignments), and the costs of the cut edges become
the only relevant communication costs in the paths. Should
a cut not be needed (this occurs when another independent,
nonintersecting path is discovered or the heuristic runs
out of edges to take), the path is remembered for future
cutting.

Cutting a path is based on load balancing and minimiza-
tion of interprocessor communication, which, in principle,
are two contradictory requirements. The cost of a site is
defined as the sum of the execution (node) cost of all
objects assigned to the site and the communication (cut
edge) cost with objects (nodes) at other sites. The cut in
a path between two sites S1 and S2 occurs on the edge

minimize the sum of communication costs along the edges
cut by the partition, and works considerably faster than
time complexity V(N 3).

The heuristic presented here bases its assignment deci-
sions on (1) choosing the least loaded site for likely future
assignments among all sites, and (2) choosing the edge
which minimizes a combination load-balancing and com-
munication-minimizing formula among all possible cut
edges. We will see in the qualitative and quantitative evalu-
ation Sections that the heuristic in fact works very fast and
produces good results.

We now present an outline of the heuristic. A detailed
description and detailed complexity analysis can be found
in [24], and summary complexity analysis in Appendix B.
The fundamental approach in the heuristic is to enable
quick partitioning by avoiding backtracking totally. Since
there needs to be a cut between any two environment-
dependent nodes at different sites, the heuristic always
follows paths beginning with an environment-dependent
node. The heuristic repeatedly attempts to find paths origi-
nating at an environment-dependent node and identifying
cuts optimal to a subset of possible paths between that
node and some other possible environment-dependent
node (residing at a different site). Should the paths be
disjoint, the cut will in fact be optimal. On the other hand,
should the heuristic discover intersecting paths, it will do
a cut before a third intersecting path can be found, in order
to avoid backtracking. If the heuristic loops or hits a dead-
end or cycle without finding an environment-dependent
node residing elsewhere, the loop, dead-end, or cycle is
remembered, until either a path intersecting with it is found
(necessitating a cut) or the heuristic runs out of possible
paths, at which point all nodes in the loop, dead-end, or
cycle are placed on the same site as the originating environ-
ment-dependent node.

The heuristic proceeds as follows. Initially, all environ-
ment-dependent nodes are permanently assigned by envi-
ronmental constraints to their respective sites, all other
nodes are not assigned, and all edges are travelable. Should
there be a site without an environment-dependent node,
a random node is picked and assigned there.12 The heuristic
repeatedly picks a permanently assigned node with at least
one adjacent travelable edge from the site with least cost
(where cost is the sum of execution of nodes currently
assigned to the site and the communication cost of their
associated cut edges). Having picked such a node, the heu-
ristic develops as long a path originating at the node as
possible, by repeatedly picking the most expensive travel-
able edge available. As nodes and edges are encountered,
they are labeled: the nodes as temporarily assigned to the
same site as the path-originating node, and the edges as
non-travelable. For each path, construction stops when no
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12 We assume that the number of nodes is relatively large compared
to the number of sites. Thus, a random assignment of a single node where
there are no environment-dependent nodes is very unlikely to destabilize
the overall eventual assignment. FIG. 1. Possible paths constructed by the heuristic.



which minimizes the maximum of the costs of the two sites.
This can be shown simultaneously to minimize the increase
in the cost of the more expensive site and to maximize the
decrease of the difference in the cost between S1 and S2 .
All nodes at S1’s side of the cut edge are labeled S1 and
all nodes at S2’s side are labeled S2 .

In the case of two intersecting paths two or three sites
may be involved. The heuristic first cuts the path between
the two least costly sites (if there are only two sites, then
the more expensive path is cut first), and only then the
remaining path (connected to the most expensive site).
Again, the rationale is to keep the site costs as balanced
as possible while trying also to minimize communication
costs.

Whenever no nodes can be picked to develop new paths,
the nodes temporarily assigned to the site with the least
cost are assigned there permanently; this may of course
change site cost and result in a different site becoming
least cost, allowing different nodes to become enabled. (A
partial path is expanded before assignment; assignment
may still be required, but this may also result in a CUT,
or in new nodes from which paths can be developed.) If
still no conforming (meaning permanently assigned and
adjacent to at least one travelable edge) nodes on the least-
cost site can be found after this permanent assignment,
the site with the next least cost is picked for the assignment,
and so on, until either a node is made available for new
path development or all nodes have been permanently
assigned (and the heuristic thus terminates).

The CUT TWO PATHS procedure is the central part
of the heuristic. Called whenever two intersecting paths
(obviously spanning at least two distinct sites) are discov-
ered, the procedure works as follows. By construction, the
nodes in the two paths can belong to at most three distinct
sites (otherwise, either they would not have intersected
or at least one path would already have been cut and
permanently partitioned). In what follows, all cases and
subcases are discussed, and furthermore, Figures are used
to illustrate one representative subcase in each case (figures
for the rest of the subcases are omitted for brevity). In all
relevant figures (2 through 5), nodes are labeled with node
numbers and execution costs in brackets, and edges are
labeled with communication costs.

Three Sites. Should the two paths span across three
distinct sites (see Fig. 2), then clearly there are no partial
paths, loops, cycles, or dead-ends, and exactly two cuts are
required to partition (‘‘cutting off’’ one site from the two
remaining, and then partitioning those two). The first cut
is done between the two least expensive sites in an attempt
to add more nodes to them, leaving fewer for the third
site and resulting in an improved across-site balance. Ob-
serve that once a node has been permanently assigned, all
edges from other nodes permanently assigned to it turn
from directed to undirected. The reader may wish to verify
for herself/himself that in considering where to make the
first cut, possible cost pairs (circle,triangle) are (106,75),
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(101,84), (96,91), (90,93), and (90,107). For the second cut,
the corresponding pairs (square,triangle) are (105,96),
(98,100), (102,116). Of these, (90,93) and (98,100) are of
course chosen, respectively. Observe how the maximum
difference in costs among the three sites has been reduced
from 17 to 10.

Two Sites—First Discovered Path across Both. Should
the two paths span across only two distinct sites, there are
a number of cases to consider. If the first-discovered path
spans across the two sites, then it is cut first. If the cut
leaves the intersecting node in the site with the origin of
the first path (see Fig. 3—the intersecting node is of course

FIG. 2. Three sites.

FIG. 3. Two sites—first-discovered path across both (one case).



the node and the second path is cut. After the cut, the
subpath of the first path from the intersection node on
becomes a loop at the same site as the intersecting node
(see Fig. 5—the intersecting node of course is node 2;
observe, again, that while there is still work to do, much
progress in assigning the nodes has taken place). If the
intersecting node is at the knot of the loop (which is also
the terminal of the first path), then the concatenation of
the entire handle, the knot and the second path is cut.
After the cut, the subpath of the first path from the intersec-
tion node on becomes a cycle at the same site as the inter-
secting node. Finally, if the intersecting node is strictly in
the cycle originating at the knot (which is also the terminal
of the first path), then the concatenation of the subpath
of the first path from the origin through the intersecting
node and the second path is cut. After the cut, if the knot
and the intersecting node are at the same site, the subpath
from the intersection node back to the intersection be-
comes a cycle at the same site. Otherwise, the subpath
reverses its direction and becomes a normal path across
the two sites (not a cycle, a loop, or a dead-end).

Although the heuristic is suboptimal, we strongly believe
that situations in which a poor node assignment is produced
are rare. The belief is substantiated by the very encourag-
ing results found in the extensive quantitative evaluation
reported in Section 5.

5. EVALUATION

The performance of the IRPC heuristic has been tested
extensively, on a large set of automatically-generated pro-
grams. The parameters for program generation have been
based on those observed in a real distributed multimedia
system at the University of Twente. There have been two
tests, using the parameter l 5 N (that is, without partial
paths). In both tests, for every program, its objects have
been assigned randomly (and the overall costs for each
site have been computed). In the first test we have assessed
how the IRPC compares to three established heuristics:
the minimal-communication, the heaviest-edge-first, and

node 4), then the nodes have been partitioned between
the two sites. Otherwise, the other path is cut (and then
the partitioning is for certain complete). There is a symmet-
ric case, identically treated, where the concatenation of
the second-discovered path and the subpath of the first-
discovered path from the intersecting node on spans across
the two sites.

Two Sites—First Discovered Path a Partial Path, Dead-
End or a Cycle within One Site. Should the first-discov-
ered path be contained within a single site, it must have
been either a partial path, dead-end, a cycle, or a loop. If
the path is a dead-end or partial path, a single cut is done
between the two sites (along the path from the origin of
the first path via the intersecting node on to the second
path). After the cut, in the case of a dead-end, the subpath
of the first path from the intersecting node on becomes a
dead-end path at one of the two sites (the same site as
that of the intersecting node); the rest of the nodes have
now been partitioned permanently across the two sites (see
Fig. 4—observe that even though the partitioning of the
nodes in the two original paths is not quite complete yet,
much progress has been made).

For a partial path, the remaining portion of the first path
is still partial (and assigned to one of the two sites), but
no longer of maximum length; it is extended until it is of
maximal length, or one of the other cases results, in which
case the resulting path is labeled accordingly. If the path
is a cycle, the same cut (as for the dead-end) is done. If
after the cut the intersecting node stays at the site of the
first path, then the first path’s subpath from this node on
becomes a new cycle path. Otherwise, the direction of this
subpath is reversed and the new path is normal (not a
cycle, a dead-end or a loop, but rather starts at one site
and ends at another).

Two Sites—First-Discovered Path a Loop within One
Site. If the first path is a loop, there are three cases to
consider. If the intersecting node is strictly in the handle
of the loop, then the concatenation of the handle up to
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FIG. 4. Two sites—first-discovered path a dead-end, partial path, or
cycle within one site (case of a dead-end).

FIG. 5. Two sites—first-discovered path a loop within one site
(one case).



the Kernighan–Lin. Specifically, given the random assign-
ment, this same assignment has been improved, in turn,
by applications of four heuristics, namely the IRPC and
the three ‘‘competing’’ ones. In the second test we have
assessed how various factors affect IRPC’s performance.
Specifically, we have varied evaluation parameters, and
have measured the IRPC’s improvement over the ran-
dom assignment.

5.1. Testbed and Parameters

As illustrated in Fig. 6, our testbed consists of four func-
tional blocks: Parameter Input, Program Generator, Opti-
mizer, and Measurement.

The unit Parameter Input is used to control the input
parameters of a particular test setting. The unit Program
Generator accepts this input specification and generates a
program which can be processed by a partitioning heuris-
tics. The unit Optimizer transforms the program with re-
spect to the heuristics. The unit Measurement gathers data
from the original and optimized program code. In addition,
the unit stores the collected data for a specified number
of tests, and presents relevant characteristics in a struc-
tural way.

The major input parameters are as follows:

• M is the number of network sites,
• SO represents parameters of objects,
• NO is the number of objects,
• DO is the percentage of environment-dependent

objects on all M sites,
• NS is the total number of statements,
• TS is the description of types and proportional repre-

sentations of various statements, and
• NP is the number of programs generated in a test

setting.
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There are as many test settings—picked by the Program
Generator—as there are combinations of the numbers of
sites and the numbers of objects. Given a test setting,
the Program Generator generates NP programs. For each
program, the size and type of each object are determined,
and then some objects are randomly chosen to be environ-
ment-dependent, and others assume random initial assign-
ments on the M (with equal probability of 1/M of being
assigned to any particular site) network sites. It is ensured
that for every site at least one environment-dependent
object is chosen. The program structure is as specified
by the above parameters. Specifically, a random number
generator adapted from the one published in [6] is used
to guess the type or nesting depth of a particular statement.
The generated numbers are normalized with respect to the
value domain of the parameters. Consequently, minimum
and maximum values of each parameter are also specified
to the Program Generator.

The parameter SO is a sextuple (S1
O , S2

O , PS1
O

, PS2
O

,
EOmin

, EOmax
). S1

O represents conventional data types and
control information, and S2

O is used for large objects, such
as video and audio. The percentage of occurrence of each
object category is specified in PS1

O
and PS2

O
(where PS1

O
1

PS2
O

5 100%). The execution time of an object is considered
to be related to the size of the object and is between
EOmin

and EOmax
times the size of the object.

The parameters NS and TS together determine the num-
ber and the proportional representation of all statements
in the program. The parameter TS is actually a triple (Pmsg ,
Tif , Twh), where Pmsg is the percentage of simple message
sends, and Tif and Twh represent if- and while-statements,
respectively. The three types of statements are distributed
uniformly—subject to proportional representation and
nesting (see below)—throughout the program. Observe
that this distribution defines sources of communication

FIG. 6. The functional block diagram of the IRPC test environment.



110, ..., 390) and exactly one possible number of sites (10),
thus resulting in 30 different test settings—with 900 pro-
grams generated for each, to a total of 27,000 programs
altogether. The plots in the rest of the section apply to a
single (‘‘average’’ over 900) program within a test setting.
We have fitted most evaluation graphs (in this and the
next Section) with straight lines to summarize the effect
of the independent variable on the dependent one. The
straight lines have been generated by a linear regression al-
gorithm.

We have implemented the three suggested alternate as-
signment heuristics—heaviest-edge-first, minimal-commu-
nication (as defined in [8]), and Kernighan–Lin (as defined
in [13])—and have applied them to the exact same set of
programs as we have the IRPC heuristic. Lower bounds
on the complexity of the three heuristics are derived in
Appendix A, namely, V(E log E), V(ME), and V(N2E/M),
respectively. In contrast, recall that IRPC has complexity at
least comparable to that of the others, O(E(log d 1 l 1
log M)), where M is the number of network sites, N is the
number of communicating objects, E is the number of
communication edges, and d is the maximum degree of a
node; l is a parameter of the algorithm, and can vary be-
tween 1 and N.

Thus theoretically (for suitable choices of l) IRPC has
cost comparable to minimal-communication or heaviest-
edge-first, and much better than Kernighan–Lin. IRPC
will also tend to be more robust in response to increases
in the values of N, M or E/M than the other heuristics.

The key issues we have addressed have been the execu-
tion complexity we have observed (Fig. 7 and 8 display
the complexities on logarithmic and linear scales, respec-
tively—we are using the logarithmic scale to elaborate how
the IRPC compares with the other heuristics) and the cost
improvement over the random assignment each heuristic
has generated as a function of the number of objects (Fig.
10).14 Since the number of sites is kept constant, the num-

edges (for messages). Targets (i.e., objects other than the
source object) of communication edges are picked ran-
domly. Thus, complete program graphs are defined
through this procedure.

Tif is a sextuple (Pif , Pifth , Nifs , Pifn1 , Pifn2 , Pifn3), where
Pif is the percentage of if-statements, Pifth is the percentage
of if–then-statements within Pif , Nifsn is the number of
statements within an if-statement, and Pifn1 , Pifn2 , and Pifn3

are the percentages of if-statement nesting depths of 1, 2,
and 3, respectively. Here, Pifn1 1 Pifn2 1 Pifn3 5 100%. The
percentage of if-then-else-statements within Pif is com-
puted as Pifthel 5 100% 2 Pifth .

Twh is a quintuple (Pwh , Nwh , Pwhn1 , Pwhn2 , Pwhn3), where
Pwh is the percentage of while-statements, Nwh is a uniform
range of the number of statements within a while-state-
ment, and Pwhn1 , Pwhn2 and Pwhn3 are the percentages of
while-statement nesting depths of 1, 2, and 3, respectively.
Here, Pwhn1 1 Pwhn2 1 Pwhn3 5 100%. Since there are only
three types of statements, the relation Pmsg 1 Pif 1 Pwh 5
100% holds for every program.

For each test setting, the unit Measurement collects the
following data: the number of sites, the number of objects,
the number of statements, the average fan-in/fan out of
objects, the average nesting of control statements, the time
to execute the program, the cost of the original program,13

and the cost of the optimized program. In every test, the
cost improvement has been computed as (Old Cost 2 New
Cost)/Old Cost.

5.2. First Test: IRPC versus Other Heuristics

In this test, the parameter settings have been as follows:

• M: M-min 5 M-max 5 10
• SO: S1

O-min 5 4 bytes, S1
O-max 5 4 Kbytes,

PS1
O

5 80%
S2

O-min 5 10 Kbytes, S2
O-max 5 1 Mbytes,

PS2
O

5 20%
EOmin

5 0, EOmax
5 10

• NO: NO-min 5 100, NO-max 5 390, (varying by 10)
• DO 5 15
• NS: NS-min 5 1 times the current number of objects,

NS-max 5 3 times the current number of objects
• TS: Pmsg 5 90%,

Pif 5 5%, Pifth 5 50%, Nifs-min 5 1, Nifs-max 5 5,
Pifn1 5 70%, Pifn2 5 20%, Pifn3 5 10%
Pwh 5 5%, Nwh-min 5 1, Nwh-max 5 9, Pwhn1 5 70%,
Pwhn2 5 20%, Pwhn3 5 10%

• NP 5 900

Throughout the tests, the cost of invoking a method or
returning a method termination acknowledgement (C) is
256 bytes (the size of the smallest transmittable network
packet on the Unix network system used in the evaluation).
Observe that there are 30 possible numbers of objects (100,
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13 These two costs are the maximum site costs of, respectively, the
randomly assigned program and the program reassigned from that ran-
dom assignment according to the heuristic in question.

FIG. 7. The complexity (execution times, in milliseconds, logarithmic
scale) of the four heuristics: (j) irpc, (h) heaviest edge, (r) minimal
communication, (e) Kernighan–Lin.

14 Recall that improvement is measured as the fraction (Old Cost 2

New Cost)/Old Cost.



ber of sites has the ‘‘constant multiplier’’ effect in the
complexity of the three ‘‘competing’’ heuristics. Thus, the
effect of the number of sites on any of the three heuristics
has not been evident even though their complexity depends
on that qualitatively. Since the number of edges—
representing message passing among objects—in a typical
object-oriented program is typically closer to the number
of objects than to the number of objects squared (the latter
would suggest that most objects send messages to most
other objects—hardly a good methodology for building
programs), the execution complexity of heaviest-edge-first
has been less than quadratic (though more than linear) in
the number of objects.

The constant number of sites, having been accounted
for, the observed complexities of the four heuristics seem
to correspond well to their qualitative counterparts. The
execution complexity (measured in milliseconds) of IRPC
and minimal-communication has been low-constant linear
and practically identical (minimal-communication has in
fact been somewhat better; see Fig. 9). Heaviest-edge-first
has been somewhere between linear and quadratic, and
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Kernighan–Lin has been more than quadratic (apparently
around O(N 2 log N)).

As far as the cost improvement, IRPC has fared about
as well as heaviest-edge-first. In fact, as the number of
objects grows, there appears to be a trend for the improve-
ment (for both heuristics) to grow over the random, and
for IRPC to improve over heaviest-edge-first. On the other
hand, the improvements of the other two heuristics over
the random assignment have been considerably less than
those of IRPC or heaviest-edge-first, and even seem to
worsen slowly as the number of objects grows. One some-
what surprising observation is that Kernighan–Lin—the
most expensive heuristic—performed so poorly. One plau-
sible reason is that node and edge costs (corresponding to
execution and communication costs) take on a large range
of values, while the simulation in [13] dealt with assigning
virtual memory pages in to real memory pages15 (approxi-
mately constant node costs, and not much communication).
Figure 11 has a table of cost ranking—first through fourth,
expressed as percentages, over all 27,000 programs (thus,
for instance, the IRPC has placed first in approximately
0.453553% 3 27,000 or 12,246 cases) for the four heuristics.
This ranking places IRPC head-to-head with heaviest-
edge-first, and very much ahead of the others. To derive
the expected rank of a heuristic, we take the sum of the
percentage fractions the heuristic has placed first, second,
third, and fourth, weighted (multiplied) by 1, 2, 3, and
4, respectively. Then IRPC, heaviest-edge-first, minimal-
communication, and Kernighan–Lin have average ranks
of 1.624269 P 1.6, 1.775469 P 1.8, 3.139207 P 3.1, and
3.461054 P 3.5, respectively.

Observe that while IRPC and heaviest-edge-first im-
prove similarly over the random assignment of programs
of 230 and 380 objects, IRPC requires 35 and 85 millisec-
onds for the two assignments, respectively, while heaviest-

FIG. 8. The complexity (execution times, in milliseconds, linear
scale) of the four heuristics: (j) irpc, (h) heaviest edge, (r) minimal
communication, (e) Kernighan–Lin.

FIG. 9. A closer look at the complexities of IRPC (j) and minimal
communication (h). 15 See [13, p. 291].

FIG. 10. The cost improvements (over the random assignment) of
the four heuristics: (j) heaviest edge, (h) irpc, (r) minimal communica-
tion, (e) Kernighan–Lin.



Figure 13 depicts the time complexity of the heuristic,
approximated by a polynomial function which is linear in
the number of objects (that is, O(NO)). The plotted times
are actual clock values (of our platform) in milliseconds.
This complexity is the same as that derived qualitatively
in the Appendix B. The random variations in the graph
are due to network contention and memory swapping.

5.3.2. Influence of the Average Fan-In/Out

In the second test, we evaluate the performance of the
heuristic versus the average fan-in/out (FIO). FIO is mea-
sured as the average number of edges connected to the
environment-dependent objects in the graph representa-
tion of the program. The results of the test are depicted
in Fig. 14, demonstrating a modest linear improvement
with the growth in the FIO. Specifically, the x-axis repre-
sents the change in the average FIO, by 1 from 4 through
15.16 Other parameters, including the communication costs,
are varied as before. Thus, the same test settings are used
as before, but they are repeated first for FIO 5 4, then
for FIO 5 5, and so on through FIO 5 15.

One might expect the heuristic to perform less well when
the average FIO (and consequently the number of alterna-
tive paths out of an ED node) grows, since the heuristic
only considers one or two paths at a time. However, as
the FIO grows, so does the number of edges connecting
ED nodes directly (recall that these edges are cut right
away). Moreover, graph connectivity also grows, and with
it the relative effect of the communication cost component
(as contrasted with the execution cost component) on the
overall site costs. The following argument suggests why
the heuristic will tend to perform better in this case.

Since (1) execution costs are generated randomly and
uniformly, and (2) the initial random node assignment
tends to distribute nodes uniformly among sites, the initial
random assignment is also likely to distribute the execution
cost component of overall site costs in a fairly balanced
way. Since the heuristic works fairly well, in the resulting
heuristic assignment the execution costs are again going
to be fairly balanced.

edge-first requires about 4,000 and 18,000 (or 114 and 212
times more!). Since IRPC has performed far better than
two other ‘‘competitors’’ and about the same as the third,
which has considerably worse complexity and perfor-
mance, we believe the IRPC heuristic to be considerably
better for our class of program assignment problems.

5.3. Second Test: The Effects of Various Factors on
IRPC’s Performance

While IRPC outperforms other heuristics, we have un-
dertaken another test to determine what impact various
factors—namely the number of objects, the average Fan-
In/Out at ED nodes, the execution cost component, the
proportion of ED objects, the number of sites, and the
number of objects per site—have on the heuristic’s perfor-
mance.

The parameters for this evaluation have been as follows:

• M: M-min 5 2, M-max 5 10
• SO: S1

O-min 5 4 bytes, S1
O-max 5 4 Kbytes,

PS1
O

5 80%
S2

O-min 5 10 Kbytes, S2
O-max 5 1 Mbytes,

PS2
O

5 20%
EOmin

5 0, EOmax
5 10

• NO: NO-min 5 100, NO-max 5 490 (in increments of 10)
• DO 5 15
• NS: NS-min 5 1 times the current number of objects,

NS-max 5 3 times the current number of objects
• TS: Pmsg 5 90%,

Pif 5 5%, Pifth 5 50%, Nifs-min 5 1, Nifs-max 5 5, Pifn1

5 70%, Pifn2 5 20%, Pifn3 5 10%
Pwh 5 5%, Nwh-min 5 1, Nwh-max 5 9, Pwhn1 5 70%,
Pwhn2 5 20%, Pwhn3 5 10%

• NP 5 2000

5.3.1. Influence of the Number of Objects

We evaluate the performance of the IRPC heuristic ver-
sus the number of objects. This test differs from all others
in that the number of sites M is kept constant at 10.

The result of this test is illustrated in Fig. 12. The heuris-
tic finds a better distribution for 95% of the programs, and
reports an average improvement of 75%. In the case of
the remaining 5% of the programs, the random initial distri-
bution is better than the distribution found by the heuristic.
The performance improvement found by the heuristic de-
pends somewhat on the number of objects. As the number
of objects increases, the performance does not seem to
deteriorate and possibly even increases somewhat.
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Rank IRPC Heaviest-edge Min-comm Kernighan–Lin

First 0.453553 0.456838 0.079072 0.010536
Second 0.503531 0.393559 0.088744 0.014166
Third 0.008006 0.066899 0.446089 0.479006
Fourth 0.034909 0.082704 0.386095 0.496292

FIG. 11. A ranking of the four heuristics.

FIG. 12. Performance improvement versus the number of objects.

16 The actual growth in the FIO is achieved by adding program edges—
through increasing the proportional representation Pmag of message state-
ments—in the generation.



Thus, the improvement in the execution cost component
between the initial and the heuristic assignments is likely
to be modest. On the other hand, while the cost of a cut
edge in the initial assignment is likely to be the average
edge cost, the cost of a cut edge in the heuristic assignment
is likely to be below average edge cost. Thus, the improve-
ment in the communication cost component between the
initial and the heuristic assignments is likely to be signifi-
cant. Since the proportional effect of the communication
component grows with the FIO, so does then the overall
improvement, that is the performance of the heuristic.
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5.3.3. Influence of Execution Cost

In Fig. 15 the performance of the heuristic is measured
as the effect of the execution cost component on the overall
site cost is increased. Specifically, the x-axis represents the
change in the multiplier X (varying by 1 from 0 through
50) where the execution cost of an object is computed as
X times a basic size of the object (picked randomly by
the Program Generator). Other parameters, including the
communication costs, are varied as before. Thus, the same
test settings are used as before, but they are repeated first
for X 5 0, then for X 5 1 and so on through X 5 50.
Not surprisingly, as the proportional effect of execution

FIG. 13. Time complexity (execution time in milliseconds) versus the number of objects.

FIG. 14. Performance improvement versus the average fan-in/out
of environment-dependent objects. FIG. 15. Performance improvement versus execution cost.



of objects per site grows, so does the performance of the
heuristic, by the same argument as just presented in the
previous test.

6. CONCLUSIONS AND FUTURE WORK

To shield the distributed program writer from the com-
plex problem of minimization of expensive network traffic,
transparent and automatic mechanisms are needed. The
IRPC system provides such a mechanism. Given a distrib-
uted program (written in an object-oriented concurrent
language), the IRPC system compiles it to a program graph.
Program objects and their dependencies (due to invoca-
tions and parameter passing) are represented as nodes and
edges, respectively. Care is taken to preserve conditional
and iterative flows. Real and would be execution and net-
work transmission costs are recorded as node and edge
labels respectively, nodes that have to reside at specific
network sites are marked as such, and other nodes are
marked with their initial site assignments. Once con-
structed, the graph is partitioned by the IRPC heuristic
for the purpose of finding a (sub)optimal (in the sense of
load balancing and minimization of network data trans-
port) node assignment to the network sites. The resulting
graph is then used to drive the object assignment and
transparent stub generation and run-time RPC support
(not discussed in this paper which focuses on the IRPC
heuristic) for the distributed program.

The low complexity—both inherent and observed in a
practical implementation—of the IRPC heuristic makes it
possible to apply the heuristic in not only static but also
dynamic partitionings.17 Thus, distributed implementations

costs increases, the improvement achieved by the heu-
ristic over the random assignment decreases. The figure
thus exhibits modest, linear deterioration in per-
formance.

5.3.4. Influence of Environment-Dependent Objects

In this test, we measure the effect of the percentage of
environment dependent objects on the performance of the
heuristic. We use the same parameter settings as before
with the exception of DO, which we vary from 10% to 90%.
The result of this test is shown in Fig. 16. The percentage of
environment-dependent objects degrades the performance
of the heuristic approximately linearly. This effect is ex-
pected, since the fewer objects the heuristic is allowed to
move, the less optimization is likely.

5.3.5. Influence of the Number of Network Sites

With the exception of the first test, every test described
so far has been run for every value of M between 2 and
10, inclusively. Figure 17 shows the relation between the
number of sites and the average performance of the heuris-
tic. The performance of the heuristic deteriorates slowly
(and linearly) as the number of sites increases. This is
hardly surprising, since as the number of sites grows, the
number of possible average balanced site assignments
drops (all sites are homogeneous and consequently all sym-
metric assignments are considered as the same assign-
ment). (In the extreme case of No 5 M, the number of
possible different assignments is exactly one.) Conse-
quently, the opportunity for the heuristic to improve upon
the initial assignment decreases as the number of sites
grows.

5.3.6. Influence of the Number of Objects per
Network Site

In Fig. 18 the relation between the number of objects
per site and the average performance is plotted (based on
the same data and runs as the previous test). As the number
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FIG. 16. Performance improvement versus the percentage of envi-
ronment-dependent objects.

FIG. 17. Performance improvement versus the number of network
sites.

17 Our evaluation has suggested that ‘‘classic’’ low polynomial complex-
ity heurstics either underperform when contrasted with the IRPC heuristic
(as is the case with Kernighan-Lin and minimial-communication) or keep
up in performance but, unlike the IRPC heuristic, become prohibitively
expensive in terms of execution time (as is the case with heaviest-edge-
first—indeed, for a well-sized realistic program, applying heaviest-edge-
first to re-partition at run-time would be very time-consuming).



of dynamically bound, object-oriented languages, such as
SmallTalk, C11, or Sina, may benefit by invoking the
IRPC heuristic at run-time, possibly as often as new objects
are instantiated or new bindings are made.

One can try improving further on the IRPC heuristic’s
dynamic partitioning applicability. For instance, while the
heuristic focuses on execution–communication load bal-
ancing, it makes no attempt to minimize the number of
migrations required in a dynamic repartitioning. One heu-
ristic way to minimize the effect of migration would be to
apply the IRPC to an updated part of the program only
(to ensure that only a part of a program is considered,
the rest may be labeled environment-dependent). A more
systematic way would be, however, to extend the heuristic
to consider migrations as some part of the cost of the
new partition. The latter method, however, would almost
certainly increase execution time complexity of the heu-
ristic.18

The heuristic’s complexity is considerably better than
that of previously known algorithms, such as the A*, which
employs backtracking and is potentially exponential, or the
max-flow-min-cut network flow algorithms and heuristics,
which are O(MN 4), and many of which do not even scale
up past M 5 2. Moreover, the complexity of the IRPC
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heuristic is logarithmic in M, and thus cannot be bettered
by any algorithm which considers site costs (and is thus at
least linear in M) in making assignments.

In our extensive tests, the IRPC heuristic has outper-
formed—in both cost improvement and execution time—
other ‘‘competing’’ heuristics, namely heaviest-edge-first,
minimal-communication, and Kernighan–Lin. In absolute
terms, the IRPC heuristic has performed remarkably well,
achieving on the average 75% improvement (over random
assignment) in execution load balancing and communica-
tion cost reduction, for over 95% of the programs. The
heuristic is not only stable but the cost improvements seem
to even grow somewhat as the number of objects, and
especially the number of objects per site, grow. This means
that the more loaded the distributed system is, the better
the heuristic is likely to perform. As the average fan-in/
fan-out (FIO) increases, so does the performance of the
IRPC heuristic. Thus, the more communication-intensive
the distributed application is, the better the heuristic will
perform. On the other hand, the more CPU-intensive the
application is, the less well the heuristic will perform
(though it will still improve very considerably over a ran-
dom object assignment!). One immediate extension of this
work is to put realistic limits on network site and link
capacities. Specifically, rather than addressing the general
load-balancing and communication cost minimization
problem in a homogeneous, completely connected net-
work, we would treat the network as a set of connected
heterogeneous sites, where node assignment should be

FIG. 18. Performance improvement versus the number of objects per site.

18 This increase could in fact be quite significant. It may also be observed
that none of the low-polynomial order ‘‘classic’’ heuristics, including the
three we have compared the IRPC one against, attempt to minimize the
number of migrations either.



ble, since an evolved distributed system would have to be
integrated with a new (language) specification component
for environment dependencies, costs estimation, graph
generation, partitioning and re-generation, and a user feed-
back interface.

APPENDIX A. PSEUDOCODE FOR THE THREE
PARTITION ALGORITHMS

While the basic ideas of the three partition algorithms
we have used to compare the new IRPC heuristic against
are very well-known, it is conceivable that exact implemen-
tations of them will differ. Moreover, to make the compari-
son as fair as possible, we decided to use the inherent lower
V bounds for these algorithms (against the upper O bound
of the IRPC heuristic). For these reason, it is both unneces-
sary and possibly impossible to show as detailed an imple-
mentation of the three algorithms as that of our new IRPC
heuristic—which of course is introduced by and thus must
be detailed in this paper. Rather, we provide high-level
pseudocode implementations, followed by optimistic (thus
giving the three ‘‘competing’’ heuristics the benefit of the
doubt) complexity estimates. Finally, we stress that while
the site costs as used in various heuristics may be different
from ours (which is the combination of execution and com-
munication costs), in our implementation of these heuris-
tics, wherever site costs are computed, for fairness, the
same combination site cost is used as used in the IRPC
heuristic evaluation.

driven by site- and link-packing heuristics. Another exten-
sion would incorporate realistic overhead costs, due to
migration, processor switching, communication, buffering
and so forth, into cost computation. Yet another extension
would be to incorporate not only load-balancing type of
criteria, but also other ones, such as parallelism and dead-
lines (we have begun such work [31] since the original
submission of this paper).

However, the theoretical complexity of the heuristic de-
pends on a parameter l. Values between max(log d, log
M) and N 2 M can be expected to give different and not
clearly predictably related actual performance. Experi-
mentation is needed to determine reasonable values of l
in terms of N, M, E, and d.

So far we have not addressed how the functions that
estimate costs and the number of loop iterations should
be designed. The functions should return values according
to sound metrics, which would in turn be dependent on
statistical program studies and programming methodolo-
gies. Assuming better cost reductions may be achieved
without a significant loss in complexity, it may be of interest
to try developing better heuristics. One additional obvious
direction to proceed is to find a heuristic for cutting over
more than two paths with minimal or completely with-
out backtracking.

Finally, the IRPC system should be integrated into a
practical distributed environment. This task may present
fundamental challenges even for a well-designed environ-
ment, such as that of SmallTalk. Even more significantly,
the technical, engineering challenge will be quite formida-
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HEAVIEST EDGE FIRST ALGORITHM.

initialize site costs to 0
sort set of edges by cost
while travelable edges left

hEdge 5 heaviest unassigned edge in the program graph
if both objects connected to hEdge have been assigned

mark hEdge untravelable
update site costs

else if one of the objects connected to hEdge has been assigned
assign the unassigned object to the same site
mark hEdge untravelable

else
assign both objects connected to hEdge to the site

with the lowest associated cost
endif

endwhile

MINIMAL-COMMUNICATION COST ALGORITHM.

for all objects O in the program graph
for all sites S in the system

calculate the sitecost increase when O is assigned to S
endfor
assign O to a site with the smallest cost increase

endfor



KERNIGHAN–LIN GRAPH PARTITIONING.19

make an initial assignment of objects to sites
using a linear heuristic of choice

compute initial communication costs
mark all objects as unlocked
initialize a list of pairs of objects to empty
do

for all sites Si

for all sites Sj

for k 5 0 to minimum (#object Si , #objects Sj )
for all free objects in Si

for all free objects in Sj

find the pair (Oia , Ojb) switching which
decreases the sum of costs of Si and Sj the most
if such a pair exists

add (Oia , Ojb) to the worklist of pairs
lock Oia and Ojb

endfor
endfor

endfor
for all pairs in the pair worklist

exchange the objects (Oia , Ojb)
unlock the objects Oia and Ojb

endfor
endfor

endfor
calculate total system cost

while system cost decreases
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Lower Bounds on Complexity of the Three Heuristics.
The complexity of minimal-communication is transpar-
ently V(ME), since no global data structures (beyond un-
ordered lists of objects and sites, and edge lists for individ-
ual objects) are required. There are MN iterations of the
inner loop, and each looks at incident edges and does a
linear computation of minimum cost; the total number of
edges considered for each site over all iterations is
clearly E.

The cost of heaviest-edge-first is dominated by the cost
of sorting the initial edge list, V(E log E). Remaining costs
are O(E), except for the cost of maintaining the least-cost
site, which is O(E log M) using a heap.

Initialization in Kernighan–Lin costs V(E). Even assum-
ing that N/M objects, each with 2E/N incident edges, are
assigned to each site will give a complexity of V(N2E/M)
for each iteration of the outer loop (since incident edges
will have to be examined to determine changes in cost);
less uniform work distributions will not radically change
the resulting complexity. Since at least one iteration of the
outer loop is required, this is a lower bound on the cost
of the heuristic.

19 A careful reader may notice that the formulation in [13] is iterative
binary in the way it considers sites, while our algorithm examines each
pair of sites in a nested iterative fashion. This issue is rather minor and
bears no effect on this heuristics’ fundamental performance.

APPENDIX B. SUMMARY COMPLEXITY ANALYSIS
OF THE HEURISTIC

We now present summary complexity analysis. Details
can be found in [24].

The heuristic clearly always terminates, since it starts
with a finite number of nodes and edges, labels some nodes
permanently at every iteration, and terminates when all
have been labeled permanently. It can also be shown that
the heuristic always produces a complete and consistent
cut.

Observe that the operation and, consequently, the com-
plexity of the heuristic depends on the number of sites
only in maintaining the site data structures. These are
initialized, and then changed only when a path terminates
or a node is permanently assigned. All changes are constant
cost, except for the maintenance of the two site heaps,
which has a cost of O(log M) per update.

We arrive at the complexity through the following set
of lemmas.

1. The initial data structures can be set up in time

O(N 1 M 1 E log d 1 E log M 1 M log M)
5 O(E(log M 1 log d))

and assignment of the V environment-dependent nodes
and random nodes for other sites takes at most O(EV 1



Heuristic Complexity

IRPC O(E(log d 1 l 1 log M))
min-comm V(ME)

heaviest-edge V(E log E)
Kernighan–Lin V(N 2E/M)

where N is the number of objects, E is the number of
communication edges, M is the number of sites, d is the
maximum degree of a node (which is obviously dominated
by N), and l is a parameter of the IRPC technique which
can be chosen to be between 1 and N.
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