
NASA-CR-2021_4

Research Institute for Advanced Computer Science
NASA Ames Research Center

Algorithms for Automatic Alignment of
Arrays

Siddhartha Chatterjee
John R. Gilbert

Leonid Oliker
Robert Schreiber

Thomas J. Sheffler

RIACS Technical Report 96.14 August 1996

To appear in the special issue of the Journal of Parallel and Distributed Comput_T_g,

oil Compilation Techniques for Distributed Memory Systems, August 1996.





Algorithms for Automatic Alignment of Arrays *

Siddhartha Chatterjee t John R. Gilbert _ Leonid Oliker

Robert Schreiber ¶ Thomas J. Sheffler II

*This work was performed while Chatterjee and Sheffier were postdoctoral scientists at RIACS, and Schreiber
was a senior scientist at R1ACS. This work was supported by the NAS Systems Division via Contract NAS 2-1372 I

between NASA and the Universities Space Research Association. Sections of this paper have previously appeared in

the Supercomputing '93 and Frontiers '95 conferences.
t Department of Computer Science, Campus Box 3175, Sitterson Hall, The University of North Carolina, Chapel

Hill, NC 27599-3175. se©cs, unc. edu.

tXerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304-1314.

gilbert©parc, xerox, com. Copyright (_ 1993, 1994, 1995 by Xerox Corporation. All rights reserved.
Research Institute for Advanced Computer Science, Mail Stop T27A- 1, NASA Ames Research Center, Moffett

Field, CA 94035-1000. oliker©riacs, edu.

'IIHP Labs 3L-5, Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, CA 94304-1126.

s chre iber@hpl, hp. com.
IIRambus Inc., 2465 Latham Street, Mountain View, CA 94040. sheffler@rambus, com.



Proposed running head: Algorithms for Automatic Alignment of Arrays

Direct all correspondence to:

Prof. Siddhartha Chatterjee

Department of Computer Science

CB #3175, Sitterson Hall

The University of North Carolina

Chapel Hill, NC 27599-3175

Phone: (919) 962-1766

Email: sc@cs.unc.edu

Abstract

Aggregate data objects (such as arrays) are distributed across the processor memories

when compiling a data-parallel language for a distributed-memory machine. The mapping

determines the amount of communication needed to bring operands of parallel operations into

alignment with each other. A common approach is to break the mapping into two stages: an

alignment that maps all the objects to an abstract template, followed by a distribution that

maps the template to the processors. This paper describes algorithms for solving the various

facets of the alignment problem: axis and stride alignment, static and mobile offset alignment,

and replication labeling.

We show that optimal axis and stride alignment is NP-complete for general program graphs,

and give a heuristic method that can explore the space of possible solutions in a number of

ways. We show that some of these strategies can give better solutions than a simple greedy

approach proposed earlier. We also show how local graph contractions can reduce the size of

the problem significantly without changing the best solution. This allows more complex and
effective heuristics to be used.

We show how to model the static offset alignment problem using linear programming, and

we show that loop-dependent mobile offset alignment is sometimes necessary for optimum

performance. We describe an algorithm with for determining mobile alignments for objects

within do loops. We also identify situations in which replicated alignment is either required

by the program itself or can be used to improve performance. We describe an algorithm

based on network flow that replicates objects so as to minimize the total amount of broadcast

communication in replication.



Algorithms for Automatic Alignment of
Arrays

Siddhartha Chatterjee
John R. Gilbert

Leonid Oliker
Robert Schreiber

Thomas J. Sheflter

'rile Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, Tile American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was supported by NASA via Contract NAS 2-13721 between NASA and the Universities

Space Research Association (USRA). Work was performed at tile Research Institute for Advanced Computer

Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000.





List of symbols

Symbol Interpretation

Z,Z

c

CX3

Uppercase I and Z in calligraphic font

Lowercase Greek letters

Lowercase letter ell

Set membership symbol

Summation symbol

Infinity symbol



I Introduction

Data-parallel array languages express parallelism as operations on arrays and array sections. Com-

piling such a program for a distributed-memory parallel machine requires a model for mapping

the data to the machine. We view the mapping as an initial alignment to a Cartesian index space

called a template, followed by a distribution of the template to the processors. The alignment phase

positions all array objects in the program relative to each other so as to reduce realignment commu-

nication cost. In the distribution phase that follows, the template is distributed to the processors.

This two-phase approach separates the language issues from the machine issues, and is used in

Fortran D [ 10], High Performance Fortran [ 14], CM-Fortran [21 ], and Vienna Fortran [4].

Placing arrays to enhance data locality is important when compiling array-parallel languages

for distributed-memory parallel computers. The languages mentioned above require the user to

provide data placement directives in the source code. There has also been considerable interest

in automating the task of data placement [2, 5, 6, 16, 17, 18, 22]. This compiler optimization is

important for insuring the portability of new scientific codes and for supporting old codes developed

without a distributed memory model in mind.

Completion time has two components: computation and communication. Communication

can be separated into intrinsic and residual communication. Intrinsic communication arises from

computational operations such as reductions that require data motion as an integral part of the

operation. Residual communication arises from nonlocal data references required in a computation

whose operands are not mapped to the same processors. As we consider alignment only in this

paper, we take the view that arrays are mapped identically to processors if and only if they are

aligned. We use the term realignment to refer to residual communication due to misalignment; we

4



seekto determinearrayalignmentsthatminimizerealignmentcost.Communicationfor transpose,

spread,andvector-valuedsubscriptoperationscanin somecasesberemovedby suitablealignment

choices.Our theorymakestheseformsof communicationresidualratherthanintrinsic, andthus

encompassessuchoptimizations[7].

1.1 A formal model of data layout

Alignment maps an array to a template with an affine mapping. The array coordinate a C 2 a maps

thus to the template coordinate t C Z t [1]:

Rt = La+ f. (1)

The matrix L encodes the orientation and spacing of array elements in the template, the column

vector f encodes the offset of the array in the template, and the projection matrix R encodes the

template axes along which the array is replicated. We constrain the matrix L to have exactly one

nonzero per column and at most one nonzero per row. We call such a matrix a D-matrix. This

implies that arrays cannot be collapsed or skewed with respect to the template. HPF allows the

former option, which we feel is better cast as a distribution issue; Anderson and Lam [2] and Ban

et al. [3] allow skewed alignment.

1.2 A formal statement of the data layout problem

Given an array-parallel program and a target number of processors, our goal is to determine the

quantities /_, L, and f for each array and template at each point during program execution so as



1.4

I.:

;0.

|
O(

0.4

0,2

All4} = A(R(i,j). C(i_)...un_ dilbilx_KI,. 32 Woc4n_l

lolld: ex_m_nllJ ' ' ' /_

2 4 6 8 10

Mrly IdZe

(a)

16x2
4x8

8x4
2x 16
32.)11

tx32

0.14
citeR, dim = I .uniformly dll'll0ul_l...8 ;Yocmlorl

12

x 10_

0.12 _ 1M

0.1
! 0,06 5gOK

O04_

002

2_7K

0 100 200 300 400 500

(b)

Figure 1: Collective communication costs on the CM-5. (a) All-to-all communication. (b) Shift

communication.

to minimize the completion time of the program. This is a complex discrete optimization problem

for several reasons: any realistic estimate of completion time is usually a nonlinear function of

the free variables; the variables are coupled in their effect on completion time; and each variable

has a large search space associated with it. We therefore use an approximate model of completion

time containing only the most significant terms, develop a sequence of subproblems by weakening

or outright ignoring the coupling among the variables, and resort to heuristic solutions for each

of the subproblems. For the alignment phase, we have three such subproblems that we discuss in

this paper. These subproblems correspond to the three unknowns in equation (l), and are called

axis/stride alignment, offset alignment, and replication labeling.

We first determine the matrix L in equation ( 1) that encodes the axis/stride alignment parameters.

Axis and stride play the biggest role in reducing communication costs because correcting axis

and stride misalignment requires general all-to-all communication. Modeling the cost of this

communication as the product of the data size and a large constant representing the per-unit cost of

invoking the router is good enough for our analysis. (We call this the weighted O- ! discrete metric.)

6



Experimental evidence on the CM-5 presented in Figure l(a) validates this model.

We then determine the matrix R in equation (l) that encodes the replication parameters.

Replicating an array is performed using some kind of broadcast communication. We model this

communication cost again as a metric on a space with two positions. We show that the problem of

determining the optimal replication strategy can be reduced to a network flow problem.

Finally, we determine the vector f in equation (1) that encodes the offset parameters. Our

cost model of offset realignment assumes linear growth in both the data size and in the number

of template cells between the source and destination positions. (This is the weighted Lt metric.)

Experimental evidence on the CM-5 presented in Figure l(b) validates this model for small shift

distances.

In addition to static offsets, we also allow the components of f to be affine functions of loop

induction variables. We call such alignments mobile. We use linear programming to determine

static offset alignments, and extend this algorithm to determine good mobile alignments.

1.3 Related work

Knobe, Lukas, and Steele [17] laid the foundation for data layout optimization. They addressed

axis, stride, and offset alignment in a unified framework. Our algorithm for axis and stride

alignment amplifies their claims of the importance of data layout optimization, and improves upon

their methods in several ways. First, we use a more comprehensive cost model, inherited from

our alignment-distribution graph representation of data-parallel programs [6]. We also defer offset

concerns to a later phase of alignment, because the shift communication needed to change offset

is typically much less expensive than the general communication needed to change axis or stride.

7



Second, we develop a heuristic optimization framework that is more flexible than the strictly greedy

algorithm of Knobe, Lukas, and Steele. Our experimental results confirm that the greedy heuristic

can miss solutions that our algorithm finds. Third, we use local graph contractions to reduce the

size of the optimization problem without changing its best solution. This reduction allows us to

use more complex and effective heuristics than would be feasible for the unreduced graph.

In other related work, Li and Chen[ 18] addressed axis alignment alone, using a representation

called a component affinity graph. Their optimization algorithm is also greedy, but it is their cost

model that most differentiates their work from ours. They formulate the problem as a graph with

large and small weight edges, such that large edges are infinitely heavier than small edges. The

optimization procedure finds a maximal weight set of edges that satisfy the constraints. Our cost

model reflects the actual communication cost of a parallel program more accurately.

Huang and Sadayappan [ 15] introduced a linear algebraic formulation of the alignment problem.

This is the basis of more recent papers by Anderson and Lain [2] and Bau et al. [31. These

authors permit a broader class of alignments than we do, but often sacrifice parallelism to reduce

communication. The tradeoff between communication and parallelism is intimately related to

parameters of the target machine. Our approach discovers alignment constraints that depend only

on the source program, providing information that is useful on any target machine. As a result, we

retain as much parallelism as is present in the source code.

Several authors [2, 13, 17, 18, 22], including ourselves [7, 8, 12], have considered static offset

alignment. We extend that work to handle mobile alignment here. Knobe, Lukas, and Steele [ 17]

and Knobe, Lukas, and Dally [16] address the issue of dynamic alignment, which may depend on

quantities whose values are known only at runtime. We focus on mobile alignment in the context



of loops, where the alignment of an object is an affine function of the loop induction variables.

2 Representing the Alignment Problem

Previously, we developed a representation of data-parallel programs called the alignment-distribution

graph (ADG) [6] to evaluate data layout decisions made during compilation. The ADG is a mod-

ified and annotated data flow graph based on static single assignment form [9], but incorporates a

"position semantics" that makes each communication operation of the program explicit. Nodes in

the ADG represent computation; edges represent flow of data. An endpoint of an edge is called a

port and represents an array object with a specified position. Thus, an edge relocates an array object

from one position to another. Alignments are associated with ports. Realignment occurs only when

the two ports of an edge have different positions. A node constrains the relative alignments of the

ports representing its operands and its results.

The ADG has a port for each (static) definition or use of an object. An edge joins the definition

of an object with its use. Multiple definitions or uses are handled in the usual manner with merge,

fanout, and branch nodes. All communication necessary for realignment is associated with edges;

if the two ports of an edge have different alignments, then the edge incurs a cost that depends on

the alignments and the total amount of data that flows along the edge during program execution.

We can now describe the communication cost of the program in terms of the ADG. A position

is an encoding of a legal alignment. The distance d(p, q) between two positions p and q is a

nonnegative number giving the cost per element to change the position of an array from p to q. We

require the set of all positions to be a metric space under the distance function d [8].1

IThat is, for any three positions p, q, and r, we have d(p, q) >__O, d(p, p) = O, d(p, q) = d(q, p), and d(p, q) +

9



Wemodelthecommunicationcostof theprogramasfollows. Let E be the set of edges of the

ADG, and let Zxy be the iteration space for edge (x, y). For a vector i in Z_y, let w_,u(i) be the

data weight, which is the size of the data object on edge (x, y) at iteration i. Finally, let rr be a

feasible mobile alignment for the program--that is, for each port x let 7rx(i) be an alignment for

x at iteration i that satisfies all the node constraints. Then the realignment cost of edge (x, y) at

iteration i is w_y(i), d(rrx(i), rru(i)), and the total realignment cost of the program is

C(Tr)= y]_ X_ w,_(i).d(Tr_(i),rry(i)). (2)

(x,y)EE iEI"_

Our goal is to choose rr to minimize this cost, subject to the node constraints.

While mobile alignments could be arbitrary functions of the LIVs, we consider only the

(important) case in which they are affine in the LIVs. Thus, the mobile offset or stride alignment

function for an object within a k-deep loop nest with LIVs it,... ,ik is of the form ao + a_i, +

• .. + akik, where the coefficient vector a = (a0,..., ak) is what we must determine. We write

this alignment succinctly in vector notation as cn T, where i = ( 1, i,, ..., ik). We also restrict the

extents of objects to be affine in the LIVs, so that the size of an object is polynomial in the LIVs.

3 Axis and Stride Alignment

An example ADG for a Fortran 90 code fragment appears in Figure 2. In the figure, positions are

represented as the matrices L,, L2, and L3.

The ADG represents alignment and distribution for arrays in a parallel program. We now trans-

d(q, ,') > d(p, r).

10



real A(I:I00, I:i00)

rl = reduce(A, dim=2)

r2 = reduce(A, dim=l)

sl = spread(rl, dim=2,

s2 = spread(r2, dim=l,

out = sl * s2
nc,00, I J- Incopies=100) L l = t 2 = t 3 =

l_/10000

Figure 2: A code fragment using reduce and spread and its ADG. Data weights on edges represent

the cost of communication. Each port has a position label. The ADG represents data flow in a

program. It can also include nodes that reflect control flow due to branches or loops.

form the ADG into a simpler graph, called the constraint graph (CG), that is specific to _is/stride

alignment. The CG unifies the representations of positions and constraints, and succinctly captures

the costs associated with each constraint.

A constraint is a mapping from the coordinate space of one array object to another. If a

constraint is imposed on the position of Y with respect to x, then this constraint may be written

as L_ = L_Cx_, where C_ is a constraint matrix. Both position and constraint matrices are D-

matrices (defined in Section 1.1 ). An ADG edge imposes an equality constraint (C_y is an identity

matrix) that may be violated for a specified cost. The cost Wxu reflects the communication cost in

moving the array object from position .r to position y. An ADG node imposes semantic constraints

between the positions of its ports that cannot be violated (all constraints from ADG nodes have

W_.,j = oo). For a node involving three or more ports, one is designated the reference port, and the

11



sl=spread(rl, dim=2, ncopies=lO0)

-_ 100
_A

vw<. o_ o,,_"10000rw

12joO..........

Figure 3: A code fragment, its translation into an ADG node, and the resulting constraint graph.

Each port has a position (shown below) and each edge imposes a constraint (shown above). A

position labeling satisfies an edge if the head position is the product of the tail position and edge

constraint.

constraints are expressed relative to it. The construction of constraint matrices for the various node

types of the ADG is straightforward [6].

The CG is constructed from these constraints. For each ADG port x, there is a vertex v_. For

each constraint Ly = L_C_y, there is a directed edge from v_ to vy with label C_y. Each edge

also has an associated weight W_y, which is the communication cost of moving an object from

position L_ to Lu if the constraint is not satisfied. A labeling of the CG is communication-free if

it satisfies every edge constraint, and a CG is satisfiable if at least one such labeling exists. This

simple formulation captures all of the possible constraints pertinent to alignment analysis among

array objects in High Performance Fortran.

3.1 An axis/stride labeling algorithm

The alignment problem is surprisingly hard. It is NP-complete even when restricted to only axis

alignment for two-dimensional arrays in a two-dimensional template. Thus, we must be satisfied

with heuristic or approximate solutions.

12



Theorem 1 Min-cost labeling of an ADG is NP-complete, even considering only straight-line

programs involving two-dimensional arrays with transpose and addition operations.

Proof: The proof is by reduction from "Bipartite Subgraph (GT25)" [! 1]. 2 []

3.1.1 Outline of the algorithm

Let G be a given CG. Like the algorithms of Knobe, Lukas, and Steele [ 17] and Li and Chen [ 18],

our algorithm, shown in Figure 4, builds a maximal satisfiable subgraph G' of G by starting with

the empty graph (which is trivially satisfiable) and growing it by adding edges one at a time while

maintaining satisfiability at each step. Unlike the other algorithms, however, our algorithm is not

strictly greedy. It can discard previously added edges as well as add new edges, and therefore will

ordinarily explore a larger set of feasible solutions. The algorithm terminates because the weight

of the current graph increases at every iteration (though its size may not).

Lemma 1 In step 3 of the algorithm in Figure 4, the graph G'( c, E) with e included and E removed

is satisfiable. []

3.1.2 The predicate is-satisfiable

Given a CG, G, is-satisfiable determines in linear time if there is a communication-free labeling

of G. We first construct a new graph, where each vertex of the CG is split into one vertex for

each axis of its array object. Directed edges are introduced between the vertices of this new graph

corresponding to the non-zero elements of the constraint matrices of the CG.

2Space limitations preclude the inclusion of full proofs in this article. The interested reader can find the complete

proofs at the URL http://www, c s. unc. edu/" so/research/papers, html.

13



1. Initialize G' to contain all of the vertices of G, but none of the edges. At each step, an excluded

edge e is conditionally added to G' and a function is-satisfiable is called to determine if a

communication-free labeling exists for the augmented graph G'.

2. Include an excluded edge e.

3. If the resulting graph is satisfiable (see Section 3.1.2), accept the new edge and go to Step 2.

Otherwise, find a minimum-weight cut set E in G' of edges between the endpoints of the

edge e. The graph including e but with E removed is guaranteed to be satisfiable (see

below). However, there may be edges in E whose inclusion does not prohibit satisfiability.

Try including each edge in E back into the graph in turn, and retain in E only those

edges that prohibit satisfiability. E is now a minimal set of edges whose removal allows a

communication-free labeling of the graph with edge e.

4. If the weight of edge e is greater than the total weight of edge set E then insert e in the graph

and remove the edges in E. Otherwise, reject e and leave the graph unchanged.

5. Repeat this procedure until no more edges can be added to the graph.

6. Find a labeling that satisfies the final graph (see Section 3.1.3).

Figure 4: The algorithm for optimizing axis and stride alignments.

We then find the connected components of this new graph. If two vertices of an array object are

in the same connected component, then there is no communication-free solution (because the two

axes would have to be mapped to the same template axis). Otherwise, there is a communication-free

axis alignment that assigns each connected component to a different template axis.

For each connected component of the graph, we determine whether there is a labeling that

satisfies the stride constraints by the following steps. An edge in this graph is satisfied if the

product of its tail and stride labels equals its head label. We do this as follows: find any spanning

tree of the connected component; label an arbitrary vertex "1" and label the rest of the vertices by

multiplying (or dividing) by the stride label of the spanning tree edges; for each non-tree edge,

check whether the stride transformation it describes is satisfied by its endpoints.

14



3.1.3 Providing a labeling

The function is-satisfiable implicitly finds an axis and stride labeling, but its axis labeling may

use more template axes than necessary. When the final maximal satisfiable subgraph is found, we

label the axes by a coloring procedure as follows.

We construct another graph to describe the coloring problem: the axis quotient graph. This

graph has one vertex for each connected component of the axis/stride satisfiability graph, and an

undirected edge between vertices representing two connected components that occur in the same

array object. A k-coloring of this graph corresponds to an assignment of the axes of each array

object to k template axes, with each color corresponding to a template axis. Finding an optimal

coloring is hard, as shown below, but as with most graph coloring problems, we expect and that

standard heuristics will find an optimal or near-optimal coloring.

Theorem 2 Given an ADG that admits a communication-free labeling, axis assignment to minimize

the number of template dimensions is NP-complete.

Proof: The proof is by reduction from "Graph k-colorability (GT4)" [ 111. []

3.2 Contracting the constraint graph

The constraint graph may be contracted into a smaller graph that captures all of the alignment

constraints and costs of the original graph. We can then use the algorithm of Section 3.1, or any

other method, to align the contracted graph, and propagate the results back to the original graph

by reversing the contractions. For many examples, the contracted constraint graph has only a few

vertices. Since performing the contractions is inexpensive compared to determining the alignment,

15



contractionmakesthe total running time muchsmaller. Thecontractionsrely on the following

propertyof D-matrices,which weredefinedin Section1.1.

Lemma 2 Let Y and C be given D-matrices with the same number of columns. There is always at

least one D-matrix X such that X (J = Y. []

We now present four situations where the CG can be contracted.

Contraction 1: Let vertex v be adjacent to only one other vertex w, with the edge having a

directed constraint C_w or Cw_. Contract G into G' by removing v and the edge. To convert an

alignment for G' into one for G with the same cost, choose Pv for v as follows. If the edge was

(w, v), then compute P_ = PwCwo. If the edge was (v, w), solve PvC_w = Pw for P_ by Lemma 2.

Contraction 2: Ifa vertex v is adjacent to only two different vertices, so that there is an edge (u, v)

and an edge (v, w), and u -_ v :_ w ¢ u, construct G' by eliminating v and contracting the two

edges into a new edge (u, w) with edge label Caw = C,,_C_, and weight W,,w = min(Wuo, W_w).

Convert an alignment for G' into one for G with the same cost as follows.

If the alignment for G' satisfies edge (u, w), then compute P_ = P_Cu_. If the alignment for

G' does not satisfy (u, w), then (u, w) contributes cost IV,,,,, = min(W,,_, W,,,v) to G'. Construct

an alignment for G with the same cost by failing to satisfy the less expensive of (u, v) and (u, w):

if W_w < W,,_ then set P_ = P,,C'_, otherwise solve P,v = P_(.'_,,, for P_ by Lemma 2.

Contractions 3 and 4: There are two final contraction operations. Merge parallel edges if their

constraint matrices are equal and add their edge weights. Finally, reverse edges with invertible

constraints. (All square D-matrices are invertible.) This may enable other contraction operations.

16



PROGRAM programl

REAL, ARRAY(IO00, 1000) :: A, B

C=A+B

B(1:800,I:800) =

A(1:800,I:800) -

transpose(B(l:800,1:800))

A(1:800,I:800) =

transpose(A(l:800,1:800)) -

B(1:800,I:800)

END PROGRAM

PROGRAM program2

PARAMETER(N=IO00)

REAL, ARRAY(N, N) :: A, B

SUM = A + transpose(B)

DIFF = transpose(A) - B

A2 = SUM(I:N/2, I:N/2)

B2 = DIFF(I:N/2, I:N/2)

HALFSUM = A2 ÷ B2

HALFDIFF = A2 - B2

A3 = HALFSUM(I:N/4, I:N/4)

B3 = HALFDIFF(i:N/4, I:N/4)

QUARTSUM = A3 + transpose(B3)

QUARTDIFF = transpose(A3) - B3

A(I:N/4, I:N/4) = transpose(QUARTSUM)

B(I:N/4, i:N/4) = transpose(QUARTDIFF)

AUG = (A ÷ B) / 2.0

END PROGRAM

Figure 5: Two example programs.

3.3 Experimental results

To illustrate our algorithm, we constructed the two small example programs shown in Figure 5,

which have nontrivial axis alignment issues. We generated alignments for the programs using

our algorithms with various edge selection rules and ran the optimized programs on the CM-5 to

measure the effect of alignment on their running times. Because the CMF compiler does not allow

axis-changing alignments [21], we broke alignment into two parts. We performed axis alignment

manually by changing the orientation of the arrays in the program and including explicit array

transpose operations for unsatisfied CG edges. We specified stride alignment by adding ALIGN

directives to the source code.

We did three kinds of experiments. First, we examined the effect of edge selection strategy on

the quality of solutions found. Second, we examined the effect of axis and stride alignment on

running time, and the correlation between the discrete metric of the optimization problem and the

17



actualrunning time on the CM-5. Third, we examined the effect of graph contraction on the time

required to find a solution.

3.3.1 Edge selection ordering

At each iteration the optimization algorithm tries to add an excluded edge to the graph. We

examined three edge selection strategies: maximum weight first, minimum weight first, and

random selection. With the maximum weight ordering, our algorithm reduces to the greedy

heuristic proposed by Knobe, Lukas, and Steele. However, our experimental results show that

other orderings can yield superior results. For instance, for PROGRAM l, the maximum-weight

ordering requires communication on two edges, for a total cost of 1,280,000. The optimal solution,

requiring communication on only one edge and costing 1,000,000, was found using the minimum

edge-weight ordering heuristic.

3.3.2 Execution time

We show in Table 1 the execution time of each program on the CM-5 with each alignment

our algorithm generated, and also without axis or stride optimization as a baseline. We draw two

conclusions. First, optimizing axis and stride alignment can significantly improve the running time

of the programs. Second, our discrete metric of communication cost is an accurate enough measure

to correctly predict the relative running times with different alignments.

3.3.3 Graph contraction

Graph contraction, which has not been suggested elsewhere for this problem, significantly reduces

the size of the problem and the solution space that must be examined. Using contraction leads to a

18



Table I: The estimated and actual times of two programs under differing axis and stride alignments.

The times measured were averaged over ten runs. The solution reported for the random edge

selection heuristic reflects the best of five trials. The table shows the estimated cost according to

the discrete metric and the actual execution time of the program.

Example Method Comm. CM5 running
Cost time (secs)

PROGRAM 1

PROGRAM2

(none)

max-wt

min-wt

random

(optimal)

(none)
max-wt

min-wt

random

(optimal)

1280000

1000000

1280000

ItX)0(X_

1750000

1375000

1312500

1312500

.25

.25

.13

.25

.13

.62

.56

.40

.34

.34

large decrease in the running time of the algorithm. In many cases the resulting graphs are small

enough that their alignment problems could even be solved exactly by an exhaustive search.

Table 2 shows the running time of the optimization algorithm and the quality of solutions

produced with and without contraction. Graph contraction is an inexpensive operation, and the

time spent reducing the size of the graph is easily recovered by the time saved in optimization.

Although contraction preserves the cost of the optimal alignment, it can change the result of

our algorithm because the heuristic is sensitive to the order of selection of equal-weight edges.

When optimizing PROGRAM2 with the maximum-weight ordering, a slightly worse solution is

found with contraction enabled. In some cases, the contraction phase had the unfortunate effect of

reordering the edges so that a worse solution is found.

We explored the effect that contraction has on the quality of solutions found, initially suspecting

that contraction leads to better solutions. However, this is not necessarily the case. Figure 6 shows

a histogram of the frequency with which alignments of different costs were found by running the

19



Table 2: The effect of contraction on the quality of solutions produced and the running time of

the algorithm. The table reports running times for the entire optimization program, including

contraction if any, on a Sun-4/370.

Example/
Method

FULL GRAPH

Comm. Time

Cost (s)

CONTRACTED

Comm. Time

Cost (s)

PROGRAM 1 (44 nodes, 47 edges) (4 nodes, 6 edges)
max-wt

min-wt

random-best

random-worst

1280000 .95

1000000 1.50

1280000 2.22

1920000 1.72

1280000 .23

10(Xgg_ .23

1280000 .19

1640000 .25

PROGRAM2 (70nodes, 77edges) (14nodes 21 edges)
max-wt 1678500 2.47 1750000 .40

min-wt 2500000 6.12 1375000 .58

random-best 1312500 7.14 1312500 .63

random-wont 2375000 4.93 2625000 .65

algorithm 1000 times with the random edge selection rule. Black bars are alignment costs found

when using contraction, and gray bars are costs found without contraction. Using the random edge

selection rule, contraction had little effect on the distribution of results.

4 Offset Alignment

Our model of the cost of offset communication is that it is linear both in the size of the object

being shifted and in the magnitude of the shift (the latter being measured, for instance, in number

of template cells). This model is applicable when the communication is bandwidth limited, which

holds for many parallel machines for regular shift communications.

The use of this L t or Manhattan metric for communication cost also implies that that the shift

cost can be independently computed for each template axis. This separability of the cost function

may be more pessimistic than what some communication systems can deliver, but it is nonetheless

20



70C

eo0

5oc

4_

300

100

I 1.3 14 16 I ._ 2

Effect el _w4_ton on I)eO_lbm 2 _

_0_

_,OF

t_

8_

]I_LJLL ..... k__._d .....

1.4 I.e 1.6 2 2_. Z4 2.4s 2_

¢,o_lon C.om • IO m

Figure 6: The effect of contraction on the quality of solutions found over 1000 runs of the algorithm

using the random edge selection rule. Black bars show the histogram of alignment costs found

when using contraction; gray bars show costs found without contraction.

a reasonable starting point and serves furthermore to keep the optimization problem manageable.

4.1 Static offset alignment by linear programming

We review how the static offset alignment problem can be reduced to linear programming [6]. Let

the integer 7r_-be the offset alignment of port x. Then the residual communication cost (which is the

function we want to minimize) C(Tr) = E(x,y)eE wxy[Tr_ - 7ru[. Nodes introduce linear constraints

relating the offsets of their ports [6]. To remove the absolute value from the objective function,

we introduce a variable O_y for every edge (z, y) of the ADG, and add two inequality constraints,

0_-._ + 7r_- - Try _> 0 and 0x.o - 7r_.+ Try >_ 0, that guarantee that O_.u >_ 17r_ - The new

objective function is then _](_,:j)eF_ wxy0_y. The transformed problem is equivalent to the original

one, because 0_y = Irr_ - rryl at optimality. This transformation introduces IEI new variables and

21 l" I new constraints.

21



(.)

LC_Mi_a at isccatioa i D

i............. (b>

Ai IB L
Iscctmoa i

Camma_cldonal t:¢ra_t_ i

E

F

D

L

A B H C I_mt_R

Comm_l_on at item#on i

A B P Q C hwmlo. I

Figure 7: Approximating the cost of communication in loops. The actual communication cost

is equal to the area under the heavy curve. (a) If the communication function does not have a

zero crossing, then A B DC - A 13GE, and our approximation is exact. (b) If the communication

function has a zero crossing, then ABD + BCE _ ACGF. The maximum relative error in

approximation occurs when//coincides with H, and is proportional to AC. (c) To reduce the

maximum relative error, we partition the iteration space AC into subranges A P, PQ, and QC. As

there are no zero crossings in subranges PQ and QC, the approximations there are exact. The

approximation in subrange A P is incorrect, but the maximum relative error is reduced. In general,

at most one of the subranges can have a zero crossing.

4.2 Mobile offsets

Consider an object with offset alignment ai T, as defined in Section 2. Since the problem is

separable, we can determine offsets with respect to one template axis at a time. If there are no

loops in the code, the solution reduces to our earlier solution for static offset alignment [7].

The contribution of edge (x, y) to the residual communication is

i6Ixy

(3)

where rr_(i) = ai 7", rru(i) = eli T, and 2_u is the iteration space associated with the edge. Even if

wxu(i) is constant, the absolute value in equation (3) makes its closed form complicated. Rather

than seek an algorithm to minimize this cost function, we choose instead to approximate it by one

for which the solution is straightforward.

Assume for this section that the data weight of edge (:r, y) is constant and equal to l, and that

Z_y = (:: h : s. Call (c, - c/)i T the span of edge (.r, y) at iteration i. If the span does not change sign

22



in theinterval [g,h] (as shown in Figure 7(a)), the summation and the absolute value in equation (3)

can be interchanged. Then Cxv = I _;_e: h: .,(*_ -- c_')iTJ, the closed form for which is

h-¢+s , g+h,
d:=,, - I('_o - _o) + -_--to_, - _',)1" (4)

iS

Note that the term inside the absolute value is the average distance spanned by edge (x, V). We can

reduce this to LP with one new variable per edge.

In general, however, the span may change sign in the iteration space, and interchanging the

summation and the absolute value is incorrect, as shown in Figure 7(b). In this case, we partition

the iteration space into m equal subranges Zl,..., 2m, each subrange corresponding to a set of

consecutive iterations, and decompose the communication cost as d,'xy = E/_l E_zj l( a - o')i'rl •

We then pretend that the span does not change sign within any subrange, which leads to the

approximate cost model C_y _ C_ u = _j_=l I_iez_ (a - a')iT']. Now we fix m, expand the outer

sum explicitly, and evaluate each inner sum using equation (4), as shown in Figure 7(c). Clearly,

the span can change sign in at most one subrange; therefore, at least (m - 1) of the subrange sums

are correct. We then reduce to LP with m new variables per edge. The cost C at the approximate

solution exceeds the cost at the best possible solution by at most a factor of ( 1 + 2/m2).

The discussion above suggests several possible algorithms for solving the mobile offset align-

ment problem, such as loop unrolling, state space search, tracking zero crossings, recursive re-

finement, and fixed partitioning [5]. In our implementation, we partition the iteration space into

three subranges, and use LP. The solution is guaranteed to be within 22% of optimal. This requires

solving a single problem with 3IE[ new variables. (A five-way partition would reduce the error

bound to 8%.) We do this as a good compromise between speed, reliability, and quality.

23



Extensionsof this approach to variable-sized objects and loop nests are straightforward [5].

4.3 Dealing with non-integral offset values

Linear programming could produce non-integral values for some of the parameters, which would

be incompatible with our model, which is discrete. There are several possibilities for this situation.

. (MILP) We could use mixed integer linear programming, adding integrality constraints on

the solution variables. This avoids the situation altogether, but results in an NP-complete

optimization problem.

. (RLP) We could round the LP solutions to integers, but this guarantees neither optimality nor

feasibility, it can also magnify rounding errors_ Consider the situation where two ports p_ and

p2 should have equal mobile offsets. With RLP± rounding errors could produce completely

wrong offsets, as in the case where the offset for p_ is 0.49999999999999 i + 0 while that for

P2 is 0.50000000000001 i + 0.

3. (TLP) We accept the solutions produced by LP, and truncate them at runtime. Thus, given a

mobile alignment _i + c, RLP would round cr and c at compile time to give the alignment

trunc(o)i + trunc(c), while TLP would evaluate the expression at runtime and truncate,

giving the alignment trunc(_i + c). This could move an object with a non-uniform step at

each trip through the loop, but the average velocity of the object would be o, which is exactly

the solution computed by the LP.

TLP is simpler than MILP, requires very simple runtime support, and is less sensitive to floating

point problems than RLP. This is the method used in our implementation.

24



Table3: Runningtimesof offsetalignmentfor threetestprograms.The"Iterations"columnrefers
to thenumberof stepsthesimplexmethodtook to solvetheLP.The timesreportedareMINOS
runtimesonly, anddonot includeany I/O time,which wasgenerallyinsignificant.

Program Unknowns Equations Dimension Iterations "l_me(sec)
LU 28 5 0 4 0.04

1 4 0.03

Twozone 1500 418 0 450 6.79

1 262 3.72

Erie 3652 1044 0 975 35.06

1 921 32.86

2 1099 39.53

4.4 Performance results

Table 3 shows the running times of our offset alignment algorithm on a Sun-4/370 running version

5.5 of the MINOS solver [ 19], which solves linear programs using a reliable implementation of the

primal simplex method. We used a file interface between our software and MINOS.

We have not investigated the issue of graph contractions for offset alignment. Such contractions,

if they exist, might significantly reduce the time required to solve the LP.

5 Replication

Until now we have considered alignment as a one-to-one mapping from an object to the template.

We now relax our definition and make it a one-to-many mapping, introducing the notion of

replication. We define replication as an offset alignment that is a set of positions rather than a

single position. Replication can be viewed equivalently as a projection operation; this is the view

we took in equation (l), where the replication actions were represented as the matrix/2.

Suppose that a d-dimensional object is aligned to a t-dimensional template. We call the d

25



templateaxesto which theobject is aligned the body axes and the remaining (t - d) axes space

axes. Body axes require the specification of axis, stride, and offset alignments, while space axes

require only offset alignments. Like HPF, we use the symbol • to indicate replication across an

entire template axis. A broadcast communication occurs on an edge along which data flows from

a fixed offset to a replicated offset.

5.1 Replication labeling

Our goal in replication labeling is to decide which ports of the ADG should have replicated

positions. In this section, we describe an algorithm for replication labeling that labels ports as

being replicated or non-replicated.

There are three sources of replication: first, a spread operation causes replication; second, the

use of lookup tables indexed by vector-valued subscripts is more efficient if the lookup table is

replicated across the processors, which we may do with the programmer's permission; finally, a

read-only object with mobile offset alignment in a space axis can be replicated.

Subject to these sources, we want to determine which other objects should be replicated, in

order to minimize broadcast communication during program execution. We model the problem as

a graph labeling problem with two possible labels (replicated, non-replicated) and show that it can

be solved efficiently as a min-cut problem.

Figure 8 shows why replication labeling is useful. In the example, a broadcast will occur in

every iteration if A is not replicated, while a single broadcast will occur (at loop entry) if it is

replicated. This is the solution found by our method.

26



real A(IO0), B(100,200)

do K = 1,200

A = cos(A)

B = B + spread(A,

enddo

dim=2, ncopies=200)

Figure 8: Replication of the array A.

5.2 Labeling by network flow

As the cost function for replication communication is separable by dimension, we determine offsets

independently for each template axis. We call the axis we are currently labeling the current axis. We

must label every port of the ADG either "replicated" (R) or "non-replicated" (N). The constraints

on this labeling are as follows:

1. A port for which the current axis is a body axis has label N.

2. The node for a spread along the current axis has its input port labeled R and its output port

labeled N. 3

. A port for a read-only object with a mobile alignment in the current axis, and for which the

current axis is a space axis, has label R.

, Some other ports have specified labels, such as ports at subroutine boundaries, and ports

representing replicated lookup tables.

5. At every other node, all ports must have the same label.

-_This sounds strange, but it correctly assigns any necessary communication to the input edge rather than to Ihe

node. Thus a spread node performs neither computation nor communication, but just converts a replicated object to

a higher-dimensional non-replicated one.

27



We associate with each ADG edge a weight that is the expected total communication cost (over

time) of having the tail non-replicated and the head replicated; the weight is therefore the sum

over all iterations of the size of the object communicated. The goal is to complete the labeling,

satisfying the constraints, and minimizing the sum of the weights of the edges directed from N to R

ports. This is a min-cut problem and can therefore be solved efficiently by standard network flow

techniques.

Theorem 3 An optimal replication labeling can be found by network flow. []

6 Remarks and Conclusions

This paper presents algorithms for determining alignment parameters for array data in a data-

parallel language such as Fortran 90. We presented algorithms for the various components of the

problem: axis and stride alignment, offset alignment (including mobile offsets), and replication

labeling. Our algorithms extend those previously reported in a number of ways.

Our algorithms use a problem formulation based on the ADG representation. The ADG makes

explicit all array objects generated by a program--named arrays as well as unnamed temporaries.

Thus, the optimization algorithm has complete control over the placement of every array generated.

The ADG also incorporates the effects of control flow into its data flow representation; this

information can affect alignment decisions. Other work has not treated control flow as rigorously.

The graph contraction operations greatly reduce the computation time of the program. For

many examples, the contracted constraint graph becomes a graph of only a few vertices, and the

alignment problem can be solved exactly. Even when an exact method is not feasible, the reduced

size of the contracted graph enables a more complete search of the space of possible solutions.

28



We believe that even more powerful graph contractions are possible; indeed we hope eventually

to define a set of contractions that reduces most programs enough that optimal alignments can be

found by an exponential search procedure.

While we have concentrated on loop programs, our framework can in fact deal with arbitrary

control flow. Static single-assignment form can be constructed for programs with arbitrary control

flow graphs. In the presence of arbitrary control flow, we can associate a control weight c_ of

execution with every edge e of the ADG (using user input, profiling, or other heuristics), and

minimize the expected realignment cost _(_,y)eF _ier_ c_y( i ) • w_:y( i ) . d(rr_(i), try(i)).

The only reason for restricting replication to space axes is that we do not yet completely

understand the ramifications with regard to storage and communication of allowing replication in

body axes. Extending the notion of replication to body axes would provide a more elegant theory.

We do not, however, foresee extending the definition of alignment to make it a many-to-one

mapping (collapsing). This complicates the alignment phase, and we feel that it is best handled in

the distribution phase by mapping some template axes to memory. Clearly, there are interactions

between alignment and distribution, as decisions taken in the distribution phase (such as mapping

certain template axes to memory) can radically alter the assumptions made in the alignment phase.

We propose handling such interactions by iterating the two phases until quiescence.

Acknowledgments

We thank David Bau, Patty Hough, Jingke Li, Michael Saunders, Shang-Hua Teng, the anonymous

referees, and the guest editors of this special issue for their help.

29



References

[1] C. Ancourt, F. Coelho, E lrigoin, and R. Keryell. A linear algebra framework for static HPF

code distribution. In Workshop on Compilers for Parallel Computers, Delft, The Netherlands,

Dec. 1993.

[2] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on scalable

parallel machines. In Proceedings of the ACM SIGPLAN'93 Conference on Programming

Language Design and Implementation, pages 112-125, Albuquerque, NM, June 1993.

[3] D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill. Solving alignment using

elementary linear algebra. In Proceedings of the Seventh Annual Workshop on Languages

and Compilersjbr Parallelism, pages 4.1-4.15, Ithaca, NY, Aug. 1994.

[4] B. M. Chapman, P. Mehrotra, and H. P. Zima. Vienna Fortran--a Fortran language extension

for distributed memory multiprocessors. Technical Report 91-72, ICASE, NASA Langley

Research Center, Hampton, VA, Sept. 1991.

[5] S. Chatterjee, J. R. Gilbert, and R. Schreiber. Mobile and replicated alignment of arrays in

data-parallel programs. In Proceedings of Supercomputing'93, pages 420-429, Portland, OR,

Nov. 1993.

[6] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Modeling data-parallel programs

with the alignment-distribution graph. Journal of Programming Languages, 2: 227-258, Sept.

1994.

30



[7] S. Chatterjee,J. R. Gilbert, R. Schreiber,and S.-H. Teng. Automaticarrayalignmentin

data-parallelprograms. In Proceedings of the Twentieth Annual ACM SIGACT/SIGPLAN

Symposium on Principles of Programming Languages, pages 16-28, Charleston, SC, Jan.

1993.

[8] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Optimal evaluation of array

expressions on massively parallel machines. ACM Trans. Prog. Lang. Syst., 17(1 ): 123-156,

Jan. 1995.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing

static single assignment form and the control dependence graph. ACM Trans. Prog. Lang.

Syst., 13(4):451-490, Oct. 1991.

[ i 0] G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M.-Y. Wu.

Fortran D language specification. Technical Report Rice COMP TR90-141, Department of

Computer Science, Rice University, Houston, TX, Dec. 1990.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, San Francisco, CA, 1979.

[ i 2] J. R. Gilbert and R. Schreiber. Optimal expression evaluation for data parallel architectures.

Journal of Parallel and Distributed Computing, 13 ( I ): 58-64, Sept. !991.

[ 13] M. Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers. PhD thesis,

University of Illinois at Urbana-Champaign, Urbana, IL, Sept. 1992.

31



[ 14] HighPerformanceFortranForum.HighPerformanceFortranlanguagespecification.Scientific

Programming, 2( I-2): I - !70, 1993.

[15] C.-H. Huang and P. Sadayappan. Communication-free hyperplane partitioning of nested

loops. Journal of Parallel and Distributed Computing, 19:90-102, 1993.

[16] K. Knobe, J. D. Lukas, and W. J. Dally. Dynamic alignment on distributed memory systems.

In Proceedings of the Third Workshop on Compilers for Parallel Computers, pages 394-404,

Vienna, Austria, July 1992. Austrian Center for Parallel Computation.

[17] K. Knobe, J. D. Lukas, and G. L. Steele Jr. Data optimization: Allocation of arrays to

reduce communication on SIMD machines. Journal of Parallel and Distributed Computing,

8(2): 102-118, Feb. 1990.

[ 18] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory

machines. Journal of Parallel and Distributed Computing, 13(2):213-22 l, Oct. 199 I.

[ 19] B. A. Murtagh and M. A. Saunders. MINOS 5.4 User's Guide. Department of Operations

Research, Stanford University, Mar. 1993. Report SOL 83-20R.

[20] C. H. Papadimitriou and K. Steiglitz.

plexity. Prentice-Hall, Inc., 1982.

Combinatorial Optimization: Algorithms and Corn-

[21] Thinking Machines Corporation, Cambridge, MA. CM Fortran Reference Manual Versions

1.0 and 1.1, July 1991.

[22] S. Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD

thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 1991.

32





RIACS
Mail Stop T041-5

NASA Ames Research Center
Moffett Field, CA 94035


