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on how to effectively execute multiple subtasks across a
An important problem in heterogeneous computing (HC) is network of sequential processors/machines (e.g., see [CaK88,
predicting task execution time. A methodology is introduced NiH81, NoT93]). In such an environment, load balancing
data parallel prog(rﬁm thatd|s tz be exicuted in_an SIMD.  yroyghput. Although some of the existing mapping concepts
MIMD (SPMD), and/or mixed-mode SIMD/MIMD (SPMD.) HC  and techniques for parallel and distributed computing systems
environment. The program Is assumed to contain operatlons and can be (and have been) applled to matching for HC Systems

constructs whose execution times depend on input-data values. h . fund | distinction b . btask
The methodology uses a block-based approach to transform the there Is a fundamental distinction betwessappingsubtasks

program into a flow analysis tree and computes the execution fOf @ network of s_equential pro:_:essors/machines (eg., a
time distribution for the program, given the execution modes for Network of workstations) andnatchingsubtasks for an HC

each node in the flow analysis tree, an estimated execution time System. In the latter case, the subtasks can be characterized
distribution for each operation in both modes, and appropriate based on “type of computation” present in each subtask to
probabilistic models for control and data conditional constructs. account for the fact that certain types of subtasks may execute
The results are directly applicable to both mixed-machine and most effectively using a particular machine/mode. In an HC
mixed-mode HC systems. e 1997 Academic Press environment, matching subtasks to machines/modes of the
appropriate types is generally a more important factor than
merely balancing the load.

To effectively utilize the computational resources in an HC
system for executing the subtasks that compose a task, it is

A heterogeneous computingiC) system provides a vari- V&Y important to be able to predict the total task execution

ety of architectural capabilities, orchestrated to perform an dfine that results from any particular assignment of subtasks to
plication whose subtasks have diverse execution requirem des/machines. This total task performance prediction is the

[SiA96, SiDI7]. Two types of HC systems are mixed-modB@sis of matching for HC systems. _ _
machines and mixed-machine systems. mixed-mode ma- _Many matching and scheduling algorithms make the sim-
chineis defined here as a single parallel processing machipying assumption that the execution time for each subtask
that is capable of operating in either the synchronous SIMP @ known constant for each mode/machine in the system
[Fly66] or asynchronous MIMD [Fly66] mode of parallelism(e'g" [ChESD3, Fre8$_9, WaA94, Wasod]). However, Fhere are
and can dynamically switch between modes at instruction-lefafments of uncertainty, such as the uncertainty in input data
granularity [SIM96]. A mixed-machinesystem is a suite of values or in intermachine communication time, which can im-

independent machines of different types interconnected byP@ct the execution time. Mode/machine choices for executing
high-speed network. subtasks can also affect the execution time and its degree of

For HC systems,matching involves deciding on which uncertainty. For example, ip a mixed-mode machine, QUring
machine/mode each code block should be executed [SiAg8]! MIMD to SIMD mode switch, all processors must wait for
Mapping for parallel and distributed computing system&€ ast one to finish its MIMD execution before entering the
which is closely related to matching for HC systems, haynchronous SIMD mode. Thus, the amount of time a par-
been studied extensively in the past. Much of the work ficular processor waits depends not only on when it finishes

mapping for parallel and distributed systems has focusMMD execution, but also on when the last processor finishes
MIMD execution.

IThis work was supported by Rome Laboratory under Contract F30602-94- 1 € SPMD (single program-multiple data) mode of par-
C-0022, and by NRaD under Subcontract 20-950001-70. allelism is a special case of MIMD in which the processors
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execute the same program asynchronously on their own detiviD, and/or mixed-mode machines, much of the proposed
[DaG88]. Applications for this study are assumed to be dataethodology is directly applicable.
parallel programs written in a mode-independent language forin a mixed-machine HC system, one component of the de-
execution on an SIMD/SPMD mixed-mode machine. Exangision of whether to execute a given sequence of data par-
ples of mixed-mode machines include EXECUBE [Kog94Hhllel subtasks on a particular SIMD versus MIMD machine
MeshSP [ICE95], OPSILA [DuB88], PASM [SiS96], TRACIs predicting the execution time for that sequence on each
[LiM87], and Triton [PhW93]. The model of a mixed-modemachine. The proposed methodology will support these pre-
machine assumed here is a distributed memory machine,dintions when nondeterministic data-dependent values impact
which each processor is paired with a memory module to forexecution time. These predicted values could then be used
a processing elemenPE). When a PE switches mode, all thain a subtask/machine matching scheme that also incorporates
changes is the source of its instructions. For SIMD mode, P&ther factors, such as intermachine communication time (e.g.,
receive their instructions from a common control ur@l)), [WaA94]). Thus, while this work is being presented in mixed-
while in SPMD mode, each PE fetches its instructions fromodemachine context, the results from the single mode anal-
its own memory module. ysis presented are a necessary part of any automatic mixed-
Studies on how to make effective use of the heterogeneityachinematching scheme.
present within mixed-mode machines can provide useful Consider the execution of the loop in Fig. 1 on a mixed-
insights for how to make effective use of mixed-machinmode machine. The loop body contains subtasks A and B.
systems. For example, in [WaS94] an optimal mode selectidissume the execution times of each subtask vary among the
technique was developed for mixed-mode machines that wRiSs (because the execution time of each subtask depends
later generalized for use with mixed-machine systems am input data values that vary across all PEs) and the loop
[WaA94]. Similarly, much of the work presented here focontrol overhead time is ignored. Assume that, when executed
predicting execution times for mixed-mode machines is aldodependently, the average execution time of subtask A is
applicable and/or adaptable to mixed-machine systems. rhinimal in SIMD mode and the average execution time of
particular, for a mixed-machine system consisting of SIMBsubtask B is minimal in MIMD mode. In Fig. 1, the wide

fori=0tok
subtask A (by itself - best SIMD)
subtask B (by itself - best MIMD)

subtask A in SIMD subtask A in MIMD

iter. PEO PE1 PE2 - iter. PEO PE1 PE2 -

]
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FIG. 1. Execution of a loop with subtasks of variable execution time: (a) low variance for execution time of subtask B; (b) high variance for execution
time of subtask B.
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rectangles spanning horizontally across all PE labels representire program executed in SPMD, SIMD, and mixed-mode
the execution time of a subtask in SIMD mode. The thiare introduced in Sections 4, 5, and 6, respectively. Section 7
rectangles under each PE label represent the execution timeresents a hypothetical numerical example and an application
MIMD mode.The rectangles are shaded differently to represesttidy to demonstrate the effect of mode selections on the
the execution times of subtasks A and B. distribution of total execution time. The Appendix reviews the
Intuitively, executing subtask A in SIMD mode and subtaskasic probability theory and notation used here.
B in MIMD mode should be faster than any other combination
(because the average execution time of subtask A is faster in
SIMD and the average execution time of subtask B is faster in
MIMD). This intuition is correct provided that the variation in 2. OVERVIEW OF THE APPROACH
execution time across the PEs is sufficiently small, as shown
in Fig. 1a. However, as shown in Fig. 1b, if the variation is Applications for this study are assumed to be data parallel
large across the PEs, then it is possible that executing bettograms written in a mode-independent language for exe-
subtasks in MIMD mode is faster due to the effect of blockution on an SIMD/SPMD mixed-mode machine. mode-
juxtaposition, even if the average execution time of subtaskiAdependent languagée.g., see [NiS93, WeW94]) is a lan-
in MIMD mode is larger [BeK91]. Therefore, incorporatingguage in which syntactic elements have interpretations under
only information for average execution times may lead tmore than one mode of parallelism, and operations represent
incorrect machine/mode selections, because the effect of bldlk most explicit level at which the program representation is
juxtaposition is not captured. identical for each mode of parallelism. Such languages make
The methodology proposed here, which does account fopossible to utilize the most appropriate parallel execution
complicated effects like block juxtaposition, statically estimode for each block of a given program.
mates the execution time distribution for a given data parallelAs in the BBMS (block-based mode selection) framework
program in an SIMD/SPMD mixed-mode computing environintroduced in [WaS94], a flow-analysis tree is used to represent
ment. The program is assumed to contain operations whdke application program. The application program is divided
execution time behaviors depend on input data values that carte code blocksidentified by their leading statements called
not be perfectly predicted at compile time. For instance, in theaders [AhS86]. The first statement in a program is a
example shown in Fig. 1, the number of iterations executéshder, any statement that is a target of a branch at the
by the looping construct may be data dependent. Also, eatlachine-code level is a leader, any statement following a
subtask within the loop body may itself contain looping corconditional branch at the machine-code level is a leader, and
structs where the number of iterations to be executed is wamy statement requiring or following a synchronization or an
certain. Probabilistic models are constructed to model theséer-PE communication is a leader. After the code blocks are
types of uncertainties, e.g., a probability density function tefined, the program is transformed into a flow analysis tree,
used to represent the number of iterations executed by eadiose structure represents the scope levels within the program.
looping construct. The aggregate effect of these elementsTdfe root of the tree represents the scope of the entire program.
uncertainty in the program is captured by computing the probhe nonleaf nodes (excluding the root) represent control and
ability distribution for the total execution time. data-conditional constructs. Code blocks are represented by
In the proposed methodology, a block-based approachtlie leaf nodes. An example program and its associated flow
used to transform the application program into a flow analysasalysis tree are shown in Fig. 2. A simple model for the
tree in which the internal nodes represent control or datnguage is assumed here, as in [WaS94]; i.e., the only control
conditional constructs and the leaf nodes represent basic codestructs are loops and data conditionals.
blocks [AhS86]. The methodology takes as input the structurelt is assumed that leaf nodes (i.e., code blocks) are executed
of the flow analysis tree, the mode in which each node gompletely in either SIMD or SPMD mode, and mode changes
the flow analysis tree is to be executed (SIMD or SPMDgre allowed only at interblock boundaries. It is also assumed
execution time distributions for all basic operations for botthat the sibling nodes are executed in an ordered sequence
SIMD and SPMD modes, and appropriate probabilistic moddlfsom left to right) as they appear in the flow-analysis tree.
for control and data conditional constructs. Based on thi$us, the schedule for executing the code blocks is static
information, the execution time distribution for the entirand is defined by the program itself. Because decisions are
program is computed. Deriving this proposed methodologgade statically, the choice of mode for a block within a loop
for combining statistical information about an SIMD/SPMDOs the same for all loop iterations. Each iteration of a loop
mixed-mode program is the focus of this paper. must begin and end execution in the same mode of parallelism
Section 2 presents the basic assumptions and a bietherwise, a mode switch would need to be added to make
overview of the proposed approach. Methods for computiriis true). All blocks that are part of (i.e., descendants of)
the execution time distribution of a single code block im data-conditional construct are executed in the same mode
either SIMD or SPMD mode are discussed in Section 3. Tl parallelism (e.g., this is a requirement in the operation of
methods for computing the execution time distribution for theASM to avoid complex and costly bookkeeping overhead).
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entire scope
of program

blk _a
for (...){ blk_a for_init
blk_b
if (.. fd
blk_c

} else{ >
for_test
blk_d blk b

blk_e

blk_f

blk_c post_then blk_d blk_e post_else

FIG. 2. Example program and its associated flow-analysis tree [WaS94].

The execution time of each basic operation within a codbat takes a long time to execute. If the application programmer
block in each mode on a single PE can either be deterministian indicate that this exception occurs only rarely (i.e.,
(i.e., have a constant value) or an assume different values, eadth low probability), then it can be predicted that the
with a specified probability. In both cases, a discrete randdtal execution time distribution is affected only slightly.
variable is used to model the execution time, where the form@therwise, an arbitrary assumption, such as using a branching
is a special case in which the random variable assumes a gipeobability of approximately one-half, gives a more pessimistic
constant value with probability 1 (i.e., it is deterministic). Arestimate for the total execution time distribution. In addition to
estimate for the execution time distribution of each operatigetting information directly from the application programmer,
in each mode is assumed to be known. empirical information can be derived based on a number of

Because code blocks do not contain conditional or loopimgeasured execution times with a representative sampling of
constructs, the execution times of most basic operatiodata sets.
within a code block can be modeled as known constantsGiven the above information and the mode of parallelism
(i.e., deterministic values) in practice. A possible exceptigine., SIMD or SPMD) in which each code block is to be
is in modeling the time required for inter-PE communicatioexecuted, the execution time distribution of each block—
operations. For these types of operations, general probabilitiich corresponds to a leaf node in the flow-analysis tree—is
distributions are employed to model the uncertainty dwmmputed. After that, traversing the flow-analysis tree in depth-
to network contention for the particular parallel machinérst order, each lowest level subtree is pruned. Repeating this
being used. For a given application domain, the probabilistep, the entire flow-analysis tree is pruned, and the execution
distributions for all basic operations are assumed to Miene distribution of the whole program is computed. Related
independent of: (a) the particular program within the domaprobability theory and notation can be found in textbooks on
being considered and (b) the values of the input data for ttlee subject (e.g., [MoG74]) and are reviewed in the Appendix.
program. Thus, these distributions can be measured for a giverthe next section, the approach to compute the execution
machine (i.e., empirically estimated) and stored in a databdsee distribution of a code block is introduced.
to be referenced by the proposed approach.

It is assumed that the branching probability of each data 3. EXECUTION TIME DISTRIBUTION
conditional construct and the distribution for the number of OF A CODE BLOCK
iterations each loop will execute are application/data dependent
and are available from the application programmer (e.g., Throughout the rest of the paper, it is assumed that time
in the form of compiler directives). In general, the morés measured based on a given discrete unit and thus assumes
accurate the information that the application programmabnnegative integer values. All execution times are modeled
provides, the better the prediction that can be made as discrete random variables. The case of a constant execution
the execution time distribution for the entire program. Fdime is regarded as a special case where the random variable
example, a program may contain an exception-handling brarishkequal to the specified constant with probability 1.
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It is assumed that there afd PEs in the mixed-mode 1 i=o0
machine. The code block associated with ¢tieleaf node in sy =14 -
) . 0, otherwise.
the flow-analysis tree is callezbde block cLet k. denote the
number of operations in code blockand label the operations Then, the associated distribution and density functions are

in code blockc as 0, 1,---, k. — 1. For each code block, given by

define two arrays of discrete random variabllgd andPy !, 0

<i<k.-1,0<j<N-1. The values of the random variables Fp.o() =1,
l¢! and P! correspond to the execution time of operation fp, o() =80

i of block c executed on PE in SIMD and SMD modes,
respectively. It is assumed that for each operatjori’ ! are
P y peratioly random variablel¢ ¢, and for each operationin this block,

independent and identically distributeti.¢l.) for all PEsj. ) O
Likewise, for each PE, I¢' ! are independent for all operations:deflne a random variabl o, both assume there aenabled

i. Both of these assumptions are also madeFbr PEs. The value off:’e corresponds to the execution time of

In general, for SIMD execution a subset of the PEs may Rperation of code blockc in SIM[_) mo_de, and the value
disabled during execution of a block within a data condition& 'c.e corresponds to the execution time of code black
or loop. This is because in SIMD mode only the enabled PES SIMD mode withe enabled PEs. In SIMD mode, because
execute the instructions broadcast by the CU. Also, the numt4E"Y operation in the block is synchronized among all enabled

of enabled PEs for an SPMD block within a mixed-mode loopES: the e_xeCL_Jtion time ,Of an operation is the maximum of
can vary from one iteration to the next. Thus, the number e execution times of this operation among all enabled PEs.

enabled PEs is relevant for SPMD blocks as well. Becausérgere are two cases to considerz 1 ande = 0. Fore > 1,

. &~ . 1, ]
code block itself contains neither data conditionals nor Ioop@,e random variablek, . andlc, ¢ are determined fron’” as
any given PE must be either enabled to execute the whole block

For each code block executed in SIMD mode, define a

or disabled for the whole block. Thus, the number of enabled 'é,e = 0<'j“<"’}3>§1{|t|5 g
PEs does not change during the execution of a code block. In kc__l_

this section, the execution time distribution of a code block is le o= Z .
derived fore enabled PEs, whereis an integer and & e < ' e

N. Based on the i.i.d. assumption for each operation across all _
PEs, fore = 1, the set of enabled PEs can be numbered 0, Then, the distribution function oﬁ':’e and the density func-
-+, e = 1 without loss of generality. tion of I¢ ¢ are given by

For each code block executed in SPMD mode, define two

random variable$®! and P; .. The value ofP! corresponds el

to the execution time of code bloakin SPMD mode on PE ng,e(') = H F|g*i ()= (FQO('))E

j, and the value of; e corresponds to the execution time of j=0

code blockc in SPMD mode withe enabled PEs synchronized fi..() = frge(-) * ff&e(') * e ok fl'(l;cl;l(')-

at the beginning and end of the block. There are two cases to ] ) -
consider:e> 1 ande = 0. Fore > 1, the random variableg/ This “sum of maxs” effect was first described in [FIC88]; how-

and P  are determined fronPy ! as ever, each{ was a sca!ar value and not a rangom va_riablg.
For e = 0, the block is assumed to take O time units with

5] kel j probability 1. Thus, the associated distribution and density
d = P functions are given by
i=0
Pee= 0<m<aexl{|5cj}~ Fieo() =1,
-\= floo() =80).

This “max of sums” effect was first described in [FiC88]; how-
ever, eachP! was a scalar value and not a random variable. Therefore, associated with each code blockre 2N + 1)
The density function of?! and the distribution function of random variablesP; ¢ andl¢ e, 0< e< N. The values of; ¢
Pc.e can be computed &s and ¢ ¢ represent the execution times of code blookith e
enabled PEs in SPMD and SIMD modes, respectively.
fos O = fpoi () % foai() % -k fieai (),

e-1 4. SPMD EXECUTION OF AN ENTIRE PROGRAM
Froo() = [ [ Fai ) = (Fpo()". _ _
j=0 °© 4.1. Overview of SPMD Execution
Fore = 0 (i.e.,, no enabled PEs), the block is assumed toThis section presents a methodology for computing the
take 0 time units with probability 1. Let execution time distribution of an entire program executed in

2Fr,c,- )= F,—,Co(-) for all j because of the i.i.d. assumption. 3F|ic,j )= Flic,o(-) for all j because of the i.i.d. assumption.
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SPMD mode. It is assumed thePEs (1< e< N) are initially the “then” clause while the others are executing the “else”
enabled, and all these PEs remain enabled throughout thelause during the execution of a data conditional construct.
execution of the entire program. A method for modeling By applying the Total Probability Theorem [MoG74], the
series of blocks by a single block having equivalent executiovhole data conditional construct can be represented by a single
time characteristics is introduced first. Then, methods f&PMD block having an equivalent execution time distribution.
modeling two basic program structures, pure data conditiorfadr each PH,

construct and pure loop, are presentedpuke loopis a loop
whose body is currently represented as a series of one or more
leaf blocks. Similarly, apure data conditional construds a

data conditional construct for which the “then” clause and the ) ) )
“else” clause are both currently represented as a series of §pall € PES are synchronized prior to and after completion
or more leaf blocks. It is shown that pure data condition@f noded, the random variable and its associated distribution

construct and pure loop can each be modeled as a sinfyigction for the execution time of nodeare given by
code block. Finally, it is shown how these methods can be _

combined in a divide-and-conquer way to handle arbitrary Pie= max {|Sdl}

program structures. O<j<e-1

o1 = Pl a1+ A= p) g 0.

el
4.2. A Series of Blocks Fro.() =[] Fei() = (Fpo())®.
j=0

For a series ofC (C = 2) blocks (labeled 0, 1,--, C — 1)
executed in SPMD mode, because no synchronization amop
the PEs at the block boundaries is explicitly specified in the
source code, each PE will execute the operations of all blockg=or each pure looping construct, it is assumed that the given
as one contiguous block. Therefore, this series can be modelksgiribution for the number of iterations to be executed by each
as an SPMD bloclC with PE is i.i.d. across all PEs. This simplifying assumption makes

the analysis tractable. If the pure loop body consists of a series

4. Pure Loop

5 C—1ke—1 . c-1 of two or more blocks, then the series can be modeled as a
l=>" > Prl=>"FH single code block using the techniques discussed in Subsection
c=0 i=0 c=0 4.2. Therefore, the focus here is on determining the execution
fai()="Ta1 () * fgi() %% fsi (). time distribution of a loop whose body is a single block.
C 0 1 Cc-1

Let node?¢ of the flow-analysis tree correspond to a pure
If all e PEs are synchronized before block 0 and after bloégop whose body is modeled by blodk and the random

C -1, then variable for the number of iterations to be executed by PE
_ jis Ré .The value off; (r) corresponds to the probability that
Pc.e = 0<rjn<"’}ax_l{cht} PE j will execute exa%tlyr iterations. For allr < 0, f;(r)
1 = 0 (i.e., it is assumed that each RBEwill execute at least
F N — Foi(-) = (Fao(-))E. one iteration). Letr,,,, denote the maximum possible (i.e.,
Pe.e) H Pé() ( Pco( 2 with nonzero probability) number of iterations to be executed.

j=0

J Thus, for allr > 1., fsi(r) = 0. For eachr, 1<r <r,,

4.3. Pure Data Conditional Construct conceptually unroll the ﬁoop into a series pfblocks (i.e.,
if either the “therf€Peat loop body block, r times). The density function of the

For a pure data conditional construct, L ¢ thi . Hs th luti i
clause or the “else” clause consists of a series of two or m&éecutlon time of this series on HBs the convolution o

blocks, then the series of blocks can be modeled as a singfnSity functions oP, . By the Total Probability Theorem, the
code block using the techniques discussed in the previ sity function for the execution time of the looping construct

subsection. Hence, the focus of this subsection is on dQ PEJ is the weighted sum of the density functions of the
conditional constructs in which each of the “then” and “else®X€cution time of the unrolled loop for all possiblei.e.,
clauses is represented by a single block.

Assume noded of the flow-analysis tree corresponds to ‘i (max ‘¢ ‘o ‘o
a pure data conditional construct, and bldclknd blocks p) () = Rl (DT () e Tpi ().
are its “then” and “else” clauses, respectively. It is assumed r=1

p
that PE|j executes the “then” clause with probabilitpt‘, rmes

and this branching probability is independent and identicHlthere are synchronizations prior to and after completion of
across the PEs. Thus, each PExecutes the “else” clausethe loop, then the random variable and its associated distri-
with probability 1- th Because each PE fetches instructionisution function for the execution time across ellPEs are
from its own memory in SPMD mode, some PEs may execugiven by
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mixed-mode; this issue is addressed in Subsections 5.4 and

5 . o
Pee= 0<T23{1{P5 } 6.3.) It is shown that a pure data conditional construct and a
o1 pure loop can each be modeled as a single code block in SIMD
F N — Foi(-) = (Feo(-)E. mode. Finally, it is shown how these methods can be combined
Pr.e() 1_[ P ()= Pf( ) in a divide-and-conquer manner to model an arbitrary program

j=0 X
structure as a single code block.

4.5, Arbitrary Program Construct 5.2. A Series of Blocks

It was shown in the previous two subsections that any For a series off (C = 2) blocks executed in SIMD mode,
subtree corresponding to a pure loop or a pure data conditiopatause each operation is synchronized across all PEs, the total
construct can be modeled as a single leaf node. Thus a dividgecution time is the sum of execution times of all blocks.

and-conquer approach can be used to calculate the execuiffi}s, this series is modeled as one SIMD bi&@lsuch that
time distribution of an arbitrary program. for eache, 0< e <N,

Traversing the flow-analysis tree in depth-first order, each

nonleaf node traversed can only have leaf nodes as its children. c_1

(A node is said to be traversed if and only if all its children lc.e = Z le.e

have been traversed.) Therefore, each such nonleaf node =0

(excluding the root node) corresponds to one of the following flo o) = i o) % Fi () % oo x fie, ().

program structures: (1) a pure loop; (2) a pure data conditional
construct; or (Z_’a) a clause of a data cc_mdmonal construct tk@% Pure Data Conditional Construct
contains a series of blocks. The applicable technique is then
used to model the subtree under this node by a single leafconsider the execution of a pure data conditional construct
node. This procedure is repeated until the children of the rdotSIMD mode withe enabled PEs. Assume that the condition
node are represented as a series of (composite) leaf blodksevaluated in each PE with its own data. (The case of
The SPMD execution time distribution of the entire prograr@valuating the condition in the CU is a simpler case, which
is thus the execution time distribution of the SPMD bldgk is discussed later.) When instructions of the “then” clause are
modeling this series, denoted &N (assumingN PEs are broadcast by the CU, PEs for which the condition is false are
initially enabled to execute the program). disabled; when instructions of the “else” clause are broadcast,
PEs for which the condition is true are disabled. IfelfEs are
to execute the same clause, then the other clause is skipped;
i.e., the instructions for the other clause are not broadcast. (In

5. SIMD EXECUTION OF AN ENTIRE PROGRAM some systems it is less costly to simply broadcast the clause
) . no PEs will execute, rather than test for this situation).
5.1. Overview of SIMD Execution Recall that noded corresponds to a pure data conditional

A methodology for computing the execution time distribuconstruct to be executed in SIMD mode, and its “then”
tion of an entire program executed in SIMD mode is presentedld “else” clauses can be represented as the single code
As discussed in Section 3, the number of enabled PEs ass®¢ckst and s, respectively (using the techniques described
ated with various scope levels of the program may be distiflBt Subsection 5.2). PE executes the “then” clause with
for SIMD execution. Therefore, more bookkeeping (as confrobability p{, and this branching probability is independent
pared with SPMD execution of an entire program) is needed@d identical across the PEs. L&t 0 < e, < e, denote the
account for the number of enabled PEs for each portion of tAgmber of enabled PEs during the execution of blockhus,
program. Assuming\ PEs are used to execute the program e number of enabled PEs during the execution of beisk
SIMD mode, each code block has+ 1 associated execution€ — €. Let p? = p{ for all enabled PE$. The probability for
time distributions, one for each possible numbef enabled €ach possible value & is defined by a binomial distribution
PEs, 0< e < N. It is shown that each program construct can
be modeled as a single block that has an equivalent execution €\ ok Ove—k
time distribution for each possible value af Priee = K] = <k>(pt) (1=p0) O<k=e

The organization of this section is similar to that of Section 0 otherwise.

4. A method for modeling a series of blocks by a single block - . .
having equivalent execution time characteristics is introducEY the Total Probability Theorem, the entire data conditional

first. A series of blocks can appear as children of the root nod:é’,nStruct (i.e., nodel) can be represented by a single block

within a clause of a data conditional, or the body of a loop@ving the execution time density function

Therefore, the number of enabled PEs remains the same during e
the execution of whole series. (However, between iterations f L) = Z Prie = K](fj, () * fi_ . (), 0<e<N.
a loop, the number of enabled PEs may decrease in SIMD and’ k=0 ' ’
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When the condition is evaluated in the CU using CU data,
all PEs execute the same clause. Assuyonis the probability
that the condition is satisfied, then all PEs execute btawith FXomane () f1,. ()
probability p, and blocks with probability 1—- p,. Noded can
be represented by a single SIMD block with the execution time
density function fore+ 0to N

P () & S, () (Sho Bre () 10 ()
fore«< 0to N

fro.() = Ix,.0)

fore<0to N

for 7 < Timax — 1 down to 1

f'd,e(') =Pt flt,e(') + (1 - pt) fls_e(')’ O<ex<N.

5.4. Pure Loop

Consider the execution of a pure loop in SIMD mode. It FIG. 3. Algorithm for computing SIMD loop execution time density func-
is assumed that bounds for looping iterations are based kit
local data from each PE. (The case of a common loop bound

in the CU is simpler and will be discussed later) Thep,.ih PEs, 0< h < e, will execute iteratiorr + 1, given thate

the number of iterations to be executed by each PE can Bgg eyecuted iteratian This is given by binomial distribution
distinct. The CU must broadcast instructions for the PE(s) that

executes the largest number of iterations. Those PEs that finish h o—h
earlier are disabled until the loop is finished. Therefore, as the B o(h) = <9) (Pr+1> (1 . /Or+1>
number of iterations increases, the number of enabled PEs is ' h or
nonincreasing. For each iteration, the number of enabled PEs

is the same across the loop body because the loop body i%y applying the algorithm of Fig. 3, loop is modeled as

represented as a series of leaf bIOCkS.' a single SIMD block, whose execution time density function,
Recall that nodée of the flow-analysis tree corresponds tof is determined for each, 0< e < N
a pure loop whose body is denoted by bldak(If a pure 'kve.(')’ 'S ! C ses .

. . . If iterations are based on a common loop bound in the CU,
loop body cons_|sts of a series Of. blocks, the_senes can tl%ee all PEs execute the same number of iterations.Reet
modeled as a single code block using the techniques discus gr&:ote the random variable associated with the nu'mber of
previously.) Recall that the random variable associated WL tons to be executed (based on CU data). Recal >
the ~r}umber of iterations to be exe(_:uted by P.E de_noted. 1 denotes the maximum possible number of iterations to be
by R/, andr,,, = 1 denotes the maximum possible (i.e., W|tr29

nonzero probability) number of iterations to be executed. Th%s'xbe chUtvsi(tjﬁ Ir:] : gxne%i%gﬁnm?; fggi;e?henit?gna single SIMD
if r<lorr>rg.. then fﬁj (ry=0. Becausefﬁj () = fr() y
2 (4

forallj, for 1<r <10 the probability that anf/ PEexecutes i

r or more iterations is given by fi, o() = Z fR (M) (Fiy o () % -+ % fi o()),
r=1

Lr

Fmax r times

pr=> fro). (1) O<e<N.
i=r

i ) 5.5. Arbitrary Program Construct
Therefore, ifr = 1, thenp, = 1, and ifr > r,,, thenp, = 0. y g

Conceptually unroll the loopr,.. times and label the As in Subsection 4.5, by traversing the flow-analysis tree in
iterations as 1, 2,- -, r ;... Let X, ¢ denote the random variabledepth-first order, each nonleaf node traversed can only have
associated with the combined SIMD execution time of aléaf nodes as its children. Therefore, each such nonleaf node
iterations starting from (and including) iteration given that (excluding the root node) corresponds to one of the following
e PEs are enabled for iteratian Obviously, ifr =r,, then program structures: (1) a pure loop; (2) a pure data conditional
Xr.e = Ip, e- The objective is to determin¥; ¢ = I¢, ¢, which construct; or (3) a clause of a data conditional construct that
corresponds to th&l + 1 execution time distributions of the contains a series of blocks. The applicable technique is then
entire loop. By considering the iterations in reverse order (i.e1Sed to model the subtree under this node as a single leaf node.
I max dOWnN to 1), density functions oK ¢ for eache (0 < (Note that associated with each leaf nodeNis- 1 different
e < N) are computed based on previously computed densiistributions; one for each possible number of enabled PEs.)
functions ofX; 11, h (0< h< ). If a PE is enabled for iteration This procedure is repeated until children of the root node are
r, then the ratiqor 1 1/p0r represents the probability that it will represented as a series of (composite) leaf nodes. The SIMD
be enabled at iteration+ 1. To compute the density functionsexecution time distribution of the entire program is thus the
for X; e, 1 <1 <rp,, it iS necessary to know the probabilityexecution time distribution of the equivalent SIMD leaf node
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By for this series, denoted al; n (assumingN PEs are Let lto—spmp, e aNnd Pio—sivp, e denote the random variable

initially enabled to execute the program). whose values represent the mode-switching times from SIMD
to SPMD and from SPMD to SIMD, respectively, with
enabled PEs. In some machines, e.g., PASM, these correspond

6. MIXED-MODE EXECUTION OF A PROGRAM to the times required to execute a branching instruction and are
_ _ _ therefore constants. Fer= 0, both mode-switching times are
6.1. Overview of Mixed-Mode Execution assumed to be zero, i.efp, g o() = Flospmoo() = 8().

A methodology is presented to estimate the execution tirE%on&der a series of three blocks labeled 0, 1, and 2. Assume

. L at block 0 and block 2 are executed in SIMD mode, and
distribution of a program executed in mixed-mode. Many lock 1 is executed in SPMD mode. Although the PEs can

the concepts developed in Sections 4 and 5 are used for the : . .
) . . . exécute block 1 in an asynchronous fashion, they must begin
mixed-mode analysis. In contrast to single-mode execution . . T
. : X .~ _eXecution at the same time because block 0 is in SIMD mode,
during mixed-mode execution of a program, a significan . o
o Voo 2 and they must wait for the last PE to finish before they
factor that affects the overall execution time distribution is the . o .
. . ) e o egin to execute block 2, which is executed in SIMD mode.
possible difference in execution time distribution for each co
) . o us, the three blocks can be modeled as an SIMD bick
block associated with SIMD and SPMD modes. In addition, . -
L o ireditlose execution time can be calculated as follows for each
mode switching overheads and the synchronization require Lah _ e N
a mode switch from SPMD to SIMD also play important roles’ =~ ~~ '~
in shaping the distribution. The number of enabled PEs must
be considered for each scope level of the program. IB.e =1lo,e+ lto-sPMD e + P e + Pio—siMp. e + 12, ¢
For a mixed-mode program, the calculation of the execution ¢ —
, > AR A _ Ig.e() = fig () x fi () *x fp ()
time distribution for an individual code block is the same = * omSPMD .
as in single-mode execution. The appropriate single-mode
modeling technique is first applied to represent any single- ) . ) .
mode subtree as a single code block with equivalent executiofjnductively, a series of blocks that begins and ends with
characteristics. This includes all data conditional construc2!MD mode can be modeled as a single SIMD block by re-
because all descendants of a data conditional construct nRE&tedly applying this method and the methods from Sections
be executed in the same mode (as explained in Section 22nd 5. This is modeled as an SIMD block because the PEs
It will be shown that, in contrast to single-mode executiodlust be synchronized at the end of this composite block.

where a series of blocks or a loop can be modeled as a singlé:rom the above discussion, the following conclusions are

code block, in mixed-mode execution, a series of blocks Bade:
a pure loop can be modeled as a series of at most thre(?L
blocks with equivalent execution characteristics. A method fqr,
combining these techniques to model arbitrary mixed-mog
program execution is presented.

* Frosmp.e() * fiy ().

If the series begins and ends with SIMD blocks, then it

bn be modeled as a single SIMD (composite) block.

€2. If the series begins with an SIMD block and ends

with an SPMD block, then it can be modeled as a series

] ] consisting of an SIMD (composite) block followed by an

6.2. A Series of Mixed-Mode Blocks SPMD (composite) block.

It was demonstrated earlier that the single-mode execution3' If the series bggins with an SPMD block.and ean .With
SIMD block, then it can be modeled as a series consisting of

of a series of blocks can be modeled as a single code blo8R. . .
Thus, a series of blocks executed in mixed-mode can B8 SFMD (composite) block followed by an SIMD (composite)

) : ock.
modeled as a series of alternating SIMD and SPMD blocks. . . . .
series of SIMD and SPMD blocks that compose all the children4' If the series begins with an SPMD block and ends with

of an arbitrary node can begin and end with either mode, Sg'\g:) bklo.(;k’”tgfn Ilt gartlhbe qucalled as elthgr g;&;‘gle
there are four cases to consider: (1) begin with SIMD an ock (if all blocks in the original series are in

end with SIMD: (2) begin with SIMD and end with SPMD'mOde)' or a series of three (composite) blocks executed in the

(3) begin with SPMD and end with SIMD; and (4) begin witr°"4€" °f SPMD, SIMD, and SPMD.
SPMD and end with SPMD.

Recall from Section 2 that cases (2) and (3) are possibleFor cases (2), (3), and (4), the beginning and/or the ending
with the root node only. For case (1), it is shown below th&PMD (composite) blocks in the resulting series are the
the series can be modeled as a single code block (in SIMfguivalent of the longest subseries of SPMD blocks from the
mode). This result enables cases (2) and (3) to be modeledaginning and/or the end of the original series. For each of
a series of two blocks and case (4) to be modeled as a setlesse cases, the series of composite blocks must begin and
of three blocks. For case (1), it will be shown next how and with the same mode as the original series in order to be
three-block series can be modeled as a single code block, aie to correctly merge with other nodes (due to synchronous
the case of more than three blocks follows inductively. nature of SIMD and asynchronous nature of SPMD).
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6.3. Pure Loop SPMD mode, then it is conceptually possible for PEs to begin
. i . executing this block immediately after they complete the loop

Recall from Section 2 that it 1S assumed that the d'ﬁe_re%ecause the last block of the loop is executed in SPMD mode).
blocks of a loop body may use d|ffe_rent modes of parallelis owever, a large amount of bookkeeping overhead would be
.bUt n.]USt be the same for a!l iterations of the.'OOP' and €afyuired to implement this feature on an actual mixed-mode
iteration of a loop must begin and end execution in the SaMfachine (e.g., consider the situation in which a group of PEs

mode. Therefore, the quy of a mixed-.mode loop containst t complete the loop are executing a SPMD block outside
series of blocks that begins and ends with the same mode E loop and the other PEs are executing the SIMD block

last block may contain only a mode switch instruction). Fromyithin the loop body). To avoid this, it is assumed that PEs

the discussion in the previous subsection, if it begins and er}ﬂ,% disabled as the :
) y complete the loop and that they remain
with SIMD mode, then the loop body can be modeled as abled until all PEs finish the loop. This is straightforward

single block and the single-mode technique of Subsection ¢timplement on a mixed-mode machine by having each PE

Can be.applri]edl to rgogelbthg Ioopdas aclis?ngsltle:),\iI[)MD zloc isable itself when it has completed the loop, and using the
therwise, the loop body begins and ends in moade to determine when all PEs that were initially enabled for

can be queled as eithe_r a single SPMD block (if all bloc fie loop become disabled (which indicates that the loop has
in the original series are in SPMD mode), or a series of thr%%en completed by all initially enabled PEs)

(composite) blocks executed in the order of SPMD, SIMD

and SPMD. This case will be considered in the remainder @ 1ot proadcast instructions for SIMD portions of block 1

this subsection. _ , for the PE(s) that executes the greatest number of iterations. As
Suppose the loop body is modeled as a series of three blogks. <se above, the PEs that finish earlier are disabled until

labeled 0, 1, and 2, where block 0 and block 2 are (Compositg), o vive 100p is finished. An approach similar to that of Sub-

SPMD blocks and block 1 is a_(co[npositq)jSIMD block. Agaction 5.4 is used to track the number of enabled PEs at each
was defined earlier, random vanablléé andP, represent the iteration and to model the entire loop for eaghd < e < N.
SPMD execution times of blocks 0 and 2 on REespectively, - 1nq 1505 s conceptually unrolled,, times. This results

andly, e represents the SlMPJ- execution time of block 1 with,  series of mixed-mode blocks beginning with block 0 and
e enabled PEs. Recall th&; is the random variable thatgnging with block 2, as shown in Fig. 4. For0j < e, the

corresponds to the number of iterations thath?Eto execut_e probability that any PE executes iteration, denoted byp,,

the loop body, and ., > 1 denotes the maximum possiblgs given by Eq. (1) in Subsection 5.4. Assume that theresare
number of iterations to be executed by any PE. enabled PEs at the beginning of iterationThe combined

. Co_nS|der first the special case in wh_lch the number gfived-mode execution time of iterations to o CAN DE
iterations to be executed by each PE is the same (defgfpresented by a series of two blocks executed in SPMD and
ministic) value. Thus, for each PE fﬁzj (fma) = 1, 1.8, SIMD modes, respectively. The first block is block 0 and the
fai (1) = 8(r — rmay, Which indicates that each PEexe- second (composite SIMD) block models the series of blocks
cutes the loop body exactly,,, times. Conceptually unroll from block 1 of iterationr through block 2 of iteration

the loop bodyr .. times, which is a series of blocks in whichThe last SPMD block 2 is included in this composite SIMD
the first and last blocks are executed in SPMD mode (see Hidpck because of the assumed synchronization at the end of
4). Using the appropriate technique of the previous subsectidhe loop.

this unrolled series can be modeled as a series of three blockd.et Y; e denote the random variable associated with the
The first block is the SPMD block 0, the second block is @xecution time of the SIMD block that models the series of
composite SIMD block for the subseries beginning with blocklocks from block 1 of iteratiom through block 2 ofr,,, in

1 of iteration 1 and ending with block 1 of iteratiop,,, and the unrolled loop, given tha¢ PEs are enabled for iteration
the third block is the SPMD block 2. These are indicated by

A, B, and C, respectively, in Fig. 4.

Consider next the general situation, i.€x; (frmax) # 1. For
this case, the number of iterations executed by each PE
generally distinct. If the next block after the loop is executed i Pimane () S () % frosoup () * frac ()

for r < ripax — 1 down to 1

’_Similar to the SIMD loop considered in Subsection 5.4, the

fore«+ 0to N

fore< 0to N

[ iteration no. 1 2 3 4 5

mode P[I|P|P[I|P|P|I[P|P|[I[P|P[I]|P Fronl) e Frua () % Fre spame ()%

block no. 0 1]2]oli[2]o]1]2]0]i]2|0]1]2

same # iter. | A B (SIMD) C [ Bre () (Fon ) * P st () * Frpin ()]
&iff. # iter. | D E (SIMD)

FIG. 5. Algorithm for computing the density function of the composite
FIG. 4. Conceptually unrolling a loop consisting of a series of three blockSIMD block of a two-block equivalent series for a mixed-mode loop that
with r .= 5 (P = SPMD, | = SIMD). starts and ends in SPMD.
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r. Recall that the number of enabled PEs is nonincreasingiasepeated until the children of the root node are represented
the number of iterations increases. HOF I ., Yrnae = DYy @ series of at most three composite leaf blocks. There are
I1 e+ lto-spmp.e + P2, e. The algorithm described in Fig. 5four possible cases.

g’el:];ed :cﬂnc(;r;ﬁ:tiﬁt:]e den(zlti/ fﬁn:tlec)mfs(,)\?f;”b:s%d<or; t<he 1. The root is modeled as a single SIMD block, denoted
ty r+1h T ' .~ _byR, in which case the execution time lig, n.

N. The procedure is quite similar to that of Fig. 3. The main 2. The rootis represented by a series of two blogksand

?'ﬁirheg::f ISSPIrI\]/ItlgebICoOcT%né?%gr:thsmS+P2A?rr?Lzzkt2 gfgﬁﬁgorhl, whereR, is modeled as an SIMD block arf®}, is modeled
Wi ! ' ' W as an SPMD block. The execution time of the program is

blocks cannot be combined in the usual way (as described;in N+ losomp N + PR N
H (O ), 1, N+
Elubiectlﬁnb4.2d)i k;:”:] c?usAe tthni nt:rr;berr a;e;a?/le: ;ES fizr ea The root is represented by a series of two blo&snd
soecd t(C)are rgser?t thce.e ece t'gﬁ ?r?]le gf th?'-zse ta oabligks h% whereR, is modeled as an SPMD block aRd is modeled
u P . > execution 1 = Wo w a;d an SIMD block. The execution time of the program is
e PEs execute iteration and h PEs execute iteration + 1.

i : _ Pro, N + Pio—siMD, N + IRy, N-
Thus, if both blocks are executed BPES (ie.h =€), then 7y = oo s represented by a series of three blocks,

. . "‘J "'J
Ve, IS eq_ual to the maximum oP; + Py acrosse PEs. R, R;, and R,, whereR, is modeled as an SPMD block,
However, ifh < e PEs are enabled for iteration+ 1, then R. is modeled as an SIMD block. ang. is modeled as

. . 3 5] 1 ’ 2
Ve’h,'s equal t~oJ the maximum dP, + Py overh PEs and the o ‘spyp plock. The execution time of the program is
maximum of P, overe - h PEs. Therefore, the formula for Pro. N + Po—siMD. N + IRy, N + lto—sPMD, N + PRy, N

Ve’ h |S
max {|521' + |Scj} h=e h>0 7. NUMERICAL STUDIES
O<j<e
Ve h = max{om_a>§1{l52" + F;d' 1, @) 7.1. Hypothetical Mixed-Mode Example
< .
== =i To demonstrate how mode selections can affect the total ex-
05T<6}e)ih{P2 i O<h<e ecution time distribution, numerical parameters are associated
with the nodes of the flow analysis tree of Fig. 2 to construct a
Fore=h =0, defineVo o = 0, i.e., fy, , = 8() very simple example. The hypothetical program is assumed to
’ 8 » 1=+ 1Vo, 0 .

To summarize, a two-block series is used to model ¢ €xecuted on an 8-PE SIMD/SPMD mixed-mode machine.

general case in which the loop body starts and ends in SPNfDS @ssumed that in each mode, the execution time for basic

mode. The first block in this series, indicated by D in Fig. 4, jgperations (i.e., operations that are not looping or conditional
the SPMD block 0 of the loop bodys . The second block constructs) are constants (i.e., deterministic values). Therefore,
indicated by E in Fig. 4, is the corr%pbsite SIMD blo¥k o " the execution time of each original leaf block for each mode

is deterministic. It is also assumed that the execution time of

each basic operation is identical in SIMD and SPMD modes

except for inter-PE communication operations, in which case

i SIMD mode is assumed to execute faster than SPMD mode.
As stated earlier, because all descendents of a data corsliy pik _f is assumed to contain inter-PE communications;

tional construct must be executed in the same mode, each 4glg; it executes faster in SIMD mode than in SPMD mode. Ex-

conditional construct can be modeled as a single code blagktion times of each block are listed in Table I. Simplifying

using the single-mode modeling techniques of Sections 4 ag¢symptions are made for the “overhead” operations listed; the

5. It was shown in the previous subsections that a seriestRimework developed here can readily support distinct values

blocks or a pure loop can be modeled as a series of at Mgt each overhead operation in each mode. For each PE, the

three blocks. As in the single-mode case, a divide-and-conaysgp is assumed to execute 8, 9, 10, 11, or 12 iterations with

a}lgorlthm can be used to calculate the execution time Q'St”t{l\’qual probability (i.e., for alf, 8 < r < 12, f(r) = 0.2),

tion of the whole program. Traversing the flow-analysis tree ¢

in depth-first order, each nonleaf nodetraversed can only

have leaf nodes as its children. Therefore, each such nonleaf TABLE |

node (excluding the root node) corresponds to one of the fol- Assumed Execution Times of Each Block in SIMD and

lowing program structures: (1) a pure loop; (2) a pure data ~ SPMD Modes for the Flow Analysis Tree of Fig. 2

conditional construct; or (3) a series of blocks that is a clausgode bk a bk b bk ¢ bk d blk e blk f Overhead

of a data conditional construct.
Using the techniques introduced above, the subtree undé&f®

node n is modeled as a series of at most three leaf nodéBMD 12 15 10 29 23 35 1

(always a single_ |eaf.n0de_ for cases (2) and (3)) Node asimplifying assumption for overhead for: mode switchirigy, init
then replaced with this series of leaf node(s). This procedutetest |, if test , post_then , andpost_else

whose density function is computed according to Fig. 5.

6.4. Arbitrary Program Construct

12 15 10 29 23 10 1
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entire scope
of program

SPMD blk_a for_init

blk_b if test blk_f for_test

SIMD

blk_c post_then blk d blk e post_else

FIG. 6. Mixed-mode execution for the numerical example.

and the data conditional statement is assumed to executefihre switching to SIMD mode and upon program completion
“then” clause with probability 0.8 for each PE (i.ga, = 0.8). in SPMD mode (such as described in Fig. 1).

The execution time density function of the whole program Applying the average value approach to the three cases
is computed for three cases: executing the entire progransidered for the numerical example requires the following
in SIMD mode, executing the entire program in SPMRalculations. For SPMD execution of the entire program, the
mode, and executing the program using a particular mixegkecution time of thé statement (and its descendents) is (10
mode scheme, shown in Fig. 6. For the mixed-mode schemd) x 0.8 + (29 + 23 + 1)x 0.2 = 19.4, the execution time of
considered, thef statement (and its descendents) and ttke loop is (15 + 1 + 19.4 + 35 + 1} 10 = 714, and the total
if _test are executed in SPMD mode, and the rest of th@ogram execution time is 12 + 1 + 714 = 727.0. For SIMD
program is executed in SIMD mode. The expected valuegecution of the entire program, the execution time ofithe
of the resulting distributions for program execution time arstatement (and its descendents) is (10 +<10.8° + (29 + 23
listed in the first row of Table Il. These values were computedl 1) x 0.28 + (10 + 1 + 29 + 23 + 1)x (1 — 0.8 - 0.29)
after evaluating the density function for each case considered55.11, the execution time of the loop is (15 + 1 + 55.11 +
Based on these computed expected values for this examplEds+ 1) x 10 = 821.1, and the total execution time is 12 + 1
assumed numerical parameters, SPMD’s advantages associat8@1.1 = 834.1. For the mixed-mode case shown in Fig. 6,
with effectively executing the data conditional construct anthe execution time of thé& statement (and its descendents)
juxtaposing SPMD blocks without interblock synchronizatiois (10 + 1) x 0.8 + (29 + 23 + 1)x 0.2 = 19.4, the execution
exceed its disadvantage for inter-PE communication tintiene of the loopis (15+ 1+ 1+ 194+ 1+ 10+ ¥ 10
(compared with SIMD and mixed-mode). = 484, and the total execution time is 12 + 1 + 484 = 497.0.

To illustrate the importance of having accurate executiorhese results are tabulated in the second row of Table II.
time predictions for making proper mode selections, approxi- From Table Il, note that thactual expected values (com-
mations for expected execution times for the above cases puted using the proposed approach) are significantly different
also computed using a simple “average value approach.” flem the correspondingpproximateexpected values (com-
the average value approach, the flow-analysis tree is traverpeted using the average value approach). Based on the av-
in a depth-first order, as in the proposed approach. Howeveiage value approach, the mixed-mode case has an expected
instead of modeling each pruned portion of the three with tif&ecution time that is significantly better than both the SIMD
appropriate random variable(s), an approximate expected vakiidl SPMD executions of the entire program. However, the
is used. For looping constructs, the number of iterations ex-
ecuted (for both SIMD and SPMD modes) is approximated . TABLE II o
by the expected number of iterations to be executed by eadiftual and Approximate Expected Values for Execution Time

. . . of the Whole Program in SIMD, SPMD, and According
PE. Thus, the looping construct of the numerical example is ' :

. . to the Mixed-Mode Scheme of Fig. 6

assumed to execute exactly 10 iterations. For SPMD execu-
tion of a subtree, the expected execution time of a single PExpected value of execution time ~ SIMD SPMD  Mixed-mode
is used to approximate the expected execution time acrosslfa (proposed approach) 1002.0 8894 915.8
PEs. This approximation ignores the aspect of determining the
maximum time across all PEs caused by a synchronization GBPrXimate (avg. value approach)

834.1 727.0 497.0
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actual expected values indicate that SPMD execution of tteel. If it does, then the algorithm halts and declares the ex-
entire program is the best choice of the three cases considguegksion as satisfiable. If the variable assignments for the
for the given numerical values and given mixed-mode choicasde cause the expression to evaluate to 0, then the algorithm
(other numerical values and mixed-mode choices may reshbiétcktracks. Finally, if the value of the expression cannot be
in mixed-mode being the best method). determined based on the partial assignment of the node, then
One source of inaccuracy associated with the average valhe algorithm searches deeper into the tree. Because the time
approach for the mixed-mode and SPMD calculations is duequired to search any single (arbitrary) node of the tree is ap-
to using the expected execution time of a single PE mwoximately the same constant, the number of nodes searched
approximate the expected execution time across all PEs. iAghe search tree was used as the basic measure of execution
mentioned earlier, this approximation ignores the aspect tihe. The total number of nodes searched for a given instance
determining the maximum time across all PEs caused byofthe problem is not known a priori; it depends on the par-
synchronization before switching to SIMD mode and upoticular CNF expression.
program completion in SPMD mode. For the mixed-mode caseSearch algorithms such as the Davis—Putnam algorithm
considered, the ignored synchronization time was especiadse often implemented using a recursive function. However,
significant because it occurred within a looping construct (i.doecause the execution time of programs with a recursive
the error associated with the approximation was compoundegiction was not analyzed in this paper, the algorithm was
multiple times). Another source of inaccuracy associated withistead implemented with only data conditional and looping
the average value approach for the SIMD and mixed-modenstructs, as shown in Fig. 7. The flow-analysis tree of Fig.
cases is due to the approximation used for the number dis for solving a 3-SAT problem with 12 variables. Because
iterations for the looping construct. In particular, for SIMDprogram performance is measured by the number of nodes
execution of the looping construct, the CU must broadcastarched in the binary tree, the control overhead for loops
instructions for the PE(s) that executes the largest number
of iterations. Thus, the expected number of iterations for the
SIMD loop is actually higher than the approximate value used,
which represents the expected number of iterations for which for_x0
at least a single PE is enabled during SIMD execution of the
loop. eval if_x0
7.2. An Application Case Study

continue

This subsection illustrates the result of applying the pro-
posed methodology for predicting the performance of an eval
SPMD program for solving satisfiability problems [Li96]. The .
satisfiability problem $AT) is a textbook example of an NP- :
complete problem [CoL90, KuG94]. Given a boolean expres-
sion, the goal of SAT is to determine whether there exist values for xi
for the variables of the expression that cause the expression to
evaluate to TRUE (i.e., logical 1). For algorithmic simplicity,
and without loss of generality, only instances of SAT expressed
in conjunctive normal form@NF) were considered (CNF is for_x (i+1)
the AND of clauses, where each clause is the OR of one or
more literals). CNFs with exactly three literals per clause were
used (calledB-SAT) in this study [KuG94]. Also, only unsatis-
fiable instances were considered in order to isolate the source
of uncertainty in the parallel execution time.

The Davis—Putnam algorithm [DaP60] was adopted for
solving 3-SATs in this study. This algorithm uses a depth- for _x10
first traversal of a binary search tree in which a node at level
i represents a permutation of possible values for the first
variables. Thus, the complete search tree has a number of
levels equal to the number of variables in the expression.

Each nonleaf node in the search tree represents a partial as-
signment of the values of the variables, and the leaf nodes eval
represent a complete assignment of values to variables. The

algorithm operates by determining whether a (partial) assignF|G. 7. The flow-analysis tree associated with the sequential program for
ment associated with a given node being searched evaluatésng 3-SAT with 12 variables.

if x1

eval i f_Xl

continue

if_x(i+1)
eval

eval if_x10

for x11 .
continue
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and data conditionals are not shown in the figure. For eachand the structure of the algorithm’s flow-analysis tree (shown
0 < i < 11, boolean variable; is associated with a loopingin Fig. 7).
constructfor _xi that executes two iterations; is assigned It should be noted that the predicted and sample distributions
to 1 and O in the first and second iteration, respectively. Theould coincide (exactly) under ideal conditions, in which
body of loopfor _xi begins with an “eval” node, in which the number of nodes searched for different iterations of a
the formula of the instance is evaluated based on the curréotgp were independent; the branching probabilities associated
partial assignment of values kg throughx; (xi+1 throughx,; with different data conditional constructs on the same PE
are treated as unknowns). Hor 11, the loop body ofor _xi  were independent; and the branching probabilities associated
also includes a data conditional constriict xi , such that if with the same data conditional construct across all PEs
the formula is undetermined (i.e., cannot be evaluated to @Qjere independent. By comparing the predicted and sample
then loopfor _x(i+1) is invoked to extend the current partialdistributions, it must be the case that these assumptions are
assignment tog 1 (this corresponds to the “then” clause ohot completely satisfied in this application, and thus some error
if _xi ). Otherwise, the SAT returns FALSE (it cannot bexists.
TRUE because the instances considered are unsatisfiable), ar@onsider the particular assumption that the branching prob-
the algorithm backtracks. Thus, the “else” clausefofxi is abilities associated with the same conditional construct are
a null node, labeledcbntinue " in the figure. independent across all PEs. To understand why this assump-
A parallel version of the Davis—Putnam algorithm wasion is not completely satisfied for the parallel implementation
implemented on four PEs of an Intel Paragon as an SPMiDthe Davis—Putnam algorithm, recall that the initial formulas
program, in which the search tree was partitioned staticatygsigned to PE 0 and PE 1 are nearly identical. In particular, in
and distributed to four PEs, labeled O to 3. For each PE.tte formula for PE 0, variableg, andx, are both set to zero;
search was performed with fixed values assigned for the tiwothe formula for PE 1, variablg, is set to zero and; is set
variablesx, andx, according to the two least significant bitsto one. The other parts of these two formulas (i.e., the initially
of the PE label. unassigned variables) are identical. So, it is likely that early
A set of 64,000 randomly generated unsatisfiable 3-SAlssignments of variables (corresponding to upper portions in
instances were used in this study. The elements of uncertaititg flow-analysis tree) will often result in the same decision
in this program that affect the number of nodes searched éoe these two PEs (because the initial formulas are nearly the
the branch probabilities associated with the data conditiorslme). This implies that there is actually a correlation among
constructs. The program was instrumented to record branchbrgnching decisions across PEs, and thus they are not indepen-
decisions. These empirically determined parameters were udedt. For more details and descriptions of other studies, refer
to calculate the predicted distribution of execution time (usirtg [Li96].
the approach of Section 4). The purpose of the instrumentatiorBased on the conducted studies, it can be concluded that
was to obtain a precise set of parameters (in this casiee proposed approach produced good predictions. To further
branching probabilities) in order to demonstrate the accuraitiystrate the merit of the proposed approach, the straightfor-
of the proposed analytical approach. Also, the applicatiavard “average value approach” (used for comparison with the
programmer could provide these parameters (or estimatespafposed approach in Subsection 7.1) was also applied to the
these parameters) based on knowledge about and experidooe-PE study. This average value approach, which can only
with the program under consideration. Preliminary studiestimate the average number of nodes searched, resulted in a
concerning the effect of using estimates for these branchipgedicted average number of nodes searched of 75.25. This is
probabilities (instead of precise values) are presented in [Li98]gnificantly different from the predicted average of the pro-
In practice, in application areas such as image processing, flesed approach, which was 103.67, and the actual (sample)
characteristics of the input, e.g., sequence satellite imagagerage, which was 112.51. The fundamental reason for the
may be similar. Hence, information about program behavipoor performance of the average value approach is that the
for a given set of images can be used in predicting futuexecution time of an SPMD program requires the maximum
behavior for other images with similar characteristics. lof the execution time across all PEs, and the average value ap-
addition, by collecting conditional probabilities on a givemproach cannot account for the effect of this “max” operation.
machine, these parameters can then be used as input to
the proposed analysis approach to predict performance for 8. SUMMARY
hypothetical machines with different properties (e.g., different
basic operation times, different number of PEs, and/or differentA methodology was introduced for estimating the execution
architecture). time distribution for a given data parallel program that is to
The predicted distribution (based on using the proposed dy® executed in an SIMD/SPMD mixed-mode heterogeneous
proach) and sample distribution (based on the actual numleewironment. A block-based approach was used to transform
of nodes searched) are compared in Fig. 8. The predicted diee application program into a flow-analysis tree in which
tribution was determined by applying the approach of Sectitine internal nodes represent control and data conditional
4 based on the empirically collected branching probabilitie®nstructs and the leaf nodes represent basic code blocks.
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FIG. 8. Predicted versus sample distribution of number of nodes searched by the 4-PE SPMD program. (a) Predicted distribution from proposed approach.
(b) Sample distribution based on 64,000 executions.

Given the mode in which each node in the flow-analysimodes, and appropriate probabilistic models for control and
tree is to be executed (SIMD or SPMD), the execution tim#gata conditional constructs, the methodology computes the
distribution for each operation for both SIMD and SPMBDexecution time distribution for the program.
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For SPMD mode, synchronization among PEs is currently Fx(X) = Pr[X < X].
limited to be among all PEs. Synchronization among a subset
of PEs is important in many practical applications in whiclthree basic properties of a distribution function are: (1)
two or more EES communicgte.' Thus, develpping a precipg(_w) =0, (2) Fy(®) = 1, and (3)Vxj > xi, Fx(x}) >
model for arbitrary synchronization patterns is an area thp&(xi). Also, as shown below, the distribution function can

needs further study. o ~ be derived from the density function and vice versa:
Much of the developed methodology is directly applicable

for mixed-machine systems consisting of SIMD, MIMD,

and/or mixed-mode machines. Extensions of the proposed Fx(x) = Z fx )

framework to compute execution time distributions for mixed- i =x} _
machine systems (i.e., suites of interconnected heterogeneous fy (X)) = { Fx(Xi) — Fx(Xi-1) = 1
parallel machines) are presented in [LIA97]. One important Fx (o) I =0.

issue that needs to be addressed in predicting the overall

execution time in mixed-machine systems is modeling the timeConsider two random variableg, andX,, and letX, = xo |
required for intermachine communication. andX; = x; , denote arbitrary events associated with these ran-

In summary, the precise quantification of how input da@dm variables. The random variablégandX, are defined to
values affect program execution time in a heterogenedgindependentt and only if for all xo ; andxy
computing environment, based on modeling the uncertainty
with probabilistic distributions, is a primary contribution of Pr[Xy = xq j N X1 = X41.k] = Pr[Xo = Xo, ] Pr[X1 = X1.k].
the paper. The advantage—in terms of making effective mode
selections—of using the proposed methodology to predict the| gt Xo» X1, - -, X _ 1 be a collection ok independent ran-
distribution for the execution time of a program, over a Slmp@om variables defined on the same probab|||ty space and as-
“‘average value approach,” was illustrated with the numericalime that the range for each of these random variables is a

examples. subset of A x i: i =0, 1,---}, for some real constanf\.
Without loss of generalityA = 1 is assumed in this paper.
APPENDIX: PROBABILITY THEORY AND NOTATION Let the random variabl¥ denote the sum of the independent

. o _ _ random variableXg, Xy, - - -, Xyq, i.€., Y = Y K2 X;. Fork =
The purpose of this Appendix is to provide an overview ihe density function o is the convolutionof fx,(-) and
of relevant concepts and notation from basic probabllltyx (), denoted byfy (-) = fx,(-) * fx,(-), which is defined
theory. Additional definitions and derivations can be found igy1 ° !

textbooks on the subject (e.g., [MoG74]).

A sample spaces the collection of all possible outcomes of o
a conceptual experiment. Aeventis a subset of the sample fy(j) = Z fxo(j — i) fx, (i), j=01,--
space. Aprobability function denoted by Pr], is a function 20
that maps each event to a real number in [0, 1], which
represents the likelihood that a given event occurs. All possidiegeneral, the density function ofis given by
execution times for an SIMD/SPMD program represent events
within a sample space.

A random variable denoted byX or X(-), is a function that

maps each event to a real number. For instance, suppose tr\_eet the random variabl& denote the maximum over the set
execution time of a program takes on one of several possi

_ _ lBlfilindependent random variablég, X;, -+, Xy, i.e.,Z =
Yalues. The ran_dom_ variablX is us"ed to map the eventmax{xo, Xy, - -+ X,.}. Because of the independence assump-
program execution time X seconds” to the real number

A random variableX is discreteif the range ofX is countable. tion, the distribution o is derived as

Throughout this paper, only discrete random variables are

used, and the discrete values from the range of the randém(i) = Pr[Z <i] = Pr[Xo <i] Pr{Xy <i] --- Pr[Xk—1 <Ii].
variable X is x;, i = 0. Let X = x; denote the event that is

mapped to the valug;. Let X < x; denote the union of all Therefore,
events that are mapped to values less than or equal to the
valuex;.

fy () = fxo() * fx () * - % fx (). (3)

The density functiorof X is Fz() = FxoM)Fx (1) -+ Fxica (). )
fx(X) = PrIX =x], if x=x,i=01 . ACKNOWLEDGMENT
0, otherwise.

o ) . A preliminary version of portions of this material was presented at the 4th
The distribution functionof X is Heterogeneous Computing Workshop, April 1995.
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