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An important problem in heterogeneous computing (HC) is
predicting task execution time. A methodology is introduced
for determining the execution time distribution for a given
data parallel program that is to be executed in an SIMD,
MIMD (SPMD), and/or mixed-mode SIMD/MIMD (SPMD) HC
environment. The program is assumed to contain operations and
constructs whose execution times depend on input-data values.
The methodology uses a block-based approach to transform the
program into a flow analysis tree and computes the execution
time distribution for the program, given the execution modes for
each node in the flow analysis tree, an estimated execution time
distribution for each operation in both modes, and appropriate
probabilistic models for control and data conditional constructs.
The results are directly applicable to both mixed-machine and
mixed-mode HC systems. © 1997 Academic Press

1. INTRODUCTION

A heterogeneous computing (HC) system provides a vari-
ety of architectural capabilities, orchestrated to perform an ap-
plication whose subtasks have diverse execution requirements
[SiA96, SiD97]. Two types of HC systems are mixed-mode
machines and mixed-machine systems. Amixed-mode ma-
chine is defined here as a single parallel processing machine
that is capable of operating in either the synchronous SIMD
[Fly66] or asynchronous MIMD [Fly66] mode of parallelism
and can dynamically switch between modes at instruction-level
granularity [SiM96]. A mixed-machinesystem is a suite of
independent machines of different types interconnected by a
high-speed network.

For HC systems,matching involves deciding on which
machine/mode each code block should be executed [SiA96].
Mapping for parallel and distributed computing systems,
which is closely related to matching for HC systems, has
been studied extensively in the past. Much of the work in
mapping for parallel and distributed systems has focused

1This work was supported by Rome Laboratory under Contract F30602-94-
C-0022, and by NRaD under Subcontract 20-950001-70.

on how to effectively execute multiple subtasks across a
network of sequential processors/machines (e.g., see [CaK88,
NiH81, NoT93]). In such an environment, load balancing
can be an effective way to improve response time and
throughput. Although some of the existing mapping concepts
and techniques for parallel and distributed computing systems
can be (and have been) applied to matching for HC systems,
there is a fundamental distinction betweenmappingsubtasks
for a network of sequential processors/machines (e.g., a
network of workstations) andmatchingsubtasks for an HC
system. In the latter case, the subtasks can be characterized
based on “type of computation” present in each subtask to
account for the fact that certain types of subtasks may execute
most effectively using a particular machine/mode. In an HC
environment, matching subtasks to machines/modes of the
appropriate types is generally a more important factor than
merely balancing the load.

To effectively utilize the computational resources in an HC
system for executing the subtasks that compose a task, it is
very important to be able to predict the total task execution
time that results from any particular assignment of subtasks to
modes/machines. This total task performance prediction is the
basis of matching for HC systems.

Many matching and scheduling algorithms make the sim-
plifying assumption that the execution time for each subtask
is a known constant for each mode/machine in the system
(e.g., [ChE93, Fre89, WaA94, WaS94]). However, there are
elements of uncertainty, such as the uncertainty in input data
values or in intermachine communication time, which can im-
pact the execution time. Mode/machine choices for executing
subtasks can also affect the execution time and its degree of
uncertainty. For example, in a mixed-mode machine, during
an MIMD to SIMD mode switch, all processors must wait for
the last one to finish its MIMD execution before entering the
synchronous SIMD mode. Thus, the amount of time a par-
ticular processor waits depends not only on when it finishes
MIMD execution, but also on when the last processor finishes
MIMD execution.

The SPMD (single program–multiple data) mode of par-
allelism is a special case of MIMD in which the processors
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execute the same program asynchronously on their own data
[DaG88]. Applications for this study are assumed to be data
parallel programs written in a mode-independent language for
execution on an SIMD/SPMD mixed-mode machine. Exam-
ples of mixed-mode machines include EXECUBE [Kog94],
MeshSP [ICE95], OPSILA [DuB88], PASM [SiS96], TRAC
[LiM87], and Triton [PhW93]. The model of a mixed-mode
machine assumed here is a distributed memory machine, in
which each processor is paired with a memory module to form
a processing element (PE). When a PE switches mode, all that
changes is the source of its instructions. For SIMD mode, PEs
receive their instructions from a common control unit (CU),
while in SPMD mode, each PE fetches its instructions from
its own memory module.

Studies on how to make effective use of the heterogeneity
present within mixed-mode machines can provide useful
insights for how to make effective use of mixed-machine
systems. For example, in [WaS94] an optimal mode selection
technique was developed for mixed-mode machines that was
later generalized for use with mixed-machine systems in
[WaA94]. Similarly, much of the work presented here for
predicting execution times for mixed-mode machines is also
applicable and/or adaptable to mixed-machine systems. In
particular, for a mixed-machine system consisting of SIMD,

MIMD, and/or mixed-mode machines, much of the proposed
methodology is directly applicable.

In a mixed-machine HC system, one component of the de-
cision of whether to execute a given sequence of data par-
allel subtasks on a particular SIMD versus MIMD machine
is predicting the execution time for that sequence on each
machine. The proposed methodology will support these pre-
dictions when nondeterministic data-dependent values impact
execution time. These predicted values could then be used
in a subtask/machine matching scheme that also incorporates
other factors, such as intermachine communication time (e.g.,
[WaA94]). Thus, while this work is being presented in mixed-
modemachine context, the results from the single mode anal-
ysis presented are a necessary part of any automatic mixed-
machinematching scheme.

Consider the execution of the loop in Fig. 1 on a mixed-
mode machine. The loop body contains subtasks A and B.
Assume the execution times of each subtask vary among the
PEs (because the execution time of each subtask depends
on input data values that vary across all PEs) and the loop
control overhead time is ignored. Assume that, when executed
independently, the average execution time of subtask A is
minimal in SIMD mode and the average execution time of
subtask B is minimal in MIMD mode. In Fig. 1, the wide

FIG. 1. Execution of a loop with subtasks of variable execution time: (a) low variance for execution time of subtask B; (b) high variance for execution
time of subtask B.
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rectangles spanning horizontally across all PE labels represent
the execution time of a subtask in SIMD mode. The thin
rectangles under each PE label represent the execution time in
MIMD mode.The rectangles are shaded differently to represent
the execution times of subtasks A and B.

Intuitively, executing subtask A in SIMD mode and subtask
B in MIMD mode should be faster than any other combination
(because the average execution time of subtask A is faster in
SIMD and the average execution time of subtask B is faster in
MIMD). This intuition is correct provided that the variation in
execution time across the PEs is sufficiently small, as shown
in Fig. 1a. However, as shown in Fig. 1b, if the variation is
large across the PEs, then it is possible that executing both
subtasks in MIMD mode is faster due to the effect of block
juxtaposition, even if the average execution time of subtask A
in MIMD mode is larger [BeK91]. Therefore, incorporating
only information for average execution times may lead to
incorrect machine/mode selections, because the effect of block
juxtaposition is not captured.

The methodology proposed here, which does account for
complicated effects like block juxtaposition, statically esti-
mates the execution time distribution for a given data parallel
program in an SIMD/SPMD mixed-mode computing environ-
ment. The program is assumed to contain operations whose
execution time behaviors depend on input data values that can-
not be perfectly predicted at compile time. For instance, in the
example shown in Fig. 1, the number of iterations executed
by the looping construct may be data dependent. Also, each
subtask within the loop body may itself contain looping con-
structs where the number of iterations to be executed is un-
certain. Probabilistic models are constructed to model these
types of uncertainties, e.g., a probability density function is
used to represent the number of iterations executed by each
looping construct. The aggregate effect of these elements of
uncertainty in the program is captured by computing the prob-
ability distribution for the total execution time.

In the proposed methodology, a block-based approach is
used to transform the application program into a flow analysis
tree in which the internal nodes represent control or data
conditional constructs and the leaf nodes represent basic code
blocks [AhS86]. The methodology takes as input the structure
of the flow analysis tree, the mode in which each node in
the flow analysis tree is to be executed (SIMD or SPMD),
execution time distributions for all basic operations for both
SIMD and SPMD modes, and appropriate probabilistic models
for control and data conditional constructs. Based on this
information, the execution time distribution for the entire
program is computed. Deriving this proposed methodology
for combining statistical information about an SIMD/SPMD
mixed-mode program is the focus of this paper.

Section 2 presents the basic assumptions and a brief
overview of the proposed approach. Methods for computing
the execution time distribution of a single code block in
either SIMD or SPMD mode are discussed in Section 3. The
methods for computing the execution time distribution for the

entire program executed in SPMD, SIMD, and mixed-mode
are introduced in Sections 4, 5, and 6, respectively. Section 7
presents a hypothetical numerical example and an application
study to demonstrate the effect of mode selections on the
distribution of total execution time. The Appendix reviews the
basic probability theory and notation used here.

2. OVERVIEW OF THE APPROACH

Applications for this study are assumed to be data parallel
programs written in a mode-independent language for exe-
cution on an SIMD/SPMD mixed-mode machine. Amode-
independent language(e.g., see [NiS93, WeW94]) is a lan-
guage in which syntactic elements have interpretations under
more than one mode of parallelism, and operations represent
the most explicit level at which the program representation is
identical for each mode of parallelism. Such languages make
it possible to utilize the most appropriate parallel execution
mode for each block of a given program.

As in the BBMS (block-based mode selection) framework
introduced in [WaS94], a flow-analysis tree is used to represent
the application program. The application program is divided
into code blocks, identified by their leading statements called
leaders [AhS86]. The first statement in a program is a
leader, any statement that is a target of a branch at the
machine-code level is a leader, any statement following a
conditional branch at the machine-code level is a leader, and
any statement requiring or following a synchronization or an
inter-PE communication is a leader. After the code blocks are
defined, the program is transformed into a flow analysis tree,
whose structure represents the scope levels within the program.
The root of the tree represents the scope of the entire program.
The nonleaf nodes (excluding the root) represent control and
data-conditional constructs. Code blocks are represented by
the leaf nodes. An example program and its associated flow
analysis tree are shown in Fig. 2. A simple model for the
language is assumed here, as in [WaS94]; i.e., the only control
constructs are loops and data conditionals.

It is assumed that leaf nodes (i.e., code blocks) are executed
completely in either SIMD or SPMD mode, and mode changes
are allowed only at interblock boundaries. It is also assumed
that the sibling nodes are executed in an ordered sequence
(from left to right) as they appear in the flow-analysis tree.
Thus, the schedule for executing the code blocks is static
and is defined by the program itself. Because decisions are
made statically, the choice of mode for a block within a loop
is the same for all loop iterations. Each iteration of a loop
must begin and end execution in the same mode of parallelism
(otherwise, a mode switch would need to be added to make
this true). All blocks that are part of (i.e., descendants of)
a data-conditional construct are executed in the same mode
of parallelism (e.g., this is a requirement in the operation of
PASM to avoid complex and costly bookkeeping overhead).
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FIG. 2. Example program and its associated flow-analysis tree [WaS94].

The execution time of each basic operation within a code
block in each mode on a single PE can either be deterministic
(i.e., have a constant value) or an assume different values, each
with a specified probability. In both cases, a discrete random
variable is used to model the execution time, where the former
is a special case in which the random variable assumes a given
constant value with probability 1 (i.e., it is deterministic). An
estimate for the execution time distribution of each operation
in each mode is assumed to be known.

Because code blocks do not contain conditional or looping
constructs, the execution times of most basic operations
within a code block can be modeled as known constants
(i.e., deterministic values) in practice. A possible exception
is in modeling the time required for inter-PE communication
operations. For these types of operations, general probability
distributions are employed to model the uncertainty due
to network contention for the particular parallel machine
being used. For a given application domain, the probability
distributions for all basic operations are assumed to be
independent of: (a) the particular program within the domain
being considered and (b) the values of the input data for the
program. Thus, these distributions can be measured for a given
machine (i.e., empirically estimated) and stored in a database
to be referenced by the proposed approach.

It is assumed that the branching probability of each data
conditional construct and the distribution for the number of
iterations each loop will execute are application/data dependent
and are available from the application programmer (e.g.,
in the form of compiler directives). In general, the more
accurate the information that the application programmer
provides, the better the prediction that can be made on
the execution time distribution for the entire program. For
example, a program may contain an exception-handling branch

that takes a long time to execute. If the application programmer
can indicate that this exception occurs only rarely (i.e.,
with low probability), then it can be predicted that the
total execution time distribution is affected only slightly.
Otherwise, an arbitrary assumption, such as using a branching
probability of approximately one-half, gives a more pessimistic
estimate for the total execution time distribution. In addition to
getting information directly from the application programmer,
empirical information can be derived based on a number of
measured execution times with a representative sampling of
data sets.

Given the above information and the mode of parallelism
(i.e., SIMD or SPMD) in which each code block is to be
executed, the execution time distribution of each block—
which corresponds to a leaf node in the flow-analysis tree—is
computed. After that, traversing the flow-analysis tree in depth-
first order, each lowest level subtree is pruned. Repeating this
step, the entire flow-analysis tree is pruned, and the execution
time distribution of the whole program is computed. Related
probability theory and notation can be found in textbooks on
the subject (e.g., [MoG74]) and are reviewed in the Appendix.
In the next section, the approach to compute the execution
time distribution of a code block is introduced.

3. EXECUTION TIME DISTRIBUTION
OF A CODE BLOCK

Throughout the rest of the paper, it is assumed that time
is measured based on a given discrete unit and thus assumes
nonnegative integer values. All execution times are modeled
as discrete random variables. The case of a constant execution
time is regarded as a special case where the random variable
is equal to the specified constant with probability 1.
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It is assumed that there areN PEs in the mixed-mode
machine. The code block associated with thecth leaf node in
the flow-analysis tree is calledcode block c. Let kc denote the
number of operations in code blockc, and label the operations
in code blockc as 0, 1,· · ·, kc − 1. For each code blockc,
define two arrays of discrete random variablesI i, j

c andPi , j
c , 0

≤ i ≤ kc − 1, 0 ≤ j ≤ N − 1. The values of the random variables
I i , j
c and Pi , j

c correspond to the execution time of operation
i of block c executed on PEj in SIMD and SPMD modes,
respectively. It is assumed that for each operationi, I i , j

c are
independent and identically distributed (i.i.d.) for all PEs j.
Likewise, for each PEj, I i , j

c are independent for all operations
i. Both of these assumptions are also made forPi , j

c .
In general, for SIMD execution a subset of the PEs may be

disabled during execution of a block within a data conditional
or loop. This is because in SIMD mode only the enabled PEs
execute the instructions broadcast by the CU. Also, the number
of enabled PEs for an SPMD block within a mixed-mode loop
can vary from one iteration to the next. Thus, the number of
enabled PEs is relevant for SPMD blocks as well. Because a
code block itself contains neither data conditionals nor loops,
any given PE must be either enabled to execute the whole block
or disabled for the whole block. Thus, the number of enabled
PEs does not change during the execution of a code block. In
this section, the execution time distribution of a code block is
derived fore enabled PEs, wheree is an integer and 0≤ e ≤
N. Based on the i.i.d. assumption for each operation across all
PEs, fore ≥ 1, the set of enabled PEs can be numbered 0, 1,
· · ·, e − 1 without loss of generality.

For each code blockc executed in SPMD mode, define two
random variablesP̃ j

c and Pc,e. The value ofP̃ j
c corresponds

to the execution time of code blockc in SPMD mode on PE
j, and the value ofPc,e corresponds to the execution time of
code blockc in SPMD mode withe enabled PEs synchronized
at the beginning and end of the block. There are two cases to
consider:e ≥ 1 ande = 0. Fore ≥ 1, the random variables̃P j

c
and Pc,e are determined fromPi , j

c as

P̃ j
c =

kc−1∑
i=0

Pi , j
c

Pc,e = max
0≤ j≤e−1

{P̃ j
c }.

This “max of sums” effect was first described in [FiC88]; how-
ever, eachP̃ j

c was a scalar value and not a random variable.
The density function ofP̃ j

c and the distribution function of
Pc,e can be computed as2

f
P̃ j

c
(·) = f

P0, j
c
(·) ∗ f

P1, j
c
(·) ∗ · · · ∗ f

Pkc−1, j
c

(·),

FPc, e(·) =
e−1∏
j=0

F
P̃ j

c
(·) = (FP̃0

c
(·))e.

For e = 0 (i.e., no enabled PEs), the block is assumed to
take 0 time units with probability 1. Let

2F
P̃

j
c
(·) = FP̃0

c
(·) for all j because of the i.i.d. assumption.

δ(i ) =
{

1, i = 0
0, otherwise.

Then, the associated distribution and density functions are
given by

FPc,0(·) =1,

fPc, 0(·) = δ(·).
For each code blockc executed in SIMD mode, define a

random variableIc, e, and for each operationi in this block,
define a random variablẽI i

c,e; both assume there aree enabled
PEs. The value of̃I i

c, e corresponds to the execution time of
operation i of code blockc in SIMD mode, and the value
of Ic, e corresponds to the execution time of code blockc
in SIMD mode withe enabled PEs. In SIMD mode, because
every operation in the block is synchronized among all enabled
PEs, the execution time of an operation is the maximum of
the execution times of this operation among all enabled PEs.
There are two cases to consider:e ≥ 1 ande = 0. Fore ≥ 1,
the random variables̃I i

c,e and Ic,e are determined fromI i , j
c as

Ĩ i
c,e = max

0≤ j≤e−1
{I i , j

c }

Ic,e =
kc−1∑
i=0

Ĩ i
c,e.

Then, the distribution function of̃I i
c, e and the density func-

tion of Ic,e are given by3

FĨ i
c, e
(·) =

e−1∏
j=0

F
I i, j
c
(·) = (FI i, 0

c
(·))e

f Ic, e(·) = f Ĩ 0
c, e
(·) ∗ f Ĩ 1

c, e
(·) ∗ · · · ∗ f Ĩ kc−1

c, e
(·).

This “sum of maxs” effect was first described in [FiC88]; how-
ever, eachĨ j

c was a scalar value and not a random variable.
For e = 0, the block is assumed to take 0 time units with

probability 1. Thus, the associated distribution and density
functions are given by

FIc, 0(·) =1,

f Ic, 0(·) = δ(·).
Therefore, associated with each code blockc are 2(N + 1)

random variables,Pc, e and Ic,e, 0 ≤ e ≤ N. The values ofPc,e

and Ic,e represent the execution times of code blockc with e
enabled PEs in SPMD and SIMD modes, respectively.

4. SPMD EXECUTION OF AN ENTIRE PROGRAM

4.1. Overview of SPMD Execution

This section presents a methodology for computing the
execution time distribution of an entire program executed in

3F
I
i , j
c
(·) = F

I i, 0
c
(·) for all j because of the i.i.d. assumption.
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SPMD mode. It is assumed thate PEs (1≤ e ≤ N) are initially
enabled, and all thesee PEs remain enabled throughout the
execution of the entire program. A method for modeling a
series of blocks by a single block having equivalent execution
time characteristics is introduced first. Then, methods for
modeling two basic program structures, pure data conditional
construct and pure loop, are presented. Apure loop is a loop
whose body is currently represented as a series of one or more
leaf blocks. Similarly, apure data conditional constructis a
data conditional construct for which the “then” clause and the
“else” clause are both currently represented as a series of one
or more leaf blocks. It is shown that pure data conditional
construct and pure loop can each be modeled as a single
code block. Finally, it is shown how these methods can be
combined in a divide-and-conquer way to handle arbitrary
program structures.

4.2. A Series of Blocks

For a series ofC (C ≥ 2) blocks (labeled 0, 1,· · ·, C − 1)
executed in SPMD mode, because no synchronization among
the PEs at the block boundaries is explicitly specified in the
source code, each PE will execute the operations of all blocks
as one contiguous block. Therefore, this series can be modeled
as an SPMD blockC with

P̃ j
C =

C−1∑
c=0

kc−1∑
i=0

Pi, j
c =

C−1∑
c=0

P̃ j
c

f
P̃ j

C
(·) = f

P̃ j
0
(·) ∗ f

P̃ j
1
(·) ∗ · · · ∗ f

P̃ j
C−1
(·).

If all e PEs are synchronized before block 0 and after block
C − 1, then

PC, e = max
0≤ j≤e−1

{P̃ j
C}

FPC, e(·) =
e−1∏
j=0

F
P̃ j

C
(·) = (FP̃0

C
(·))e.

4.3. Pure Data Conditional Construct

For a pure data conditional construct, if either the “then”
clause or the “else” clause consists of a series of two or more
blocks, then the series of blocks can be modeled as a single
code block using the techniques discussed in the previous
subsection. Hence, the focus of this subsection is on data
conditional constructs in which each of the “then” and “else”
clauses is represented by a single block.

Assume noded of the flow-analysis tree corresponds to
a pure data conditional construct, and blockt and block s
are its “then” and “else” clauses, respectively. It is assumed
that PE j executes the “then” clause with probabilitypj

t ,
and this branching probability is independent and identical
across the PEs. Thus, each PEj executes the “else” clause
with probability 1− pj

t . Because each PE fetches instructions
from its own memory in SPMD mode, some PEs may execute

the “then” clause while the others are executing the “else”
clause during the execution of a data conditional construct.
By applying the Total Probability Theorem [MoG74], the
whole data conditional construct can be represented by a single
SPMD block having an equivalent execution time distribution.
For each PEj,

f
P̃ j

d
(·) = pj

t f
P̃ j

t
(·)+ (1− pj

t ) f
P̃ j

s
(·).

If all e PEs are synchronized prior to and after completion
of noded, the random variable and its associated distribution
function for the execution time of noded are given by

Pd, e = max
0≤ j≤e−1

{P̃ j
d }

FPd, e(·) =
e−1∏
j=0

F
P̃ j

d
(·) = (FP̃0

d
(·))e.

4.4. Pure Loop

For each pure looping construct, it is assumed that the given
distribution for the number of iterations to be executed by each
PE is i.i.d. across all PEs. This simplifying assumption makes
the analysis tractable. If the pure loop body consists of a series
of two or more blocks, then the series can be modeled as a
single code block using the techniques discussed in Subsection
4.2. Therefore, the focus here is on determining the execution
time distribution of a loop whose body is a single block.

Let node` of the flow-analysis tree correspond to a pure
loop whose body is modeled by blockb, and the random
variable for the number of iterations to be executed by PE
j is R̃j

` .The value off
R̃j
`

(r ) corresponds to the probability that

PE j will execute exactlyr iterations. For allr ≤ 0, f
R̃j
`

(r )

= 0 (i.e., it is assumed that each PEj will execute at least
one iteration). Letr max denote the maximum possible (i.e.,
with nonzero probability) number of iterations to be executed.
Thus, for all r > r max, f

R̃j
`

(r ) = 0. For eachr, 1 ≤ r ≤ r max,

conceptually unroll the loop into a series ofr blocks (i.e.,
repeat loop body blockb, r times). The density function of the
execution time of this series on PEj is the convolution ofr
density functions ofP̃ j

b . By the Total Probability Theorem, the
density function for the execution time of the looping construct
on PE j is the weighted sum of the density functions of the
execution time of the unrolled loop for all possibler, i.e.,

f
P̃ j
`

(·) =
rmax∑
r=1

f
R̃j
`

(r )( f
P̃ j

b
(·) ∗ · · · ∗ f

P̃ j
b
(·)︸ ︷︷ ︸

r times

).

If there are synchronizations prior to and after completion of
the loop, then the random variable and its associated distri-
bution function for the execution time across alle PEs are
given by
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P̀ , e = max
0≤ j≤e−1

{P̃ j
` }

FP̀ ,e(·) =
e−1∏
j=0

F
P̃ j
`

(·) = (FP̃0
`
(·))e.

4.5. Arbitrary Program Construct

It was shown in the previous two subsections that any
subtree corresponding to a pure loop or a pure data conditional
construct can be modeled as a single leaf node. Thus a divide-
and-conquer approach can be used to calculate the execution
time distribution of an arbitrary program.

Traversing the flow-analysis tree in depth-first order, each
nonleaf node traversed can only have leaf nodes as its children.
(A node is said to be traversed if and only if all its children
have been traversed.) Therefore, each such nonleaf node
(excluding the root node) corresponds to one of the following
program structures: (1) a pure loop; (2) a pure data conditional
construct; or (3) a clause of a data conditional construct that
contains a series of blocks. The applicable technique is then
used to model the subtree under this node by a single leaf
node. This procedure is repeated until the children of the root
node are represented as a series of (composite) leaf blocks.
The SPMD execution time distribution of the entire program
is thus the execution time distribution of the SPMD blockBR

modeling this series, denoted asPBRN (assumingN PEs are
initially enabled to execute the program).

5. SIMD EXECUTION OF AN ENTIRE PROGRAM

5.1. Overview of SIMD Execution

A methodology for computing the execution time distribu-
tion of an entire program executed in SIMD mode is presented.
As discussed in Section 3, the number of enabled PEs associ-
ated with various scope levels of the program may be distinct
for SIMD execution. Therefore, more bookkeeping (as com-
pared with SPMD execution of an entire program) is needed to
account for the number of enabled PEs for each portion of the
program. AssumingN PEs are used to execute the program in
SIMD mode, each code block hasN + 1 associated execution
time distributions, one for each possible numbere of enabled
PEs, 0≤ e ≤ N. It is shown that each program construct can
be modeled as a single block that has an equivalent execution
time distribution for each possible value ofe.

The organization of this section is similar to that of Section
4. A method for modeling a series of blocks by a single block
having equivalent execution time characteristics is introduced
first. A series of blocks can appear as children of the root node,
within a clause of a data conditional, or the body of a loop.
Therefore, the number of enabled PEs remains the same during
the execution of whole series. (However, between iterations of
a loop, the number of enabled PEs may decrease in SIMD and

mixed-mode; this issue is addressed in Subsections 5.4 and
6.3.) It is shown that a pure data conditional construct and a
pure loop can each be modeled as a single code block in SIMD
mode. Finally, it is shown how these methods can be combined
in a divide-and-conquer manner to model an arbitrary program
structure as a single code block.

5.2. A Series of Blocks

For a series ofC (C ≥ 2) blocks executed in SIMD mode,
because each operation is synchronized across all PEs, the total
execution time is the sum of execution times of all blocks.
Thus, this series is modeled as one SIMD blockC such that
for eache, 0 ≤ e ≤ N,

IC,e =
C−1∑
c=0

Ic,e

f IC, e(·) = f I0, e(·) ∗ f I1, e(·) ∗ · · · ∗ f IC−1, e(·).

5.3. Pure Data Conditional Construct

Consider the execution of a pure data conditional construct
in SIMD mode withe enabled PEs. Assume that the condition
is evaluated in each PE with its own data. (The case of
evaluating the condition in the CU is a simpler case, which
is discussed later.) When instructions of the “then” clause are
broadcast by the CU, PEs for which the condition is false are
disabled; when instructions of the “else” clause are broadcast,
PEs for which the condition is true are disabled. If allePEs are
to execute the same clause, then the other clause is skipped;
i.e., the instructions for the other clause are not broadcast. (In
some systems it is less costly to simply broadcast the clause
no PEs will execute, rather than test for this situation).

Recall that noded corresponds to a pure data conditional
construct to be executed in SIMD mode, and its “then”
and “else” clauses can be represented as the single code
blocks t and s, respectively (using the techniques described
in Subsection 5.2). PEj executes the “then” clause with
probability pj

t , and this branching probability is independent
and identical across the PEs. Letet, 0 ≤ et ≤ e, denote the
number of enabled PEs during the execution of blockt. Thus,
the number of enabled PEs during the execution of blocks is
e − et. Let p0

t = pj
t for all enabled PEsj. The probability for

each possible value ofet is defined by a binomial distribution

Pr [et = k] =

(

e

k

)
(p0

t )
k(1− p0

t )
e−k 0≤ k ≤ e

0 otherwise.

By the Total Probability Theorem, the entire data conditional
construct (i.e., noded) can be represented by a single block
having the execution time density function

f Id, e(·) =
e∑

k=0

Pr [et = k]( f It, k(·) ∗ f Is, e−k(·)), 0≤ e≤ N.
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When the condition is evaluated in the CU using CU data,
all PEs execute the same clause. Assumept is the probability
that the condition is satisfied, then all PEs execute blockt with
probability pt and blocks with probability 1− pt. Noded can
be represented by a single SIMD block with the execution time
density function

f Id, e(·) = pt f It,e(·)+ (1− pt ) f Is,e(·), 0≤ e≤ N.

5.4. Pure Loop

Consider the execution of a pure loop in SIMD mode. It
is assumed that bounds for looping iterations are based on
local data from each PE. (The case of a common loop bound
in the CU is simpler and will be discussed later.) Then
the number of iterations to be executed by each PE can be
distinct. The CU must broadcast instructions for the PE(s) that
executes the largest number of iterations. Those PEs that finish
earlier are disabled until the loop is finished. Therefore, as the
number of iterations increases, the number of enabled PEs is
nonincreasing. For each iteration, the number of enabled PEs
is the same across the loop body because the loop body is
represented as a series of leaf blocks.

Recall that nodè of the flow-analysis tree corresponds to
a pure loop whose body is denoted by blockb. (If a pure
loop body consists of a series of blocks, the series can be
modeled as a single code block using the techniques discussed
previously.) Recall that the random variable associated with
the number of iterations to be executed by PEj is denoted
by R̃j

` , andr max ≥ 1 denotes the maximum possible (i.e., with
nonzero probability) number of iterations to be executed. Thus,
if r < 1 or r > r max, then f

R̃j
`

(r ) = 0. Becausef
R̃j
`

(·) = f R̃0
`
(·)

for all j, for 1 ≤ r ≤ r max, the probability that any PEj executes
r or more iterations is given by

ρr =
rmax∑
i=r

f R̃0
`
(i ). (1)

Therefore, ifr = 1, thenρr = 1, and if r > r max, thenρr = 0.
Conceptually unroll the loopr max times and label the

iterations as 1, 2,· · ·, r max. Let Xr, e denote the random variable
associated with the combined SIMD execution time of all
iterations starting from (and including) iterationr, given that
e PEs are enabled for iterationr. Obviously, if r = r max, then
Xr,e = Ib,e. The objective is to determineX1, e = I`,e, which
corresponds to theN + 1 execution time distributions of the
entire loop. By considering the iterations in reverse order (i.e.,
r max down to 1), density functions ofXr, e for eache (0 ≤
e ≤ N) are computed based on previously computed density
functions ofXr+1, h (0 ≤ h ≤ e). If a PE is enabled for iteration
r, then the ratioρr+1/ρr represents the probability that it will
be enabled at iterationr + 1. To compute the density functions
for Xr,e, 1 ≤ r < r max, it is necessary to know the probability

FIG. 3. Algorithm for computing SIMD loop execution time density func-
tion.

that h PEs, 0≤ h ≤ e, will execute iterationr + 1, given thate
PEs executed iterationr. This is given by binomial distribution

βr,e(h) =
(

e

h

)(
ρr+1

ρr

)h (
1− ρr+1

ρr

)e−h

.

By applying the algorithm of Fig. 3, loop̀ is modeled as
a single SIMD block, whose execution time density function,
f I`,e(·), is determined for eache, 0 ≤ e ≤ N.

If iterations are based on a common loop bound in the CU,
then all PEs execute the same number of iterations. LetR`
denote the random variable associated with the number of
iterations to be executed (based on CU data). Recallr max ≥
1 denotes the maximum possible number of iterations to be
executed. Then nodè can be represented by a single SIMD
block with the execution time density function

f I`, e(·) =
rmax∑
r=1

fR`(r )( f Ib, e(·) ∗ · · · ∗ f Ib, e(·)︸ ︷︷ ︸
r times

),

0≤ e≤ N.

5.5. Arbitrary Program Construct

As in Subsection 4.5, by traversing the flow-analysis tree in
depth-first order, each nonleaf node traversed can only have
leaf nodes as its children. Therefore, each such nonleaf node
(excluding the root node) corresponds to one of the following
program structures: (1) a pure loop; (2) a pure data conditional
construct; or (3) a clause of a data conditional construct that
contains a series of blocks. The applicable technique is then
used to model the subtree under this node as a single leaf node.
(Note that associated with each leaf node isN + 1 different
distributions; one for each possible number of enabled PEs.)
This procedure is repeated until children of the root node are
represented as a series of (composite) leaf nodes. The SIMD
execution time distribution of the entire program is thus the
execution time distribution of the equivalent SIMD leaf node
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BR for this series, denoted asI BR, N (assumingN PEs are
initially enabled to execute the program).

6. MIXED-MODE EXECUTION OF A PROGRAM

6.1. Overview of Mixed-Mode Execution

A methodology is presented to estimate the execution time
distribution of a program executed in mixed-mode. Many of
the concepts developed in Sections 4 and 5 are used for the
mixed-mode analysis. In contrast to single-mode execution,
during mixed-mode execution of a program, a significant
factor that affects the overall execution time distribution is the
possible difference in execution time distribution for each code
block associated with SIMD and SPMD modes. In addition,
mode switching overheads and the synchronization required at
a mode switch from SPMD to SIMD also play important roles
in shaping the distribution. The number of enabled PEs must
be considered for each scope level of the program.

For a mixed-mode program, the calculation of the execution
time distribution for an individual code block is the same
as in single-mode execution. The appropriate single-mode
modeling technique is first applied to represent any single-
mode subtree as a single code block with equivalent execution
characteristics. This includes all data conditional constructs,
because all descendants of a data conditional construct must
be executed in the same mode (as explained in Section 2).
It will be shown that, in contrast to single-mode execution,
where a series of blocks or a loop can be modeled as a single
code block, in mixed-mode execution, a series of blocks or
a pure loop can be modeled as a series of at most three
blocks with equivalent execution characteristics. A method for
combining these techniques to model arbitrary mixed-mode
program execution is presented.

6.2. A Series of Mixed-Mode Blocks

It was demonstrated earlier that the single-mode execution
of a series of blocks can be modeled as a single code block.
Thus, a series of blocks executed in mixed-mode can be
modeled as a series of alternating SIMD and SPMD blocks. A
series of SIMD and SPMD blocks that compose all the children
of an arbitrary node can begin and end with either mode, so
there are four cases to consider: (1) begin with SIMD and
end with SIMD; (2) begin with SIMD and end with SPMD;
(3) begin with SPMD and end with SIMD; and (4) begin with
SPMD and end with SPMD.

Recall from Section 2 that cases (2) and (3) are possible
with the root node only. For case (1), it is shown below that
the series can be modeled as a single code block (in SIMD
mode). This result enables cases (2) and (3) to be modeled as
a series of two blocks and case (4) to be modeled as a series
of three blocks. For case (1), it will be shown next how a
three-block series can be modeled as a single code block, and
the case of more than three blocks follows inductively.

Let I to–SPMD, e and Pto–SIMD,e denote the random variable
whose values represent the mode-switching times from SIMD
to SPMD and from SPMD to SIMD, respectively, withe
enabled PEs. In some machines, e.g., PASM, these correspond
to the times required to execute a branching instruction and are
therefore constants. Fore = 0, both mode-switching times are
assumed to be zero, i.e.,fPto–SIMD, 0(·) = f Ito–SPMD, 0(·) = δ(·).
Consider a series of three blocks labeled 0, 1, and 2. Assume
that block 0 and block 2 are executed in SIMD mode, and
block 1 is executed in SPMD mode. Although the PEs can
execute block 1 in an asynchronous fashion, they must begin
execution at the same time because block 0 is in SIMD mode,
and they must wait for the last PE to finish before they
begin to execute block 2, which is executed in SIMD mode.
Thus, the three blocks can be modeled as an SIMD blockB
whose execution time can be calculated as follows for each
e, 0 ≤ e ≤ N:

I B,e = I0,e+ I to–SPMD,e+ P1, e+ Pto–SIMD, e+ I2,e

f I B, e(·) = f I0, e(·) ∗ f I to–SPMD,e(·) ∗ fP1, e(·)
∗ fPto–SIMD,e(·) ∗ f I2,e(·).

Inductively, a series of blocks that begins and ends with
SIMD mode can be modeled as a single SIMD block by re-
peatedly applying this method and the methods from Sections
4 and 5. This is modeled as an SIMD block because the PEs
must be synchronized at the end of this composite block.

From the above discussion, the following conclusions are
made.

1. If the series begins and ends with SIMD blocks, then it
can be modeled as a single SIMD (composite) block.

2. If the series begins with an SIMD block and ends
with an SPMD block, then it can be modeled as a series
consisting of an SIMD (composite) block followed by an
SPMD (composite) block.

3. If the series begins with an SPMD block and ends with
an SIMD block, then it can be modeled as a series consisting of
an SPMD (composite) block followed by an SIMD (composite)
block.

4. If the series begins with an SPMD block and ends with
an SPMD block, then it can be modeled as either a single
SPMD block (if all blocks in the original series are in SPMD
mode), or a series of three (composite) blocks executed in the
order of SPMD, SIMD, and SPMD.

For cases (2), (3), and (4), the beginning and/or the ending
SPMD (composite) blocks in the resulting series are the
equivalent of the longest subseries of SPMD blocks from the
beginning and/or the end of the original series. For each of
these cases, the series of composite blocks must begin and
end with the same mode as the original series in order to be
able to correctly merge with other nodes (due to synchronous
nature of SIMD and asynchronous nature of SPMD).



44 LI ET AL.

6.3. Pure Loop

Recall from Section 2 that it is assumed that the different
blocks of a loop body may use different modes of parallelism,
but must be the same for all iterations of the loop, and each
iteration of a loop must begin and end execution in the same
mode. Therefore, the body of a mixed-mode loop contains a
series of blocks that begins and ends with the same mode (the
last block may contain only a mode switch instruction). From
the discussion in the previous subsection, if it begins and ends
with SIMD mode, then the loop body can be modeled as a
single block and the single-mode technique of Subsection 5.4
can be applied to model the loop as a single SIMD block.
Otherwise, the loop body begins and ends in SPMD mode and
can be modeled as either a single SPMD block (if all blocks
in the original series are in SPMD mode), or a series of three
(composite) blocks executed in the order of SPMD, SIMD,
and SPMD. This case will be considered in the remainder of
this subsection.

Suppose the loop body is modeled as a series of three blocks
labeled 0, 1, and 2, where block 0 and block 2 are (composite)
SPMD blocks and block 1 is a (composite) SIMD block. As
was defined earlier, random variablesP̃ j

0 and P̃ j
2 represent the

SPMD execution times of blocks 0 and 2 on PEj, respectively,
and I1,e represents the SIMD execution time of block 1 with
e enabled PEs. Recall that̃Rj

` is the random variable that
corresponds to the number of iterations that PEj is to execute
the loop body, andr max ≥ 1 denotes the maximum possible
number of iterations to be executed by any PE.

Consider first the special case in which the number of
iterations to be executed by each PE is the same (deter-
ministic) value. Thus, for each PEj, f

R̃j
`

(rmax) = 1, i.e.,

f
R̃j
`

(r ) = δ(r − rmax), which indicates that each PEj exe-

cutes the loop body exactlyr max times. Conceptually unroll
the loop bodyr max times, which is a series of blocks in which
the first and last blocks are executed in SPMD mode (see Fig.
4). Using the appropriate technique of the previous subsection,
this unrolled series can be modeled as a series of three blocks.
The first block is the SPMD block 0, the second block is a
composite SIMD block for the subseries beginning with block
1 of iteration 1 and ending with block 1 of iterationr max, and
the third block is the SPMD block 2. These are indicated by
A, B, and C, respectively, in Fig. 4.

Consider next the general situation, i.e.,f
R̃j
`

(rmax) ≠ 1. For

this case, the number of iterations executed by each PE is
generally distinct. If the next block after the loop is executed in

FIG. 4. Conceptually unrolling a loop consisting of a series of three blocks
with r max = 5 (P = SPMD, I = SIMD).

SPMD mode, then it is conceptually possible for PEs to begin
executing this block immediately after they complete the loop
(because the last block of the loop is executed in SPMD mode).
However, a large amount of bookkeeping overhead would be
required to implement this feature on an actual mixed-mode
machine (e.g., consider the situation in which a group of PEs
that complete the loop are executing a SPMD block outside
the loop and the other PEs are executing the SIMD block
within the loop body). To avoid this, it is assumed that PEs
are disabled as they complete the loop and that they remain
disabled until all PEs finish the loop. This is straightforward
to implement on a mixed-mode machine by having each PE
disable itself when it has completed the loop, and using the
CU to determine when all PEs that were initially enabled for
the loop become disabled (which indicates that the loop has
been completed by all initially enabled PEs).

Similar to the SIMD loop considered in Subsection 5.4, the
CU must broadcast instructions for SIMD portions of block 1
for the PE(s) that executes the greatest number of iterations. As
discussed above, the PEs that finish earlier are disabled until
the entire loop is finished. An approach similar to that of Sub-
section 5.4 is used to track the number of enabled PEs at each
iteration and to model the entire loop for eache, 0 ≤ e ≤ N.

The loop is conceptually unrolledr max times. This results
in a series of mixed-mode blocks beginning with block 0 and
ending with block 2, as shown in Fig. 4. For 0≤ j < e, the
probability that any PEj executes iterationr, denoted byρr,
is given by Eq. (1) in Subsection 5.4. Assume that there aree
enabled PEs at the beginning of iterationr. The combined
mixed-mode execution time of iterationsr to r max can be
represented by a series of two blocks executed in SPMD and
SIMD modes, respectively. The first block is block 0 and the
second (composite SIMD) block models the series of blocks
from block 1 of iterationr through block 2 of iterationr max.
The last SPMD block 2 is included in this composite SIMD
block because of the assumed synchronization at the end of
the loop.

Let Yr,e denote the random variable associated with the
execution time of the SIMD block that models the series of
blocks from block 1 of iterationr through block 2 ofr max in
the unrolled loop, given thate PEs are enabled for iteration

FIG. 5. Algorithm for computing the density function of the composite
SIMD block of a two-block equivalent series for a mixed-mode loop that
starts and ends in SPMD.
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r. Recall that the number of enabled PEs is nonincreasing as
the number of iterations increases. Forr = r max, Yrmax, e =
I1, e + I to–SPMD,e + P2,e. The algorithm described in Fig. 5
is used to compute the density functions ofYr,e based on the
density functions ofYr+1, h (0 ≤ h ≤ e) for all e, 0 ≤ e ≤
N. The procedure is quite similar to that of Fig. 3. The main
difference is in the combining of the SPMD block 2 of iteration
r with the SPMD block 0 of iterationr + 1. These two SPMD
blocks cannot be combined in the usual way (as described in
Subsection 4.2) because the number of enabled PEs for each
block can be distinct. A temporary random variableVe, h is
used to represent the execution time of these two blocks when
e PEs execute iterationr and h PEs execute iterationr + 1.
Thus, if both blocks are executed bye PEs (i.e.,h = e), then
Ve,h is equal to the maximum ofP̃ j

2 + P̃ j
0 acrosse PEs.

However, if h < e PEs are enabled for iterationr + 1, then
Ve,h is equal to the maximum of̃P j

2 + P̃ j
0 overh PEs and the

maximum of P̃ j
2 over e − h PEs. Therefore, the formula for

Ve,h is

Ve,h =



max
0≤ j<e

{P̃ j
2 + P̃ j

0 } h = e, h > 0

max{ max
0≤ j<h

{P̃ j
2 + P̃ j

0 },
max

0≤ j<e−h
{P̃ j

2 }} 0< h < e.

(2)

For e = h = 0, defineV0,0 = 0, i.e., fV0, 0 = δ(·).
To summarize, a two-block series is used to model the

general case in which the loop body starts and ends in SPMD
mode. The first block in this series, indicated by D in Fig. 4, is
the SPMD block 0 of the loop body,P0, e. The second block,
indicated by E in Fig. 4, is the composite SIMD blockY1,e,
whose density function is computed according to Fig. 5.

6.4. Arbitrary Program Construct

As stated earlier, because all descendents of a data condi-
tional construct must be executed in the same mode, each data
conditional construct can be modeled as a single code block
using the single-mode modeling techniques of Sections 4 and
5. It was shown in the previous subsections that a series of
blocks or a pure loop can be modeled as a series of at most
three blocks. As in the single-mode case, a divide-and-conquer
algorithm can be used to calculate the execution time distribu-
tion of the whole program. Traversing the flow-analysis tree
in depth-first order, each nonleaf noden traversed can only
have leaf nodes as its children. Therefore, each such nonleaf
node (excluding the root node) corresponds to one of the fol-
lowing program structures: (1) a pure loop; (2) a pure data
conditional construct; or (3) a series of blocks that is a clause
of a data conditional construct.

Using the techniques introduced above, the subtree under
node n is modeled as a series of at most three leaf nodes
(always a single leaf node for cases (2) and (3)). Noden is
then replaced with this series of leaf node(s). This procedure

is repeated until the children of the root node are represented
by a series of at most three composite leaf blocks. There are
four possible cases.

1. The root is modeled as a single SIMD block, denoted
by R0, in which case the execution time isI R0, N .

2. The root is represented by a series of two blocks,R0 and
R1, whereR0 is modeled as an SIMD block andR1 is modeled
as an SPMD block. The execution time of the program is
I R0, N + I to–SPMD, N + PR1, N .

3. The root is represented by a series of two blocks,R0 and
R1, whereR0 is modeled as an SPMD block andR1 is modeled
as an SIMD block. The execution time of the program is
PR0, N + Pto–SIMD, N + I R1, N .

4. The root is represented by a series of three blocks,
R0, R1, and R2, where R0 is modeled as an SPMD block,
R1 is modeled as an SIMD block, andR2 is modeled as
an SPMD block. The execution time of the program is
PR0, N + Pto–SIMD, N + I R1, N + Ito–SPMD, N + PR2, N .

7. NUMERICAL STUDIES

7.1. Hypothetical Mixed-Mode Example

To demonstrate how mode selections can affect the total ex-
ecution time distribution, numerical parameters are associated
with the nodes of the flow analysis tree of Fig. 2 to construct a
very simple example. The hypothetical program is assumed to
be executed on an 8-PE SIMD/SPMD mixed-mode machine.
It is assumed that in each mode, the execution time for basic
operations (i.e., operations that are not looping or conditional
constructs) are constants (i.e., deterministic values). Therefore,
the execution time of each original leaf block for each mode
is deterministic. It is also assumed that the execution time of
each basic operation is identical in SIMD and SPMD modes
except for inter-PE communication operations, in which case
SIMD mode is assumed to execute faster than SPMD mode.
Only blk _f is assumed to contain inter-PE communications;
thus it executes faster in SIMD mode than in SPMD mode. Ex-
ecution times of each block are listed in Table I. Simplifying
assumptions are made for the “overhead” operations listed; the
framework developed here can readily support distinct values
for each overhead operation in each mode. For each PE, the
loop is assumed to execute 8, 9, 10, 11, or 12 iterations with
equal probability (i.e., for allr, 8 ≤ r ≤ 12, f

R̃j
`

(r ) = 0.2),

TABLE I
Assumed Execution Times of Each Block in SIMD and

SPMD Modes for the Flow Analysis Tree of Fig. 2

Mode blk_a blk_b blk_c blk_d blk_e blk_f Overheada

SIMD 12 15 10 29 23 10 1

SPMD 12 15 10 29 23 35 1

aSimplifying assumption for overhead for: mode switching,for_init ,
for_test , if_test , post_then , andpost_else .
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FIG. 6. Mixed-mode execution for the numerical example.

and the data conditional statement is assumed to execute the
“then” clause with probability 0.8 for each PE (i.e.,pj

t = 0.8).
The execution time density function of the whole program

is computed for three cases: executing the entire program
in SIMD mode, executing the entire program in SPMD
mode, and executing the program using a particular mixed-
mode scheme, shown in Fig. 6. For the mixed-mode scheme
considered, theif statement (and its descendents) and the
if _test are executed in SPMD mode, and the rest of the
program is executed in SIMD mode. The expected values
of the resulting distributions for program execution time are
listed in the first row of Table II. These values were computed
after evaluating the density function for each case considered.
Based on these computed expected values for this example’s
assumed numerical parameters, SPMD’s advantages associated
with effectively executing the data conditional construct and
juxtaposing SPMD blocks without interblock synchronization
exceed its disadvantage for inter-PE communication time
(compared with SIMD and mixed-mode).

To illustrate the importance of having accurate execution
time predictions for making proper mode selections, approxi-
mations for expected execution times for the above cases are
also computed using a simple “average value approach.” In
the average value approach, the flow-analysis tree is traversed
in a depth-first order, as in the proposed approach. However,
instead of modeling each pruned portion of the three with the
appropriate random variable(s), an approximate expected value
is used. For looping constructs, the number of iterations ex-
ecuted (for both SIMD and SPMD modes) is approximated
by the expected number of iterations to be executed by each
PE. Thus, the looping construct of the numerical example is
assumed to execute exactly 10 iterations. For SPMD execu-
tion of a subtree, the expected execution time of a single PE
is used to approximate the expected execution time across all
PEs. This approximation ignores the aspect of determining the
maximum time across all PEs caused by a synchronization be-

fore switching to SIMD mode and upon program completion
in SPMD mode (such as described in Fig. 1).

Applying the average value approach to the three cases
considered for the numerical example requires the following
calculations. For SPMD execution of the entire program, the
execution time of theif statement (and its descendents) is (10
+ 1)× 0.8 + (29 + 23 + 1)× 0.2 = 19.4, the execution time of
the loop is (15 + 1 + 19.4 + 35 + 1)× 10 = 714, and the total
program execution time is 12 + 1 + 714 = 727.0. For SIMD
execution of the entire program, the execution time of theif

statement (and its descendents) is (10 + 1)× 0.88 + (29 + 23
+ 1) × 0.28 + (10 + 1 + 29 + 23 + 1)× (1 − 0.88 − 0.28)
= 55.11, the execution time of the loop is (15 + 1 + 55.11 +
10 + 1)× 10 = 821.1, and the total execution time is 12 + 1
+ 821.1 = 834.1. For the mixed-mode case shown in Fig. 6,
the execution time of theif statement (and its descendents)
is (10 + 1)× 0.8 + (29 + 23 + 1)× 0.2 = 19.4, the execution
time of the loop is (15 + 1 + 1 + 19.4 + 1 + 10 + 1)× 10
= 484, and the total execution time is 12 + 1 + 484 = 497.0.
These results are tabulated in the second row of Table II.

From Table II, note that theactual expected values (com-
puted using the proposed approach) are significantly different
from the correspondingapproximateexpected values (com-
puted using the average value approach). Based on the av-
erage value approach, the mixed-mode case has an expected
execution time that is significantly better than both the SIMD
and SPMD executions of the entire program. However, the

TABLE II
Actual and Approximate Expected Values for Execution Time

of the Whole Program in SIMD, SPMD, and According
to the Mixed-Mode Scheme of Fig. 6

Expected value of execution time SIMD SPMD Mixed-mode

Actual (proposed approach) 1002.0 889.4 915.8

Approximate (avg. value approach) 834.1 727.0 497.0
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actual expected values indicate that SPMD execution of the
entire program is the best choice of the three cases considered
for the given numerical values and given mixed-mode choices
(other numerical values and mixed-mode choices may result
in mixed-mode being the best method).

One source of inaccuracy associated with the average value
approach for the mixed-mode and SPMD calculations is due
to using the expected execution time of a single PE to
approximate the expected execution time across all PEs. As
mentioned earlier, this approximation ignores the aspect of
determining the maximum time across all PEs caused by a
synchronization before switching to SIMD mode and upon
program completion in SPMD mode. For the mixed-mode case
considered, the ignored synchronization time was especially
significant because it occurred within a looping construct (i.e.,
the error associated with the approximation was compounded
multiple times). Another source of inaccuracy associated with
the average value approach for the SIMD and mixed-mode
cases is due to the approximation used for the number of
iterations for the looping construct. In particular, for SIMD
execution of the looping construct, the CU must broadcast
instructions for the PE(s) that executes the largest number
of iterations. Thus, the expected number of iterations for the
SIMD loop is actually higher than the approximate value used,
which represents the expected number of iterations for which
at least a single PE is enabled during SIMD execution of the
loop.

7.2. An Application Case Study

This subsection illustrates the result of applying the pro-
posed methodology for predicting the performance of an
SPMD program for solving satisfiability problems [Li96]. The
satisfiability problem (SAT) is a textbook example of an NP-
complete problem [CoL90, KuG94]. Given a boolean expres-
sion, the goal of SAT is to determine whether there exist values
for the variables of the expression that cause the expression to
evaluate to TRUE (i.e., logical 1). For algorithmic simplicity,
and without loss of generality, only instances of SAT expressed
in conjunctive normal form (CNF) were considered (CNF is
the AND of clauses, where each clause is the OR of one or
more literals). CNFs with exactly three literals per clause were
used (called3-SAT) in this study [KuG94]. Also, only unsatis-
fiable instances were considered in order to isolate the source
of uncertainty in the parallel execution time.

The Davis–Putnam algorithm [DaP60] was adopted for
solving 3-SATs in this study. This algorithm uses a depth-
first traversal of a binary search tree in which a node at level
i represents a permutation of possible values for the firsti
variables. Thus, the complete search tree has a number of
levels equal to the number of variables in the expression.

Each nonleaf node in the search tree represents a partial as-
signment of the values of the variables, and the leaf nodes
represent a complete assignment of values to variables. The
algorithm operates by determining whether a (partial) assign-
ment associated with a given node being searched evaluates

to 1. If it does, then the algorithm halts and declares the ex-
pression as satisfiable. If the variable assignments for the
node cause the expression to evaluate to 0, then the algorithm
backtracks. Finally, if the value of the expression cannot be
determined based on the partial assignment of the node, then
the algorithm searches deeper into the tree. Because the time
required to search any single (arbitrary) node of the tree is ap-
proximately the same constant, the number of nodes searched
in the search tree was used as the basic measure of execution
time. The total number of nodes searched for a given instance
of the problem is not known a priori; it depends on the par-
ticular CNF expression.

Search algorithms such as the Davis–Putnam algorithm
are often implemented using a recursive function. However,
because the execution time of programs with a recursive
function was not analyzed in this paper, the algorithm was
instead implemented with only data conditional and looping
constructs, as shown in Fig. 7. The flow-analysis tree of Fig.
7 is for solving a 3-SAT problem with 12 variables. Because
program performance is measured by the number of nodes
searched in the binary tree, the control overhead for loops

FIG. 7. The flow-analysis tree associated with the sequential program for
solving 3-SAT with 12 variables.
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and data conditionals are not shown in the figure. For eachi,
0 ≤ i ≤ 11, boolean variablexi is associated with a looping
constructfor _xi that executes two iterations;xi is assigned
to 1 and 0 in the first and second iteration, respectively. The
body of loop for _xi begins with an “eval” node, in which
the formula of the instance is evaluated based on the current
partial assignment of values tox0 throughxi (xi+1 throughx11
are treated as unknowns). Fori < 11, the loop body offor _xi

also includes a data conditional constructif _xi , such that if
the formula is undetermined (i.e., cannot be evaluated to 0),
then loopfor _x(i+1) is invoked to extend the current partial
assignment toxi+1 (this corresponds to the “then” clause of
if _xi ). Otherwise, the SAT returns FALSE (it cannot be
TRUE because the instances considered are unsatisfiable), and
the algorithm backtracks. Thus, the “else” clause ofif _xi is
a null node, labeled “continue ” in the figure.

A parallel version of the Davis–Putnam algorithm was
implemented on four PEs of an Intel Paragon as an SPMD
program, in which the search tree was partitioned statically
and distributed to four PEs, labeled 0 to 3. For each PE, a
search was performed with fixed values assigned for the two
variablesx0 andx1 according to the two least significant bits
of the PE label.

A set of 64,000 randomly generated unsatisfiable 3-SAT
instances were used in this study. The elements of uncertainty
in this program that affect the number of nodes searched are
the branch probabilities associated with the data conditional
constructs. The program was instrumented to record branching
decisions. These empirically determined parameters were used
to calculate the predicted distribution of execution time (using
the approach of Section 4). The purpose of the instrumentation
was to obtain a precise set of parameters (in this case,
branching probabilities) in order to demonstrate the accuracy
of the proposed analytical approach. Also, the application
programmer could provide these parameters (or estimates of
these parameters) based on knowledge about and experience
with the program under consideration. Preliminary studies
concerning the effect of using estimates for these branching
probabilities (instead of precise values) are presented in [Li96].
In practice, in application areas such as image processing, the
characteristics of the input, e.g., sequence satellite images,
may be similar. Hence, information about program behavior
for a given set of images can be used in predicting future
behavior for other images with similar characteristics. In
addition, by collecting conditional probabilities on a given
machine, these parameters can then be used as input to
the proposed analysis approach to predict performance for
hypothetical machines with different properties (e.g., different
basic operation times, different number of PEs, and/or different
architecture).

The predicted distribution (based on using the proposed ap-
proach) and sample distribution (based on the actual number
of nodes searched) are compared in Fig. 8. The predicted dis-
tribution was determined by applying the approach of Section
4 based on the empirically collected branching probabilities

and the structure of the algorithm’s flow-analysis tree (shown
in Fig. 7).

It should be noted that the predicted and sample distributions
would coincide (exactly) under ideal conditions, in which
the number of nodes searched for different iterations of a
loop were independent; the branching probabilities associated
with different data conditional constructs on the same PE
were independent; and the branching probabilities associated
with the same data conditional construct across all PEs
were independent. By comparing the predicted and sample
distributions, it must be the case that these assumptions are
not completely satisfied in this application, and thus some error
exists.

Consider the particular assumption that the branching prob-
abilities associated with the same conditional construct are
independent across all PEs. To understand why this assump-
tion is not completely satisfied for the parallel implementation
of the Davis–Putnam algorithm, recall that the initial formulas
assigned to PE 0 and PE 1 are nearly identical. In particular, in
the formula for PE 0, variablesx0 andx1 are both set to zero;
in the formula for PE 1, variablex0 is set to zero andx1 is set
to one. The other parts of these two formulas (i.e., the initially
unassigned variables) are identical. So, it is likely that early
assignments of variables (corresponding to upper portions in
the flow-analysis tree) will often result in the same decision
for these two PEs (because the initial formulas are nearly the
same). This implies that there is actually a correlation among
branching decisions across PEs, and thus they are not indepen-
dent. For more details and descriptions of other studies, refer
to [Li96].

Based on the conducted studies, it can be concluded that
the proposed approach produced good predictions. To further
illustrate the merit of the proposed approach, the straightfor-
ward “average value approach” (used for comparison with the
proposed approach in Subsection 7.1) was also applied to the
four-PE study. This average value approach, which can only
estimate the average number of nodes searched, resulted in a
predicted average number of nodes searched of 75.25. This is
significantly different from the predicted average of the pro-
posed approach, which was 103.67, and the actual (sample)
average, which was 112.51. The fundamental reason for the
poor performance of the average value approach is that the
execution time of an SPMD program requires the maximum
of the execution time across all PEs, and the average value ap-
proach cannot account for the effect of this “max” operation.

8. SUMMARY

A methodology was introduced for estimating the execution
time distribution for a given data parallel program that is to
be executed in an SIMD/SPMD mixed-mode heterogeneous
environment. A block-based approach was used to transform
the application program into a flow-analysis tree in which
the internal nodes represent control and data conditional
constructs and the leaf nodes represent basic code blocks.
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FIG. 8. Predicted versus sample distribution of number of nodes searched by the 4-PE SPMD program. (a) Predicted distribution from proposed approach.
(b) Sample distribution based on 64,000 executions.

Given the mode in which each node in the flow-analysis
tree is to be executed (SIMD or SPMD), the execution time
distribution for each operation for both SIMD and SPMD

modes, and appropriate probabilistic models for control and
data conditional constructs, the methodology computes the
execution time distribution for the program.
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For SPMD mode, synchronization among PEs is currently
limited to be among all PEs. Synchronization among a subset
of PEs is important in many practical applications in which
two or more PEs communicate. Thus, developing a precise
model for arbitrary synchronization patterns is an area that
needs further study.

Much of the developed methodology is directly applicable
for mixed-machine systems consisting of SIMD, MIMD,
and/or mixed-mode machines. Extensions of the proposed
framework to compute execution time distributions for mixed-
machine systems (i.e., suites of interconnected heterogeneous
parallel machines) are presented in [LiA97]. One important
issue that needs to be addressed in predicting the overall
execution time in mixed-machine systems is modeling the time
required for intermachine communication.

In summary, the precise quantification of how input data
values affect program execution time in a heterogeneous
computing environment, based on modeling the uncertainty
with probabilistic distributions, is a primary contribution of
the paper. The advantage—in terms of making effective mode
selections—of using the proposed methodology to predict the
distribution for the execution time of a program, over a simple
“average value approach,” was illustrated with the numerical
examples.

APPENDIX: PROBABILITY THEORY AND NOTATION

The purpose of this Appendix is to provide an overview
of relevant concepts and notation from basic probability
theory. Additional definitions and derivations can be found in
textbooks on the subject (e.g., [MoG74]).

A sample spaceis the collection of all possible outcomes of
a conceptual experiment. Aneventis a subset of the sample
space. Aprobability function, denoted by Pr[·], is a function
that maps each event to a real number in [0, 1], which
represents the likelihood that a given event occurs. All possible
execution times for an SIMD/SPMD program represent events
within a sample space.

A random variable, denoted byX or X(·), is a function that
maps each event to a real number. For instance, suppose the
execution time of a program takes on one of several possible
values. The random variableX is used to map the event
“program execution time =x seconds” to the real numberx.
A random variableX is discreteif the range ofX is countable.
Throughout this paper, only discrete random variables are
used, and the discrete values from the range of the random
variable X is xi, i ≥ 0. Let X = xi denote the event that is
mapped to the valuexi. Let X ≤ xi denote the union of all
events that are mapped to values less than or equal to the
valuexi.

The density functionof X is

fX(x) =
{

Pr[X = xi ], if x = xi , i = 0, 1, · · ·
0, otherwise.

The distribution functionof X is

FX(x) = Pr[X ≤ x].

Three basic properties of a distribution function are: (1)
FX(−∞) = 0, (2) FX(∞) = 1, and (3)∀ x j ≥ xi , FX(x j ) ≥
FX(xi ). Also, as shown below, the distribution function can
be derived from the density function and vice versa:

FX(x) =
∑
{i : xi≤x}

fX(xi )

fX(xi ) =
{

FX(xi )− FX(xi−1) i ≥ 1
FX(x0) i = 0.

Consider two random variablesX0 andX1, and letX0 = x0, j

andX1 = x1, k denote arbitrary events associated with these ran-
dom variables. The random variablesX0 andX1 are defined to
be independentif and only if for all x0, j andx1, k

Pr[X0 = x0, j ∩ X1 = x1, k] = Pr[X0 = x0, j ] Pr[X1 = x1, k].

Let X0, X1, · · ·, Xk − 1 be a collection ofk independent ran-
dom variables defined on the same probability space and as-
sume that the range for each of these random variables is a
subset of {� × i: i = 0, 1, · · ·}, for some real constant�.
Without loss of generality,� = 1 is assumed in this paper.

Let the random variableYdenote the sum of the independent
random variablesX0, X1, · · ·, Xk−1, i.e., Y =

∑k−1
i=0 Xi. For k =

2, the density function ofY is the convolutionof fX0(·) and
fX1(·), denoted byfY(·) = fX0(·) ∗ fX1(·), which is defined
by

fY( j ) =
∞∑

i=0

fX0( j − i ) fX1(i ), j = 0, 1, · · ·

In general, the density function ofY is given by

fY(·) = fX0(·) ∗ fX1(·) ∗ · · · ∗ fXk−1(·). (3)

Let the random variableZ denote the maximum over the set
of independent random variablesX0, X1, · · ·, Xk−1, i.e., Z =
max{X0, X1, · · ·, Xk−1}. Because of the independence assump-
tion, the distribution ofZ is derived as

FZ(i ) = Pr[Z ≤ i ] = Pr[X0 ≤ i ] Pr[X1 ≤ i ] · · · Pr[Xk−1 ≤ i ].

Therefore,

FZ(i ) = FX0(i )FX1(i ) · · · FXk−1(i ). (4)
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