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To exploit a heterogeneous computing (HC) environment, an 
application task may be decomposed into subtasks that have 
data dependencies. Subtask matching and scheduling consists 
of assigning subtasks to machines, ordering subtask execution 
for each machine, and ordering intermachine data transfers. 
The goal is to achieve the minimal completion time for the 
task. A heuristic approach based on a genetic algorithm is 
developed to do matching and scheduling in HC environments. 
It is assumed that the matcher/scheduler is in control of a 
dedicated HC suite of machines. The characteristics of this 
genetic-algorithm-based approach include: separation of the 
matching and the scheduling representations, independence of 
the chromosome structure from the details of the communication 
subsystem, and consideration of overlap among all computations 
and communications that obey subtask precedence constraints. 
It is applicable to the static scheduling of production jobs and 
can be readily used to collectively schedule a set of tasks that are 
decomposed into subtasks. Some parameters and the selection 
scheme of the genetic algorithm were chosen experimentally to 
achieve the best performance. Extensive simulation tests were 
conducted. For small-sized problems (e.g., a small number of 
subtasks and a small number of machines), exhaustive searches 
were used to verify that this genetic-algorithm-based approach 
found the optimal solutions. Simulation results for larger-sized 
problems showed that this genetic-algorithm-based approach 
outperformed two nonevolutionary heuristics and a random 
Search. © 1997 Academic Press 

1. INTRODUCTION 

Different portions of an application task often require dif
ferent types of computation. In general, it is impossible for a 
single machine architecture with its associated compiler, op
erating system, and programming tools to satisfy all the com
putational requirements in such an application equally well. 
However, a heterogeneous computing (HC) environment that 
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consists of a heterogeneous suite of machines, high-speed in
terconnections, interfaces, operating systems, communication 
protocols, and programming environments provides a variety 
of architectural capabilities, which can be orchestrated to per
form an application that has diverse execution requirements 
[Fre89, FrS93, KhP93, SiA96, Sun92]. In the HC environ
ment considered here, an application task can be decomposed 
into subtasks, where each subtask is computationally homoge
neous (well suited to a single machine), and different subtasks 
may have different machine architectural requirements. These 
subtasks can have data dependences among them. Once the 
application task is decomposed into subtasks, the following 
decisions have to be made: matching, i.e., assigning subtasks 
to machines, and scheduling, i.e., ordering subtask execution 
for each machine and ordering intermachine data transfers. In 
this context, the goal of HC is to achieve the minimal com
pletion time, i.e., the minimal overall execution time of the 
application task in the machine suite. 

It is well known that such a matching and scheduling prob
lem is in general NP-complete [Fer89]. A number of ap
proaches to different aspects of this problem have been pro
posed (e.g., [EsS94, Fre89, Iv095, NaY94, TaA95, WaA94]). 
Different from the above approaches, this paper proposes a 
genetic-algorithm-based approach for solving the problem. 

Genetic algorithms for subtask scheduling in a collection of 
homogeneous processors have been considered (e.g., [AhD96, 
BeS94, HoA94]). Performing matching and scheduling for a 
suite of heterogeneous machines, however, requires a very 
different genetic algorithm structure. 

In [Iv095], a nonevolutionary heuristic based on level 
scheduling [ChL88, MuC69] is presented to find a suboptimal 
matching and concurrent scheduling decision. That approach 
is compared to the performance of the evolutionary genetic
algorithm-based approach proposed in this paper. 

This paper proposes a genetic-algorithm-based approach for 
solving the matching and concurrent scheduling problem in 
HC systems. It decides the subtask to machine assignments, 
orders the execution of the subtasks assigned to each machine, 
and schedules the data transfers among subtasks. The charac
teristics of this approach include: separation of the matching 
and the scheduling representations, independence of the chro-
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mosome structure from the details of the communication sub
system, and consideration of overlap among all computations 
and communications that obey subtask precedence constraints. 
The computation and communication overlap is limited only 
by intersubtask data dependencies and machine/network avail
ability. This genetic-algorithm-based approach can be applied 
to performing the matching and scheduling in a variety of HC 
systems. It is applicable to the static scheduling of production 
jobs and can be readily used to collectively schedule a set of 
tasks that are decomposed into subtasks. 

The organization of this paper is as follows. The matching 
and scheduling problem is defined in Section 2. Section 3 
briefly describes genetic algorithms and gives the outline of the 
genetic-algorithm-based approach. In Section 4, the proposed 
representation of matching and scheduling decisions within 
the genetic framework is presented. Section 5 discusses how 
to generate the initial population of possible solutions used by 
the genetic algorithm. The selection mechanism is discussed in 
Section 6. Sections 7 and 8 define the crossover and mutation 
operators, respectively, used to construct new generations of 
populations. Section 9 gives the method for evaluating the 
quality of a solution and the experimental results are shown in 
Section 10. Some related work is viewed and compared with 
our approach in Section 11. Finally, Section 12 discusses some 
future research directions. 

2. PROBLEM DEFINITION 

There are many open research problems in the field of HC 
[SiA96]. To isolate and focus on the matching and scheduling 
problem, assumptions about other components of an overall 
HC system must be made. Assumptions such as those below 
are typically made by matching and scheduling researchers 
(e.g., [ShW96, SiY96]). 

It is assumed that the application task is written in some 
machine-independent language (e.g., [WeW94]). It is also 
assumed that an application task is decomposed into multiple 
subtasks and the data dependencies among them are known 
and are represented by a directed acyclic graph. If intermachine 
data transfers are data dependent, then some set of expected 
data transfers must be assumed. The estimated expected 
execution time for each subtask on each machine is assumed 
to be known a priori. The assumption of the availability of 
expected subtask execution time for each type of machine is 
typically made for the current state-of-the-art in HC systems 
when studying the matching and scheduling problem (e.g., 
[Fre94, GhY93, ShW96, SiY96]). Finding the estimated 
expected execution times for subtasks is another research 
problem, which is outside the scope of this paper. Approaches 
for doing this estimation based on task profiling and analytical 
benchmarking are surveyed in [SiA96]. The HC system is 
assumed to have operating system support for executing each 
subtask on the machine it is assigned and for performing 
intermachine data transfers as scheduled by this genetic
algorithm-based approach. 

In the type of HC system considered here, an application 
task is decomposed into a set of subtasks S. Define lSI to be the 

FIG. 1. An example DAG. 

number of subtasks in the set S and s; to be the ith subtask. 
Then S = { s ;, 0 ::::: i < lSI}. An HC environment consists of a 
set of machines M. Define IMI to be the number of machines 
in the set M and mj to be the jth machine. Then M = {mj, 0 
::::: j < IMI}. The estimated expected execution time of subtask 
s; on machine mj is Tij• where 0 ::::: i < lSI and 0 ::::; j < IMI. 
The global data items (gdis), i.e., data items that need to be 
transferred between subtasks, form a set G. Define IGI to be 
the number of items in the set G and gdik to be the kth global 
data item. Then G = {gdik, 0::::: k < IGI}. 

It is assumed that for each global data item, there is a 
single subtask that produces it (producer) and there are some 
subtasks that need this data item (consumers). The task is 
represented by a directed acyclic graph (DAG). Each edge goes 
from a producer to a consumer and is labeled by the global 
data item that is transferred. Figure 1 shows an example DAG. 

The following further assumptions are made for the prob
lem. One is the exclusive use of the HC environment for the 
application. The genetic-algorithm-based matcher/scheduler is 
in control of the HC machine suite. Another is nonpreemptive 
subtask execution. Also, all input data items of a subtask must 
be received before its execution can begin, and none of its out
put data items is available until the execution of this subtask 
is finished. If a data conditional is based on input data, it is 
assumed to be contained inside a subtask. A loop that uses an 
input data item to determine one or both of its bounds is also 
assumed to be contained inside a subtask. These restrictions 
help make the matching and scheduling problem more man
ageable and solving this problem under these assumptions is a 
significant step forward for solving the general matching and 
scheduling problem. 

3. GENETIC ALGORITHMS 

Genetic algorithms (GAs) are a promising heuristic ap
proach to finding near-optimal solutions in large search spaces 
[Dav91, Gol89, Hol75]. There are a great variety of ap
proaches to GAs; many are surveyed in [SrP94, RiT94]. The 
following is a brief overview of GAs to provide background 
for the description of the proposed approach. 

The first step necessary to employ a GA is to encode any 
possible solution to the optimization problem as a set of strings 
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(chromosome). Each chromosome represents one solution to 
the problem, and a set of chromosomes is referred to as a 
population. The next step is to derive an initial population. 
A random set of chromosomes is often used as the initial 
population. Some specified chromosomes can also be included. 
This initial population is the first generation from which the 
evolution starts. 

The third step is to evaluate the quality of each chromosome. 
Each chromosome is associated with a fitness value, which is 
in this case the completion time of the solution (matching and 
scheduling) represented by this chromosome (i.e., the expected 
execution time of the application task if the matching and 
scheduling specified by this chromosome were used). Thus, in 
this research a smaller fitness value represents a better solution. 
The objective of the GA search is to find a chromosome that 
has the optimal (smallest) fitness value. The selection process 
is the next step. In this step, each chromosome is eliminated 
or duplicated (one or more times) based on its relative quality. 
The population size is typically kept constant. 

Selection is followed by the crossover step. With some prob
ability, some pairs of chromosomes are selected from the cur
rent population and some of their corresponding components 
are exchanged to form two valid chromosomes, which may or 
may not already be in the current population. After crossover, 
each string in the population may be mutated with some prob
ability. The mutation process transforms a chromosome into 
another valid one that may or may not already be in the cur
rent population. The new population is then evaluated. If the 
stopping criteria have not been met, the new population goes 
through another cycle (iteration) of selection, crossover, mu
tation, and evaluation. These cycles continue until one of the 
stopping criteria is met. 

In summary, the following are the steps that are taken to 
implement a GA for a given optimization problem: (1) an 
encoding, (2) an initial population, (3) an evaluation using a 
particular fitness function, (4) a selection mechanism, (5) a 
crossover mechanism, (6) a mutation mechanism, and (7) a 
set of stopping criteria. These steps of a typical GA are shown 
in Fig. 2. 

Details of the steps for the implementation of the GA-based 
heuristic for HC will be discussed in the following sections. 
For some parameters of this GA, such as population size, 
values were selected based on information in the literature. 

GA matching scheduling(){ 
- initial population generation; 

evaluation; 

} 

while(stopping criteria not met){ 
selection; 
crossover; 
mutation; 
evaluation; 

} 
output the best solution found; 

FIG. 2. The steps in a typical GA. 

For other parameters, such as the probability of performing a 
mutation operation, experiments were conducted (Section 10). 

4. CHROMOSOME REPRESENTATION 

In this GA-based approach, each chromosome consists of 
two parts: the matching string and the scheduling string. Let 
mat be the matching string, which is a vector of length lSI, 
such that mat(i) = j, where 0 ::::: i < lSI and 0 ::::: j < IMI; i.e., 
subtask s; is assigned to machine mj. 

The scheduling string is a topological sort [CoL92] of the 
DAG, i.e., a total ordering of the nodes (subtasks) in the DAG 
that obeys the precedence constraints. Define ss to be the 
scheduling string, which is a vector of length lSI, such that 
ss(k) = i, where 0 ::;; i, k < lSI, and each s; appears only 
once in the vector, i.e., subtask s; is the kth subtask in the 
scheduling string. Because it is a topological sort, if ss(k) is a 
consumer of a global data item produced by ss(j), then j < k. 
The scheduling string gives an ordering of the subtasks that is 
used by the evaluation step. 

Then in this GA-based approach, a chromosome is repre
sented by a two-tuple (mat, ss). Thus, a chromosome repre
sents the subtask-to-machine assignments (matching) and the 
execution ordering of the subtasks assigned to the same ma
chine. The scheduling of the global data item transfers and the 
relative ordering of subtasks assigned to different machines 
are determined by the evaluation step. Figure 3 illustrates two 
different chromosomes for the DAG in Fig. 1, for lSI = 6, IMI 
= 3, and IGI = 5. 

mat1 ss 1 mat2 ss2 

s ·o O· s '1 O· 
51 :1 51 :2 
s '1 2· s '1 2' 
sa:O 5a:o 
S4: 2 54:o 
ss: 1 5s: 1 

FIG. 3. Two chromosomes from the DAG in Fig. l. 
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5. INITIAL POPULATION GENERATION 

In the initial population generation step, a predefined 
number of chromosomes are generated, the collection of which 
form the initial population. When generating a chromosome, 
a new matching string is obtained by randomly assigning each 
subtask to a machine. To form a scheduling string, the DAG 
is first topologically sorted to form a basis scheduling string. 
Then, for each chromosome in the initial population, this basis 
string is mutated a random number of times (between one and 
the number of subtasks) using the scheduling string mutation 
operator (defined in Section 8) to generate the ss vector (which 
is a valid topological sort of the given DAG). Furthermore, it 
is common in GA applications to incorporate solutions from 
some nonevolutionary heuristics into the initial population, 
which may reduce the time needed for finding a satisfactory 
solution [Dav91]. In this GA-based approach, along with those 
chromosomes representing randomly generated solutions, the 
initial population also includes a chromosome that represents 
the solution from a nonevolutionary baseline heuristic. Details 
of this heuristic will be discussed in Section 10. 

Each newly generated chromosome is checked against those 
previously generated. If a new chromosome is identical to any 
of the existing ones, it is discarded and the process of chromo
some generation is repeated until a unique new chromosome 
is obtained. The reason why identical chromosomes are not al
lowed in the initial generation is that they could possibly drive 
the whole population to a premature convergence, i.e., the state 
where all chromosomes in a population have the same fitness 
value. It can be shown that for this GA-based approach, there 
is a nonzero probability that a chromosome can be generated 
to represent any possible solution to the matching and sched
uling problem using the crossover and the mutation operators. 
The crossover and the mutation operators will be discussed 
later in Sections 7 and 8, respectively. 

6. SELECTION 

In this step, the chromosomes in the population are first 
ordered (ranked) by their fitness values from the best to 
the worst. Those having the same fitness value are ranked 
arbitrarily among themselves. Then a rank-based roulette 
wheel selection scheme can be used to implement the selection 
step [Hol75, SrP94]. In the rank-based selection scheme, each 
chromosome is allocated a sector on a roulette wheel. Let 
P denote the population size and A; denote the angle of the 
sector allocated to the ith ranked chromosome. The Oth ranked 
chromosome is the fittest and has the sector with the largest 
angle A 0; whereas the (P- 1 )th ranked chromosome is the least 
fit and has the sector with the smallest angle A p_1• The ratio of 
the sector angles between two adjacently ranked chromosomes 
is a constantR =A/A;+1, where 0:::;; i < P -1. If the 360 degrees 
of the wheel are normalized to one, then 

A; = RP-i-1 x (1- R)/(1- RP), 

where R > 1, 0:::;; i < P, and 0 <A;< 1. 

The selection step generates P random numbers, ranging 
from zero to one. Each number falls in a sector on the roulette 
wheel and a copy of the owner chromosome of this sector is 
included in the next generation. Because a better solution has 
a larger sector angle than that of a worse solution, there is 
a higher probability that (one or more) copies of this better 
solution will be included in the next generation. In this way, 
the population for the next generation is determined. Thus, the 
population size is always P, and it is possible to have multiple 
copies of the same chromosome. 

Alternatively, a value-based roulette wheel selection scheme 
can be used to implement a proportionate selection [SrP94]. 
Letf; be the fitness value of the ith chromosome andfave be the 
average fitness value of the current population. In this selection 
scheme, the ith chromosome (0 :::;; i < P) is allocated a sector 
on the roulette wheel, the angle of which, A;, is proportional 
to favelfi (assuming that the best chromosome has the smallest 
fitness value, which is the case for this research). The most 
appropriate selection scheme for this research was chosen 
experimentally. Details on the experiments can be found in 
Section 10 and [Wan97]. 

This GA-based approach also incorporates elitism [Rud94]. 
At the end of each iteration, the best chromosome is always 
compared with an elite chromosome, a copy of which is stored 
separately from the population. If the best chromosome is 
better than the elite chromosome, a copy of it becomes the 
elite chromosome. If the best chromosome is not as good as 
the elite chromosome, a copy of the elite chromosome replaces 
the worst chromosome in the population. Elitism is important 
because it guarantees that the quality of the best solutions 
found over generations is monotonically increasing. 

7. CROSSOVER OPERATORS 

Different crossover operators are developed for scheduling 
strings and matching strings. The crossover operator for 
the scheduling strings randomly chooses some pairs of the 
scheduling strings. For each pair, it randomly generates a cut
off point, which divides the scheduling strings of the pair into 
top and bottom parts. Then, the subtasks in each bottom part 
are reordered. The new ordering of the subtasks in one bottom 
part is the relative positions of these subtasks in the other 
original scheduling string in the pair, thus guaranteeing that the 
newly generated scheduling strings are valid schedules. Figure 
4 demonstrates such a scheduling string crossover process. 

The crossover operator for the matching strings randomly 
chooses some pairs of the matching strings. For each pair, it 
randomly generates a cut-off point to divide both matching 
strings of the pair into two parts. Then the machine assign
ments of the bottom parts are exchanged. 

The probability for performing crossovers was determined 
by experimentation. This is discussed in Section 10. 

8. MUTATION OPERATORS 

Different mutation operators are developed for scheduling 
strings and matching strings. The scheduling string mutation 
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FIG. 4. A scheduling string crossover example. 

operator randomly chooses some scheduling strings. Then for 
each chosen scheduling string, it randomly selects a victim 
subtask. The valid range of the victim subtask is the set of 
the positions in the scheduling string at which this victim 
subtask can be placed without violating any data dependency 
constraints. Specifically, the valid range is after all source 
subtasks of the victim subtask and before any destination 
subtask of the victim subtask. After a victim subtask is chosen, 
it is moved randomly to another position in the scheduling 
string within its valid range. Figure 5 shows an example of 
this mutation process. 

The matching string mutation operator randomly chooses 
some matching strings. On each chosen matching string, it 
randomly selects a subtask/machine pair. Then the machine 
assignment for the selected pair is changed randomly to 
another machine. 

The probability for performing mutations was determined 
by experimentation. This is discussed in Section 10. 

0 

valid range 
forsv 

scheduling 
string mutation .. 

FIG. 5. A scheduling string mutation example. Only edges to and from the 
victim subtask s, are shown. Before the mutation, s, is between sb and sc. 
After the mutation, it is moved to between sa and s b· 

9. EVALUATION 

The final step of a GA iteration is the evaluation of the 
fitness value of each chromosome. In this GA-based approach, 
the chromosome structure is independent of any particular 
communication subsystem. Only the evaluation step needs 
the communication characteristics of the given HC system 
to schedule the data transfers. To test the effectiveness of 
this GA-based approach, an example communication system 
was chosen. This GA-based approach can be used with 
any communication system that obeys the assumptions in 
Section 2. 

To demonstrate the evaluation process, an example commu
nication subsystem, which is modeled after a HiPPI LAN with 
a central crossbar switch [HoT89, ToR93], is assumed to con
nect a suite of machines. Each machine in the HC suite has 
one input data link and one output data link. All these links 
are connected to a central crossbar switch. Figure 6 shows 
an HC system consisting of four machines that are intercon
nected by such a crossbar switch. If a subtask needs a global 
data item that is produced or consumed earlier by a different 
subtask on the same machine, the communication time for this 
item is zero. Otherwise, the communication time is obtained 
by dividing the size of the global data item by the smaller 
bandwidth of the output link of the source machine and the 
input link of the destination machine. In this research, it is 
assumed that for a given machine, the bandwidths of the in
put link and the output link are equal to each other. It is also 
assumed that the crossbar switch has a higher bandwidth than 
that of each link. The communication latency between any pair 
of machines is assumed to be the same. Data transfers are nei
ther preemptive nor multiplexed. Once a data transfer path is 
established, it cannot be relinquished until the data item (e.g., 
gdik) scheduled to be transferred over this path is received by 
the destination machine. Multiple data transfers over the same 
path have to be serialized. 

crossbar switch 

input links 

FIG. 6. An example HC system with four machines and a central crossbar 
switched network. Each machine has one output data link to and one input 
data link from the crossbar switch. Blackened squares in the switch correspond 
to active connections. 
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(a) (b) (c) 

FIG. 7. An example showing the scheduling order for the input gdis of one 
subtask: (a) the example scheduling string; (b) the situation when the source 
sub tasks of the input gdis are assigned to the same machine; (c) the situation 
when the source subtasks of the input gdis are assigned to different machines. 

In this step, for each chromosome the final order of exe
cution of the subtasks and the intermachine data transfers are 
determined. The evaluation procedure considers the subtasks 
in the order they appear on the scheduling string. Subtasks 
assigned to the same machine are executed exactly in the or
der specified by the scheduling string. For subtasks assigned 
to different machines, the actual execution order may deviate 
from that specified by the scheduling string due to factors such 
as input-data availability and machine availability. This is ex
plained below. 

Before a subtask can be scheduled, all of its input global 
data items must be received. For each subtask, its input data 
items are considered by the evaluation procedure in the order 
of their producers' relative positions in the scheduling string. 
The reason for this ordering is to better utilize the overlap 
of subtask executions and intermachine data communications. 
The following example illustrates this idea. Let ss(O) = 0, 
ss(l) = 1, and ss(2) = 2, as shown in Fig. 7a. Let s2 need two 
gdis, gdi 0 and gdi 1, from s0 and s 1, respectively. Depending 
on the subtask to machine assignments, the data transfers 
of gdi 0 and gdi 1 could be either local within a machine or 
across machines. If at least one data transfer is local, then the 
scheduling is trivial because it is assumed that local transfers 
within a machine take negligible time. However, there exist 
two situations where both data transfers are across machines 
so that they need to be ordered. 

Situation 1. Let s0 and s 1 be assigned to the same machine 
m0 and s2 be assigned to another machine m1, as shown in Fig. 
7b. In this situation, because s 0 is to be executed before s 1, 

gdi 0 is available before gdi 1 becomes available on machine 
m0. Thus, it is better to schedule the gdi0 transfer before the 
gdi 1 transfer. 

Situation 2. Let the three subtasks s0, s 1, and s2 be assigned 
to three different machines m0, m1, and m2, as shown in Fig. 
7 c. In this situation, if there is a data dependency from s 0 to s 1, 

then s 0 finishes its execution before s 1 could start its execution. 
Therefore, gdi0 is available before gdi 1 becomes available. 
Hence, it is better to schedule the gdi0 transfer before the gdi 1 

transfer. If there are no data dependencies from s0 to s 1, the 
gdi 0 transfer will still be scheduled before the gdi 1 transfer. 

While this may not be the best scheduling order for these 
gdis, the reverse order may be considered by other scheduling 
strings, i.e., there may be some other chromosome(s) that have 
ss(O) = 1 and ss(l) = 0. When such a chromosome is evaluated, 
the gdi 1 transfer will be scheduled before the gdi0 transfer. 
Therefore, it is possible for all input gdi scheduling orderings 
for gdi0 and gdi 1 to be examined. 

In Fig. 8, a simple example is shown to illustrate the 
evaluation for a given chromosome. In this example (as well as 
some others given later), because there are only two machines, 
the source and destination machines for the gdi transfers are 
implicit. The ordering for the evaluation of subtasks and gdi 
transfers is: s0, gdi 0, s2, gdi 1, s 1, gdi 2, gdi 3, s3. If a gdi 
consumer subtask is on the same machine as the producer or 
as a previous consumer of that gdi, no data transfer is required, 
as is the case for gdi 1 and gdi 3 in this example. 

Data forwarding is another important feature of this evalu
ation process. For each input data item to be considered, the 
evaluation process chooses the source subtask from among the 
producer of this data item and all the consumers that have re
ceived this data item. These consumers are forwarders. The 

mat ss 
s0:o 

s1:o 
s2:1 
s3:0 

gdio 1 
gdi1 3 
gdi2 2 

gdi3 1 

(d) 

(a) 

mo m1 

so 52 

s1 

s3 

(b) 

so s1 s2 s3 

mo 5 9 4 2 

m1 9 3 6 3 

(c) (e) 

FIG. 8. An example showing the evaluation step: (a) the chromosome; 
(b) the subtask execution ordering on each machine given by (a); (c) the 
estimated subtask execution times; (d) the gdi intermachine transfer times 
(transfers between subtasks assigned to the same machine take zero time); 
and (e) the sub task execution and data transfer timings, where the completion 
time for this chromosome is 16. 
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mo m1 m2 time 

0 so 52 51 

53 2 

(b) 4 

mom1 m1m2 mom2 6 

gdi0 2 1 2 
8 

gdi1 4 2 4 

(a) (c) 
10 

12 
so 51 52 53 

mo 5 8 8 5 14 
m1 7 10 4 3 
m2 9 6 10 4 

(e) 

(d) 

FIG. 9. A data forwarding example: (a) the chromosome; (b) the subtask execution ordering on each machine; (c) the gdi transfer times; (d) the estimated 
subtask execution times; and (e) the subtask execution and data transfer times using data forwarding. 

one (either the producer or a forwarder) from which the desti
nation subtask will receive the data item at the earliest possible 
time is chosen. Figure 9 shows an example of data forwarding. 
In this example, global data item gdi 0 is forwarded to subtask 
s 1 from a consumer subtask s2 instead of from the producer 
subtask s0. The resulting completion time is 14. If data for
warding is disabled for this example (i.e., global data item 
gdi 0 must be sent from subtask s0 to subtask s 1), the comple
tion time would be 16 (when subtask s0 sends gdi0 to subtask 
s 1 before sending gdi 1 to subtask s3) or 19 (when subtask s0 

sends gdi 1 to subtask s 3 before sending gdi 0 to subtask s 1). 

After the source subtask is chosen, the data transfer for 
the input data item is scheduled. A transfer starts at the 
earliest point in time from when the path from the source 
machine to the destination machine is free for a period at least 
equal to the needed transfer time. This (possibly) out-of-order 
scheduling of the input item data transfers utilizes previously 
idle bandwidths of the communication links and thus could 
make some input data items available to some subtasks earlier 
than otherwise from the in-order scheduling. As a result, some 
subtasks could start their execution earlier, which would in tum 
decrease the overall task completion time. This is referred to 
as out-of-order scheduling of data transfers because the data 
transfers do not occur in the order in which they are considered 
(i.e., the in-order schedule). Figures 10 and 11 show the 
in-order scheduling and the out-of-order scheduling for the 
same chromosome, respectively. In the in-order scheduling, 
the transfer of gdi 1 is scheduled before the transfer of gdi2 

because subtask s2's input data transfers are considered before 

those of subtask s3. In this example, the out-of-order schedule 
does decrease the total execution time of the given task. 

When two chromosomes have different matching strings, 
they are different solutions because the subtask-to-machine 
assignments are different. However, two chromosomes that 
have the same matching string but different scheduling strings 
may or may not represent the same solution. This is because 
the scheduling string information is used in two cases: (1) 
for scheduling subtasks that have been assigned to the same 
machine and (2) for scheduling data transfers. Two different 
scheduling strings could result in the same ordering for (1) 
and (2). 

After a chromosome is evaluated, it is associated with a 
fitness value, which is the time when the last subtask finishes 
its execution. That is, the fitness value of a chromosome is 
then the overall execution time of the task, given the matching 
and scheduling decision specified by this chromosome and by 
the evaluation process. 

In summary, this evaluation mechanism considers subtasks 
in the order in which they appear in the scheduling string. 
For a subtask that requires some gdis from other machines, 
the gdi transfer whose producer subtask appears earliest in 
the scheduling string is scheduled first. When scheduling a 
gdi transfer, both the producing and the forwarding subtasks 
are considered. The source subtask that lets this consumer 
subtask receive this gdi at the earliest possible time is chosen to 
send the gdi. The out-of-order scheduling of the gdi transfers 
over a path could further reduce the completion time of the 
application. 
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FIG. 10. An example showing the in-order scheduling of a chromosome: 
(a) the chromosome; (b) the subtask execution ordering on each machine; (c) 
the estimated subtask execution times; (d) the gdi transfer times (transfers 
between subtasks assigned to the same machine take zero time); and (e) the 
sub task execution and data transfer timings using in-order transfers (the gdi 1 

transfer occurs before the gdi2 transfer), where the completion time is 17. 

FIG. 11. An example showing the out-of-order scheduling, where the 
chromosome and other statistics are the same as in Fig. 10. The completion 
time is 14. 

10. EXPERIMENTAL RESULTS 

To measure the performance of this GA-based approach, 
randomly generated scenarios were used, where each scenario 
corresponded to a DAG, the associated subtask execution 
times, the sizes of the associated global data items, and 
the communication link bandwidths of the machines. The 
scenarios were generated for different numbers of subtasks 
and different numbers of machines, as specified below. The 
estimated expected execution time for each subtask on each 
machine, the numbq of global data items, the size of each 
global data item, and the bandwidth of each input link of each 
machine were randomly generated with uniform probability 
over some predefined ranges. For each machine, the bandwidth 
of the output link is made equal to that of the input link. The 
producer and consumers of each global data item were also 
generated randomly. The scenario generation used a IGI x lSI 
dependency matrix to guarantee that the precedence constraints 
from data dependencies were acyclic. Each row of this matrix 
specified the data dependencies of the corresponding global 
data item. In each row, the producer must appear to the left of 
all of its consumers. 

These randomly generated scenarios were used for three 
reasons: (1) it is desirable to obtain data that demonstrate the 
effectiveness of the approach over a broad range of conditions, 
(2) a generally accepted set of HC benchmark tasks does not 
exist, and (3) it is not clear what characteristics a "typical" 
HC task would exhibit [WaA96]. Determining a representative 
set of HC task benchmarks remains a current and unresolved 
challenge for the scientific community in this research area. 

In this research, small-scale and larger scenarios were used 
to quantify the performance of this GA-based approach. The 
scenarios were grouped into three categories, namely tasks 
with light, moderate, and heavy communication loads. A 
lightly communicating task has its number of global data items 
in the range of 0 :s; IGI < (l/3)1SI; a moderately communicating 
task has its number of global data items in the range of 
(1/3)1SI :s; IGI < (2/3)1SI; and a heavily communicating task 
has its number of global data items in the range of (2/3)1SI 
:s; IGI < lSI. The ranges of the global data item sizes and 
the estimated subtask execution times were both from 1 to 
1000. For these scenarios, the bandwidths of the input and 
output links were randomly generated, ranging from 0.5 to 
1.5. Hence, the communication times in these scenarios were 
source and destination machine dependent. 

For each scenario, there were many GA runs, each of which 
was a GA search for the best solution to this scenario, starting 
from a different initial population. The probability of crossover 
was the same for the matching string and the scheduling string. 
The probability of mutation was also the same for the matching 
string and the scheduling string. The stopping criteria were (1) 
the number of iterations had reached 1000, (2) the population 
had converged (i.e., all the chromosomes had the same fitness 
value), or (3) the currently best solution had not improved 
over the last 150 iterations. All the GA runs discussed in this 
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section had stopped when the best solutions were not improved 
after 150 iterations. 

The GA-based approach was first applied to 20 small-scale 
scenarios that involved up to ten subtasks, three machines, and 
seven global data items. The GA runs for small-scale scenarios 
had the following parameters. The probabilities for scheduling 
string crossovers, matching string crossovers, scheduling string 
mutations, and matching string mutations were chosen to be 
0.4, 0.4, 0.1, 0.1, respectively. The GA population size, P, for 
small-scale scenarios was chosen to be 50. For these scenarios, 
the rank-based roulette wheel selection scheme was used. 
The angle ratio of the sectors on the roulette wheel for two 
adjacently ranked chromosomes, R, was chosen to be 1 + liP. 
By using this simple formula, the angle ratio between the slots 
of the best and median chromosomes for P =50 (and also for 
P = 200 for larger scenarios discussed later in this section) 
was very close to the optimal empirical ratio value of 1.5 in 
[Whi89]. 

The results from a small-scale scenario were used here 
to illustrate the search process. This scenario had lSI = 7, 
IMI = 3, and IGI = 6. The DAG, the estimated execution times, 
and the transfer times of the global data items are shown in 
Figs. 12a-12c, respectively. The total numbers of possible 
different matching strings and different valid scheduling strings 
(i.e., topological sorts of the DAG) were 37 = 2187 and 16, 
respectively. Thus, the total search space had 2187 x 16 = 
34,992 possible chromosomes. 
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-..r= 
Cl 
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mo~ mom2 m1m2 

gdi0 489 321 489 
gdi1 12M 818 1244 
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m1 898 624 786 737 247 749 451 
m2 708 778 23 258 535 776 15 

(b) 

FIG. 12. A small-scale simulation scenario: (a) the DAG, (b) the estimated 
execution times, and (c) the transfer times of the global data items. 

Figure 13 depicts the evolution process of one GA run on 
this scenario. In each subfigure, the ss axis is the scheduling 
string axis and the mat axis is the matching string axis. The 
16 different scheduling strings on the ss axis are numbered 
from 1 to 16. The 2187 different matchings on the mat axis 
are numbered from 1 to 2187. If there is a chromosome at a 
point (mat, ss), then there is a vertical pole at (mat, ss). The 
height of a pole represents the quality of the chromosome. 
The greater the height of the pole, the better a chromosome 
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FIG. 13. Evolution of a GA run for the scenario in Fig. 12: (a) at iteration 0, (b) at iteration 40, (c) at iteration 80, (d) at iteration 120, (e) at iteration 160, 
and (f) at iteration 203 (when the search stopped). Height is a positive constant minus the task execution time associated with (mat, ss). 
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(solution) is. Multiple identical chromosomes at the same point 
are not differentiated. Figures 13a-13f show the distributions 
of the distinct chromosomes at iterations 0, 40, 80, 120, 160, 
and 203, respectively. This GA run stopped at iteration 203. 
This GA-based approach found multiple best solutions that 
have the same completion time, as shown in Fig. 13f. 

Exhaustive searches were performed to find the optimal 
solutions for the small-scale scenarios. For each of the small
scale scenarios that were conducted, the GA-based approach 
found one or more optimal solutions that had the same 
completion time, verified by the best solution(s) found by the 
exhaustive search. The GA search for a small-scale scenario 
that had ten subtasks, three machines, and seven global data 
items took about 1 min to find multiple optimal solutions on 
a Sun SpareS workstation while the exhaustive search took 
about 8 h to find these optimal solutions. 

The performance of this GA-based approach was also 
examined using larger scenarios with up to 100 subtasks and 
20 machines. These larger scenarios were generated using the 
same procedure as for generating the small scenarios. The GA 
population size for larger scenarios was chosen to be 200. 

Larger scenarios are intractable problems. It is currently 
impractical to directly compare the quality of the solutions 
found by the GA-based approach for these larger scenarios 
with those found by exhaustive searches. It is also difficult to 
compare the performance of different HC task matching and 
scheduling approaches due to the different HC system models 
used. Examples of such differences are given in the next 
section. However, the model used in [lv095] is similar to the 
one being used in this research work. Hence, the performance 
of the GA-based approach on larger scenarios was compared 
with the nonevolutionary levelized min-time (LMT) heuristic 
proposed in [Iv095]. 

The LMT heuristic first levelizes the subtasks in the 
following way. The subtasks that have no input global data 
items are at the highest level. Each of the remaining subtasks 
is at one level below the lowest producer of its global data 
items. The subtasks at the highest level are to be considered 
first. The LMT heuristic averages the estimated execution 
times for each subtask across all machines. At each level, a 
level-average execution time, i.e., the average of the machine
average execution times of all subtasks at this level, is also 
computed. If there are some levels between a subtask and its 
closest child subtask, the level-average execution time of each 
middle level is subtracted from the machine-average execution 
time of this subtask. The adjusted machine-average execution 
times of the subtasks are used to determine the priorities of the 
subtasks within each level; i.e., a subtask with a larger average 
is to be considered earlier at its level. If the number of subtasks 
at a level is greater than the number of machines in the HC 
suite, the subtasks with smaller averages are merged so that as 
the result, the number of the combined subtasks at each level 
equals the number of machines available. When a subtask is 
being considered, it is assigned to the fastest machine available 
from those machines that have not yet been assigned any 

subtasks from the same level. Then, it is scheduled using the 
scheduling principles discussed in Section 9. 

Another nonevolutionary heuristic, the baseline (BL), was 
developed as part of this GA research and the solution it found 
was incorporated into the initial population. Similar to the 
LMT heuristic, the baseline heuristic first levelizes the subtasks 
based upon their data dependencies. Then all subtasks are 
ordered such that a subtask at a higher level comes before one 
at a lower level. The subtasks in the same level are arranged in 
descending order of their numbers of output global data items 
(ties are broken arbitrarily). The subtasks are then scheduled 
in this order. Let the fth subtask in this order be cr;, where 0 :S: 
i < lSI. First, subtask cr 0 is assigned to a machine that gives the 
shortest completion time for cr 0. Then, the heuristic evaluates 
IMI assignments for cr 1, each time assigning cr 1 to a different 
machine, with the previously decided machine assignment of 
cr 0 left unchanged. The subtask cr 1 is finally assigned to a 
machine that gives the shortest overall completion time for 
both cr 0 and cr 1. The baseline heuristic continues to evaluate 
the remaining subtasks in their order to be considered. When 
scheduling subtask cr;, IMI possible machine assignments are 
evaluated, each time with the previously decided machine 
assignments of subtasks crj (0 :S: j < i) left unchanged. Subtask 
cr; is finally assigned to a machine that gives the shortest overall 
completion time of subtasks cr0 through cr;. The total number 
of evaluations is thus lSI x IMI, and only i subtasks (out of 
lSI) are considered when performing evaluations for the IMI 
machine assignments for subtask cr;. 

Compared with the LMT and baseline nonevolutionary 
heuristics, the execution time of the GA-based approach was 
much greater, but it found much better solutions. This is 
appropriate for off-line matching and scheduling, rather than 
for real-time use (although in some applications, off-line 
precomputed GA mapping can be used on-line in real time 
[BuR97]). 

To determine the best GA parameters for solving larger HC 
matching and scheduling problems, 50 larger scenarios were 
randomly generated in each communication category. Each of 
these scenarios contained 50 subtasks and five machines. For 
each scenario, 400 GA runs were conducted, half of which 
used the rank-based roulette selection scheme and the other 
half used the value-based roulette selection scheme. The 200 
GA runs using the same selection scheme on each scenario 
had the following combinations of crossover probability and 
mutation probability. The crossover probability ranged from 
0.1 to 1.0 in steps of 0.1, and the mutation probability ranged 
from 0.04 to 0.40 in steps of 0.04 and from 0.4 to 1.0 in 
steps of 0.1. Let the relative solution quality be the task 
completion time of the solution found by the LMT heuristic 
divided by that found by the approach being investigated. A 
greater value of the relative solution quality means that the 
approach being investigated finds a better solution to the HC 
matching and scheduling problem (i.e., with a shorter overall 
completion time for the application task represented by the 
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DAG). With each crossover and mutation probability pair and 
for each communication load, the average relative solution 
quality of the 50 GA runs, each on a different scenario, was 
computed. The following is a brief discussion and comparison 
of the rank-based and the value-based selection schemes, based 
on the experimental data obtained. Three-dimensional mesh 
and two-dimensional contour plots were used to analyze the 
experimental data. A detailed discussion and comparisons can 
be found in [Wan97]. 

Table I lists the best and worst average relative solution 
quality and the associated probabilities for each communica
tion load with each selection scheme. The data in the table 
illustrates that the best solution found with the rank-based se
lection scheme was always better than that found with the 
value-based selection scheme in each communication load cat
egory. An analysis of the GA runs showed that the value-based 
selection scheme tended to improve the average fitness value 
of the population faster than the fitness value of the currently 
best chromosome. This caused the slot angle for the best chro
mosome in the population to decrease, thus reducing its pos
sibility of selection in the search for better solutions. 

For both selection schemes and each communication load 
category, a region of good peiformance could be identified for 
a range of crossover and mutation probabilities. The variation 
in the quality of solutions in each region of good performance 
was less than 33% of that over the entire range of crossover 
and mutation probabilities. In every case, this region of good 
performance also included the best relative solution quality. 

From Table I, it could be seen that the regions of good 
performance generally consisted of moderate to high crossover 
probability and low to moderate mutation probability. The 
values of the crossover and mutation probabilities in these 
regions are consistent with the results from the GA literature, 
which show that crossover is GA' s major operator and 
mutation plays a secondary role in GA searches [Dav91, 
Gol89, SrP94]. 

With the rank-based selection scheme the regions of 
good performance were larger than those with the value
based selection scheme. Hence, the rank-based selection 
scheme was less sensitive to crossover and mutation 
probability selections to achieve good performance, whereas 
with the value-based selection scheme, one had to be careful 
in choosing crossover and mutation probabilities for the GA 
to find good solutions to the HC matching and scheduling 
problem. 

Because the rank-based selection found better solutions and 
it was less sensitive to probability selections for good perfor
mance, it was chosen to be used for the larger scenarios. The 
crossover and mutation probabilities, as listed in Table I, with 
which the best relative solution quality had been achieved, 
were used in each corresponding communication load cate
gory. When matching and scheduling real tasks, the commu
nication load can be determined by computing the ratio of the 
number of global data items to the number of subtasks. Once 
the communication load category is known, a probability pair 
from the corresponding region of good performance can be 
used. 

TABLE I 

Comm.load 

Light 

Light 

Moderate 

Moderate 

Heavy 

Heavy 

Best and Worst Relative Solution Quality Found by the Rank-Based and Value-Based Selection 
Schemes with Associated Probabilities in Each Communication Load Category 

Selection scheme Best Worst Region of good performance 

Rank-based Quality = 2.9138 Quality = 2.4692 Quality = 2.7876 to 2.9138 

Pxover = 0.4 Pxover = 0.5 p xover = 0.4 to 1.0 
pmut = 0.40 p mut = 1.00 P mut= 0.20 to 0.40 

Value-based Quality = 2.7328 Quality = 2.2968 Quality = 2.6085 to 2.7328 

p xover = 0.9 p xover = 1.0 P xover = 0.6 to 0.9 
p mut = 0.16 p mut = 0.90 P mut= 0.12 to 0.24 

Rank-based Quality= 2.7451 Quality = 2.1520 Quality= 2.5501 to 2.7451 

p xover = 0.5 p xover = 0.7 p xover = 0.3 to 1.0 
pmut = 0.36 p mut = 1.00 P mut = 0.20 to 0.50 

Value-based Quality = 2.4424 Quality = 1.9615 Quality = 2.2958 to 2.4424 

p xover = 0.9 p xover = 1.0 P xover = 0.5 to 1.0 
pmut = 0.12 p mut = 1.00 P mut = 0.04 to 0.24 

Rank-based Quality = 2.3245 Quality = 1.7644 Quality= 2.1568 to 2.3245 

p xover = 1.0 p xover = 0.1 P xover = 0.6 to 1.0 
pmut = 0.20 p mut = 1.00 P mut= 0.16 to 0.40 

Value-based Quality = 2.0883 Quality = 1.6598 Quality = 1.9582 to 2.0883 

p xover = 0.6 p xover = 1.0 P xover = 0.5 to 1.0 
Pmut = 0.20 p mut = 1.00 P mut = 0.16 to 0.24 

Note. For each communication load category with each selection scheme, the rectangular region of good performance with the boundary crossover and 
mutation probabilities are listed. The best and worst relative solution quality within each region are also shown. In the table, P xover is the crossover 
probability and P mut is the mutation probability. 
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On Sun SpareS workstations, for these larger scenarios, both 
the LMT heuristic and the baseline heuristic took no more than 
1 min of CPU time to execute. The average CPU execution 
time of the GA-based approach on these scenarios ranged from 
less than 1 min for the smallest scenarios (i.e., five subtasks, 
two machines, and light communication load) to about 3} h 
for the largest scenarios (i.e., 100 subtasks, 20 machines, and 
heavy communication load). Recall that it is assumed that this 
GA-based approach will be used for application tasks that are 
large production jobs such that the one time investment of this 
high execution time is justified. 

The performance of the GA-based approach was also 
compared with that of a random search. For each iteration of 
the random search, a chromosome was randomly generated. 
This chromosome was evaluated and the fitness value was 
compared with the saved best fitness value. If the fitness value 
of the current chromosome was better than the saved best 
value, it became the saved best fitness value. For each scenario, 
the random search iterated for the same length of time as that 
taken by the GA-based approach on the same scenario. 

Figure 14 shows the performance comparisons between 
the LMT heuristic and the GA-based approach for lightly 
communicating larger scenarios. In the figure, the horizontal 
axes are the number of subtasks in log scale. The vertical axes 
are the relative solution quality of the GA-based approach. 
The relative solution quality of the baseline (BL) heuristic and 
the random search is also shown in this figure. Each point 

LMT, x Ran 

10 100 
number of subtasks (log scale) 

(a) IMI = 2 

10 100 
number of subtasks (log scale) 

(c) IMI = 10 

in the figure is the average of 50 independent scenarios. The 
performance comparisons among the GA-based approach, the 
LMT heuristic, the baseline heuristic, and the random search 
for moderately communicating and heavily communicating 
larger scenarios are shown in Figs. 15 and 16, respectively. 

In all cases, the GA-based approach presented here out
performed these other two heuristics and the random search. 
The improvement of the GA-based approach over the others 
showed an overall trend to increase as the number of subtasks 
increased. The exact shape of the GA-based-approach perfor
mance curves is not as significant as the overall trends because 
the curves are for a h~uristic operating on randomly generated 
data, resulting in some varied performance even when aver
aged over 50 scenarios for each data point. 

11. RELATED WORK 

Different approaches to the HC matching and scheduling 
problem are difficult to compare. One of the reasons is that 
the HC models used vary from one approach to another. 
Furthermore, as discussed in Section 10, established test 
benchmarks do not exist at this time. 

The most related research using GAs for HC includes 
[ShW96, SiY96, TiP96]. Our research significantly differs 
from the above approaches in terms of the HC models 
assumed. The following is a brief discussion of the related 
research work. 

10 100 
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(b) IMI = 5 

LMT, x Ran 

10 100 
number of subtasks (log scale) 

(d) IMI = 20 

FIG. 14. Performance comparisons of the GA-based approach relative to the LMT heuristic for lightly communicating larger scenarios in (a) a two-machine 
suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite. The relative performance of the baseline heuristic and the random search 
are also shown. 
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FIG. 15. Performance comparisons of the GA-based approach relative to the LMT heuristic for moderately communicating larger scenarios in (a) a two
machine suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite. The relative performance of the baseline heuristic and the random 
search are also shown. 
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FIG. 16. Performance comparisons of the GA-based approach relative to the LMT heuristic for heavily communicating larger scenarios in (a) a two-machine 
suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite. The relative performance of the baseline heuristic and the random search 
are also shown. 
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In [SiY96], a GA-based approach was proposed, in which 
the matcher/scheduler can utilize an unlimited number of 
machines as needed. In our proposed approach, however, 
an HC suite of a fixed number of machines is assumed. 
Another difference between these two approaches is that in 
[SiY96] a machine can send and receive data to and from 
an unlimited number of different machines concurrently. In 
our proposed approach, it is assumed that each machine has 
a single input link and a single output link such that all the 
input communications to one machine have to be serialized and 
all the output communications from one machine have to be 
serialized. A third difference between these two approaches is 
that in [SiY96] data can only be obtained from the original 
producer. In our proposed approach, however, data can be 
obtained either from the producer or from another subtask that 
has received the data. This is the data forwarding situation 
that was discussed in more detail in Section 9. Unlike the 
chromosome structure used in our proposed approach, which 
represents both matching and scheduling decisions, in [SiY96], 
a chromosome structure that only has the matching decision 
was used. Because of the assumptions made in [SiY96], 
for each matching decision an optimal scheduling can be 
computed. 

Although a fully connected interconnection network is 
assumed in both [Sh W96] and our proposed approach, in 
[Sh W96] each machine can send to and receive from an 
unlimited number of different machines concurrently. Data 
forwarding is not utilized in [Sh W96]. A simulated annealing 
technique was used in [Sh W96] to do the chromosome 
selection. Similar to [SiY96], a chromosome structure that 
only has the matching decision was also used in [ShW96]. 
A nomecursive algorithm was used in [Sh W96] to determine 
a scheduling for each matching decision. 

A GA-based approach in [TiP96] was used to design 
application-specific multiprocessor systems. Different from the 
goal set for this research, which is to minimize the total 
execution time, [TiP96] considered both the execution time 
and the system cost for a given application. In our approach, 
however, it is assumed that a machine suite is given, and the 
only goal is to minimize the completion time of the application. 

12. CONCLUSION 

A novel genetic-algorithm-based approach for task match
ing and scheduling in HC environments was presented. This 
GA-based approach can be used in a variety of HC environ
ments because it does not rely on any specific communication 
subsystem models. It is applicable to the static scheduling of 
production jobs and can be readily used for scheduling mul
tiple independent tasks (and their subtasks) collectively. For 
small-scale scenarios, the proposed approach found optimal 
solutions. For larger scenarios, it outperformed two nonevolu
tionary heuristics and a random search. 

There are a number of ways this GA-based approach for 
HC task matching and scheduling may be built upon for future 
research. These include extending this approach to allow mul
tiple producers for each of the global data items, parallelizing 
the GA-based approach, developing evaluation procedures for 

other communication subsystems, and considering loop and 
data-conditional constructs that involve multiple subtasks. 

In summary, a novel GA design was developed for use in 
HC. This GA design has been shown to be a viable approach 
to the important problems of matching and scheduling in an 
HC environment. 
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