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Abstract

Conservation laws are solved by a local Galerkin finite element procedure with adap-
tive space-time mesh refinement and explicit time integration. The Courant stability
condition is used to select smaller time steps on smaller elements of the mesh, thereby
greatly increasing efficiency relative to methods having a single global time step. Pro-
cessor load imbalances, introduced at adaptive enrichment steps, are corrected by using
traversals of an octree representing a spatial decomposition of the domain. To accom-
modate the variable time steps, octree partitioning is extended to use weights derived
from element size. Partition boundary smoothing reduces the communications volume
of partitioning procedures for a modest cost. Computational results comparing paral-
lel octree and inertial partitioning procedures are presented for the three-dimensional
Euler equations of compressible flow solved on an IBM SP2 computer.

1 Introduction

Adaptive finite element methods that automatically refine or coarsen meshes (h-refinement)
and/or vary the order of accuracy of a method (p-refinement) offer greater reliability, ro-
bustness, and efficiency than traditional numerical approaches for solving partial differen-
tial equations. Like adaptivity, parallel computation makes it possible to solve previously
intractable problems. With problems continuing to increase in complexity through the in-
clusion of more realistic effects in models, it seems advantageous to unite adaptivity and
parallelism to achieve the highest gains in efficiency. Adaptivity on parallel computers, how-
ever, introduces complications that do not arise with simpler solution strategies. Adaptive
algorithms that utilize unstructured meshes [1, 2, 22, 33, 34] make the task of balancing
processor computational load more difficult than with uniform structures. Furthermore, a
balanced loading will become unbalanced as degrees of freedom are introduced or removed
by adaptive h- or p-refinement.

Adaptive h-refinement introduces variation in element size in order to concentrate com-
putational effort in specific parts of the domain. However, the maximum globally stable time
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step depends on the size of the smallest element of the mesh. Therefore, an unintended side
effect of h-refinement is a reduction of computational efficiency on larger elements. In order
to increase efficiency, temporal adaptivity has been applied to overlapping two-dimensional
uniform [3, 5, 7, 15] and unstructured [26] meshes. In Section 3, we introduce an explicit
Local Refinement Method (LRM) for the solution of time-dependent conservation laws on
three-dimensional unstructured meshes. It permits time steps on elements to be proportional
to their size. Larger elements take larger time steps, so work is concentrated on the smaller
ones. Although this method complicates load balancing, it leads to a large improvement in
overall efficiency.

Poor partitioning of data across the processors of a parallel computer leads to high
communication costs. Several static partitioning algorithms have been developed [4, 19,
32]; however, these may be inefficient in an adaptive computational environment. Parallel
Sort Inertial Recursive Bisection (PSIRB) [35] performs recursive bisections of domains
in directions normal to their principal axes of inertia. A parallel sort enables its parallel
execution; however, it is still costly relative to solution time. This has led to the use of
iterative dynamic load balancing techniques that incrementally migrate data from heavily to
lightly loaded processors [6, 9, 14, 15, 17, 27, 35, 43, 44]. These methods provide inexpensive
balancings, but may not reduce communication costs.

Octree decomposition is a successful strategy for generating three-dimensional unstruc-
tured meshes [36]. We use a hierarchical representation of finite element meshes that is
appropriate for h- or p-refinement. A Parallel Mesh Database [21, 35] provides operators
to create and manipulate distributed mesh data, and a parallel octree library supports the
creation and distribution of octree structures. We describe a dynamic partitioning tech-
nique that exploits the properties of octree-structured meshes. Since such trees are easily
constructed from arbitrary meshes, the procedure is independent of octree mesh generation.
Partitioning may be done serially (Section 4) or in parallel (Section 5) [17]. In either case,
it is inexpensive; hence, it may be used with adaptive procedures. Partitioning requires tree
traversals that (i) calculate the processing costs of subtrees and (i7) form the partitions.
Weighting factors proportional to element size may be employed with octree partitioning to
help balance the load of LRMs.

Partitions often have uneven boundaries with elements penetrating into or protruding
from neighboring partitions, which increase communication costs. In Section 6, we describe a
partition boundary smoothing operation which is used to reduce the number of faces lying on
partition boundaries. The resulting partitions have approximately the same communications
volume as other more expensive strategies [25, 32].

Using an IBM SP2 computer, we apply the LRM and the parallel octree-based partition-
ing technique to three-dimensional compressible flow problems involving the Euler equations.
Results are presented in Section 7 and are discussed in Section 8.

2 The Discontinuous Galerkin Method

We consider three-dimensional conservation laws of the form

3
w(x,t) + Z fi(x,t,u),; =0, x€, t>0, (1a)
i=1
with initial conditions
u(x,0) = u'(x), x € QUL (1b)



and appropriate well-posed boundary conditions. For the Euler equations (Section 7),
the vector u specifies the fluid’s density, momentum components, and energy. The sub-
scripts t and z;, ¢ = 1,2,3, denote partial differentiation with respect to time and the
spatial coordinates. Finite difference schemes for (1), such as the Total Variation Dimin-
ishing (TVD) [40, 41] and Essentially Non-Oscillatory (ENO) [37] methods, usually achieve
high-order accuracy by using a computational stencil that enlarges with order. A wide
stencil makes the methods difficult to implement on unstructured meshes and limits effi-
cient implementation on parallel computers. Finite element methods, however, have stencils
that are invariant with method order, allowing them to model problems with complicated
geometries more easily and to be efficiently parallelized.

We discretize (1) using a discontinuous Galerkin finite element method [8, 12, 13]. Thus,
we partition the domain (2 into tetrahedral elements Q;, j = 1,2,...,J, multiply (1a) by a
test function v € L?(f);), integrate the result on ;, and use the Divergence Theorem to
obtain

3 3
/ viu dr — Z/ vy £;(u) dr + Z/ vIifi(u)n;do =0, t>0, (2)
Q; = = Joq;

where n = [n1,n2,n3]7T is the unit outward normal to 8;. Approximating u(x,t) on 2; by
a p"-degree polynomial U,(x,t) € S; C L%(;), and testing against all functions V € S;
yields the ordinary differential system

3
/ viu;)dr — Z/ VIf(U;)dr (3a)
9] i=1 Y%
3
+ > | VIE(Ujnido =0, t>0, j=12,..,J
—, Joq;
Initial conditions are determined by local L? projection as
/ VYU —udr =0, t=0, VVeS;, j=12,...,J (3b)
Q;

Results of Section 7 use piecewise constant (p=0) approximations and explicit Euler inte-
gration; however, p-refinement may be incorporated [16].
The normal component of the flux

fu(u) = Z fi(wn; (4)

remains unspecified on 0f); since the approximate solution is discontinuous there. We
specify it using a “numerical flux” function h(U;”,U;) dependent on solution states Uj

and U} on the inside and outside, respectively, of 92;. Several numerical flux functions are
possible [13, 37]; we use van Leer’s flux vector splitting [17, 42, 28].

3 The Local Refinement Method

Our LRM selects spatially-dependent time steps based upon the Courant stability condition
for explicit time integration. Thus, in a given time period, a smaller number of larger time
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Figure 1: The Local Refinement Method. The set of one-dimensional elements A-F choose
time steps according to their stability criteria. (a) The elements exchange information with
their neighbors (or evaluate boundary conditions) and advance by a single time step. (b)
Elements C and D receive interpolated data from B and E, respectively, and advance a
second time step. (¢) The process is repeated until all elements have reached the goal time

G.



steps will be taken on large elements, and the opposite will occur on the small elements.

We illustrate the procedure in Figure 1 for a group of adjacent (one-dimensional) elements

(A-F). The solution is periodically synchronized to calculate error estimates or indicators.

This “goal time” to which we wish to advance the solution is labeled G and is typically

determined to be a small multiple of the smallest time step on any element of the mesh.
The time step for {2; is determined from the Courant condition as

At; = ar—], a<l, (5)
Uj
where r; is the radius of (2;’s inscribed sphere and v; is the maximum signal speed on
Q;. For the Euler equations, v; is the sum of the fluid’s speed and the sound speed. The
parameter « is introduced to maintain stability in areas of mesh gradation. We empirically
chose a = 0.65, but a more thorough analysis is necessary.

All elements may advance by their initial time steps (Figure 1la) because spatially ad-
jacent information needed to compute numerical fluxes is available from either neighboring
elements or the prescribed boundary conditions.

After this time step (Figure 1b), only elements C and D are able to take another step.
The other elements have either reached the goal time (A and F) or lack the necessary
boundary fluxes to progress (B and E). Element C may get flux data from its neighbor D
directly and from B by using linear interpolation in time. Element D does likewise.

After several time steps, elements B-E have the necessary data and all may step to reach
the goal G (Figure 1c). Output or error estimation at G is performed using interpolation
to time G.

The six elements shown in Figure 1 have been advanced to time G using four rounds of
stepping. Only 14 element time steps are necessary as compared to the 24 steps that would
have been required had all elements taken the largest globally stable time step of elements
C and D.

Temporal interpolation requires storage for solution data at the previous and current
times. Additional space may be required so that the solution may be synchronized and
interpolated to a common time for checkpointing or outputing. The interval between syn-
chronization times is referred to as a major step. Each major step is composed of several
smaller steps, each of which performs a single time step on elements that have the neces-
sary data from their neighbors. These elements are determined by traversing the mesh, but
using the octree connectivity might be more efficient. At the beginning of a major step, the
software advances G by a multiple of the smallest stable time step on any element of the
mesh. An element’s time step may straddle the goal time, but it may not take another step
after passing G. Thus, a synchronization time is reached.

In principle, elements may take any stable time step; however, allowing arbitrary time
steps is not efficient. Neighboring elements tend to be similar in size and, hence, use simi-
lar time steps. However, small differences in element sizes and shapes could lead to minor
differences in time steps. This, in turn, leads to time stepping of isolated elements, causing
additional flux evaluations and complex interpolations. This problem can easily be solved
by rounding time steps down to the next lower (fractional) power of two. Direct bitwise
manipulation is used for efficiency. Thus, neighboring similar-sized elements advance to-
gether as a group. Fluxes computed on faces interior to the group are used twice, once for
each element, halving the work relative to computation with isolated elements. Since flux
calculations are typically the most expensive part of the integration, this savings outweighs



any possible losses due to using reduced time steps. Choosing time steps that are fractional
powers of two also helps to organize the computation [26].

3.1 Error Control

Error control is accomplished through backtracking. Time steps are either accepted or re-
jected based on whether or not elemental error indicators exceed a prescribed tolerance.
Rejected time steps are repeated subsequent to adaptive space-time h-refinement and rebal-
ancing. Coarsening is essential to keep mesh sizes manageable as fine-scaled structures move
through the domain. Upon hA-refinement, the solution is interpolated to the new mesh, and
a new time step is attempted. At ¢ = 0, the initial conditions are used rather than solution
interpolation to reduce diffusion.

Error indicators based on jumps or gradients of the density, energy, pressure, or Mach
number across a face are used to control adaptive h-refinement for the Euler equations.
These face-based indicators may be used directly or scaled by face area or inter-element
distance. If desired, they may be combined to form element-based indicators. Experience
suggests that a density gradient scaled by element volume is most informative, and this
indicator was used for the problem presented in Section 7. However, discretization error
estimates [6, 11, 16] must be developed for compressible flow applications.

The rejection threshold is selected so that accepted steps provide acceptable solution
resolution. Refinement and coarsening thresholds, respectively, are the error indicator val-
ues above and below which an element will be scheduled for refinement or coarsening. The
coarsening threshold should be set well below the rejection threshold. The refinement thresh-
old should also be set below the rejection threshold to allow refinement of elements that
have indicators near the rejection threshold, thereby decreasing the likelihood of subsequent
rejected time steps.

Without an error estimate, threshold selection cannot be fully automatic and problem
independent. An error histogram can aid in the selection of refinement and coarsening
thresholds. Using the histogram, the system can monitor the percentages of elements whose
error values fall into prescribed ranges and which are marked for refinement or coarsening.
This information is used to select appropriate thresholds. In addition, to avoid overflowing
available memory, the refinement threshold may be automatically adjusted based on an
estimate of the number of elements that would be created during refinement.

The LRM complicates error control. Spatial gradients, used as error indicators, are
available only when elements are at the same time. Therefore, error evaluation is only done
at the end of a major step. If the error is unacceptable, the solution is rolled back to the
beginning of the major step, h-refinement is performed, and the process repeated.

3.2 h-Refinement

Mesh refinement and coarsening utilize edge-based error indicators to determine where to
perform enrichment [31, 35]. An element may be subdivided isotropically or anisotropically
depending on the number of its edges selected for refinement. Forty-two templates are
employed to accomplish this efficiently. Interprocessor communication is required to update
shared vertices, edges, and faces; however, element migration is not necessary.

Coarsening is performed when a group of elements all have edges that are so marked.
Convex polyhedra of such elements containing a central vertex are identified. The interior
vertex and interior edges of a polyhedron are removed, and the polyhedron is discretized



without the interior vertex to form fewer elements. Coarsening requires that the entire
polyhedron of elements lie on the same processor, so element migration may be required if
the mesh near an interprocessor boundary is marked for coarsening.

We assign error indicators and solution values to the vertices of the mesh. The solution
and error at a given vertex are assigned the volume-weighted average of the piecewise-
constant element solutions and errors containing that vertex. Edges are marked for en-
richment based on their vertex error values. During refinement, newly created vertices
along bisected edges receive interpolated solution values from the original vertices. Dur-
ing coarsening some vertices may simply be removed, and edges rearranged. After the
enrichment procedure, elements average their four vertex solutions to restore the original
element-oriented solution. To reduce diffusion, this process is avoided, where possible, by
allowing newly created elements to inherit solution values from the previous elements occu-
pying their space.

4 Octree Partitioning

An octree-based mesh generator [36] recursively subdivides an embedding of the problem
domain in a cubic universe into eight octants wherever more resolution is required. Octant
subdivision is initially based on geometric features of the domain, but solution-based criteria
are introduced during adaptive h-refinement. Finite element meshes of tetrahedral elements
are generated from the octree by subdividing terminal octants. For meshes generated by
other procedures, an element may be associated with the octant that contains its centroid.
Octant subdivision would ensure that octants contain no more than a maximum allowable
number of elements.

The initial mesh and associated octree are loaded onto one processor. A depth-first
traversal of the octree is made to determine all subtree costs. For simple partitioning, the
cost is the number of elements in the subtree. With p-refinement, this can be generalized to
a function of the total number of degrees of freedom associated with a subtree. For a LRM,
elemental costs are the inverse of element size to reflect the increased cost of time stepping
smaller elements more frequently than larger ones. Alternatively, if the octree were sorted
according to element size, costs would correspond to tree depth.

The second phase of the algorithm performs another traversal of the octree to accumulate
octants into successive partitions. Since the total cost of the octree and the number of
partitions (processors) are known, the optimal cost per partition is also known. Beginning
at the root, tree nodes are visited in depth-first order and are added to the current partition
if the cost of the subtree it roots does not exceed the optimal amount. If the subtree
cost exceeds the partition size, the traversal recursively descends the tree and continues.
Terminal octants are not split; thus, if a terminal octant overfills a partition, a decision
must be made whether to add it or to close the current partition, leaving it slightly unfilled,
and start work on the next partition. This decision is based on the relative level of imbalance
and the cumulative cost of previously closed partitions to avoid a very large final partition.

4.1 Distributed Octree Data Structures

Once the initial tree is partitioned, subtrees are distributed across the processors by message
passing. The distributed octree is still defined by octants with parent and child links;
however, some links are off-processor. In the design of the parallel octree library, all parent



and child queries return a pointer to a structure in the local processor’s memory [39]. This
is queried to determine if an object is local or not. If it is local, it is processed in the
normal fashion. If not, the processor number and remote address are available. By using
this design instead of directly storing processor number and remote address for all links,
storage for local links is the same as the serial case. However, remote links require one level
of indirection and storage of the intermediate structure. Since most links will be local, there
is an overall space savings [39].

A generalized concept of an octree root must be adopted with a distributed octree struc-
ture. An octant’s parent may not exist on the local processor, and, in this case, we call
the octant a local root. A parent query still returns a pointer to a structure; however, it
contains information about the parent’s processor, address, bounding box, and level in the
global octree. Storing this information locally enables complex queries on octants in the sub-
tree to be performed via local tree traversals. For example, in the serial case, the bounding
coordinates of an octant usually require a traversal to the root. The bounding coordinates
of the root and the path from it to the octant uniquely determine the octant’s coordinates.
Inter-processor communication needed for the traversal to the root of a distributed tree is
avoided by storing bounding information with each local root, thus, truncating the search
on the local processor. Each processor maintains a list of local roots. All octants on a
processor may be reached by traversing the subtrees rooted by the octants in the local root
list.

A simple tree having root A appears in Figure 2a. Its data structure including bounding
box information is stored in A. In Figure 2b, the tree has been distributed across three
processors. The dotted circles indicate remote references. Only the remote location is
stored in these cases. All data associated with a node is stored on its assigned processor.
Fach processor has a local root list denoted by LR, and each local root has a data structure
storing its bounding box and tree level information.

4.2 Octree Updating

After mesh enrichment, the octree and its element relationships must be updated. It might
be most efficient to update the element-octant associations at the time the elements are
created or deleted; however, performing the operations in a post-processing stage does not
introduce a large overhead and is more general since it allows mesh refinement to be inde-
pendent of balancing.

We assume elements created in the mesh refinement stage lack an octree association.
Since a newly created element lies within its parent, it may simply inherit the octant as-
sociation of the parent. If this information is not available from the refinement procedure,
the element may be inserted into the octree in time proportional to the depth of the local
octree, which is O(logn), where n is the number of elements on the processor.

Elements resulting from mesh coarsening must also be assigned an octant. When the
convex polyhedron used to coarsen is completely internal to the local processor’s spatial
domain, octree insertion is straightforward. However, the situation is more complex when
the coarsening procedure has to import elements from other processors to form a convex
polyhedron on one processor. The polyhedron occupies space corresponding to terminal
octants on at least one other processor; therefore, the coarsened mesh occupies this space
as well. Some of the new elements do not belong to any octant on the local processor, and
must be migrated to the processor containing their octant. Since some of these elements lie
on the processor’s spatial boundary, the destination processor may be determined by mesh
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Figure 2: Parallel tree construction: (a) entire tree and (b) tree distributed across three
Processors.



connectivity.

After mesh refinement, a traversal of the octree is made to determine if the octree needs
to be extended or pruned. Crowded leaf octants are subdivided by distributing elements to
offspring of the octant according to their positions. If necessary, this may be done recursively
so that all octants have less than a proscribed number of elements.

Conversely, subtrees having too few elements are pruned to coarsen the octree. Elements
are accumulated to their parent octant’s parent, and the leaf octants are deleted. This may
also be repeated. If an octant is a candidate for coarsening, but has one or more off-processor
sub-octants, then the octant is left untouched. Pruning the octree reduces storage use but
has no effect on the efficiency of the partitioning algorithm. Empty subtrees will always be
skipped in the truncated partitioning traversal, and sparse subtrees will be be skipped with
high probability. Therefore, there is no incentive to incur interprocessor communication to
accomplish the pruning.

Comprised of local operations only, the octree refinement and pruning traversal takes
O(Nmaz), where Npqo, is the maximum number of octants on a processor.

The thresholds for octant subdivision and coarsening determine the granularity of ad-
ditions and deletions to a partition when using octree partitioning, and should be chosen
accordingly. Currently, no more than 40 and no fewer than 10 elements are allowed per oc-
tant. Depending on the number and position of elements within an octant, the criterion for
coarsening may be met after refinement. In this case, a tie is broken in favor of refinement.

5 Parallel Octree Partitioning

The serial octree partitioning algorithm may be extended to operate in parallel, and we refer
to this algorithm as OCTPART.

When dynamic partitioning is needed, each processor computes costs for each locally
rooted subtree using traversals within its domain. The subtrees are sorted to be in depth-
first order in a global traversal. This step requires no interprocessor communication. An
inexpensive parallel prefix operation is performed on the processor cost totals to obtain
a global cost structure. This information enables a processor to determine its local tree
traversal position in the global traversal.

As with the serial procedure, each processor traverses its subtrees to create partitions. A
processor determines its initial partition index using the total cost of processors preceding
it. Starting with this prefix cost, each processor traverses its subtrees accumulating the
cost of visited nodes. Partitions end near cost multiples of C/P, where C' is the total cost
and P is the number of processors. Exceeding a multiple of C'//P during the traversal is
analogous to exceeding the optimal partition size in the serial case, and the same criteria is
used to determine where to end partitions. In contrast to the serial algorithm, a processor
must begin its traversal with a specified partition. In serial, there is the option to include
a small additional load in a partition rather than beginning precisely at a multiple of C'/P.
In practice, this difference is negligible.

When all processors finish their traversals, each subtree and its associated data is as-
signed to a partition and is migrated to that location if necessary. Migration may be done
using global communication; however, on some computers, it is more efficient to move data
via simultaneous processor shift operations. This linear communication pattern is possible
due to the unidimensionality of the partitioning traversal.
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6 Partition Smoothing

Application of the octree-based partitioning method to octree-generated meshes yields com-
munications volumes similar to recursive spectral bisection [17]. However, since mesh refine-
ment and coarsening are independent of the octree, elements are not necessarily aligned with
octant boundaries. Thus, choosing partition boundaries based on octants yields partitions
with bumpy surfaces, which increase communication costs. This effect may be reduced
by smoothing the partition boundaries [20, 29]. To do this, each processor traverses its
boundary looking for elements that satisfy the following criteria:

(i) Four faces adjacent to four other processors. This is an isolated element that is migrated
to any processor sharing a face. The donating processor’s boundary is reduced by four
faces, and the receiving processor has a net gain of three faces. This case may occur
where several processor domains meet.

(it) Four faces adjacent to one other processor. Typically, this case occurs when the ele-
ment’s centroid lies on the local processor, but its faces touch only elements on adjacent
processors. The element is migrated to the other processor to eliminate four faces from
the donating processor and four faces from the receiving processor’s boundary.

(i73) Three faces adjacent to one other processor. The element forms a spike into a pocket
on the other processor. The element is migrated to the processor, reducing both its
boundary and that of the receiver by two faces.

(iv) Two faces adjacent to one other processor for each of a pair of elements with a com-
mon face. The pair forms a spike into a pocket on the other processor. The pair is
migrated to the other processor, reducing both the donating and receiving processors’
boundaries by two faces.

(v) Three faces adjacent to two other processors. The element is migrated to the processor
sharing the highest number of faces. The donating processor’s boundary is reduced
by two faces, and the receiving processor’s boundary size is unchanged.

Pattern detection and migration for each case must be performed in a separate phase
to avoid conflicting migrations which would degrade boundary smoothness. Furthermore,
within a given case, operations between two or more processors must be colored to avoid
simultaneous exchanges resulting in diminished gain or even loss. For example, spikes on
one side of a boundary may exchange sides with spikes on the other side, resulting in a larger
boundary than before the exchange. The coloring may be done using subphases where a
processor first sends elements to higher-numbered processors and then sends them to lower-
numbered ones. When three processors are involved, three subphases are necessary based
on their relative order.

Minyard et al. [29] perform processor boundary smoothing by a similar iterative method.
They identify elements on interprocessor boundaries whose vertices are all shared by two
processors. These correspond to cases (ii), (i%4), and (v). Patterns involving more than
two processors (case (i)) are not considered. After all elements are marked, half of the
marked elements along a boundary are migrated to one side, and half to the other. While
this strategy will maintain a better load balance, it misses some opportunities to reduce
interprocessor communication. For example, if case (iv) were encountered in the mesh, this
strategy could result in no net improvement of the interprocessor boundaries.
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Pattern recognition for each phase of the smoothing requires computational time pro-
portional to the number of elements on a processor’s boundary. It requires communication
time proportional to the number of elements selected for smoothing migration. The actual
amount varies with the initial partition quality. In practice, the number of boundary faces
on a processor may be reduced from 0-25%.

7 Results

Consider the three-dimensional unsteady compressible flow in a cylinder containing a cylin-
drical vent. This problem was motivated by flow studies in perforated muzzle brakes for
large calibre guns [18]. We match flow conditions to those of shock tube studies of Dillon [18]
and Nagamatsu et al. [30]. Our focus is on the quasi-steady flow that exists behind the
contact surface for a short time; thus, we initiate the problem by rupturing a hypothetical
diaphragm between the two cylinders. Using symmetry, the flow may be solved in one half
of the domain bounded by a plane through the vent. The initial mesh contains 80,659 tetra-
hedral elements. The larger cylinder (the shock tube) initially contains air moving at Mach
1.23 while the smaller cylinder (the vent) is quiet. A Mach 1.23 flow is prescribed at the
tube’s inlet and outlet. The walls of the cylinders are given reflected boundary conditions,
and a far field condition is applied at the vent exit. All results were obtained using 16
processors of an IBM SP2 computer.

Figure 10 illustrates the Mach number with velocity vectors at solution time ¢ = 0.3
using global time stepping. A strong shock has formed near the downwind vent-shock tube
interface, and a portion of the flow in the vent has accelerated to supersonic conditions.
The reflection of the flow from the downwind vent face produces a component of the flow at
the vent exit in a direction opposite to the principal flow direction. In a cannon, this helps
to reduce recoil. These flow features compare favorably with experimental and numerical
results of Nagamatsu et al. [30]. The superior numerical properties of the LRM [26] allowed
the same solution to be computed with greater accuracy using only 8 mesh enrichments, as
opposed to the 61 needed with a global time step. A time sequence showing the solution
obtained with the LRM on the left and the corresponding partitionings using OCTPART
on the right is given in Figure 12. The center image may be compared to the global time
stepping solution of Figure 10.

When a given mesh is partitioned and migrated, the resulting distributed mesh will not
be stored in a unique way. Mesh elements, faces, and vertices migrated to a processor are
added to the local data structure’s linked lists in the order they arrive. The result will
always describe the same mesh, but the order of the elements and other entities may vary.
This does not directly affect the solution process but does affect mesh enrichment. Because
enrichment is performed in the order that elements are encountered, different meshes can
result from the same input mesh and error indicators. Additionally, the enrichment process
performs different mesh operations depending on the partitioning so as to avoid unnecessary
element migration. For example, it might decline to coarsen a region on an interprocessor
boundary. Thus, runs with identical input will lead to slightly different meshes and, hence,
solutions. To ameliorate this variation, we ran each example five times and noted trends in
behavior. However, these variations make comparisons by CPU times difficult or impossible.
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7.1 Global vs. Local Refinement

To advance the perforated tube solution from ¢+ = 0 to 0.1, the LRM takes 8.1-9.1 x 107
element time steps requiring the computation of 3.2-3.6 x 108 fluxes. To advance the com-
putation with global time-stepping at the smallest acceptable time step would have required
an estimated 1.3-2.4 x 10° element time steps and greater than 2.6-4.8 x 10° flux compu-
tations. This is a factor of 14-30 more element time steps and 7-15 more flux evaluations.
The estimate assumes that the same meshes would be used for the two methods, and the
same solution would have been generated.

Figure 11 illustrates the computational gain achieved by using the LRM for the mesh
at t = 1.05 in the run of Figure 12. Shading indicates the total number of local time steps
taken by each element since the last mesh enrichment. Over 5000 time steps are taken on the
smallest elements for every one on the largest elements. Small time steps are concentrated
in the shock and expansion regions near the intersection of the two cylinders. The largest
time steps occur in the interior of the main tube.

The LRM rounds time steps down to the nearest power of two. As described, a greater
number of adjacent elements step by the same amount, allowing the computed flux between
them to be shared. Employing this strategy reduced the number of fluxes computed per
element from 3.97 to 2.47. The number of faces visited per element time step, a measure of
the overhead involved with finding candidate elements to step, was reduced from 5.88-7.05
to 3.73-4.25.

7.2 Size-Weighted Balancing

Let the time-step imbalance be the maximum number of elements time stepped on a pro-
cessor relative to the average number stepped on all processors [17]. Likewise, let the flux
imbalance be the maximum number of fluxes computed on a processor relative to the average
number computed on all processors. In either case, let the average imbalance at simulation
time ¢ be a weighted average of all imbalances to time ¢. The weighting is the wall-clock
duration of an imbalance relative to the total wall-clock time of the computation.

As shown in Figure 3, balancing based solely on the number of elements per processor
produces average time-step imbalances of 1.38-1.52 while size-weighted balancing reduced
this to 1.21-1.28. Likewise, average flux imbalances of 1.37-1.50 were reduced to 1.19-1.25
by the size-weighted balancing. One of the runs of Figure 3 is shown in more detail in
Figure 4. Size-weighted balancing has a greater variation than the un-weighted balancing,
but its overall performance is better.

7.3 Partition Performance

We compare the performance of PSIRB and OCTPART using the percentage of elements
moved during migration as well as balancing time. Comparison of partition quality follows
in Section 7.4.

The percentages of elements moved by PSIRB and OCTPART during balancing are
shown in Figure 5 for five runs of the perforated tube problem. Rebalance zero corresponds
to the initial partitioning; thus, both techniques show a high percentage of data movement.
Rebalancings 1, 4, 7, .. ., 13 are performed after mesh coarsening while 2, 5, 8, ..., 14 follow
mesh refinement. The other rebalancing indices follow “snapping,” which is an operation to
assure mesh validity with respect to geometry that generally involves element migration [35].
OCTPART tends to move fewer elements than PSIRB after the coarsening and snapping
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phases, and is generally comparable to or slightly better than PSIRB after refinement.
Figure 6 underscores these trends by plotting relative percent differences in data migration
between the two techniques. If mpgirp and mocTpaRT represent the percentages of elements
moved by PSIRB and OCTPART during a given rebalancing, the relative percent difference
between the two methods is

MPpSIRB — MOCTPART
mdiff = x 100. (6)
MPSIRB

Thus, a positive value indicates that OCTPART is outperforming PSIRB. The mean relative
percent improvement in data movement of OCTPART compared to PSIRB is approximately
24% for each of the five runs.

Figure 9 shows a worst-case behavior of PSIRB. The mesh on the left was refined adap-
tively to produce the mesh on the right. The refinement has shifted the principal axis of
inertia in such a way that 100% of the elements are moved from their prior processor location
by PSIRB. This indicates the dangers in using a static partitioning procedure for transient
problems.

In Figure 7, we show the relative percent differences in balancing time between PSIRB
and OCTPART computed as in (6) for a sequence of rebalancings. While PSIRB has an
advantage relative to OCTPART at the beginning of the computation, OCTPART begins
to consistently outperform PSIRB as the simulation progresses. The mean relative percent
improvement of OCTPART compared to PSIRB for each run is 17-26%.

7.4 Partition Smoothing

We evaluate the performance of partition smoothing by its effect on the cost of interprocessor
communication. We appraise this cost using a global surface index (GSI) [10] which is the
percentage of all element faces on interprocessor boundaries. For the discontinuous Galerkin
method used herein, the GSI is equivalent to the number of edge “cuts” in the communication
graph induced by a partitioning [23, 24, 38] normalized by the total number of these edges.
Normalization makes the metric independent of problem size.

The effect of partition boundary smoothing on the GSI is shown for a run of 16 rebalanc-
ings for OCTPART and PSIRB in Figure 8. One iteration of smoothing reduces the global
surface index by 1.2-1.8 percentage points for OCTPART and 0.7-1.4 points for PSIRB. Re-
peating the smoothing yields an additional improvement of 0.1-0.3 points for OCTPART and
0.0-0.2 points for PSIRB. Total relative improvement of GSI after two smoothing iterations
was 22-27% for OCTPART and 18-26% for PSIRB. More than two smoothing iterations
did not provide a significant improvement, and, in most cases, one smoothing appears to be
sufficient.

The relative partition quality of OCTPART and PSIRB can be seen in the lower curves
of the Figure 8. While OCTPART outperforms PSIRB in data movement and run time
(Section 7.3), PSIRB tends to produce lower GSIs.

8 Discussion

The local refinement method greatly reduces computational costs of transient solutions
with no loss of accuracy relative to global time step approaches. While it does introduce
additional storage and synchronization requirements, the demonstrated factor of at least 7
in flux computation and at least 14 in time step computation more than justifies these costs.
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Octree-based partitioning is an effective and efficient partitioning strategy that may ei-
ther be used in conjunction with octree mesh generation [36] or on its own. It provides a
suitable means of controlling communication volumes based solely on a geometric decom-
position of space. The amount of data movement performed by OCTPART is superior to
to that of PSIRB by approximately 24%. OCTPART is also faster than PSIRB by 17-26%.

Balancing the load of a LRM is a difficult problem. The introduction of sized-weighted
octant partitioning reduces imbalance significantly relative to simple element weighting. In
our example, the time step imbalance improved from approximately 1.45 to 1.24 and flux
imbalance improved from approximately 1.44 to 1.22 with size weighting. Further study on
balancing LRMs is warranted, especially when p-refinement is introduced.

Partition boundary smoothing reduced the GSI of a partitioned mesh by at least 22%
for OCTPART and 18% for PSIRB. Additional smoothing opportunities may provide even
greater improvements.

Incremental migration strategies for use with adaptivity are being developed [15, 17].
If cost or locality of data movement is more important than global load balance, another
approach with OCTPART may be taken. The processors may shift partition boundaries,
thus, migrating subtrees from a processor p; to its neighbors p;_1 and p;;1. If, for example,
processor p; seeks to transfer load r to p;_1, it may simply traverse its subtrees accumulating
their loads until it reaches r. The nodes visited comprise a subtree which may be transferred
to p;—1 and which is contiguous in the traversal with the subtrees in p; ;. Likewise, if p;
desires to transfer work to p; 11, the reverse traversal could remove a subtree from the trailing
part of p;.
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Figure 9: Partitioning of consecutive meshes with PSIRB. Minor mesh modifications to (a)
have shifted the principal axis of inertia, resulting in nearly a total redistribution of data (b).

timesteps this mesh

W s

Figure 10: Projection of the Mach num-

ber and velocity vectors onto the surface Figure 11: Number of local time steps
of a perforated cylinder using global time taken on the mesh at ¢ = 1.05 of the run
stepping at ¢t = 0.3. in Figure 12.
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