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Abstract

We develop a fast direct solver for parallel solution of “coarse grid” problems, Ax = b,

such as arise when domain decomposition or multigrid methods are applied to elliptic

partial differential equations in d space dimensions. The approach is based upon a

(quasi-) sparse factorization of the inverse of A. If A is n×n and the number of proces-

sors is P , the algorithm requires O(nγ log P ) time for communication and O(n1+γ/P )

time for computation, where γ ≡ d−1

d
. The method is particularly suited to leading

edge multicomputer systems having thousands of processors. It achieves minimal mes-

sage startup costs and substantially reduced message volume and arithmetic complexity

compared to competing methods, which require O(n log P ) time for communication and

O(n1+γ) or O(n2/P ) time for computation. Timings on the Intel Paragon and ASCI-

Red machines reflect these complexity estimates.

1 Introduction

In this paper we consider parallel direct solution methods for linear systems of the form

Ax = b , (1)

where A is an n × n sparse symmetric positive definite (SPD) matrix, such as arises from

finite difference or finite element discretizations of d-dimensional elliptic partial differential

equations (PDEs). We target our algorithm for the “fine-grained” regime, n/P ≈ 1, and

large number of processors, P . Moreover, we assume that b and and x are distributed

vectors. Such problems are frequently encountered when computing coarse grid projections

in the context of multigrid or domain decomposition solutions of much larger systems (e.g.[5,

6]). This study focuses on coarse grid solution times rather than factor times, as we expect

to amortize the factorization costs over several iterations and/or time-steps of the larger

governing systems. Although the local solves in domain decomposition are intrinsically

parallel, the coarse grid problem (1) is a potential bottleneck, particularly for large P ,

because it effects global coupling and therefore requires global communication. Per force,

the coarse grid data and solution before and after the solve stage are distributed, so it is not

possible to consider solving the problem on fewer processors (artificially increasing n/P )

without inducing additional communication overhead. (This point is discussed further in
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Section 6.) Although the algorithm we present can be efficiently implemented on a shared-

memory architecture we limit our discussion to implementation on a distributed-memory

multicomputer, that is, a collection of compute nodes having locally addressed private

memory and connected by a communication network.

The problem of the coarse grid solve has been studied widely in the domain decom-

position community. It has been established by Widlund [21] that order-independent con-

vergence rates in domain decomposition methods cannot be obtained without the solution

of a coarse grid problem. In [5], Chan and Shao present a study of the optimal coarse grid

size for parallel applications which illustrates the importance of a fast coarse grid solver.

Gropp et al. [12, 14, 18] also discuss the importance and challenge of developing an efficient

parallel coarse grid solver for domain decomposition methods. Cai [4] has developed a do-

main decomposition scheme requiring a very low-dimensional coarse grid space where much

of the information transfer is through the action of the restriction/prolongation operators.

Nonetheless, it is clear that a multicomputer implementation of the coarse grid problem

must require communication in the prolongation/restriction phase or have a minimum of

one degree-of-freedom per processor, that is, n ≥ P . Since leading edge multicomputer sys-

tems are currently scaling to thousands of processors, there is a clear need for an efficient

treatment of the this problem. If the work per processor remains constant while the num-

ber of processors increases (the standard model for scaled speed up [15]), the coarse grid

problem will ultimately dominate the complexity unless the solve time can be substantially

reduced. The situation is worse in the fixed-problem-size case, where the local solution time

scales as 1/P while the coarse grid solve time scales as log P , due to the required global

communication.

In this paper we discuss the implementation of a fast parallel coarse grid solution

algorithm originally introduced in [9]. It is based upon creating a sparse A-conjugate basis

for lRn, to be denoted by the columns of the matrix

X = (x1, . . . , xn) .

We show that this approach constitutes a sparse (not necessarily triangular) factorization

of the full matrix A−1. The scheme has a per-solve complexity of O(nγ log P ) for commu-

nication and O(n1+γ/P ) for computation, where γ ≡ d−1
d

. This compares quite favorably

with more commonly used approaches which require O(n log P ) time for communication

and O(n1+γ) or O(n2/P ) time for computation. Results obtained on 512 nodes of an Intel

Paragon and 2048 nodes of the Intel ASCI-Red machine at Sandia National Laboratories

show that our method performs well even for values of n/P significantly greater than unity,

particularly for large values of P .

We emphasize that in this paper we adopt a purely algebraic viewpoint because our

intent is to solve (1) exactly, rather than to replace it with an approximate operator. We

consider the potential of iterative approaches and extensions to approximate solutions in

the closing discussion. Related ideas in the area of approximate factorizations can be found,

for example, in [2, 3, 16].

The outline of the paper is as follows. Section 2 briefly describes several communication

primitives central to distributed direct solution methods. Section 3 reviews several earlier
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coarse grid solution strategies. Section 4 discusses the computational and communication

complexity for the present approach. In Section 5 we present performance results for a√
n×√

n grid problem on the Intel Paragon and ASCI-Red platforms. Closing analysis and

discussion are presented in Section 6.

2 Communication primitives

In this section, we review the communication complexity of several all-to-all communication

schemes of relevance to coarse grid solvers.

If the originating PDE has an elliptic component, the inverse of A will be a full matrix.

Consequently the coarse grid computation

x = A−1b , (2)

for distributed vectors x and b will require some type of all-to-all communication; any

nonzero element of b will influence every element of x. By definition, coarse grid problems

are relatively fine-grained, implying that communication accounts for a substantial fraction

of the solution time. Moreover, it is frequently the case that the messages are quite short

implying that the communication phase is latency dominated, and hence, minimizing the

total number of message startups is of paramount importance. If we assume that the

compute nodes can receive only one message at a time, it follows that the minimum number

of message cycles required to effect the requisite all-to-all communication in the evaluation

of (2) is log2 P . This is a lower bound on the communication complexity for solving (1).

For communication time, we assume a standard linear model for contention-free data

exchanges in which the time to send an m-word message is given by

tc[m] = (α + βm)ta , (3)

where α is the message startup cost (latency), β is the asymptotic per-word-transfer cost

(inverse bandwidth), and ta is the characteristic time for an arithmetic operation. Typically,

α ≫ β ≫ 1. We further assume that contention-free transit time is independent of the

distance between processors (i.e., the processor network can be modeled as a switching

network).

Our communication analysis in the forthcoming sections will be based upon the use of

fan-in/fan-out reduction operations which are guaranteed to be contention-free, even on one-

dimensional networks. To clarify this point, consider the implementation of two common

reduction operations, vector concatenation and vector summation. The first gathers a

distributed m-vector having mp = m/P components on each processor, p = 0, 1, . . . , P − 1.

The second computes

v =
P−1∑

p=0

v(p) ,

where each v(p) is an m-vector. Assuming P = 2D, these algorithms can be described as

follows:
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Procedure Vector-Concatenate

Gather via binary fan-in

m̂ := mp

do l = 1 to D

if mod (p, 2l) = 0 then

recv v(m̂+1:2m̂) from p + 2l−1

elseif mod (p, 2l−1) = 0 then

send v(1 :m̂) to p − 2l−1

endif

m̂ := 2m̂

enddo

Broadcast via binary fan-out

do l = D to 1 by -1

if mod (p, 2l) = 0 then

send v(1 :m) to p + 2l−1

elseif mod (p, 2l−1) = 0 then

recv v(1 :m) from p − 2l−1

endif

enddo

Procedure Vector-Sum

Gather via binary fan-in

do l = 1 to D

if mod (p, 2l) = 0 then

recv w(1 :m) from p + 2l−1

v(1 :m) := v(1 :m) + w(1 :m)

elseif mod (p, 2l−1) = 0 then

send v(1 :m) to p − 2l−1

endif

enddo

Broadcast via binary fan-out

do l = D to 1 by -1

if mod (p, 2l) = 0 then

send v(1 :m) to p + 2l−1

elseif mod (p, 2l−1) = 0 then

recv v(1 :m) from p − 2l−1

endif

enddo

In the fan-in stage, communication begins between neighboring processors, then neighbors

of neighbors, etc., until in the last stage processor P/2 sends data to processor 0. In the

case of a one-dimensional sequentially ordered network, or a multi-dimensional lexicograph-

ically ordered network, there will be no network contention because intermediate processors

become inactive once their data is sent. The model (3) is therefore appropriate, and we

estimate that the concatenate routine requires (α log2 P + β · (m − mp))ta time for the

gather, plus an additional (α+βm) log2 P ta time for the broadcast, yielding a total time of

(2α+βm) log2 P ta. The vector sum requires a total time of (2α+2βm+m) log2 P ta, with

the extra m log2 Pta term accounting for the vector summation in line four of the algorithm.

In contrast to the fan-in/fan-out strategy the respective operations can also be imple-

mented via recursive doubling as follows:

Procedure Vector-Concatenate

Recursive Doubling

m̂ := mp

do l = 1 to D

send v(1 :m̂) to mod (p + 2l−1, P )

recv v(m̂+1:2m̂) from mod (P +p−2l−1, P )

m̂ := 2m̂

enddo

Procedure Vector-Sum

Recursive Doubling

do l = 1 to D

send v(1 :m) to mod (p + 2l−1, P )

recv w(1 :m) from mod (P +p−2l−1, P )

v(1 :m) := v(1 :m) + w(1 :m)

enddo

In this case, the concatenate routine nominally requires time (α log2 P + β · (m − mp))ta,

roughly a factor of log2 P better than the fan-in/fan-out approach. The vector sum routine
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requires a nominal time of (α + βm + m) log2 P ta, roughly a factor of two superior to

the fan-in/fan-out approach. On hypercubes, the recursive doubling algorithms can be

implemented with a contention-free schedule. However, on low-dimensional networks the

recursive doubling schemes will suffer observable network contention unless the problem

is latency dominated, that is, m <
∼

α/β. Consequently, the performance will generally be

inferior to the fan-in/fan-out approach.

It is worth noting that hybrid approaches are possible. For example, for concatenation,

recursive doubling can be used until m̂ ≈ α/β and fan-in/fan-out then used on processor

subsets to span the remaining levels of the tree(s). For vector summation there is a well

known hybrid scheme due to van de Geijn et al. [20] which is effective when m ≫ α/β. For

the values of m required for the coarse grid solution schemes considered here, the fan-in/fan-

out schemes capture the essential complexity. Hybrid schemes would be most appropriate

as fine tuning measures in the final implementation phases and we do not consider them

further.

To put the forthcoming discussion of solution strategies on a firm foundation, we

briefly review the communication requirements of a typical matrix-vector multiplication

implementation on P = 2D processors. Assume x is a vector having n components,

(x1, . . . , xig
, . . . , xn), which are distributed across P processors according to the bijective

map, ig = µ(i, p) ∈ {1, . . . , n}, where i ∈ {1, . . . , np}, is the local index on processor p,

for p ∈ {0, . . . , P − 1}. The global-to-local mapping is specified by the inverse mapping,

(i, p) = µ−1(ig). We assume, without loss of generality, that the number of components of

x on each processor p is the same, that is, np = n/P . Let C = (c1 c2 . . . cn) be an n × n

matrix with each column, ci, partitioned according to the same distribution as x (i.e., rows

of C are contiguous within a processor, with row µ(i, p) of C mapped to row i on processor

p). Then y = Cx is computed as follows. First, a copy of x is gathered onto each processor

using a vector-concatenate procedure. Then, each processor p computes the inner-products

yµ(i,p) = xT rµ(i,p) for i = 1, . . . , np, where rµ is the µth row of C. The end result is a vector

y, distributed according to the map µ. If C is full, the matrix-vector product complexity is

2n · npta = 2(n2/P )ta for the local inner-products plus (2α + βm) log2 P ta for the gather.

3 Survey of coarse grid solvers

It is well known (e.g., [12]) that parallel solution of the coarse grid problem is hampered

by the inherent sequentiality of the forward and backward substitution phases of standard

triangular (LU or LLT ) solves. If n (and consequently, P ) is sufficiently small, it is feasible

to store, factor, and solve the system locally within a single processor, thus allowing the

use of standard serial solvers. On a low-dimensional network, the optimal variant of this

scheme is to concatenate b via the binary fan-in scheme of the previous section, solve the

problem on the root, and then cascade the solution from the root using the inverse of

the concatenation procedure. If the local solution strategy is based upon banded solvers,

the computational complexity is 4ns operations for a matrix of bandwidth s, while the

communication complexity is 2α log2 P+2βn, as noted in the previous section. For historical

reasons, it is more common to solve the problem redundantly on each processor, obviating
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the need to broadcast the solution. On a hypercube, such a strategy is sensible because the

recursive doubling variant of concatenation is contention free and the communication cost

is halved. However, on lower-dimensional networks, the optimal communication strategy

for the redundant solution approach is based upon fan-in/fan-out, with a cost of (2α +

βn) log2 P ta.

For large numbers of processors and relatively small systems (e.g., P > 128, n < 5000),

computing the full inverse of A can be far more effective than solving the system redundantly

(e.g., [10, 13]). By distributing the rows of A−1 in the same manner as x and b , the solution

can be computed as a parallel matrix-vector product, A−1b , once b has been gathered onto

each processor. The communication complexity is identical to that of the redundant LU

method described above; however, the complexity for the computation of the inner-products

of the rows of A−1 with b is 2n2/P . Parallelism has been introduced to this phase of the

solution and it follows that the distributed A−1 approach is superior whenever P > n
2s

.

The advantage of the distributed A−1 method is that matrix-vector multiplication is

intrinsically parallel. Unfortunately, A−1 is completely full and, consequently, the storage

cost of n2/P per processor limits this approach to values of n of up to only a few thousand in

practice. With the advent of computers containing thousands of processors this restriction

is problematic. Ideally, one would like a matrix-vector product based approach involving

sparse matrices.

A step in this direction is the method of Alvarado et al. [1] who develop fast parallel

triangular solvers by recasting the inverse of a sparse triangular matrix, L, as a product of

l sparse factors, L̃−1
i , each of which can be computed in place. The solution for a single

triangular system is then given by the sequence of products v0 = b, vi = L̃−1
i vi−1, . . . , x =

L̃−1
l vl−1. Analysis of this approach is quite difficult, since each factor is sparse, and it’s

unclear where data is located at the start and finish of each multiplication. However,

Alvarado et al. strive to minimize l, in which case, each matrix-vector product must be

performed in turn, with communication taking place in between (otherwise, there would

be further parallelism to be exploited, and l would therefore not be minimal). Assuming

that the work of each matrix-vector product is distributed across P processors, we estimate

the communication time for each of the l cycles as tc = 2α(log2 P )ta. If A is the discrete

Laplacian for a problem on a two-dimensional grid, the number of factors is typically l ≈
log2

√
n ≈ log2

√
P (see, e.g., [11]). Since solution of (1) requires both a forward- and

backward-sweep, we estimate a lower bound on the solution time of 2α(log2 P )2ta. This

estimate neglects both the work, which, with a lower bound of Ω(n log n
P

) [11], probably is

negligible, and the amount of data communicated, which probably is not negligible.

Another approach of interest is that of Farhat and Chen [7] who solve the coarse

grid problem by projecting onto sets of previously generated Krylov vectors that constitute

an approximation space. Let Xk = (x1 x2 . . . xk) be a matrix of A-conjugate vectors

normalized to satisfy

xT
i Axj = δij , (4)

where δij is the Kronecker delta. Then

x̄ = XkX
T
k b (5)

6



yields the projection onto R(Xk) satisfying

x̄ ∈ R(Xk) , ||x − x̄||A ≤ ||x − v||A , ∀v ∈ R(Xk) . (6)

Here, R(·) denotes the range of the argument and || · ||A denotes the A-norm given by

||w||A = (wTAw)
1

2 .

Farhat and Chen build the space R(Xk) by collecting the A-conjugate search directions

generated in the course of applying (a slightly modified) conjugate gradient (CG) iteration

to (1) for several right-hand sides. In time transient problems, the successive right-hand

sides often share enough information such that very few CG iterations are required to solve

the problem subsequent to the initial projection (6). In the examples reported in [7], Farhat

and Chen observe that superconvergence sets in for k >
∼

0.25n, at which point only one or

two conjugate gradient iterations are required subsequent to the initial projection.

We can estimate the complexity of the projection+CG approach by computing the cost

of the projection step (though the subsequent CG iteration cost is in fact non-negligible).

Assume that each basis vector, xj , is distributed in the same fashion as x and b. To compute

x̄ = XkX
T
k b, one first computes an intermediate k-vector, c = XT b, in two stages, beginning

with evaluation of the local dot products

c
(p)
j =

np∑

i=1

bµ(i,p) xµ(i,p),j ,
j ∈ 1, . . . , k

p ∈ 0, . . . , P − 1 ,
(7)

followed by a log2 P sum across processors

cj =
P−1∑

p=0

c
(p)
j j ∈ 1, . . . , k . (8)

With the components of c known to every processor, the distributed vector x̄ is computed

as

x̄µ(i,p) =
k∑

j=1

cjxµ(i,p),j

i ∈ 1, . . . , np

p ∈ 0, . . . , P − 1 .
(9)

This final stage is recognized as a sequence of k daxpys, x̄(p) = x̄(p) + cjx
(p)
j , of length np

on each processor p, and is fully concurrent.

If the vectors xj are full, this approximation has leading order computational complex-

ity of 4nk/P operations for the required dot products (7) and daxpys (9). The communica-

tion time for the gather of the k coefficients of each column vector (8) is log2 P (2α + 2βk +

k)ta, where the last k term accounts for the summation in (8). Note that if k = O(n), then

the projection approach is better than the distributed A−1 approach by at most a constant,

with a lower bound solution time of 2αta log2 P being obtained for both methods. Fur-

thermore, any CG iterations required for the projection+CG scheme will incur additional

latency overhead of at least 2αta log2 P per iteration due to the inner-products required for

the CG algorithm.

In the next section, we present a projection method for which k ≡ n but which, by

virtue of using a sparse basis set, X, achieves communication and computation complex-

ities which are of lower order than the A−1 approach. Moreover, this approach requires
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a minimum number of message cycles and thus achieves the lower bound latency time of

2αta log2 P .

4 Sparse basis projection method

The goal of the method of Farhat and Chen [7] is to choose a basis set Xk such that x̄ is

a good approximation to x. We observe that if k = n, then R(Xk) = lRn and, from (6),

x̄ ≡ x, implying that XnXT
n is the inverse of A. In [9], we introduced a method in which the

projection approach is modified to incorporate a matrix of n basis vectors, X ≡ Xn, which

is as sparse as possible and which yields significantly reduced computational and commu-

nication complexities. Here, we describe the implementation of the method and discuss

communication considerations in depth. In the next section, we compare performance of

the XXT -based method to the redundant LU and A−1 approaches of Section 3.

4.1 Basis

We begin with the following observation. Let the unit vectors êi and êj denote the ith and

jth column of the n×n identity matrix. Let Nj , the neighborhood of j, be the set of row
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Figure 1: (a) geometric support (shaded) of orthogonal vectors êj and Aêi. (b) support of

separator set. (c) zero/fill structure for X resulting from ordering the separator set last. (d)

zero/fill structure after second round of recursion.
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indices corresponding to nonzeros in column j of A, that is, i ∈ Nj iff aij 6= 0. Then

êT
i Aêj = 0 ∀ i /∈ Nj .

This situation is illustrated in Fig. 1a for the case where A arises from a 9-point dis-

cretization. (In this and subsequent figures, the degrees-of-freedom are associated with the

centroids of the cells in the computational grid.) From this figure it is clear that at least

n/ max |Nj | of the unit vectors are A-conjugate to one another, where |Nj | denotes the

cardinality of Nj .

The generation of a sparse basis for X starts with finding a maximal (or near-maximal)

set of k1 A-conjugate unit vectors and normalizing them to satisfy (4). The first such k1

columns of X will each have only one nonzero entry. Additional entries in X are generated

via Gram-Schmidt orthogonalization. Let Xk = (Xk−1 xk) denote the n × k matrix with

columns (x1 x2 . . . xk), and let V = (v1 v2 . . . vn) be an appropriate column permutation

of the identity matrix. Then the procedure

do k = 1, . . . , n:

w := vk − Xk−1X
T
k−1Avk (10)

xk := w/||w||A
Xk := (Xk−1 xk)

enddo

ensures that X = Xn is the desired factor of A−1. For k ≤ k1 the projection, Xk−1X
T
k−1Avk,

computed in (10) will be void and xk will simply be a multiple of vk. As k increases beyond

k1, Xk will begin to fill in. The goal is to find an ordering, V , which yields minimal or near

minimal fill for the factor X.

Following [11], an efficient procedure for selecting the permutation matrix, V , can be

developed by defining separators which recursively divide the domain (or graph) associated

with A into nearly equal subdomains. Figure 1b shows the first such separator for a
√

n×√
n

grid. Since the stencil for Aêj does not cross the separator, it is clear that every unit vector

êi associated with the left half of the domain in Fig. 1b is A-conjugate to every unit vector

êj associated with the right half. If V is arranged such that vectors associated with the

left half of the domain are ordered first, vectors associated with the right half second, and

vectors associated with separator last, then application of Gram-Schmidt orthogonalization

will generate a matrix X with worst-case fill depicted by Fig. 1c (X is shown here with

the rows ordered according to the same permutation used for the columns of V ). This

procedure can be repeated to order the vectors within each subdomain, giving rise to the

structure shown in Fig. 1d. To complete the construction we recur until no more separators

can be found.

It is clear from (5) that the computational complexity of each solve is proportional to

the amount of nonzero fill in the factor X. For the
√

n ×√
n grid we observe from Fig. 1d

that the number of nonzeros in each row is bounded by the sequence

√
n +

√
n

2
+

√
n

2
+

√
n

4
+

√
n

4
+ . . . ≤ 3

√
n ,
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implying a total bound on the amount of fill in X of 3n
√

n. Since we can evenly distribute

the work among processors this leads to a computational complexity of O(n
3

2 /P ). Similar

arguments in three-dimensions lead to a computational complexity of O(n
5

3 /P ). Both the

two and three-dimensional cases provide a clear gain over the O(n2/P ) cost incurred by the

full inverse approach.

The communication complexity is dependent upon the mapping of the rows of X (and

hence, x and b) to the processors. In the worst case, the bound is simply that derived for (8),

namely, log2 P (2α+2βn+n)ta, which is essentially the same as the A−1 approach. Because

of the significant reduction in computational complexity, even a naive implementation of

the XXT approach will be superior to the A−1 approach. However, for properly mapped

two-dimensional problems, it is possible to obtain a contention-free communication com-

plexity bound of (2α log2 P + O(n
1

2 )β log2 P )ta, even on a linear array of processors. The

three-dimensional bound is (2α log2 P + O(n
2

3 )β log2 P )ta. Results in Section 5 show that,

for large problems, this lower communication complexity is as significant as the improved

computational complexity in reducing the overall solution time.

4.2 A detailed example

To understand the ordering and processor mapping requirements necessary to reduce the

communication complexity we consider the 7×7 grid example of Fig. 2 in some detail. As

in Fig. 1, the degrees-of-freedom are represented by the square cells shown in (a), and it is

assumed that A has a 3×3 stencil. The first three levels of separators have been labeled in

(a) and an associated hierarchy is depicted by the binary tree in (b). To obtain the desired

nonzero structure of X, the separator labeling is continued until all degrees-of-freedom have

been identified as an element of a separator. The degrees-of-freedom are then labeled in

reverse order, i = n, . . . , 1, using a depth-first traversal of the tree. One begins with elements

in separator S0, followed by those in S2, S22, and so on, to yield the orderings shown in (c)

and (d). The descendants of an element j are denoted as the set Dj comprising j and any

element i which is below j in the tree.

The Gram-Schmidt procedure (10) does not require the rows of X to be permuted

with the same ordering as the columns. However, there are notational and implementation

advantages to doing so. Thus, from here on we assume that A has been constructed accord-

ing to the ordering in Fig. 2c, corresponding to a symmetric permutation of the original

operator. In this case, the Gram-Schmidt procedure (10) is simplified in that the basis

vectors become vk = êk, k = 1, . . . , n. Because of the reversed depth-first ordering, this

corresponds to starting at the leaves of the tree (not shown in Fig. 2d); subsequent unit

vectors are selected for orthogonalization only after their descendants. By construction,

a unit vector êk is automatically A-conjugate to any unit vector which is not its direct

descendant or direct ancestor. Hence, the Gram-Schmidt projection step only needs to be

effected against the columns of Xk−1 that correspond to descendants of k. Thus, (10) is

recast as
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Figure 2: (a) separator sets (only first three levels shown). (b) separator set tree. (c) global

numbering induced by depth first ordering of separator sets. (d) global numbering embedded in

separator set tree.

do k = 1, . . . , n:

wk := êk −
∑

j∈D
k
\k

xj(x
T
j Aêk) (11)

xk := wk/||wk||A
Xk := (Xk−1 xk)

enddo

In general, xik will be nonzero for all elements i ∈ Dk, save the possibility of fortuitous

cancellation during the projection step.

For the important case when A is an M -matrix, that is, SPD with non-positive off-

diagonal entries, then it is guaranteed that all of the entries in X are non-negative and that

there will be no cancellation during the projection step (11). The non-negativity of the xij ’s
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is established by induction. It clearly holds for the leaves of the tree since, in that case,

each xj is simply a positive multiple of êj . Now consider the sign of the basis coefficients

in the projection step (11):

βj = xT
j Aêk j ∈ {1, ..., k − 1}

=
n∑

i=1

xijaik . (12)

Since k > j, we have xkj = 0, and all terms in the summation (12) are nonpositive by

the assumptions xij ≥ 0 and aij ≤ 0, i 6= j. Therefore, βj ≤ 0. Since the vector βjxj is

subtracted from from êk in (11), all elements of wk and hence, xk, must be positive. It

is interesting to note that simply adding positive components to the unit vector êk yields

a vector (wk) having a greater 2-norm, but reduced A-norm. We conclude that this must

result from “smoothing” the Kronecker delta function represented by êk. Indeed, for the

case when A is a discrete Laplacian, plots of the element distribution on the physical mesh

reveal that the basis vectors xk (or wk) smoothly decay away from element k to the boundary

of the support of Dk.

From the above arguments, we see that the number of nonzeros in any column xj is

(generally) going to be equal to |Dj |, that is, the number of descendants of j. It follows

that the number of nonzeros in a given row, i, is given by the number of ancestors of i, that

is, by counting up from the location of i to the root of the tree. For example, in Fig. 2d,

the number of nonzeros in column 49 of X will be 49, whereas the number of nonzeros in

row 49 will be 1. We conclude that, thus generated, X is upper-triangular and therefore

the unique Cholesky factor of A−1.

To illustrate the significance of obtaining a proper ordering prior to generating X, we

close this section with a one-dimensional example. Figs. 3a and b, show the sparsity pat-

terns obtained for the upper-triangular Cholesky factor, LT , and its inverse when A is the

well-known tridiagonal matrix, LLT = A =tridiag (-1,2,-1), deriving from a centered differ-

ence approximation to a second-order derivative. Despite the fact that LT has the minimum

possible fill, (LT )−1 is completely full. However, if one first permutes A using a depth-first

nested-dissection ordering, V , and then computes the factors LNLT
N = V T AV , one obtains

the sparsity patterns shown in Figs. 3c and d. It is readily shown for this case that the

number of nonzeros in X ≡ (LT
N )−1 is O(n log n). Of course, because the Green’s function

for the associated continuous equation is non-vanishing everywhere, XXT = (V AV T )−1 is

completely full.

4.3 Parallel Implementation

We now examine the influence of the nonzero pattern of X on the communication require-

ments for the parallel solver and show that this can be exploited to obtain a communication

complexity which is significantly less than O(n).

Recall that the nonzeros in each column xj correspond to descendants of j in the

separator tree, that is,

xij 6= 0 =⇒ i ∈ Dj .
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Figure 3: (a) sparsity pattern for the upper triangular Cholesky factor, LT , of a 15 × 15

tridiagonal matrix, (b) sparsity pattern of (LT )−1, (c) sparsity pattern for the Cholesky factor,

LT
N , obtained from a nested dissection ordering of A, (d) sparsity pattern for X = (LT

N )−1.

Thus, the dependency graph in Fig. 2b reflects the input requirements for the evaluation of

the dot products (7) and daxpys (9) during the computation of XXT b. The dot products,

cj = xT
j b, are computed as

cj =
n∑

i=1

xijbi

=
∑

x
ij
6=0

xijbi

=
∑

i∈D
j

xijbi , (13)

from which it is clear that the computation of cj depends only upon the descendants of j.

Communication can be minimized during the computation of cj (13) if the lower

branches of the tree are, to the extent possible, self-contained within a given processor.

This can be achieved in a natural way by assigning the processor distribution during the

nested dissection phase of the ordering. Degrees-of-freedom to the left of the first separator
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are assigned to the lower half-set of processors, those to the right are assigned to the upper

half, and those belonging to the separator itself can be assigned to any processor in the

set. Repeating this procedure recursively for the example problem of Fig. 2 leads to the

element-to-processor distribution shown in Figs. 4a and b.

In general, one obtains an admissible element-to-processor map by simply overlaying

the processor and separator trees. At each level, the elements of a given separator can

be assigned to any processors in the pool associated with that branch of the tree. In the

event that the processor tree has insufficient depth to cover the separator tree, all remaining

branches in the separator tree are assigned to the associated leaves of the processor tree. In

the event that the separator tree has insufficient depth to cover the processor tree, processors

at the leaves would draw upon elements belonging to separators above them in the tree.
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Figure 4: (a) Tree-embedding of separator-to-processor distribution for degrees-of-freedom from

Fig. 2b. (b) processor mapping for degrees-of-freedom. (c) fan-in communication required

during computation of c = XT b. (d) sparsity pattern and processor distribution for X.
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Standard domain decomposition strategies based upon recursive bisection will ensure an

appropriate element-to-processor map provided that separator elements are drawn from the

partition boundaries generated at each bisection step.

Given a proper ordering and processor distribution, the communication for the fan-in

phase (8) of the XXT b evaluation will have the structure illustrated in Fig. 4c. The arrows

indicate message sources and destinations for each of the log2 P phases as well as the amount

of data transmitted. Processors which sum incoming data are denoted in the ovals at each

level of the tree. Since the evaluation of each element of c = XT b depends only upon

descendants of cj , the amount of information which must propagate up the tree steadily

decreases as the summation progress towards the root. For example, the computation of cj ,

∀j ∈ S0 requires only |S0| =
√

n elements to be propagated in the final phase of the fan-in.

The required communication is readily incorporated into the Vector-Sum procedure of

Section 2 if the data is sorted according to the global ordering such that µ(i, p) is monotoni-

cally increasing with i for a given processor, p. Suppose that the sequence s
(p)
l , l = 0, . . . , D,

represents the cardinality of the separator sets encountered as one traverses from leaf p of

the processor tree to the root (Fig. 4a) and that mp :=
∑D

l=1 s
(p)
l . Then the modified

Vector-Sum procedure is given by:

Procedure Vector-Sum 2

Gather via binary fan-in

m∗ := 1

do l = 1 to D

if mod (p, 2l) = 0 then

recv w(m∗ :mp) from p + 2l−1

v(m∗ :mp) := v(m∗ :mp) + w(m∗ :mp)

m∗ := m∗ + s
(p)
l

elseif mod (p, 2l−1) = 0 then

send v(m∗ :mp) to p − 2l−1

endif

enddo

Broadcast via binary fan-out

do l = D to 1 by -1

if mod (p, 2l) = 0 then

m∗ := m∗ − s
(p)
l

send v(m∗ :mp) to p + 2l−1

elseif mod (p, 2l−1) = 0 then

recv v(m∗ :mp) from p − 2l−1

endif

enddo

At the end of the procedure, each processor has precisely the coefficients required for the

final phase of the coarse grid solve, x = Xc. Since the amount of data transmitted at each

stage is bounded by the number of ancestors for any given leaf, that is, by the number of

nonzeros in any row, we conclude that the total communication complexity for the XXT

algorithm is bounded by 2 log2 P (α + 3
√

nβ) for the
√

n ×√
n grid problem.

We comment that we explicitly used a depth-first traversal of the tree (Fig. 2d) in

developing the separator-based ordering of the degrees-of-freedom. Clearly, the same com-

munication complexity is also obtained if one uses a breadth-first traversal. However, the

depth-first traversal guarantees that the nonzero pattern within each column of X is con-

tiguous within each processor, as illustrated in Fig. 4d. Consequently, unit-stride direct

addressing can be used during the local dot product (7) and daxpy (9) phases of the

XXT b computation, resulting in improved vectorization and cache performance as well as
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reduced memory overhead.

Finally, we note that the work required to generate X via the Gram-Schmidt procedure

(11) is O(n2) and the time is O(n2/P ). These estimates are derived as follows. Let W (n)

be the number of operations required to compute X for a
√

n×√
n grid. The work required

to compute the last
√

n columns of X is essentially the same as the work required to

effect
√

n projections onto X, that is, 2 · 3n
3

2 operations for each of the dot product and

daxpy phases, yielding an operation count of 12n
3

2 per column. Generation of the
√

n/2

basis vectors associated with each of the two second-level separators (S1 and S2) involves

projections onto matrices with columns of length n/2 and at most 2
√

n nonzeros per row,

yielding an operation count bounded by 4n2. Generation of the vectors associated with all

remaining separators comprises four subproblems, each of size n/4. Therefore, the total

work satisfies the recursion

W (n) = 12n2 + 4n2 + 4W (
n

4
) ≤ 4

3
16n2.

The P -processor time estimate exploits the fact that each of the four subproblems can be

treated independently on processor subsets of size P/4. Thus,

T (n, P ) = 12
n2

P
+ 4

n2

P
+

4

4
T (

n

4
,
P

4
) (14)

= 16
n2

P
+ 16

n2

42

4

P
+ T (

n

16
,
P

16
)

= 16
n2

P

(

1 +
1

4
+

1

16
+ . . .

)

≤ 4

3
16

n2

P
,

and we conclude that, properly implemented, the Gram-Schmidt procedure attains full

P -fold concurrency.

5 Numerical Results

We present measured solution times for the XXT method on q × q finite difference meshes

for q = 3, 7, 15, . . . , 511. The n × n matrix A (with n = q2) is derived from a 5-pt stencil

discretization of the Poisson problem with Dirichlet boundary conditions. For comparison

we provide corresponding times for both the redundant LU and distributed A−1 methods.

In the table below, the symbol g indicates a granularity restriction (i.e. n < P ) while m

indicates a memory restriction.

Table 1 presents times on the 512 node Intel Paragon XPS at Caltech (50 MHz Intel i860

processors running Paragon OSF/1, release 1.0.4). Note that for P = 1 or 2, the redundant

LU approach is the fastest method in all cases except for the smallest, where the amount

of work is insufficient to allow reliable timings. The redundant LU and A−1 approach

both suffer memory constraints at values of n which are much smaller than achievable with

the XXT approach. For n ≥ 152, the XXT approach is the fastest of the three; it is

an order-of-magnitude faster than the A−1 approach for n > 1272, which is in turn, an

order-of-magnitude faster than the redundant LU approach.
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The table verifies the assertion made in Section 3 that the A−1 approach will be superior

to the redundant LU approach whenever P > n/2s, where s is the matrix bandwidth for

the LU scheme. For this problem, s =
√

n = q, implying that the A−1 approach should be

superior whenever P > q/2. The performance transition is observed at precisely this point

for all of the entries in the left half of the table. For the larger problems on the right, the

transition occurs at lower values of P as the A−1 approach benefits from enhanced vector

performance as discussed below.

A careful examination of the operation counts for n = 632 reveals that the XXT

method should be ten times faster than A−1 instead of the observed improvement, which

is only four-fold. We found that this is due to the use of the blas library ddot routine on

the Paragon which, as is seen in Fig. 5c, shows a sudden 2.25× performance gain for vector

lengths greater than ≈ 2330. Since the distributed A−1 approach requires ddots of length

n, whereas the XXT approach requires ddots and daxpys of at most length n/P or 3
√

n,

the former method benefits from this vector performance gain, whereas the latter does not

for the values of n considered here.

We note that for the n=312, 632, and 1272 cases the efficiency of all of the methods

begins to deteriorate as P approaches 512, reflecting that the solution cost is communication

dominated. These trends are clearly revealed in the plots of solution time vs. number of

processors shown in Figs. 5a and b. One would of course expect such trends for the fixed-

problem-size speed-up model; the work scales as 1/P , while the communication scales as

log2 P . What is surprising is the amount of communication overhead suffered by the A−1

approach due to bandwidth constraints. The upward swing at the tails of the curves in

Fig. 5a reveal the dominance of communication cost, but the magnitude is well above the

latency bound, 2αta log2 P , which is also plotted. By contrast, the tails of the XXT curves

(Fig. 5b) are much closer to the latency curve, although not as close as might be expected,

particularly for the n = 312 case.

A plot of the total communication overhead for n ≈ P , added as a dashed line in Fig. 5b,

reveals that the XXT communication costs grow faster than log2 P between P = 256

and 512. This is explained by a design feature of the Paragon operating system which

provides greater bandwidth for smaller numbers of processors, as indicated by the plots of

communication time vs. message length shown in Fig. 5d. These times were measured using

a standard ping-pong test with non-cached data on successive transfers and asynchronous

(i.e., pre-posted) receives for P = 2, 4, 8,. . . , 512. While there is virtually no change in

latency as the number of processors increases, there is a five-fold reduction in bandwidth

as one moves from P = 2 to P = 512. This accounts for the faster than log2 P growth

in communication costs observed in Fig. 5b. Presumably this loss of bandwidth is a result

of requiring the system message buffer space to be more finely partitioned in the large P

cases. However, in the timings, use of asynchronous receives should have implied that the

message buffer memory was managed by the driving application.
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Table 1: Paragon solution time in seconds for a q × q grid

P Red. LU Dist. A−1 XXT Red. LU Dist. A−1 XXT

n = 3×3 n = 63×63

1 4.4600E-05 3.6105E-05 3.4902E-05 1.1949E-01 – 3.4203E-01

2 1.7068E-04 1.3949E-04 1.3573E-04 1.2003E-01 – 1.9369E-01

4 2.9398E-04 2.5764E-04 2.5064E-04 1.2045E-01 m 8.4266E-02

8 4.6827E-04 3.7863E-04 3.5714E-04 1.2107E-01 1.5573E-01 4.1084E-02

16 g g g 1.2186E-01 8.0204E-02 2.0343E-02

32 – – – 1.2263E-01 4.2857E-02 1.0608E-02

64 – – – 1.2431E-01 2.5133E-02 6.2606E-03

128 – – – 1.2692E-01 1.7932E-02 4.1330E-03

256 – – – 1.3228E-01 1.7967E-02 3.8113E-03

512 – – – 1.4916E-01 2.8438E-02 5.0652E-03

n = 7×7 n = 127×127

1 2.9800E-04 3.2989E-04 2.7725E-04 9.1016E-01 – –

2 4.4168E-04 2.7822E-04 2.9301E-04 9.1129E-01 – –

4 5.8261E-04 3.4939E-04 3.5085E-04 9.1280E-01 – m

8 7.4149E-04 4.3863E-04 4.3446E-04 9.1395E-01 – 3.5016E-01

16 9.3307E-04 5.6306E-04 5.7672E-04 9.1594E-01 – 1.6388E-01

32 1.1162E-03 6.9726E-04 7.2160E-04 9.1807E-01 – 8.1527E-02

64 g g g 9.1976E-01 m 4.1622E-02

128 – – – 9.2159E-01 1.7435E-01 2.2244E-02

256 – – – 9.2980E-01 1.2968E-01 1.3643E-02

512 – – – 1.0379E+00 1.5087E-01 1.1458E-02

n = 15×15 n = 255×255

1 2.0880E-03 9.5215E-03 4.5643E-03 – – –

2 2.2781E-03 4.9863E-03 2.3550E-03 – – –

4 2.4351E-03 2.7819E-03 1.1259E-03 – – –

8 2.6284E-03 1.6877E-03 8.2464E-04 – – –

16 2.8119E-03 1.1831E-03 7.9471E-04 – – –

32 3.1127E-03 1.0036E-03 9.1089E-04 – – m

64 3.2951E-03 1.0952E-03 1.0084E-03 – – 3.2321E-01

128 3.5418E-03 1.1286E-03 1.1770E-03 – – 1.6368E-01

256 g g g – – 8.5836E-02

512 – – – m m 5.3390E-02

n = 31×31 n = 511×511

1 1.6356E-02 1.6719E-01 4.5315E-02 – – –

2 1.6640E-02 8.3992E-02 2.1006E-02 – – –

4 1.6858E-02 4.2522E-02 9.8550E-03 – – –

8 1.7122E-02 2.1893E-02 5.1827E-03 – – –

16 1.7501E-02 1.1735E-02 3.0003E-03 – – –

32 1.7995E-02 6.8829E-03 2.0195E-03 – – –

64 1.8841E-02 4.9585E-03 1.6644E-03 – – –

128 1.9221E-02 4.0317E-03 1.5370E-03 – – –

256 2.0097E-02 4.0358E-03 1.6672E-03 – – m

512 2.1847E-02 5.6248E-03 2.3776E-03 m m 3.6714E-01
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Figure 5: (a) solution times for A−1 approach (b) solution times for XXT approach (c) Paragon

ddot performance vs. vector length (d) Paragon communication time vs. message size.

Figure5d also reveals that the linear communication model (3) is adequate at the small

and large message limits but does not capture sudden transitions in communication cost

which may be significant in actual measured applications. As these nonlinear features are

hardware and operating system dependent there is little one can do to incorporate them

into generic complexity estimates in any meaningful way.

Finally, in Fig. 6 we present results for n = 632 and 1272 on the Intel ASCI ASCI-Red

machine at Sandia National Laboratories (333 MHz Pentium IIs with Xeon Core Tech-

nology running TOS/Cougar OS R3.0). In comparison to the Paragon, ASCI-Red has

relatively high latency but also high bandwidth, representative figures being (ta, αta, βta) ≈
(.1µs, 50µs, 0.68µs/64-bit-word) for the Paragon, and ≈ (.01µs, 20µs, .02µs/64-bit-word)

for ASCI-Red. We can therefore expect to find ASCI-Red solution times closer to the
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Figure 6: ASCI-Red-333 solve times for n = 632 (left) and 1272 (right).

2αta log2 P bound in the communication dominated regime (P ≈ n) since the bandwidth

term will contribute less. In fact, the A−1 and XXT approaches should converge in the

limit of infinite bandwidth since both schemes have the same latency costs. Evidence of

this can be seen for the n = 632, P = 2048 case in Fig. 6.

It is important to note that the redundant LU approach could potentially be improved

for the larger problems by using a nested dissection ordering. From [11], the number of

nonzeros in the triangular factors for a nested-dissection ordering is only

nnz =
93

12
(q + 1)2 log2(q + 1) − 73

3
(q + 1)2 + 24(q + 1) log2(q + 1) + O(q),

in contrast to O(q3) for the banded factorizations used in the above timings. Optimistically,

we can estimate the work savings as the ratio of the number of nonzeros, which corresponds

to a factor roughly 2.5 for q = 63 and 4.1 for q = 127. Realistically, the savings will be

less dramatic due to the indirect addressing overhead and loss of vectorization and we can

conclude that the BLAS-based performance figures presented here are fairly representative

of the redundant solve performance.

6 Discussion

We can use the complexity estimates of the previous sections to estimate the cost of the

XXT algorithm on state-of-the-art supercomputers using thousands of processors, such as

are currently under development at the national laboratories. We take as an example the

two-dimensional model problem on P = 8192 = 213 processors, with n = P (the most chal-

lenging case), and use the communication constants measured on ASCI-Red. To estimate

the computational cost, we assume a conservative value of ta = 5.0 × 10−8 ops/second,

corresponding to 20 mflops. The communication costs for XXT b are thus

Tc = 2αta log2 P + 3
√

n(2β + 1)ta log2 P

= 5.2 × 10−4 + 2.1 × 10−4seconds ,
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and the computational cost is

Ta = (4 · 3n
√

n/P ) ta

= 0.54 × 10−4seconds .

These results reveal that, under reasonable model assumptions, the bandwidth cost (0.21

msec) is half the latency cost (0.52 msec), and that the arithmetic cost (0.054 msec) is

a order-of-magnitude smaller than the bandwidth cost. Because of the significance of the

latency term, it is clear that competing methods will have to adhere to the strategy of using

a minimum number of messages. Moreover, as the bandwidth cost dominates the arithmetic

cost, it is more important to focus upon reductions in message traffic than further reductions

in work.

It is possible that the number of nonzeros in X (and hence, communication) can be

reduced by carefully selecting the generating basis, V , to yield a number of entries in X

that are below a given threshold value and which could therefore be neglected, resulting in

an acceptable approximation to A−1. This is particularly true in the case where A is being

used as part of a preconditioner, in which case the exact solution to (1) is not required.

Related ideas in the area of approximate inverse factorizations based on thresholding have

been explored by a number of authors (see, e.g., [2, 3, 16]). One promising approach in this

regard is to recognize that the computational complexity bounds derived in Section 4 are

independent of the ordering of basis vectors within a given separator Sl. Therefore, rather

than using successive unit vectors, êi, i ∈ Sl, one might choose a Fourier-like basis having

the form,

vi = {...001111111100...}T

vi+1 = {...001111000000...}T (15)

...
...

vi−1+|S
l
| = {...0010101010

︸ ︷︷ ︸
00...}T ,

Support of Sl

and which vanish outside the support of Sl. Applied to each separator, this leads to a

fill pattern more closely resembling that shown in Fig. 1d rather than a strictly upper-

triangular factor. Because the basis vectors xj decay smoothly away from the separators

(at least for elliptic problems), this highly oscillatory generating basis should yield columns

in X which are effectively zero away from the separator. Initial results for Poisson’s equation

on a square have shown that the bases (15) do indeed lead to a greater number of “small”

entries in X, and to better round-off properties. However, it appears that a smoother set of

oscillatory basis functions will ultimately be required if significant savings are to be realized

from such a thresholding strategy.

Another common strategy for improved performance is to solve the coarse grid problem

cooperatively (and redundantly) among processor subsets. The cooperative solve can be

implemented with any of the approaches discussed previously, including the XXT approach.

Of course, this does not circumvent the log2 P bound on the minimum number of messages

and so does little to reduce latency. However, it could be used to ameliorate nontrivial
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bandwidth limitations. Our suggested strategy is to gather segments of the right-hand side,

b, onto independent processor subsets using l′ rounds of the recursive doubling variant of

the Vector Concatenate routine of Section 2. Here, l′ is determined such that the message

size in the l′th round of the concatenation is equal to a threshold value, m′. For example,

let m′ = min(α/β, 3
√

n) and choose l′ such that 2l′−1n/P = m′. This ensures that the

recursive doubling variant of concatenation does not suffer line contention (since messages

shorter than α/β are latency dominated) and does not require message lengths exceeding

those required by the XXT algorithm. After l′ rounds of recursive doubling, the coarse

grid problem can be solved with the XXT algorithm using only 2(log2 P − l′) rounds of

communication. A similar strategy is employed when P 6= 2D. One identifies the largest

value of D such that P ′ = 2D < P , and maps the right-hand side data from processors

p = P ′, . . . , P − 1, onto respective counterparts in {0, . . . , P ′ − 1}. The solution is then

computed using P ′ = 2D processors following the strategy outlined in Section 4.

The XXT method can be extended to non-symmetric problems by altering the pro-

jection to minimize in the AT A-norm, as is standard for projection-based iterative methods

such as GMRES. The basis for the procedure in this case is initiated by seeking unit vectors

satisfying (Aêi)
TAêj = 0, that is, that are ATA-conjugate. From considerations similar to

those presented in Fig. 1, it is clear that this is achieved by simply choosing separators

of width two rather than unity. All of the computational and communication complexity

bounds follow immediately in lR2 or lR3, and the nonsymmetric solver will require twice

the storage, twice the amount of data traffic, and precisely the same number of messages

( 2 log2 P ) as its symmetric counterpart. For a small increment in storage, one can avoid

the need to multiply by AT by storing columns y
j

:= Axj such that the solution is computed

as x = XY T b. In this case, XY T does not correspond to a triangular factorization of A−1.

Finally, because of the generality of the graph-partitioning arguments and the binary

tree embeddings employed, the XXT method readily extends to fully general mesh prob-

lems. For complex two- or three-dimensional meshes, separator sets can be found with

standard graph-splitting techniques (e.g. recursive coordinate bisection) or via one of the

many variants of recursive spectral bisection (e.g., [17]). In general, one can expect some-

what smaller complexity constants than for the examples considered here, as
√

n is generally

the worst-case separator bound for planar graphs. Provided that subdomains are mapped

according to the separator induced partitioning, the general geometry implementation will

enjoy the same low communication requirements as the very regular examples considered

here.

We have used the algorithm in numerous parallel spectral element solutions of the

incompressible Navier-Stokes equations in two- and three-dimensional domains [8, 19], in-

cluding the example illustrated in Fig. 7. In these applications, the coarse grid operator

derives from a linear finite element discretization of Poisson’s equation on the spectral

element vertices and is used in conjunction with an overlapping Schwarz procedure to ac-

celerate the convergence of the conjugate-gradient-based pressure computation at each time

step. Recursive spectral bisection is used to distribute the elements to processors. Because

the spectral element data is partitioned by elements, vertex data for the coarse grid prob-

lem is stored redundantly, implying that extra communication is nominally required to copy
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Figure 7: Spectral element mesh used to simulate the interaction of a flat-plate boundary

layer flow with a hemispherical roughness element.

the computed entries of x to multiple recipients. By symmetry, it follows that a gather is

required in constructing b. It is possible to avoid the extra communication by embedding

these steps directly into the XXT procedure. If Q represents the copy operation, then the

full solution procedure is x̃ = QXXT QT b̃ = X̃X̃T b̃, where X̃ = QX ∈ lRm×n, m > n,

represents the original basis of X with each element replicated onto any processor sharing

its corresponding vertex. This results in an increase in the amount of work (at most 8×)

but does not increase either the number of messages or the size of the messages required to

effect a solve. Further details can be found in [8].

The three-dimensional mesh problem in Fig. 7 is from [19] and contains E = 8168

elements of polynomial order N = 15 (27,799,110 gridpoints for velocity, 22,412,992 for

pressure). The number of spectral element vertices is n = 10142. On 2048 nodes of ASCI-

Red, the number of words communicated in each of the log2 P stages of the contention-free

fan-in is given in Table 2. (See Fig. 4c.) It is clear that these values are well below the

O(n) costs incurred by the methods discussed in Section 3, and in fact are quite close to

the ≈ 2.33n
2

3 complexity bound one would expect for a regular three-dimensional mesh.

Performance results for the first 26 time steps of the calculation are given in Table 3. As

the XXT solver accounts for less the one percent of the Navier-Stokes solution time, it is

possible to now consider a richer coarse grid space to enhance convergence rates.

We close with a comparison of the P = 2048 result to theory. We use αta and βta from

the two-dimensional model problem prediction but increase ta to 2.0 × 10−8 ops/second,

corresponding to 50 mflops, to reflect the (measured) increase in performance due to longer

Table 2: # words sent at each stage of binary fan-in

stage 10 9 8 7 6 5 4 3 2 1 0

min 546 546 546 543 534 516 483 425 327 223 119

max 780 772 766 753 739 721 680 610 481 271 119

23



Table 3: XXT Performance on ASCI-Red

K = 8168, N = 15

P NS time (s) NS gflops XXT % calls time per call (s)

256 9025 33 0.2 4863 0.0033

512 4537 65 0.3 4923 0.0032

1024 2242 132 0.6 4841 0.0027

2048 1148 257 0.9 4484 0.0022

ddots and daxpys. The communication estimate is

Tc = 2αta log2 P +
7

3
n

2

3 (2β + 1)ta log2 P

= 4.4 × 10−4 + 7.2 × 10−4seconds ,

and computational estimate is

Ta = (4 · 7

3
n

2

3 · n/P ) ta

= 4.3 × 10−4seconds .

Predicted performance is thus 1.6 msec while actual performance is 2.2 msec. The discrep-

ancy is accounted for by the fact that the total amount of work is increased by approximately

a factor of two due to the embedding procedure.

We conclude that the relatively low computational complexity and excellent commu-

nication complexity of the XXT -based solver will make it a very competitive algorithm

for leading edge multicomputer systems. Moreover, as the coarse grid solve is central to

efficient iterative solution of many systems arising from partial differential equations, fast

coarse grid solvers such as presented here will be critical to future Teraflops applications.
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