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Due to the large amount of potential parallelism, resource management is
a critical issue in multithreaded execution. The challenge in code generation
is to control the parallelism without reducing the machine's ability to exploit
it. Controlled parallelism reduces idle time, communication, and delay caused
by synchronization. At the same time it increases the potential for exploitation
of program data structure locality. In this paper, we evaluate the performance
of methods to control program parallelism and resource usage in the context
of the fine-grain dataflow execution model. The methods are in themselves
not new, but their performance analysis is. The two methods to control
parallelism here are slicing and chunking. We present the methods and their
compilation strategy and evaluate their effectiveness in terms of run time and
matching store occupancy. Communication is categorized in memory, loop,
call, and expression communication. Input and output message locality is
measured. Two techniques to reduce communication are introduced. Grouping
allocates loop and function bodies on one processor and bundling combines
messages with the same sender and receiver into one. Their effects on the total
communication volume are quantified. � 2001 Academic Press

Key Words: multithreaded architectures; code generation; quantitative evalua-
tion; control of parallelism.

1. INTRODUCTION

Fine-grain multithreading attempts to exploit instruction-level locality implicit in
the von Neumann model as well as the latency tolerance and fast synchronizations
of the dataflow model. It tolerates latency by rapidly switching among a set of
ready threads thus improving the processor utilization. Both interprocessor communi-
cation and remote data access latencies can be masked, and therefore multithreading
is especially suitable as an execution model for massively parallel processors. Current
fine-grain multithreading models lie on various points along the von Neumann
dataflow design spectrum. As designs move closer to the von Neumann world, thread
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size tends to become larger and data structure locality can be better exploited.
Examples of these designs include HEP [1], Tera [2], J-Machine [4], and
M-Machine [5]. As designs move closer to dataflow, latencies are better tolerated
and parallelism is more easily exploited. Examples are Monsoon [6], *T [7],
EM-4 [8], and the EARTH project [9]. There also exist software abstractions of
fine-grain multithreading as exemplified by TAM [10] that can be implemented on
traditional multiprocessors such as the CM-5.

In multithreading models with strong dataflow heritage for which the code gener-
ator typically produces smaller thread grains requiring frequent synchronizations
coupled with explosive parallelism, at any given time there may be many threads
involved in either sending or waiting to receive messages or waiting for the execu-
tion unit to become available, all of which occupy some resources. Hence, the
management of machine resources such as memory and communication network
becomes more important. In many cases, the management of resources takes advantage
of different forms of locality. In this paper, we quantitatively evaluate a set of compiler
optimization techniques, namely slicing, chunking, grouping, and bundling that attempt
to address the above issues.

Slicing mainly attacks the problem of controlling parallelism. Chunking mainly
attempts to exploit data locality, similar to the traditional vectorization and loop
unrolling methods. Simulation results are presented that compare the effectiveness
of these techniques against code with unrestrained parallelism. The results indicate
that the chunking method helps reduce the execution time and also shows an
appreciable decrease in the utilization of the synchronization unit. The slicing
method shows lower average and maximum matching store occupancies at the
expense of increased execution time. By combining both techniques, it is possible to
balance speedup with resource utilization.

Grouping reduces the amount of internode communication by allocating function
or loop bodies on one processing node at the expense of possible load imbalance.
Bundling combines tokens with the same sender thread and the same receiver
thread into one message. For our experiments, tokens are classified into Memory,
Call, Loop, and Expression tokens. The results show that grouping does not
significantly reduce parallelism nor lead to poor load balancing, but eliminates
most of the Expression tokens from the network traffic. On the other hand, bundling
reduces the number of Call and Loop tokens. Together, the average reduction is
about 800.

In the Monsoon compiler study we use the simpler Livermore Loops [11]. In the
other experiments, we use a set of larger Sisal benchmarks with sizes ranging from
500 to 2700 lines of source code.

v AMR is an unsplit integrator taken from an adaptive mesh refinement code
at Lawrence Livermore National Laboratory.

v BMK11A is particle transport code developed to evaluate Cray Computer
systems at Los Alamos National Laboratory.

v FFT is a one-dimensional Fast Fourier Transform code.

v HILBERT computes the condition number for Hilbert matrix coefficients. It
uses Linpack routines.
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v PSA is a parallel scheduler code using a variation of simulated annealing to
solve the problem.

v SDD solves an elliptic partial differential equation using the Symmetric
Domain Decomposition method.

v SGA is a genetic algorithm program finding a local minima of a bowl-shaped
function developed at Colorado State University.

v SIMPLE is a Lagrangian 2-D hydrodynamics code that simulates the behavior
of fluid in a sphere developed at Lawrence Livermore National Laboratory.

v WEATHER is a one-level barotropic weather prediction code and was
originally developed at the Royal Melbourne Institute of Technology.

The rest of this paper is organized as follows. In Section 2 we describe the execu-
tion model, including a basic processor model. In Section 3 we briefly summarize
threaded code generation. Section 4 briefly describes the compiler transformations
for the control of parallelism and reports on their effects on performance. This
section contains an initial study of Monsoon code generation. Section 5 discusses
communication reduction techniques and their effect on performance. Related work
is discussed in Section 6. Concluding remarks are given in Section 7. Earlier
versions of these results have been presented in [12] and [13].

2. EXECUTION MODEL

The multithreaded execution model used in this study is based on dynamic
dataflow scheduling, where each actor represents a sequentially executing thread. A
thread is a statically determined sequence of RISC-style instructions operating on
registers. Threads are dynamically scheduled to execute, based upon the availability
of data. Once a thread starts executing, it runs to completion without blocking and
with a bounded execution time. The bounded execution time implies that each
instruction must have a fixed execution time and cannot incur latency inside a
thread. Therefore, latency incurring instructions have their consumers in other
threads. Register values do not live across threads.

Inputs to a thread comprise all the data values required to execute the thread to
its completion. A thread is enabled to execute only when all the inputs to the thread
are available. Multiple instances of a thread can be enabled at the same time and
are distinguished from each other by a unique ``color.'' The thread enabling condi-
tion is detected by the matching�synchronization mechanism which matches inputs
to a particular instance of a thread. Data values are carried by tokens. Each token
consists of a continuation, an input port number to the thread, and one or more
data values. A continuation uniquely identifies an activation of a single thread and
consists of a color and a pointer to the start of thread. A unique color is generated
for each activation of a code block such as a function or a loop. Data structures,
such as arrays and records, are stored in a logically shared structure store. Results
of thread execution are either written to the structure store or directly sent to their
destination thread(s). A given thread activation can be executed on any processor.
Since each thread is relatively small (10 to 30 instructions), global (dynamic)
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FIG. 1. Abstract model of a processing node.

scheduling and near perfect load balancing is achieved by a simple hashing of the
continuation.

The logical structure of the processor model is presented in Fig. 1. The local
memory of each node consists of an Instruction Memory which is read by the
Execution Unit and a Data Memory which is accessed by the Synchronization Unit
and the Execution Unit. Inputs to a thread are stored in the Matching Store; when
all inputs have arrived, the corresponding thread is enabled. The Ready Queue
contains the continuations representing enabled threads. There may be different
contexts of the same thread that may be enabled at any given time either on the
same node or on different nodes. The Structure Memory may be either distributed
among the nodes, or among dedicated memory modules arranged in a dancehall
configuration. The MemUnit handles the structure memory requests.

The following machine configuration is simulated using a cycle-level, discrete event
machine. The machine has 10 processing nodes, each with a 4-way issue super-scalar
CPU with the instruction latencies of the Motorola 88110 and synchronization
latencies of the EM-4: a pipelined synchronization unit with a throughput of one
synchronization per cycle and a latency of three cycles on the first input. Problem
sizes in our benchmarks are chosen to give reasonable simulation times and realistic
processor utilization. All internode communications take 50 CPU cycles in network
transit time. Every structure memory read takes the minimum of two network
transits (one to send the request and another to send the reply). We assume that
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all structure store reads and writes go through the interconnection network.
Obviously, some of these messages can be made local by a judicious allocation of
data structures. This, however, requires extensive static analysis in the compiler,
which is beyond the scope of this paper. The size of matching store is unlimited,
and therefore can handle any amount of parallelism.

3. CODE GENERATION

Programs are represented in a dataflow graph form called MIDC [14]. Each
node of the graph represents a thread of straight line von Neumann type instruc-
tions. Edges represent data paths along which tokens travel. In addition to the
nodes and edges, there are pragmas and other specifiers to encode information (e.g.,
program-level constructs) that may be helpful to postprocessors and program
loaders.

Code generation is guided by the following objectives: minimize synchronization
overhead, maximize intrathread locality, assure nonblocking (and deadlock-free)
threads, and preserve functional and loop parallelism in programs. The first two
objectives call for very large threads that maximize the locality within a thread and
decrease the synchronization overhead. The thread size, however, is limited by the
last two objectives. In fact, it was reported in [15] that blind efforts to increase the
thread size, even when they satisfy the nonblocking and parallelism objectives, can
result in a decrease in overall performance. Larger threads tend to have larger
numbers of inputs and can result in a larger input latency, defined as the time delay
between the arrival of the first token to a thread instance and that of the last token,
at which time the thread can start executing [16].

Our nonblocking threads are generated from Sisal programs. Sisal [17] is a pure,
first-order, functional programming language with loops and arrays. Sisal programs
are initially compiled into a functional, block-structured, acyclic, data dependence
graph form IF1 [18]. The functional semantics of IF1 prohibits the expression of
copy-avoiding optimizations. This causes new data structures to be defined and the
elements copied even when a single data element is modified, and this leads to a
large amount of code just to copy data elements from one physical location to
another even when it is unnecessary to do so.

An extension of IF1, called IF2 [19], allows operations that explicitly allocate
and manipulate memory in a machine-independent manner through the use of
buffers. A buffer is comprised of a buffer pointer into a contiguous block of memory
and an element descriptor that defines the constituent type. All scalar values are
operated by value and therefore copied to wherever they are needed. On the other
hand, all of the fanout edges of a structured type are assumed to reference the same
buffer; that is, each edge is not assumed to represent a distinct copy of the data. IF2
edges are decorated with pragmas to indicate when an operation such as ``update-in-
place'' can be done safely, which dramatically improves the run-time performance
of the system.

A top-down cluster generation process transforms IF2 into MIDC [20]. This
phase breaks up the complex block-structured IF2 graphs so that threads can be

585DATAFLOW-BASED MULTITHREADING



generated and wires the threads together. Initial reduction values are generated in
the appropriate threads. Threads terminate at control graph interfaces for loops
and conditionals, and at nodes, such as memory accesses, for which the execution
time is not statically determinable, in order to satisfy the deterministic execution
time objective. Threads do not cross function or loop boundaries and therefore
useful forms of parallelism are preserved. Although it is not strictly necessary to
have threads bounded by branches at this stage, doing so provides more flexibility
in later stages.

The generated MIDC code is further optimized via a bottom-up stage [21] at
both the intrathread and interthread levels. Intrathread optimizations consist of
traditional optimizations including dead code elimination, constant folding�copy
propagation, redundant instruction eliminations, and instruction scheduling to exploit
the instruction level parallelism. Global optimizations include global versions of the
above optimizations as well as redundant edge eliminations and merge operations
that attempt to create larger threads by combining neighboring threads. The merg-
ing of threads also takes place across the branch instructions. The benchmark codes
used in our experiments have thread sizes ranging from 10 to 30 MIDC instructions.

There are two types of loops in SISAL. Iterative loops have loop-carried dependen-
cies and termination tests. Parallel loops have data independent loop bodies and
known loop counts. Only the parallel loops are considered for parallelization and
vectorization.

Since most parallel loops deal with arrays, it is instructive to know the layout
of these data structures in memory. Figure 2 shows the layout of an array data
structure containing an array descriptor and the data elements. SISAL arrays can
start at any lower bound and can be of a variable size, and this information is
encoded in the array descriptor. In order to reduce copy operations (e.g., when
concatenating arrays), additional memory may be allocated on either side of the
array data elements and several arrays can therefore be ``built-in-place.'' This
requires an ``offset'' value to specify where the logical array starts. Thus, the start
of the array is given by adding the values of the data pointer to the offset
value. All elements of that array are indexed off this resultant start address. With
this layout, two memory latencies are required in order to fetch a single array
element.

FIG. 2. Layout of arrays in MIDC.
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4. CONTROL OF PARALLELISM

4.1. Loop Chunking

Loop Chunking stripmines a loop into a doubly nested loop, where the inner loop
consists of fixed sized, consecutive chunks of loop bodies. This optimization is much
like vectorization or loop unrolling (see Fig. 3). For the loop to be chunkable, the
loop bodies must access consecutive array elements. For a loop of iteration space
n and a machine chunk size of c, the number of workers is w n

cx+1 if n mod c{0
or n

c otherwise. The code dealing with the irregularly sized chunk is executed only
if such a chunk exists.

A split phase FetchChunk operator is used to fetch a chunk of data from
structure memory. The semantics of this operation is defined as follows: memory is
reserved in the target processor's data memory to hold the chunk. SISAL is a strict
language, hence, all the data elements of an array will be available when the fetch
occurs.

4.2. Loop Slicing

Loop slicing distributes a parallel loop over a fixed number of worker processors
(see Fig. 4). Slicing reduces the resource load on the system in terms of the number
of colors or activations required, with each slice taking one color rather than with
each iteration. All workers perform at least w n

kx work (n is the size of the iteration
space, k is the number of workers), and n mod k workers perform an additional
iteration of work. It should be noted that any parallel loop can be sliced. Due to

FIG. 3. Chunk control in loops.
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FIG. 4. Slice control in loops.

the semantics of SISAL there is no potential deadlock in the sliced code. This loop
execution scheme is similar to K-bounding in Id [22]. The difference is that in
slicing, the loops are block distributed, whereas in K-bounding the loops are cycli-
cally distributed. The cyclic distribution is necessary for Id, because the loops can
have loop-carried dependencies via nextified variables.

Each portion of the iteration space assigned to workers is executed in a sequen-
tial fashion. Inputs to all iterations of the iteration space are equal except for the
index value. The index value port is identified and is updated at each execution of
the loop body. The reduction required in the parent loop is also divided over the
iteration spaces, reducing the amount of serial reduction. Reduction operators in
SISAL (sum, product, max, and min) are commutative and associative. Thus,
they can be reduced in any order.

4.3. Performance Evaluation of Slicing and Chunking

We evaluate the dynamic properties of our code before and after applying
various combinations of slicing and chunking. The characteristics of the benchmark
programs we use in this section, in terms of the number of parallel loops and
chunkable loops are given, in Table 1. We note that SDD has the lowest percentage
of chunkable parallel loops of around 290 and FFT has the highest percentage
with 790.

We compare four combinations of slicing and chunking: R, unconstrained
parallel threaded code, used as the base case for all comparisons; C, loops chunked;
S, loops sliced; and CS, loops chunked and other loops sliced. The following
measures are used to evaluate performance:
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TABLE 1

Program Characteristics of the Benchmarks

Program Problem size [Time steps] Parallel loops Chunkable loops

AMR 4_80_40 [4] 87 34
FFT 215 13 11

HILBERT 100_100 65 30
SDD 26 80 23

SIMPLE 100_100 [5] 78 42
WEATHER 840 km [5] 81 29

v Time: the number of cycles taken by the program to execute.

v 0avg : the average occupancy of the matching store in terms of the number
of threads that are waiting for inputs.

v 0max : the maximum occupancy of the matching store in terms of the
number of threads that are waiting for inputs at any given time.

v UP 0: the processor utilization, i.e., the percentage of time the processors
are busy.

v US 0: the utilization of the synchronization unit, i.e., the percentage of time
the synchronization unit is busy.

In evaluating the comparative performance between the different sets of
parallelism control methods, the following measures will be used.

v Imp0: the percentage improvement of execution time (e) over the execu-
tion time of the unconstrained case (u), i.e., ((u�e)&1) V 100.

v R(0avg)0 and R(0max)0: the ratios of space utilization over the space
utilization of the unconstrained case.

The baseline performance of the unconstrained model is given in Table 2. The
table shows that the processor utilizations range from a low of 15.30 for HILBERT
up to 93.50 for AMR. The low utilization for HILBERT is due to the fact that a
typical parallel loop body is relatively small with only one or two threads, and a

TABLE 2

Performance with Unconstrained Parallelism (R )

Bench Time UP0 US0 0avg 0max

AMR 2294940 93.5 45.7 3774 22148
FFT 1154821 70.7 36.1 778 7199

HILBERT 2474720 15.3 13.1 259 3730
SDD 2907122 57.2 36.2 1265 11716

SIMPLE 7040310 54.5 38.1 28485 101758
WEATHER 1427385 67.8 54.1 4102 20775
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significant fraction of the time is spent in the serial reductions of those parallel
loops. Also, in general, the synchronization unit utilization is in the same order,
albeit smaller, as the processor utilization.

4.3.1. Performance of chunking. Chunking exploits data locality and hence
should decrease the execution time in addition to restraining parallelism. The
improvement of the various benchmarks is given in the Table 3. The best perform-
ing chunk size for each benchmark is also presented. The experiment was conducted
with chunk sizes of 8, 16, and 32. HILBERT showed the lowest improvement of
0.30. FFT showed the best improvement of 34.70. The chunkable loops in
HILBERT have much smaller loop bodies than the nonchunkable loops and there-
fore the impact of chunking is minimal. The data access pattern of FFT is very
regular and hence highly chunkable. Since parallelism is controlled only in those
loops that can be vectorized�chunked, the occupancy of the matching store memory
does not show any significant decrease. However, the table shows a noticeable
reduction in the synchronization unit utilization. Since the matching is done a
chunk at a time rather than a single value at a time, the utilization of the synchroniza-
tion unit utilization should be reduced.

4.3.2. Performance of slicing. Slicing is used to control matching store memory
occupancy. All parallel loops, including chunkable loops, in the benchmarks have
been sliced in this experiment. The experiment has been conducted with the loops
sliced with 10 or 20 workers each. In this experiment, space refers to snatching store
memory.

In most of these experiments, we are trading time for space. The more the
parallelism is throttled, the less space it uses and the more time it takes to complete
the execution in general. This is evidenced in Table 4 where the slice sizes that favor
execution time over the space are chosen, and in Table 5 where the space is favored
over the time. In the tables, slice sizes are specified in terms of the number of
worker processes that are used to execute the parallel loops. For instance, slice size
10,20 indicates that the innermost parallel loop would be split up between 10
worker processes and the outer, second level parallel loop is split up between 20
worker processes.

Table 4 shows that the processor utilizations are approximately equal to that of
the unconstrained case. Good processor utilization implies that the parallelism has

TABLE 3

Performance with Inner Loops Chunked (C )

Bench Chunk size UP0 US0 Imp0

AMR 32 95.2 29.4 17.5
FFT 32 76.8 15.8 34.7

HILBERT 8 15.0 12.8 0.3
SDD 32 55.1 31.9 3.3

SIMPLE 16 51.9 32.1 7.3
WEATHER 16 63.8 46.3 3.5
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TABLE 4

Performance with Loops Sliced, with Best Execution Times

Bench Slice size UP0 US0 Imp0 R(0avg)0 R(0max)0

AMR 10, 20 93.8 58.5 &8.2 28.8 15.1
FFT 20, 20 70.4 52.0 &12.5 21.5 10.9

HILBERT 20, 20 16.8 18.2 &18.1 60.2 77.4
SDD 20, 20 64.2 49.2 &5.4 73.2 33.5

SIMPLE 20, 20 51.5 41.1 &12.5 5.8 8.7
WEATHER 20, 20 74.9 64.4 &8.8 78.0 86.7

not been throttled to the extent where the processor is sitting idle when it should
not. The improvement ranges from &5.40 in SDD to &18.10 in HILBERT. The
average space used drops dramatically. The best saving is shown by SIMPLE,
which utilizes on average 5.80 of what is required by the unconstrained (R) case.
The worst is WEATHER, which requires 78.00 of the space occupied in the
unconstrained case. When maximal occupancy is considered, the best saving is still
shown by SIMPLE, utilizing just 8.70 of the maximum occupied in the unconstrained
case. The worst saving is shown by WEATHER, saving just 13.30 of the space.

Table 5 shows the results for those cases where processor utilization remains
fairly high but the space utilized is the lowest. In this case, the improvements drop
even more with the range of &9.50 in AMR, to &24.90 in HILBERT. In the
average space case, the best saving is shown by SIMPLE, requiring just 2.90 of
the space. The worst is shown by SDD, requiring 51.60 of the regular space. In
the maximum space case scenario, the best savings is again shown by SIMPLE with
4.20 ratio and the worst savings is shown by WEATHER, with 44.60 ratio.

4.3.3. Performance of combined chunking and slicing. The next logical step is to
combine chunking and slicing and try for good execution times with low space
utilization.

Table 6 shows the effect of combining chunking, with sizes as in Table 3, and the
slicing with parameters as in Table 4. These settings favor better execution time
over space saving and provide a good trade-off. In the case of WEATHER, the

TABLE 5

Performance with Loops Sliced, with Best Occupancy

Bench Slice size UP0 US0 Imp0 R(0avg)0 R(0max)0

AMR 10, 10 92.3 57.6 &9.5 14.9 8.6
FFT 20, 10 69.5 51.3 &12.5 15.5 6.4

HILBERT 20, 10 15.4 16.6 &24.9 48.2 39.9
SDD 20, 10 60.0 46.0 &11.6 51.6 26.2

SIMPLE 20, 10 48.8 39.0 &16.9 2.9 4.2
WEATHER 10, 10 60.4 51.7 &19.2 29.3 44.6
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TABLE 6

Performance with Inner Loops Chunked and Loops Sliced, with Best Processor Utilization

Bench Chunk size Slice size Imp0 R(0max)0

AMR 32 10, 20 +8.9 15.2
FFT 32 20, 20 +30.5 5.4

HILBERT 16 20, 20 &16.8 77.4
SDD 32 20, 20 &0.6 43.4

SIMPLE 16 20, 20 &1.6 5.9
WEATHER 16 20, 20 &0.6 86.6

space saving is on the order of 130 over the unbounded case for a time slow down
of 0.60.

Table 7 shows the combination of the chunking parameters from Table 3 and the
slice parameters from Table 5, that favors space saving over execution time. This
table shows greater savings in the matching store space utilization. However, as
expected, the time taken to solve the problem increases. One extreme case is
WEATHER, where space usage is about half of that shown in Table 4, but the
execution took almost 200 longer. In the case of FFT, the improvement is 27.80

while only using 5.30 of the space used by the unconstrained case.
An important result is that the upper bound on the space usage is determined by

the slicing scheme and is no longer dependent on the problem size.

4.3.4. Determining throttle values. Here we describe the method used to arrive
at the best throttle parameters. For this we have chosen the benchmark FFT.
Table 8 shows the results of various experiments executed for the FFT benchmark.

The first experiment is for the unconstrained parallelism case. Results indicate
that processor utilization is about 710 and the maximum occupancy is 7199
thread slots in the matching memory.

The next set of experiments is run for the three different chunk sizes of 8, 16, and
32. As expected, the matching store occupancy does not change much in all the
cases. In this particular case, the table indicates that all three chunk sizes yield
similar performance with the chunk size 32 being the best at 34.70 improvement.
Processor utilization remains fairly uniformly high in all the cases. The synchronization
unit utilization drops by half.

TABLE 7

Performance with Inner Loops Chunked and Loops Sliced, with Best Occupancy

Bench Chunk size Slice size Imp0 R(0max)0

AMR 32 10, 10 +7.7 8.1
FFT 32 20, 10 +27.8 5.3

HILBERT 16 20, 10 &23.8 39.9
SDD 32 20, 10 &7.8 32.1

SIMPLE 16 20, 10 &6.2 3.5
WEATHER 16 10, 10 &18.7 44.7
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TABLE 8

FFT: Arriving at the Best Throttle Value

Exp. Chunk Slice Imp0 UP0 US0 0avg 0max

R �� �� 1 70.7 36.1 778 7199
C 8 �� 32.5 78.2 18.7 411 7199

16 �� 34.3 77.5 16.8 386 7203
32 �� 34.7 76.8 15.8 371 7203

S �� 10 &43.0 45.8 33.5 228 4380
�� 20 &11.9 70.9 52.2 428 5600
�� 20, 10 &13.7 69.5 51.3 121 461
�� 20, 20 &12.5 70.4 52.0 167 783

CS 32 20, 20 30.5 77.3 23.1 79 391
32 20, 10 27.8 75.7 22.6 71 387

In the third experiment, the best slicing levels are determined. The first runs
sliced only the innermost parallel loops. As stated earlier, the slice size is expressed
in the number of workers that are chosen for parallel loops at the nesting level
specified. The sizes chosen were 10 and 20. When the number of worker processors
is 10, the throttle is too strong and processor utilization drops to 45.80. The
processor utilization with 20 workers remains fairly high at 70.90 and hence is
better. The next step is to slice the parallel loops at the second level also, using the
inner loop slice of 20. The experiments were run for 20,10 and 20,20. Processor
utilization for both runs remain fairly high. Slicing with 20,20 is faster but slicing
with 20,10 has a greater space saving.

The last set of experiments combines the chunking and slicing techniques, which
will give us an acceptable execution speed at a low resource utilization. Two
experiments are run for chunk size 32 and loop slicing 20,20 and 20,10, respectively.
In this case, a chunking factor of 32 and a loop slicing factor of 20,20 would probably
provide the best balance between the execution time and the space utilization.

4.4. Case Study: A Monsoon Implementation of SISAL�MIDC

This section presents a study of threaded code generation and resource manage-
ment strategies for MIDC as ported to a one-node Monsoon Machine [23]. The
compiler processes the MIDC code and generates a Monsoon Assembly (.masm)
code file and Id code to interface with the type system. These in turn are processed
by the Monsoon Assembler and Id Compiler to generate the required Monsoon
Object Code. The Id World Interface to the machine is utilized to load the
programs and provide simple Input and Output.

We use the simpler Livermore loops in this study [11], because the current
compiler does not control the size of the generated threads, nor the number of
activation frame slots in a thread. This has the effect that for large functions more
frame slots are allocated than are available. There are methods to limit the number
of frame slots, such as reusing the frame slots and splitting overly large threads.
Optimized reuse of frame slots is implemented in the Id compiler, using linear
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programming techniques [22]. Splitting (and merging) threads is already done in
our compiler at the higher MIDC level. It just needs to be reemployed at this lower
level. Before these transformations are implemented, it is important to study the
effect of the naive algorithm.

The Monsoon is a distributed memory multithreaded multiprocessor architecture
with a shared address space. Each processing unit is called a node. Each node has
a portion of the address space of the machine under its control. A node contains
a Processing Element (PE) and an I-Structure Board (IS). Within each PE there
can be many threads of control, eight executing simultaneously in the pipeline and
up to 32,000 awaiting execution. The state of each thread is contained in a computa-
tion descriptor, or CD, with five registers: a continuation register C, a value register
V, and three temporary registers T1, T2, and T3. The continuation register defines
the context in which the thread executes. It contains a pointer to instruction
memory that indicates the next instruction to be executed and a frame pointer,
which is used as the base address of an activation frame for a procedure invocation.

Data words have three presence bits associated with them defining the state a
memory location is in. They affect the behavior of instructions that read and write
the word. Presence bits are used in the implementation of synchronization
protocols. The Join Protocol is used to synchronize two or more threads, implementing
a dataflow-matching mechanism. The Imperative Protocol is used for imperative loads
and stores. Any number of stores and loads may be performed on the location in any
order. The I-structure Protocol synchronizes multiple consumers and a single producer.
Initially, the location is empty. An I-Store operation stores a value in the location
and sets the presence bits to present. Subsequently any number of I-fetch operations
may be performed on the location. When a location is empty, I-fetch operations are
deferred until an I-store operation takes place, after which the deferred fetches
receive the stored value. The M-structure Protocol implements a mutual exclusion
protocol. Initially, a location is empty. A Put operation stores a value and sets the
presence bits to present. A subsequent Take operation reads the stored value and
sets the presence bits back to the empty state. Multiple Take operations on an
empty location are deferred, causing the location to enter into the lock-deferred
state. A Put operation will satisfy exactly one of the deferred Take operations.
Multiple Put operations result in an error.

Functions are implemented by code blocks. Each active code block has access to
a portion of local memory called the frame. The amount of frame storage used by
the code block is fixed at compile time. Frame slots are required for storing
temporary values and for performing synchronizations. When calling a function, a
frame is allocated, the addresses of the function and the frame are combined to
produce a context C, and argments and a return address are sent to C. This Sisal
calling convention is simpler than the Id version as Sisal is a strict language and
does not support curried and higher order functions.

In determining the multithreaded computation model for Monsoon, three
options were tested. In the dataflow model threads are synchonized using the Join
Protocol.

It is also possible to use a barrier to test for the availability of all thread inputs,
as threads are strict and thus cannot start until all of their inputs are available.
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Instead of values being copied, as in the dataflow model, they are accessed in the
activation frame where they are stored. There are two options for global memory
operations. The nonstrict barrier model uses the split-phase I-structure Protocol,
where the initiator and consumer of a transaction live in separate threads. The
second, the strict barrier model, relies on the strict semantics of Sisal, guaranteeing
that when a barrier is passed, all inputs to the threads triggered by the barrier are
available; also, all array data to be read by the threads is completely defined, and
thus the Imperative Protocol can be used.

The three models described above are compared using Livermore loops [11].
The dataflow model executes 300 more instructions than the nonstrict barrier
model, as too many values are copied. The nonstrict barrier model in turn executes
90 more instructions than the strict barrier model, which is selected for further
optimization. General purpose MIDC threads initiating parallel loops are merged
and optimized for Monsoon. Copy propogation and redundant code elimination
are implemented. Contexts, and thus frames, are merged, avoiding many relatively
expensive context creations. Merging contexts agressively is very effective but causes
the problem that frames get bigger than the allowed maximum. This is why some
of the Livermore loops are not used at this time. The problem can be solved by
reusing frameslots for variables that do not live at the same time. The analysis for
this is similar to register allocation and is based on graph coloring. Table 9 shows

TABLE 9

Strict Barrier Model before and after Optimization in Machine Cycles

Execution time

With basic
Program Size Unoptimized optimizations Imp0

Loop 1 990 2,181,000 1,779,000 18.43
Loop 2 101 1,648,000 1,318,000 20.02
Loop 3 1001 1,405,000 1,109,000 21.06
Loop 4 35 1,585,000 1,253,000 20.84
Loop 5 1001 1,876,000 1,468,000 21.74
Loop 6 64 2,440,000 2,014,000 17.45
Loop 7 995 2,042,000 1,638,000 19.78
Loop 8 20 623,016 369,558 40.68
Loop 9 101 335,990 290,582 13.51

Loop 10 101 530,553 487,703 8.07
Loop 11 1001 1,824,000 1,441,000 20.99
Loop 12 1000 2,072,000 1,686,000 18.62
Loop 16 75 1,241,000 1,111,000 10.47
Loop 17 101 532,146 461,974 13.18
Loop 19 101 346,670 275,619 20.49
Loop 20 100 629,216 541,945 13.86
Loop 21 10 383,461 333,682 12.98
Loop 22 101 360,993 314,201 7.56
Loop 24 1001 1,238,000 1,046,000 15.50

595DATAFLOW-BASED MULTITHREADING



the significant improvements made due to these optimizations. The measurements
include the cycles required to trap to the run-time system.

4.4.1. Chunking and slicing on monsoon. A total of three chunking and slicing
experiments are performed. The first deals with the effect of chunking, the second
with the effect of slicing, and the third with their combined effect.

Chunking on Monsoon stripmines an inner loop into a nested loop with a
constant sized, tight, highly optimizable, inner loop. The MIDC FetchChunk
operator computes the start address of a chunk. Chunking creates fewer and bigger
threads and allows loop inputs to be shared. The effect of chunking on the Livermore
Loops with varying chunk sizes is given in Table 10 and is compared to the unbounded
case. The results show that chunking has an enormous effect on performance.

Loops 2, 4, and 5 are essentially iterative loops, but still benefit from chunking.
In the cases of loop 2 and 5 this is because the initial array can be constructed in
a chunkable parallel loop and there is a chunkable reduction. Loop 4 is an iterative
outer loop with very small parallel inner loops giving rise to one optimizable chunk.

For chunking to be most effective, the size of the chunk should be approximately
one-eighth of the size of the iteration space of the innermost loop. This creates eight

TABLE 10

Effect of Chunking and Slicing on Livermore Loops

Chunking Slicing

Chunk Chunk Chunk Number
Loop size Imp0 size Imp0 size Imp0 of slices Imp0

Loop 1 64 687 128 727 256 595 8 472
Loop 2 64 546 128 569 256 510 8 413
Loop 3 64 1057 128 1114 256 922 8 596
Loop 4 64 712 128 752 256 649 8 491
Loop 5 64 302 128 305 256 294 8 258
Loop 6 8 108 16 108 32 108 8 280
Loop 7 64 703 128 753 256 556 8 464
Loop 8 8 146 16 147 32 144 8 130
Loop 9 8 207 16 225 32 227 8 252

Loop 10 8 135 16 135 32 143 8 211
Loop 11 64 309 128 312 256 300 8 263
Loop 12 64 859 128 904 256 729 8 531
Loop 16 8 280 16 320 32 290 8 289

8,8 315
Loop 17 8 173 16 185 32 186 8 172
Loop 19 8 163 16 170 32 170 8 171
Loop 20 8 163 16 174 32 173 8 177
Loop 21 8 178 16 186 32 17 8 156

8,8 157
Loop 22 8 167 16 179 32 178 8 216
Loop 24 64 213 128 216 256 201 8 199
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large threads for a particular loop and optimally utilizes the pipeline of the
machine.

Slicing on Monsoon allocates a fixed number of contexts to execute a loop. Each
context executes a slice of loop bodies sequentially. In establishing the effect of
slicing, the lesson learned from the chunking experiment is kept in mind: the
number of threads of execution should be around eight. Table 10 compares the
results of slicing to the unbounded case.

In two of the benchmarks, Loop 16 and Loop 21, improvements are shown when
they are sliced at the second level. In 13 of the benchmarks chunking performs
better than slicing. In these benchmarks, the inner parallel loops are chunkable, and
control for chunking is very simple. In the loops where slicing performs better, the
innermost loops are not chunkable. Slicing helps in reducing the execution time of
all loops, both chunkable and nonchunkable.

Chunking and slicing are not mutually exclusive and can be combined. The codes
where slicing performs better than chunking are run with both slicing and chunking
turned on. Table 11 shows that in four cases the combination performs better than
any one of the two, and in two cases (loop 6 and 10) the overhead of chunking is
larger than its benefit and pure slicing is the best approach.

4.4.2. Further optimizations. The Sisal compiler presented by no means generates
the best possible code. There are short-comings that need to be addressed to generate
much more efficient code. As mentioned earlier, reuse of frame slots will reduce frame
sizes. As a simple example, frame slots can be reused for different threads in the same
frame slot that are guaranteed not to run concurrently.

The current implementation of parallel reduction uses an M-structure array to store
the intermediate results that are reduced in parallel in a separate thread, which requires
its own control steps. Eliminating this array and using single M-structure elements in
a parallel reduction step would help reduce the load on the heap and could result in
the ability to execute larger problems. This optimization would also reduce the number
of instructions executed.

The sequential loop schema utilized in the implementation is not very efficient as
evidenced by the difference between the execution times of Livermore Loop 2.
Any scheme to tighten the control of these loops will considerably speed up the
code.

TABLE 11

Chunking and Slicing Combined

Program Size Imp0

Loop 6 64 273
Loop 9 101 283

Loop 10 101 209
Loop 19 101 180
Loop 20 100 186
Loop 22 101 228
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5. COMMUNICATION OVERHEAD: CHARACTERISTICS
AND REDUCTION

5.1. Token Characteristics

We classify tokens into two major categories: Memory tokens represent structure
store reads and writes, and Regular tokens represent nonmemory related control
and data tokens. The Regular tokens are broken down into three types: Loop, Call,
and Expression. Loop tokens represent tokens (data and control) used in distribut-
ing parallel work and in gathering their results including simple reductions. Loop
tokens could represent a significant fraction of regular tokens, especially for
programs with a large number of parallel forall loops and small loop bodies with
large loop counts. Call tokens represent all tokens (data and control) involved in
calling a function and returning its results. Expression tokens represent all other
tokens.

Relevant characteristics of the benchmarks used in this section are given in
Table 12. The first and second columns give the number of threads executed and
tokens generated per run. The third column gives the average number of matches
performed per MIDC instruction executed (MPI), which are around 0.5 matches
per instruction.

Table 13 shows the breakdown of tokens according to their types. Memory
tokens represent a significant fraction of the total traffic, amounting to roughly a
third on the average. This implies that techniques that reduce memory tokens are
essential in achieving a significant reduction in the amount of network communication.

Among Regular tokens it can be observed that Loop tokens comprise 30 to 970

of the total. For AMR, FFT, and HILBERT, the loop tokens represent the vast
majority of the regular tokens implying a significant amount of traffic devoted to
handling parallelism. These results are not surprising considering that threads, in
our model, are constrained to be no larger than a loop body or function body and
are terminated at structure store accesses. Several optimizations at the global level
attempt to make threads as large as possible [21]. These three programs are highly
parallel with each parallel loop containing only a few (1�3) threads.

TABLE 12

Benchmark Characteristics

Threads Tokens MPI

AMR 207,178 3,207,898 0.50
FFT 225,706 4,148,429 0.41

HILBERT 744,047 3,286,375 0.56
PSA 1,670,678 7,098,854 0.44
SDD 1,716,892 10,520,838 0.53
SGA 1,409,905 8,713,308 0.54

SIMPLE 1,333,209 9,269,106 0.56
WEATHER 882,508 8,045,883 0.56

598 ROH ET AL.



TABLE 13

Breakdown of All Messages in Percentages

Regular Memory

Types Loops Calls Expression Total Reads Writes Total

AMR 65.0 1.1 5.50 71.6 21.7 6.7 28.4
FFT 68.9 0.0 2.0 70.9 14.9 14.3 29.2

HILBERT 59.6 0.1 7.6 67.3 26.3 6.4 32.7
PSA 17.9 14.4 23.0 55.3 31.8 12.9 44.7
SDD 44.5 0.1 13.2 57.8 36.1 6.2 42.3
SGA 24.4 4.3 49.1 77.8 13.2 9.0 21.2

SIMPLE 28.0 5.0 32.7 65.7 29.0 5.2 34.2
WEATHER 38.6 0.8 35.5 74.9 19.8 5.3 25.1

Average 43.4 3.2 21.1 67.7 24.1 8.2 32.3

Because our code generation and optimization in-lines all small functions, Call
tokens represent a relatively small proportion of all tokens. Therefore, except in the
case of PSA, most regular tokens are either Loop or Expression tokens.

5.2. Input Locality

We define the input locality of a thread as the inverse of input latency. Input
latency refers to the time delay between the arrival of the first token to a thread
instance and that of the last token, at which time the thread can be enabled.

FIG. 5. Input latency in cycles (cumulative distributions). For each benchmark, the indicated line
plots the percentage of threads whose waiting time is within a given time. In the left half of the figure,
each horizontal tick mark represents 10 cycles, and in the right half, each tick mark represents 100
cycles.
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Figure 5 shows the cumulative distribution of input latencies in terms of processor
cycles. The trend shows that for most programs, about 300 of threads have inputs
that arrive within 10 cycles of each other, and for 50�600 of the threads inputs
arrive within 100 cycles of each other. This is significant considering that each
network transit takes 50 cycles. On the other hand, between 5 and 350 of the
threads have input latencies greater than 900 cycles. These results are most useful
in the design of a token storage hierarchy where short input latency threads are
allocated in the cache and long input latency threads are migrated to the slower,
longer term main memory. A cache architecture that exploits these properties is
described and evaluated in [24].

5.3. Output Locality

Output locality quantifies the amount of locality in the destinations of the tokens
generated by threads. It is defined as the ratio of the total number of tokens
generated by a thread (M) and the number of distinct destination threads to which
these tokens are sent (T ). The values of M, T and their ratio are shown in Table 14
for our benchmarks.

The table indicates that there exist a significant amount of output locality in most
programs. It shows that, on the average, about three to four tokens are sent to each
target thread. Except for AMR and FFT, the average number of targets is less than
two. For both AMR and FFT, each thread generates a much larger number of
regular tokens sent to a larger number of threads when compared with other
benchmarks. However, the ratio M�T is only slightly larger than some of the other
benchmarks. AMR and FFT both have large average thread sizes and each loop
body has a smaller number of threads, as revealed in the next section.

The results in Table 14 indicate that this output locality can be exploited by
bundling tokens destined for a same thread into one message in order to reduce the
overhead in message setup and reception. We present two techniques to reduce the
amount of regular token traffic: grouping and bundling. Note that we do not consider
ways to reduce the remote memory accesses. For example, static data partitioning can
reduce the amount of remote accesses. This requires extensive compile-time analysis

TABLE 14

Output Locality

M T M�T

AMR 11.9 2.7 4.40
FFT 15.2 3.4 4.47

HILBERT 3.2 1.14 2.80
PSA 2.7 1.13 2.39
SDD 3.8 1.28 2.96
SGA 5.3 1.82 2.92

SIMPLE 4.8 1.50 3.21
WEATHER 7.2 1.94 3.71
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and goes beyond the scope of this paper. Instead, we assume that all structure store
reads and writes go through the network.

5.4. Grouping

As a first step toward reducing the regular token traffic, we observe that Loop
and Call tokens are the primary means by which parallelism is exploited. Expression
tokens represent intraloop and intrafunction thread communication that could be
localized to a processor. In essence, by making sure that threads within a loop or
a function body are allocated to the same processor, the communication between
these threads is localized. This allocation strategy should also result in a higher
locality and should better exploit the memory hierarchy.

Although the grouping idea is rather obvious, our objective is to quantify its
possible benefit against the cost it might entail. Particularly, there is a potential for
reducing exploitable parallelism, and we need to check whether this reduction is
acceptable. The allocation of a thread group, comprising either a loop or function
body, to a processor is done by hashing only the color portion of a token tag,
rather than the entire tag. In addition, the compiler generates code for the threads
to directly write to the data memory, rather than form and send tokens. The order
of execution of threads within a group is still determined by the availability of data.
A policy which schedules all enabled threads from the same group together could
better exploit the memory hierarchy. This needs further investigation. Also, the
grouping of threads is currently performed independent of the size and internal
parallelism of the function or loop body. In summary, the execution of thread
groups is characterized as follows.

v A thread group is a statically determined set of threads that are allocated
on a single node (processor).

v Different activations of the same group could be allocated on different
nodes, their allocation is determined dynamically at run time (by the hashing on
the color field).

v The order of thread execution within a group is purely determined by the
availability of data.

The characteristics of the resulting thread groups are shown in Table 15. S G
1

represents the average number of threads in a group, and 6G represents the average
parallelism of a group in terms of threads. The table shows that each group consists
of a relatively small number of threads. The table also shows the average number
of instructions in a thread and the average parallelism within a thread, represented
by S T

1 and 6 T, respectively. FFT in particular has very large threads and large
internal parallelism. Note that the average instruction level parallelism within a
thread, 6T, is very close to four instructions per cycle.

The second column indicates that intragroup parallelism is nearly one for all the
benchmarks. In other words, even when there is an infinite number of processors
that can exploit all interthread parallelism, threads within a group execute nearly
sequentially. Therefore, no significant parallelism is lost by grouping threads on a
single processor.
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TABLE 15

Thread and Group Characteristics

S G
1 6G ST

1 6T

AMR 2.47 1.00 30.79 5.29
FFT 1.65 1.00 44.35 4.77

HILBERT 3.91 1.00 7.95 2.41
PSA 4.72 1.04 9.65 2.69
SDD 3.77 1.01 11.61 3.05
SGA 5.43 1.01 11.45 3.39

SIMPLE 5.05 1.02 12.42 3.40
WEATHER 3.65 1.00 16.35 4.22

Average 3.83 1.01 18.1 3.65

The effect of thread grouping on interprocessor communication is shown in
Table 16. The first two columns show the number of the Regular tokens before and
after thread grouping. The last column shows the percentage reduction of the
Regular tokens. The table shows that there are significant reductions in the amount
of regular tokens generated (nearly 300). Grouping only affects the Expression
tokens, in fact eliminating most of these. A main exception arises from sequential
forinit loops passing data across iterations. As expected, some benchmarks, such
as AMR and FFT, do not gain much from grouping due to their small number of
Expression tokens.

5.5. Bundling

The strong output locality suggests that it may be profitable to combine separate
tokens, destined to the same thread, into one large message. This message vectoriza-
tion should reduce the number of network packets generated at the expense of a
larger message size. It is worth noting that bundling does not introduce any additional
latency since the target thread cannot be enabled until all the inputs arrive anyway.

TABLE 16

The Effect of Grouping on Regular Tokens

Tokens (Millions) Tokens (Millions)
before grouping after grouping Reduction (in 0)

AMR 2.30 2.12 7.5
FFT 2.94 2.86 2.8

HILBERT 2.21 1.96 11.3
PSA 3.93 2.43 38.0
SDD 6.08 4.67 23.2
SGA 6.78 2.71 60.0

SIMPLE 6.09 3.54 41.9
WEATHER 6.03 3.37 44.1

Total 36.36 23.66 35.0
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TABLE 17

The Reduction in Tokens after Grouping and Bundling

Loop tokens (_106) Call tokens (_106) Expression tokens (_106)

Bench Before After Before After Before After Reduction (in 0)

AMR 2.09 0.47 0.04 0.01 0.18 0.00 79
FFT 2.86 0.64 0.00 0.00 0.01 0.00 78

HILBERT 1.96 0.70 0.00 0.00 0.25 0.00 68
PSA 1.27 0.41 1.02 0.53 1.63 0.07 74
SDD 4.68 1.58 0.01 0.00 1.39 0.00 74
SGA 2.13 0.65 0.37 0.21 4.28 0.07 86

SIMPLE 2.60 0.71 0.46 0.12 3.03 0.22 82
WEATHER 3.11 0.84 0.06 0.02 2.86 0.05 85

Total 20.70 6.00 1.96 0.89 13.63 0.41 78

Grouping is effective for Expression tokens and optimizes messages away for them.
Therefore bundling could applied to Loop and Call tokens.

Table 17 shows the result of combined bundling and grouping. It shows the
number of messages generated before and after applying the techniques. In the
bundling technique, we limited the maximum message size to contain no more than
five data values. The reduction is most significant for Loop tokens. This is due to
the fact that activating a loop iteration requires sending a lot of information to the
same node. Almost all the Expression tokens are eliminated due to grouping.

The percentage reduction in the number of regular messages is given in the last
column of the table. The results are fairly uniform in that all programs result in
significant reductions ranging from 68.2 to 86.20 with the average of nearly 800.
These results demonstrate that bundling and grouping are complementary techniques.
When one is ineffective, the other makes up for it. For example, AMR and FFT have
a small number of intragroup tokens to be eliminated, but bundling reduces the
number of their Loop and Call tokens by more than a factor of four, resulting in
overall reductions comparable to other benchmarks.

TABLE 18

Overall Percentage Reduction of All Tokens and MPI

Reduction (in 0) MPI

AMR 56.6 0.19
FFT 55.4 0.14

HILBERT 45.9 0.29
PSA 41.0 0.23
SDD 42.7 0.29
SGA 68.1 0.14

SIMPLE 53.9 0.24
WEATHER 63.6 0.18

Average 53.4 0.21
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In the first column of Table 18, the percentage reduction in the number of all
tokens generated is given. We see that more than half of all tokens are eliminated.
The second column of the table gives the resulting MPI figures and shows a large
drop in matches per instructions. This ranges from about 0.14 to 0.29 with the
average of 0.21.

The larger average message size should result in slightly higher overhead per
message. However, the network transit time should not be significantly affected if
we assume a cut-through type of routing. Message bundling should therefore be
effective in reducing the overall communication overhead.

6. RELATED WORK

Parallelism control was first proposed in fine-grain dataflow architectures, due to
the large amount of parallelism that was being generated. This amount was even
large enough to cause resource deadlocks, which may be partly the cause of the
eventual abandonment of fine-grain architectures in favor of coarser grain multi-
threaded architectures. However, the problem of matching program and machine
parallelism has resurfaced in multithreaded architectures, as problem sizes have
grown larger. The two main parallelism control mechanisms proposed for fine-grain
architectures are Throttling of tasks [25�27] and K-bounding [28]. In addition,
Egan et al. [29] have proposed methods of slicing the iteration space.

Throttling is a run-time method of controlling parallelism. New activation
requests may be suspended if the run-time mechanism deems that there is too much
parallelism, based on availability of resources. The suspended process is reactivated
some time later. When an active process finishes, its activation name can be used
by another process. When sufficient resources become available, suspended processes
can be unsuspended. There is no notion of suspending an active process. Processes
must be fairly large, otherwise they lead to too much throttle overhead. Processes that
are too large would have large internal parallelism, which would cause resource dead-
locks. The key to throttle control is to find the right balance between the exploitation
of parallelism and the use of resources.

K-bounding is another method proposed to control fine-grain parallelism in
loops. The compiler analyzes the code and determines the maximum resource usage
for a loop cycle. The run-time system decides the number of loop cycles that can be
allowed to execute in parallel, based on the activity level of the machine and the static
information of maximal resource usage. Machine resources are recycled and reused.

The slicing proposed by Egan et al. splits the iteration space between k workers.
Each of the workers executed iterations in steps of k. This involves the recycling of
colors. However, some additional work must be performed to reestablish the order
of the results coming from the loop body to that of the context enclosing the loop
invocation.

Teo and Bo� hm [30] have proposed a method of chunking iterative instructions
by letting them generate a fixed number of tokens with incremental indices in the
tag. After that, inputs to the iterative instruction are recycled, which stops them
from swamping the machine with an unbounded amount of tokens and allows them
to be controlled.
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Most multithreaded models that use code-block-based frames [7, 8, 10, 31]
group threads within a code-block, and bind code-blocks to processors. Although
the grouping technique presented in this paper uses the same code-block-based
approach, our model does not preclude other methods, such as grouping according
to the amount of communication between threads. This method might be useful in
the presence of a large loop or function body and might reduce potential load
balancing problems.

The use of quanta as a way to exploit locality at the interthread level has been
first studied by Culler et al. for TAM [32, 33]. It uses a software scheduling policy
that favors threads within the currently executing quantum and allows sharing of
state between these threads (such as registers). Such a scheduling policy could be
fruitfully applied to our model.

By exploiting communication locality, the cost of communication for large-scale
multiprocessors can be minimized. In [34], an analytical model is developed to
study the impact of exploiting the communication locality. The potential perfor-
mance gain is limited by the degree of multithreading and the network limits. With
the high degree of multithreading in our model, the network represents a major
limitation. Without an expensive hardware solution to increase the capacity limits,
communication locality must be exploited to reduce the effective load on the network.
Another approach which also exploits communication locality is to bundle several
reads into one chunk read [12].

The filaments project [3], which addresses issues in fine-grain multithreading
from a von Neumann point of view, has some interesting approaches to controlling
parallelism. Filaments are clustered (``implicitly coarsened'') statically by inlining.
Also, dynamic patterns of use of filaments are recognized and optimized. Filaments
also has an adaptive run-time approach to data placement. Data placement strategies
can be dynamically adapted, and used by the same filaments that are moved to the
same node.

7. CONCLUSION

There are valid reasons to control parallelism and to take advantage of data
locality in the existing and proposed multithreaded models. In this paper, we
examined chunking and slicing techniques that address the above issues. Our
experimental results indicate that slicing schemes remove the upper bound of space
utilization from the realm of problem size to the size of the throttle that is used.
Chunking improves the execution time and reduces the load on the synchronization
unit, but it does not provide any space savings. The combination of the two tech-
niques, each having different goals, helps to balance the execution time with the
resource usage. Finding the right balance is not an easy task. In adopting the right
throttle, it is important to examine the processor utilization, as well as the synchroniza-
tion unit utilization.

We have defined and quantified the input and output message locality of our
programs. The high degrees of input locality suggest that a cached implementation
of the synchronization unit would be beneficial. Locality can be increased by grouping
threads together on one processor (i.e., those threads belonging to the same loop or
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function body). The high degree of output locality can be exploited by bundling
messages. The combination of the two techniques reduces the message traffic by 800

in our benchmarks.

REFERENCES

1. B. J. Smith, Architecture and applications of the HEP multiprocessor computer system, SPIE (Real
Time Signal Process.) 298 (1981), 241�248.

2. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Portfield, and B. Smith, The Tera computer
system, in ``Int. Conf. on Supercomputing,'' pp. 1�6, Assoc. Comput. Mach., New York, 1990.

3. V. W. Freeh, D. K. Lowenthal, and G. R. Andrews, Distributed filaments: Efficient fine-grain
parallelism on a cluster of workstations, in ``First Symposium on Operating Design and Implementation,''
pp. 201�212, 1994.

4. W. J. Dally, J. Fiske, J. Keen, R. Lethin, M. Noakes, P. Nuth, R. Davison, and G. Fyler, The
message-driven processor: A multicomputer processing node with efficient mechanisms, IEEE Micro.
12(2) (April 1992), 23�39.

5. M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and W. S. Lee, The
m-machine multicomputer, in ``Proc. Int. Symp. on Microarchitecture,'' November 1995.

6. G. M. Papadopoulos and D. E. Culler, Monsoon: An explicit token-store architecture, in ``Proc. 17th
Int. Symp. on Computer Architecture,'' pp. 82�91, June 1990.

7. R. S. Nikhil, G. M. Papadopoulos, and Arvind, *T: A multithreaded massively parallel architecture,
in ``Proc. 19th Int. Symp. on Computer Architecture,'' pp. 156�167, May 1992.

8. S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba, An architecture of a data-flow single
chip processor, in ``Proc. 16th Int. Symp. on Computer Architecture,'' pp. 46�53, May 1989.

9. H. Hum, O. Macquelin, K. Theobald, X. Tian, G. Gao, P. Cupryk, N. Elmassri, L. Hendren,
A. Jimenez, S. Krishnan, A. Marquez, S. Merali, S. Nemawarkar, P. Panangaden, X. Xue, and
Y. Zhu, A design study of the EARTH multiprocessor, in ``Proc. Int. Conf. on Parallel Architectures
and Compilation Techniques,'' 1995.

10. D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek, Fine-grain parallelism with
minimal hardware support: A compiler-controlled threaded abstract machine, in ``Proc. Int. Conf.
on Architectural Support for Programming Languages and Operating Systems,'' pp. 164�175,
1991.

11. J. T. Feo, ``The Livermore Loops in Sisal,'' Technical Report, UCID-21159 Computing Research
Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, August 1987.

12. B. Shankar, L. Roh, W. Bo� hm, and W. A. Najjar, Control of loop parallelism in multithreaded code,
in ``Proc. Int. Conf. on Parallel Architectures and Compilation Techniques,'' 1995.

13. L. Roh and W. A. Najjar, Analysis of communication and overhead reduction in multithreaded
execution, in ``Proc. Int. Conf. on Parallel Architectures and Compilation Techniques,'' 1995.

14. W. Bo� hm, W. A. Najjar, B. Shankar, and L. Roh, An evaluation of bottom-up and top-down thread
generation techniques, in ``Proc. Int. Symp. on Microarchitecture,'' 1993.

15. L. Roh, W. A. Najjar, and W. Bo� hm, Generation and quantitative evaluation of dataflow clusters,
in ``Proc. Symposium on Functional Programming Languages and Computer Architecture,''
pp. 159�168, Copenhagen, Denmark, 1993.

16. W. A. Najjar, W. M. Miller, and W. Bo� hm, An analysis of loop latency in dataflow execution,
in ``Proc. 19th Int. Symp. on Computer Architecture,'' pp. 352�361, Gold Coast, Australia, 1992.

17. J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B. Noyce, and
R. Thomas, ``SISAL: Streams and Iteration in a Single Assignment Language,'' reference manual
Version 1.2, Manual M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA,
March 1985.

606 ROH ET AL.



18. S. K. Skedzielewski and J. Glauert, ``IF1: An Intermediate Form for Applicative Languages,''
reference manual, Version 1.0, Technical Report TR M-170, Lawrence Livermore National Laboratory,
July 1985.

19. M. Welcome, S. Skedzielewski, R. K. Yates, and J. Ranelleti, ``IF2: An Applicative Language
Intermediate Form with Explicit Memory Management,'' Technical Report TR M-195, Lawrence
Livermore Laboratory, University of California, December 1986.

20. B. Shankar, W. Bo� hm, and W. A. Najjar, Top-down thread generation for SISAL, in ``Sisal '93,''
1993.

21. L. Roh, W. A. Najjar, B. Shankar, and A. P. W. Bo� hm, An evaluation of optimized threaded code
generation, in ``Proc. Int. Conf. on Parallel Architectures and Compilation Techniques,'' Montreal,
Canada, 1994.

22. D. E. Culler, ``Managing Parallelism and Resources in Scientific Dataflow Program,'' Ph.D. thesis,
MIT, June 1989.

23. J. Hicks, D. Chiou, B. Seong Ang, and Arvind, Performance studies of Id on the Monsoon dataflow
system, 18 (1993), 273�300.

24. L. Roh and W. Najjar, Design of storage hierarchy in multithreaded architectures, in ``Proc. Int.
Symp. on Microarchitecture,'' pp. 271�278, November 1995.

25. C. A. Ruggiero and J. Sargeant, Control of parallelism in the Manchester dataflow computer, in
``Lecture Notes in Computer Science,'' No. 274, pp. 1�15, 1987.

26. D. F. Snelling, ``The Design and Analysis of a Stateless Data-Flow Architecture,'' Ph.D. thesis,
Computer Science Department, University of Manchester, Manchester, UK, 1993.

27. J. Gurd and D. Snelling, Self-regulating workload in the manchester data-flow computer, in ``Proc.
Int. Symp. on Microarchitecture,'' November 1995.

28. D. E. Culler, ``Resource Management for the Tagged Token Data Flow Architecture,'' Technical
Report, TR-332 Laboratory for Computer Science, MIT, January 1985.

29. G. K. Egan, N. J. Webb, and A. P. W. Bo� hm, Some architectural features of the CSIRAC II
data-flow computer, in ``Advanced Topics in Data-Flow Computing'' (J.-L. Gaudiot and L. Bic,
Eds.), pp. 143�174, Prentice�Hall, New York, 1991.

30. Y. Teo and W. Bo� hm, Resource management and iterative instructions, in ``Advanced Topics in
Data-Flow Computing'' (J.-L. Gaudiot and L. Bic, Eds.), pp. 481�500, Prentice�Hall, New York,
1991.

31. R. A. Iannucci, Toward a dataflow�Von Neumann hybrid architecture, in ``Proc. 15th Int. Symp. on
Computer Architecture,'' pp. 131�140, 1988.

32. K. E. Schauser, D. E. Culler, and T. von Eicken, Compiler-controlled multithreading for lenient
parallel languages, in ``Proc. Symposium on Functional Programming Languages and Computer
Architecture'' (J. Hughes, Ed.), 1991.

33. D. E. Culler, K. E. Schauser, and T. von Eicken, Two fundamental limits on dataflow multiprocessing,
in ``Proc. IFIP WG 10.3 Conf. on Architecture and Compilation Techniques for Medium and Fine Grain
Parallelism, Orlando, FL, 1993'' (Cosnard, Ebcioglu, and Gaudiot, Eds.), North-Holland, Amsterdam,
1993.

34. K. Johnson and A. Agarwal, ``The Impact of Communication Locality on Large-Scale Multiprocessor
Performance,'' Technical Report LCS�TM-463, MIT, 1992.

LUCAS ROH is currently the President and CEO of Hostway Corporation. Before he co-founded
Hostway, he was a staff scientist at the Mathematics and Computer Science Division of Argonne
National Laboratory conducting research in automatic differentiation and compilers. He received his
B.A. in physics from the University of Chicago and Ph.D. in computer science from Colorado State
University.

BHANU SHANKAR received his Bachelor of Computer Science and Engineering in 1989 from the
R.V. College of Engineering, Bangalore, India, and his Ph.D. from Colorado State University in 1995.

607DATAFLOW-BASED MULTITHREADING



He worked at Microtec Research Incorporated and is now with Intel Corporation. His interests are in
static binary translation, code generation, and optimization. He is currently the technical lead for
developing and maintaining a high-performance Fortran 95 front end.

A. P. WILLEM BO� HM is a professor at Colorado State University. He received his Ph.D. at the
University of Utrecht. He worked at the CWI Amsterdam on Algol 68 and at Manchester University
on Sisal and Dataflow. His research interests are algorithm design, programming languages, and
compilation for parallel machines. He is currently involved in the design and implementation of a high-
level, algorithmic language targetting Reconfigurable Systems based on Field Programmable Gate
Arrays.

WALID A. NAJJAR is an associate professor in the Department of Computer science and Engineer-
ing at the University of California Riverside. He received his M.S. and Ph.D. in Computer Engineering
from the University of Southern California in 1985 and 1988, respectively, and a B.E. in Electrical
Engineering from the American University of Beirut in 1979. His research interests are reconfigurable
computing and multithreaded and parallel computer architecture.

608 ROH ET AL.


	1. INTRODUCTION 
	2. EXECUTION MODEL 
	FIG. 1 

	3. CODE GENERATION 
	FIG. 2 
	FIG. 3 

	4. CONTROL OF PARALLELISM 
	FIG. 4 
	TABLE 1 
	TABLE 2 
	TABLE 3 
	TABLE 4 
	TABLE 5 
	TABLE 6 
	TABLE 7 
	TABLE 8 
	TABLE 9 
	TABLE 10 
	TABLE 11 

	5. COMMUNICATION OVERHEAD: CHARACTERISTICS AND REDUCTION 
	TABLE 12 
	FIG. 5 
	TABLE 13 
	TABLE 14 
	TABLE 15 
	TABLE 16 
	TABLE 17 
	TABLE 18 

	6. RELATED WORK 
	7. CONCLUSION 
	REFERENCES 

