
1609

⁄
0743-7315/01 $35.00

© 2001 Elsevier Science
All rights reserved.

Journal of Parallel and Distributed Computing 61, 1609–1632 (2001)
doi:10.1006/jpdc.2001.1758, available online at http://www.idealibrary.com on

Integrating Bulk-Data Transfer into the Aurora
Distributed Shared Data System

Paul Lu

Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
E-mail: paullu@cs.ualberta.ca

Received January 1, 2000; revised August 19, 2000; accepted October 11, 2000

The Aurora distributed shared data system implements a shared-data
abstraction on distributed-memory platforms, such as clusters, using abstract
data types. Aurora programs are written in C++ and instantiate shared-data
objects whose data-sharing behaviour can be optimized using a novel tech-
nique called scoped behaviour. Each object and each phase of the computa-
tion (i.e., use-context) can be independently optimized with per-object and
per-context flexibility. Within the scoped behaviour framework, optimiza-
tions such as bulk-data transfer can be implemented and made available to
the application programmer. Scoped behaviour carries semantic information
regarding the specific data-sharing pattern through various layers of
software. We describe how the optimizations are integrated from the upper-
most application-programmer layers down to the lowest UDP-based layers of
the Aurora system. A bulk-data transfer network protocol bypasses some
bottlenecks associated with TCP/IP and achieves higher performance on an
ATM network than either TreadMarks (distributed shared memory) or
MPICH (message passing) for matrix multiplication and parallel sorting.
© 2001 Elsevier Science

KeyWords: bulk-data transfer; distributed-memory computing; shared data;
data-sharing patterns; optimizations; scoped behaviour; network of worksta-
tions; clusters.

1. INTRODUCTION

Distributed-memory platforms, such as networks of workstations and clusters,
are attractive because of their ubiquitousness and good price-performance, but they
suffer from high communication overheads. Sharing data between distributed
memories is more expensive than sharing data using hardware-based shared
memory. Also, existing network protocols, such as TCP/IP, were not originally
designed for communication-intensive clusters and may not be the best choice for
performance.

Systems based on shared-memory and shared-data models are becoming increas-
ingly popular for distributed applications. Broadly speaking, there are distributed
shared memory (DSM) [1, 4] and distributed shared data (DSD) [2, 14] systems. At
one end of the shared-data spectrum, DSM systems use software to emulate
hardware-based shared memory. Typically, DSM systems are based on fixed-sized
units of sharing, often a page, because they use the same mechanisms as for demand-
paged virtual memory. The virtual memory space is partitioned into pages that hold
private data and pages that hold shared data. Different processor nodes can cache
copies of the shared data. As with hardware-based shared memory, a C-style pointer
(e.g., int *) can refer to and name either local or remote data.

At the other end of the spectrum, DSD systems treat shared data as an abstract
data type (ADT). Instead of depending on page faults, a programmer’s interface is
used to detect and control access to the shared data. The access functions or
methods implement the data-sharing policy. If an object-oriented language is used,
the ADT can be a shared-data object.

Since the data-sharing policies of an application determine how often, when, and
what mechanisms are used for communications, they have a large impact on per-
formance and must be optimized. The flexibility to tune a distributed-memory
application varies depending on what kind of parallel programming system is used.
Each type of system has different strengths and weaknesses, but, generally speaking,
high-level languages and shared-data systems are strong in ease-of-use; message-
passing systems are strong in performance. By design, high-level abstractions hide
low-level details, such as when and what data is communicated. Conversely,
message passing makes explicit when data are sent and received. With sufficient
(and often substantial) programming effort, a message-passing program can be
highly tuned. Ideally, one would like to have both a high level of abstraction and
the flexibility to tune a parallel application.

TABLE 1

Layered View of Aurora

Layer Main components and functionality

Programmer’s interface Process models (data parallelism, task parallelism, threads,
active objects)
Distributed vector and scalar objects
Scoped behaviour

Shared-data class library [10] Handle-body shared-data objects
Scoped handles implementing data-sharing optimizations

Run-time system Active objects and remote method invocation (currently,
ABC++ [12])
Threads (currently, POSIX threads)
Communication mechanisms (shared memory, MPI, UDP sockets)

1610 PAUL LU

Flexibility is important because different loops or phases of a computation can
have different access patterns for the same data structure. For example, in a chain
or pipeline of computational phases, the output of one phase becomes the input of
the next phase. A data structure may have a read-only access pattern during one
phase and a read-modify-write access pattern during a later phase. If the same data
structure is large and has to be communicated to all processes, a third data-sharing
policy may be required to efficiently handle the bulk-data transfer. Therefore, it is
desirable to be able to select a different data-sharing policy for each computational
phase.

To address the flexibility issue, the Aurora DSD system uses scoped behaviour.
As the programmer’s interface for specifying a data-sharing optimization, scoped
behaviour allows each shared-data object and each portion of the source code (i.e.,
context), to be optimized independently of other objects and contexts. Once the
programmer has selected an optimization, the high-level semantics of the optimiza-
tion are also carried across various software (and perhaps hardware) layers. For
example, in an all-to-all data exchange, knowledge about the senders, the receivers,
and the size and layout of the data to be communicated, can be important in the
implementation of the optimization.

We begin by illustrating and summarizing Aurora’s programming model. Then
we illustrate how two multi-phase applications, a two-stage matrix multiplication
and parallel sorting, require a bulk-data transfer and can be optimized using scoped
behaviour. Finally, we demonstrate how the Aurora programs can outperform
comparable implementations using a DSM system and a message-passing system on
a cluster of workstations with an ATM network.

2. SCOPED BEHAVIOUR AND THE AURORA SYSTEM

Aurora is a parallel programming system that provides novel abstractions and
mechanisms to simplify the task of implementing and optimizing parallel programs.
Aurora is an object-oriented and layered system (Table 1) that uses objects to
abstract both the processes and shared data to provide a complete programming
environment.

The single most novel aspect of Aurora is the scoped behaviour abstraction.
Scoped behaviour is an application programmer’s interface (API) to a set of system-
provided optimizations; it is also an implementation framework for the optimiza-
tions. Unlike typical APIs based on function calls, scoped behaviour integrates
the design and implementation of all the software layers in Aurora using both
compile-time and run-time information. Consequently, there are a number of ways
to view scoped behaviour, depending on the specific software layer.

1. To the application programmer, scoped behaviour is the interface to a set
of pre-packaged data-sharing optimizations that are provided by the Aurora system.
Conceptually, scoped behaviour is similar to compiler annotations. The application
programmer uses Aurora’s classes to create shared-data objects. Then, scoped

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1611

behaviour is used to incrementally optimize the data-sharing behaviour of a parallel
program with a high degree of flexibility. In particular, scoped behaviour provides:

• Per-context flexibility. The ability to apply an optimization to a specific
portion of the source code. A language scope (i.e., nested braces in C++) around
source code defines the context of an optimization. Different portions of the source
code (e.g., different loops and phases) can be optimized in different ways.

• Per-object flexibility. The ability to apply an optimization to a specific
shared-data object without affecting the behaviour of other objects. Within a
context, different objects can be optimized in different ways (i.e., heterogeneous
optimizations).

By combining both the per-context and per-object flexibility aspects of scoped
behaviour, the application programmer can optimize a large number of data-sharing
patterns [9].

2. To the implementor of the class library, scoped behaviour is how a variety
of data-sharing optimizations can be implemented by temporarily changing an
object’s interface [10]. Scoped behaviour does not require language extensions or
special compiler support, thus it requires less engineering effort to implement than
new language constructs or compiler annotations. As an implementation frame-
work, scoped behaviour can exploit both compile-time and run-time information
about the parallel program.

3. To the implementor of the run-time system, scoped behaviour is a mecha-
nism for specifying high-level semantic information about how shared data are used
by the parallel program. Scoped behaviour can also carry semantic information
about the senders, the receivers, and the specific data to be communicated, across
layers of software.

2.1. Example: A Simple Loop

Aurora supports both shared scalars and shared vectors. A scalar object is placed
on a specific home node, but the shared data within the object can be accessed from
any processor node. In contrast, a distributed vector object can have a number of
different home nodes, with each processor node containing a different portion of
the shared data. The shared vector elements are distributed among different pro-
cessor nodes, but the data can be accessed from any processor node, as with scalar
objects. Currently, only block distribution is supported for shared vectors. The
shared data can be replicated and cached, but the home node(s) of the data does
not migrate.

Once created, a shared-data object is accessed transparently using normal C++
syntax, regardless of the physical location of the data. Overloaded operators,
and other methods in the class, translate the data accesses into the appropriate
loads, stores, or network messages depending on whether the data are local or
remote. Therefore, as with DSM systems, Aurora provides the illusion that local

1612 PAUL LU

FIG. 1. Applying a data-sharing optimization using scoped behaviour.

and remote data are accessed using the same mechanisms and syntax. In reality,
Aurora uses an ADT to create a shared-data abstraction.

Aurora’s data model requires that shared scalar and vector objects be created
using Aurora’s C++ class templates GScalar and GVector. Any of the C++
built-in types or any user-defined concrete type [5] can be an independent unit of
sharing.

Figure 1a demonstrates how a distributed vector object is instantiated and
accessed. Note that vector1 is a shared vector object with 1024 integer elements
that are block distributed. The programmer can assign values to the elements of
vector1 using the same syntax as with any C++ array. The overloaded subscript
operator (i.e., operator[]) is an access method that determines whether the
update to vector1 at index i is local or remote. If the data are local, a write is
simply a store to local memory. If the data are remote, a write results in a network
message. Similarly, a read access is either a load from local memory or a network
message to get remote data. By default, shared data are read from and written
to synchronously, even if the data are on a remote node, since that data-access
behaviour has the least error-prone semantics.

The implementation details have been discussed elsewhere [10], but we briefly
sketch the main ideas at this time to provide intuition about the implementation
and motivate the need for data-sharing optimizations. Since Aurora has defined
class GVector such that the subscript operator is overloaded, the syntax
vector1[i] is equivalent to vector1.operator[](i), where opera-
tor[]() is the name of a class method and vector index i is a parameter to the
method. When vector1[i] is assigned a value, the subscript operator method
looks up the processor node on which index i is located and the element at that
index is updated. The internal data structures of vector1 keep track of, and can
locate, where all the vector elements are stored. Since vector1 is block distributed
across all the processor nodes, some of the vector elements are on the same node as
the thread that is executing the update loop. The updates to these co-located vector
elements are translated into a simple store to local memory. For all the other vector
elements which are not co-located with the thread, the updates are translated to a
network message to the remote processor node. A thread in the Aurora run-time
system on the remote node reads the message and performs the actual update in its
local memory. Then, the thread on the remote node sends a network message back
to the thread executing the loop, which has been blocked and waiting for the ack-
nowledgment. This is the well-known request-response message pattern.

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1613

Since the default policy for writing to shared-data objects, such as vector1, is
synchronous updates, the thread executing the update loop must wait for the ack-
nowledgment message from the remote node. In doing so, the update to vector
index i is guaranteed to be completed before the update to index i+1 of the loop.
Theoretically, if a second thread is reading index i of vector1 at the same time
that index i+1 is being updated, then the second thread should read the value
that was just stored at index i. Conceptually, synchronous updates are what
programmers are familiar with in sequential programs, which is why it was chosen
as the default policy.

However, synchronous updates are slow. Two network messages, an update and
an acknowledgment, and various context switches are required to update vector
elements on a remote node. For typical distributed-memory platforms, two mes-
sages can take thousands of processor cycles. If the semantics of the application
require synchronous updates, then little can be done to improve performance.
However, if the programmer knows that synchronous updates are not necessary for
correctness, then the write-intensive data-sharing pattern of the loop can be
optimized.

Consider the case where the shared vector is updated in a loop, but the updates
do not need to be performed synchronously. For example, the application
programmer may know that no other thread will be reading from the vector until
after the loop. In such a case, the programmer can choose to buffer the writes, flush
the buffers at the end of the loop, and batch-update the shared vector (Fig. 1b). So,
instead of two network messages for each update to a remote node, multiple
updates are sent in a single network message and there is one acknowledgment for
the whole buffer. If a buffer holds hundreds of updates, then the performance
improvement through amortizing the overheads is substantial.

Three new elements are required to use scoped behaviour to specify the optimi-
zation (Fig. 1b): opening and closing braces for the language scope and a system-
provided macro. Of course, the new language scope is nested within the original
scope and the new scope provides a convenient way to specify the context of the
optimization.

The NewBehaviour macro specifies that the release consistency optimization
should be applied to vector1. Upon re-compilation, and without any changes to
the loop code itself, the behaviour of the updates to vector1 is changed within the
language scope. The new behaviour uses buffers to batch the writes and automati-
cally flushes the buffers when the scope is exited.

At the shared-data class library layer (Table 1), the optimization is implemented
by creating a new handle (or wrapper) around the original vector1 object [8, 10].
The new handle object only exists within the nested scope and the object is of class
GVReleaseC. By redefining the access methods for GVector inside GVReleaseC
(i.e., compile-time), the optimization is implemented. By creating a new object
within the nested language scope, the application source code that uses vector1
does not have to be modified since, by the rules of nested scopes in block-structured
languages, the redefined code for the new handle will be automatically selected.
Actions, such as creating and flushing buffers, can be dynamically associated

1614 PAUL LU

FIG. 2. Matrix multiplication in Aurora.

with the constructor and destructor of the handle object inside the new scope (i.e.,
run-time) in a create-use-destroy model of the handles to the shared-data objects.

2.2. Example: Matrix Multiplication

We now consider a more complex example involving multiple shared-data objects
and different scoped behaviour optimizations, namely that of nonblocked, dense
matrix multiplication, as shown in Fig. 2. The basic process model is that of teams
of threads operating on shared data in single program, multiple data (SPMD)
fashion. The preamble is common to both the sequential and parallel codes
(Fig. 2a). The basic algorithm consists of three nested loops, where the innermost
loop computes a dot product and can be factored into a separate C-style function.

However, each matrix has a different access pattern and different properties
(Fig. 3). Different scoped behaviour optimizations can be applied to different
shared-data objects. In particular:

1. Matrix A is read-only. Also, each row is independent of other rows in that
it is never necessary to read multiple rows of Matrix A when computing a given row
in Matrix C.

2. Matrix B is read-only. Also, since all of Matrix B is accessed for each row
of Matrix A, the working set for Matrix B is large.

Given the size of Matrix B, it may be most efficient to move this data using
bulk-data transfer.

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1615

FIG. 3. Matrix multiplication: Different access patterns.

3. Matrix C is write-only. Specifically, the updated values in Matrix C do not
depend on the previous values in Matrix C. During the multiplication itself, the
previous values of Matrix C are never read.

Conceptually, we can view an optimization as a change in the type of the shared
object for the lifetime of the scope. As already discussed, the actual implementation
is based on the dynamic creation and destruction of nested handle objects with
redefined access methods in their classes (i.e., the new type for the original shared-
data object). As an example of per-object flexibility, three different data-sharing
optimizations (Table 2) are applied to the sequential code in Fig. 2b to create the
parallel code in Fig. 2c.

We describe the scoped behaviours in increasing order of complexity. Since the
scoped behaviours for vectors mC and mB require no changes to the source, we
describe them first. The scoped behaviour for vector mA is more complicated and it
requires some modest changes to the source code, so we discuss it last.

The scoped behaviours are:

1. NewBehaviour(mC, GVReleaseC, int). To reduce the number of
update messages to elements of distributed vector mC during the computation, the
type of mC is changed to GVReleaseC. As with the simple loop example, the
overloaded subscript operator batches the updates into buffers and messages are
only sent when the buffer is full or when the scope is exited. Also, multiple writers
to the same distributed vector are allowed. No lexical changes to the source code
are required.

2. NewBehaviour(mB, GVReadCache, int). To automatically create a
local copy of the entire distributed vector mB at the start of the scope, the type of
mB is changed to GVReadCache. Caching vector mB is an effective optimization
because the vector is read-only and reused many times. The challenge, as will be
discussed later, lies in how to efficiently transfer the required data into all of the
read caches. At the end of the scope, the cache is freed.

Note that dotProd() expects C-style pointers (i.e., int *) as formal parameters a
and b. Pointers provide the maximum performance when accessing the contents of
vector mB. Therefore the read cache scoped behaviour includes the ability to pass a

1616 PAUL LU

TABLE 2

Example Scoped Behaviours

Scoped behaviour Description

Owner-computes Threads access only co-located data.

Caching for reads Create local copy of data.

Release consistency Buffer write accesses.

Combined ‘‘caching for reads’’ and Read from local cache and buffer write accesses.
‘‘release consistency’’

Read-mostly Read from local copy; eager updates to replicas
on write. Currently only implemented for
scalars. Good for read-only and read-mostly variables.

C-style pointer to the newly created cache as the actual parameter to dotProd()’s
formal parameter b. Note that no lexical changes to the loop’s source code are
required for this optimization.

3. NewBehaviour(mA,GVOwnerComputes,int). To partition the parallel
work, the owner-computes technique is applied to distributed vector mA.

Owner-computes specifies that only the thread co-located with a data structure, or
part of a data structure, is allowed to access the data. These data accesses are all
local accesses. Given a block-distributed vector, the different threads of an SPMD
team of threads are co-located with different portions of the vector. Thus, each of
the threads in the team will access a different portion of the distributed vector.

Within the scope, vector mA is an object of type GVOwnerComputes and has
special methods doParallel(), begin(), end(), and step(). Only the
threads that are co-located with a portion of mA’s block-distributed data actually
enter the while loop and iterate over their local data. It is possible that some pro-
cesses are located on nodes that do not contain a portion of the partitioned and
distributed vector mA. These processes do not participate in the computation
because they do not enter the body of the while loop.

Note that function dotProd() also expects a pointer for formal parameter a.
Since the portions of vector mA to be accessed are in local memory, as per owner-
computes, it is possible to use a pointer. Therefore, GVOwnerComputes provides a
C-style pointer to the local data as the actual parameter to dotProd()’s parameter
a. Although some changes to the user’s application source code are required to
apply owner-computes, they are relatively straightforward.

The result of this heterogeneous set of optimizations is that the nested loops can
execute with far fewer remote data accesses than before. All read accesses are from
a cache or local memory; all write accesses are buffered. That is to say, the locality
of data references is greatly improved. In addition, the parallel program uses the
same efficient, pointer-based dotProd() function as in the sequential program.

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1617

Furthermore, the high-level semantics of scoped behaviours can be exploited for
further efficiencies [9]. Typical demand-paged DSM systems do not exploit
knowledge about how the data are accessed. For example, even when each element
of a data structure is eventually accessed (i.e., dense accesses), DSM systems send
an individual request message for each page of remote data. However, scoped
behaviours do contain extra semantic information. The read cache scoped behav-
iour specifies that all of vector mB is cached, therefore there is no need to transfer
each unit of data separately. The multiple request messages can be eliminated if the
data are streamed into each read cache via bulk-data transfer. Although the notion
of a bulk-data protocol is not new, scoped behaviour provides a convenient
implementation framework to exploit the high-level semantics. As another example,
vector mC is write-only, as opposed to read-write; therefore we can avoid the
overhead of demanding in the data since it is never read before it is overwritten.
Without a priori knowledge that the data is write-only, a programming system must
assume the most general and most expensive case of read-write data accesses.
Scoped behaviour can capture a priori knowledge about how data are used.

3. PERFORMANCE EVALUATION

We now compare and contrast the performance of two applications implemented
using three different types of parallel programming systems: Aurora, TreadMarks
(a page-based DSM system), and MPICH (a message-passing system). A subset of
the performance results with Aurora and MPICH has been previously reported
[10]. The results with TreadMarks are new and a larger cluster (16 nodes instead of
8 nodes) has been used for this performance evaluation.

Although there are differences in the implementations of the programs using the
different systems, care has been taken to ensure that the algorithms and the purely
sequential portions of the source code are identical. Also, different datasets for each
application are used to broaden the analysis and to highlight performance trends.

3.1. Experimental Platform

The hardware platform used for these experiments is a 16-node cluster of IBM
RISC System/6000 Model 43P workstations, each with a 133 MHz PowerPC 604
CPU, at least 96 MB of main memory, and a 155 Mbit/s ATM network with a
single switch. The ATM network interface cards are FORE Systems PCA-200
EUX/OC3SC, which connect to the PCI bus of the workstation. The ATM switch
is a FORE Systems Model ASX-200WG. This cluster was assembled as part of the
University of Toronto’s Parallelism on Workstations (POW) project.

The software includes IBM’s AIX operating system (version 4.1), AIX’s built-in
POSIX threads (Pthreads), the xlC_r C/C++ compiler (version 3.01), and the
ABC++ class library (version 2, obtained directly from the developers in 1995).
TreadMarks (version 0.10.1) is used as an example DSM system.

The run-time system of ABC++, which is also part of the Aurora run-time
system (Table 1), uses the MPICH (version 1.1.10) implementation of the Message-

1618 PAUL LU

Passing Interface (MPI) as the lowest user-level software layer for communication
[6]. For our platform, MPICH uses sockets and TCP/IP for data communication.
The ABC++ run-time system is a software layer above MPICH and adds threads
to the basic message-passing functions. A daemon thread regularly polls for and
responds to signals generated by incoming MPICH messages. The daemon can read
messages concurrently with other threads that send messages. Although the daemon
incurs context switching and polling overheads, it also has the benefit of being able
to pull data off the network stack in a timely and automatic manner.

The message-passing programs also use MPICH, but without the multiple
threads used in the ABC++ run-time system. These message-passing programs are
linked with the same MPICH libraries as in the Aurora system. Of course, there are
several different implementations of the MPI standard, each with their performance
strengths and weaknesses. Therefore, for precision, we will refer to these message-
passing programs as MPICH programs for the rest of this discussion.

All programs, Aurora, the ABC++ class library, MPICH, and TreadMarks are
compiled with −O optimization.

3.2. Applications, Datasets, and Methodology

As summarized in Table 3, the applications are a matrix multiplication program
(MM2) and a parallel sort via the Parallel Sorting by Regular Sampling (PSRS)
algorithm [7]. We have also experimented with a 2-D diffusion simulation and the
travelling salesperson (TSP) problem [11], but those applications do not have a
bulk-data transfer component so we do not discuss them here.

Matrix multiplication is a commonly used application from the literature and we
have extended it by using the output of one multiplication as the input of another
multiplication. In practice, the output of one computation is often used as the input
of another computation. Parallel sorting is an application that has been widely
studied by researchers because it has many practical uses. For this study, we are
primarily interested in the data-sharing behaviour of the applications, as noted in
the comments section of Table 3.

By design, large portions of source code are identical in the TreadMarks, Aurora,
and MPICH implementations of the same application. In this way, differences in
performance can be more directly attributed to differences in the programming
systems.

The speedups of all the programs are computed against sequential C implemen-
tations of the same algorithm (Table 3). In the case of PSRS, quicksort is used for
the sequential times. Therefore, the typical object-oriented overheads (e.g., tem-
porary objects and scoping) are not part of the sequential implementations, but are
part of the parallel implementations.

Unless noted otherwise, the reported real times are the averages of five runs
executed within a single parallel job. More specifically, the processes (or a single
process) are started up, the data structures are initialized, the data pages are
touched to warm up the operating system’s page tables, and then the computational
core of the application is executed five times within an outer loop. Measurement

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1619

TABLE 3

Summary of Applications and Datasets

Application Dataset Time (seconds) Comments

Matrix 512×512 110.6 (1 PE) Original implementation was for
multiplication matrices 11.7 (16 PE, MPICH) Aurora. Computes PP Q×R then
(MM2) Speedup of 9.49 RP Q×P. Initial values are

704×704 250.7 (1 PE) randomly generated integers. Allgather
matrices 25.2 (16 PE, MPICH) data-sharing pattern

Speedup of 9.94 (Figure 4.1 of [16]).

Parallel sorting by 6 million keys 14.4 (1 PE) Original implementation for shared
regular sampling 3.68 (16 PE, MPICH) memory [7]. Keys are randomly
(PSRS) Speedup of 3.91 generated 32-bit integers.

8 millions keys 19.9 (1 PE) Multi-phase algorithm. Broadcast,
11.21 (16 PE, MPICH) gather, and all-to-all patterns

Speedup of 1.78 (Figure 4.1 of [16]).

error, the activity of other processes on the system (e.g., daemon processes, disk
I/O), and other factors can cause small variations in the real times. Therefore, each
run is timed and the average time of the five runs is taken to be the solution time.
Unless noted otherwise, the observed range (i.e., minimum to maximum) of real
times of the runs is low relative to the total run time.

The datasets for matrix multiplication and PSRS are randomly generated.
A different random number seed is used for each run. For example, in matrix mul-
tiplication, the matrices contain values that are randomly generated using a differ-
ent seed for each run. Similarly, the keys sorted by PSRS are uniformly distributed
32-bit integers that are randomly generated with a different seed value for each run.
Different random number seeds are used to help eliminate anomalies in the initial
random ordering of keys for a given dataset size.

Throughout this discussion, the MPICH times are used as the baseline bench-
mark since it is generally acknowledged that message-passing programs set a high
standard of performance. Even though the MPICH programs are not always the
fastest, as can be seen in Table 3, they define the baseline in order to be consistent.

3.3. Matrix Multiplication

Design and Implementation. The matrix multiplication application used for this
evaluation is different from the program discussed in Section 2.2 in that two
separate matrix multiplications are performed in succession. There are two phases
separated by a barrier. In Phase 1, PP Q×R is computed. In Phase 2, RP Q×P is
computed. Note that matrix P is written to in the first phase and it is read from in
the second phase. Thus, the output of one multiplication is used as the input
of the next multiplication and the optimization needs of the matrices change

1620 PAUL LU

from phase-to-phase. It is assumed that all three matrices are block distributed
across the processors in the parallel job. Although the specific matrix computation
is synthetic, it is designed to reflect how shared data are used in real applications.

In Phase 1, matrices Q and R are read-intensive and matrix P is write-intensive.
In Phase 2, matrices Q (again) and P are read-intensive and matrix R is write-
intensive. As previously discussed, read-intensive shared data can be optimized
using either owner-computes or a read cache. Write-intensive shared data can be
optimized using release consistency. Alternatively, write-intensive accesses can also
be optimized using owner-computes if the data are appropriately distributed. Since
the access patterns for matrices P and R change from phase to phase, the
per-context flexibility of scoped behaviour is particularly valuable.

In the Aurora implementation, the same matrix multiplication function
mmultiply() is used for both phases, but the function is called with different
shared-data objects as the actual parameters. Function mmultiply() has formal
parameters mA, mB, and mC, which are all GVectors, and the function always
computes mCP mA×mB. In contrast to Fig. 2, the owner-computes scoped beha-
viour is applied to both mA and mC and the read cache scoped behaviour is applied
to mB. We can use owner-computes for mC because it is block distributed. In
Phase 1 of the program, mQ is multiplied with mR and assigned to mP [i.e., the
program calls mmultiply(..., mQ, mR, mP, ...)]. In Phase 2, mQ is multiplied
with mP and assigned to mR [i.e., the program calls mmultiply(..., mQ,
mP, mR, ...)]. Calling function mmultiply() with different actual parameters
is one form of per-context flexibility since data-sharing optimizations will be
applied to different matrices, depending on the call site.

Note that the only data sharing is for the read cache of formal parameter mB.
Since matrix mB is block distributed, loading the read cache always results in an all-
to-all communication pattern as each node sends a copy of its local portion to all
other nodes, and reads the data from the other nodes into a local cache. Snir et al.
describe this specific data-sharing pattern as ‘‘allgather’’ [16, Fig. 4.1]. Further-
more, each node sends the exact same data to each of the other nodes, which is dif-
ferent from the all-to-all communication pattern in the PSRS application discussed
below. The pattern in PSRS is described as ‘‘alltoall (vector variant)’’ [16].

In TreadMarks, the matrices are allocated from the pool of shared pages, so each
page of the shared matrix mB is demanded-in as it is touched by the nested loops of
the multiplication. Both the TreadMarks and MPICH programs have the exact
same mmultiply() function, with the matrix parameters passed as C-style
pointers. After the entire matrix mB has been locally cached, there is no more data
communication. As with Aurora, matrix mB is actually matrix mR during Phase 1.
In Phase 2, matrix mP is the actual parameter and thus must be demanded-in during
that phase. Since matrix mP is updated in Phase 1, reading from matrix mP in
Phase 2 invokes the relevant data consistency protocols in TreadMarks. There are
no per-matrix or per-context optimizations in TreadMarks.

For MPICH, the actual data for formal parameter mB is explicitly transferred
into a buffer before mmultiply() is called. Currently, this data transfer is
implemented using nonblocking sends and receives (e.g., using functions

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1621

MPI_Isend(), MPI_Irecv(), and MPI_Waitall()). So, in Phase 1, the entire
contents of matrix mR is transferred into a local buffer by explicitly sending the
local portion to all other nodes and explicitly receiving a portion of the matrix from
the other nodes. And, in Phase 2, matrix mP is transferred into local memory before
mmultiply() is called. In both phases, only the local portions of the other two
matrices are accessed, and the access is done using loads and stores to local
memory. Therefore, in the MPICH version, there is no need for data communica-
tions within the mmultiply() function itself.

Performance. The performance of the three different implementations of matrix
multiplication is shown in Figs. 4 and 5. In both figures, the top graph shows the
absolute speedups achieved by the systems for 2, 4, 8, and 16 processor nodes. The
bottom graph shows the speedups normalized such that the MPICH speedup is
always 1.00. For both the 512×512 and 704×704 datasets, all three systems
achieve high absolute speedups for up to 8 processors. For up to 16 processors,
both TreadMarks and Aurora show high speedups, but MPICH suffers in com-
parison. We discuss the MPICH results below. Overall, the high speedups are not
surprising since matrix multiplication is known to be an easy problem to parallelize.

The performance difference between ideal speedup (i.e., unit linear) and the
achieved speedup is generally due to the overheads of communicating matrix mB
and, to a lesser extent, due to the need for barrier synchronization in the parallel
programs. Speedups of between 13 and 14 on 16 processors are encouraging consid-
ering the relatively small datasets and the particular hardware platform. Even
though the 704×704 dataset requires 250.7 seconds of sequential execution time, it
is still a relatively small computational problem. For example, perfect unit linear

FIG. 4. Speedups for matrix multiplication, 512×512.

1622 PAUL LU

FIG. 5. Speedups for matrix multiplication, 704×704.

speedup on 16 processors requires a run time of 15.7 seconds for the 704×704
dataset. The fastest run time for that data point is achieved by the Aurora program
at 17.9 seconds for a speedup of 14.0. The real time difference between ideal and
achieved speedup is a fairly low 2.2 seconds, but that translates into a reduction of
2.0 in the absolute speedup.

Also, in recent years, processors have increased in speed at a greater rate than
networks have increased in speed. In effect, the granularity of work has actually
decreased (i.e., become worse for performance) for a given application and the
absolute speedups of 15 (or better) on 16 processors reported in previous papers
cannot be directly compared with these absolute speedups. As the number of
processors increases (i.e., processor scalability), Aurora maintains a consistent,
small, but growing, performance advantage over TreadMarks. This difference is
attributable to how the two systems handle bulk-data transfer and data consistency.

As previously discussed, Aurora exploits the semantics of the scoped behaviour
for a read cache to aggressively push data into remote caches. In contrast, Tread-
Marks transfers data using a request-response protocol that is invoked per-page
and on demand. Although there is a potential for increased contention during the
bulk-data transfer, as compared with a request-response protocol, our experimental
results show that bulk-data transfer results in a net benefit for this data-sharing
pattern. Also, since TreadMarks endeavours to provide a general-purpose data-
consistency model, the protocol overheads of fault handling, twinning, diffing, and
communication [13] are more expensive than the simpler approach taken in
Aurora. There is no consistency model per se in Aurora; rather, data are trans-
ferred, manipulated, and made consistent on a language scope basis according to
the create-use-destroy model of shared-data objects.

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1623

As the problem size increases (i.e., problem scalability), the performance gap
between TreadMarks and Aurora also increases. Whereas Aurora’s speedups are
higher using 8 and 16 processors for the 704×704 dataset than for the 512×512
dataset, TreadMarks’s speedups are consistently lower for the larger problem size.
For example, the normalized speedup for TreadMarks falls from 1.38 to 1.28 on 16
processors between the two datasets. Normally, as the problem size increases, the
granularity of work increases and speedups should also increase. This is especially
true of matrix multiplication since the computational complexity grows O(n3) and
the communication overheads grows O(n2). However, the lower speedups for the
larger problem suggests that there may be a bottleneck within TreadMarks. One
possible explanation is that the larger problem requires more shared pages, which
may result in more contention for the network, fault handling, and protocol pro-
cessing, as the larger matrix is demanded into each node. Also, the request-response
communication pattern used by TreadMarks exposes the entire per-page network
latency to the application, whereas the bulk-data transfer capability in Aurora
creates a pipelined exchange of data to hide more of the latency. Part of Aurora’s
design philosophy is to try and avoid bottlenecks due to contention by keeping the
data-sharing protocols as simple as possible (i.e., smaller handling and protocol
overheads) and by supporting custom protocols, as with bulk-data transfer (i.e.,
smaller incremental cost as amount of data increases).

In fairness, it should be noted that newer research versions of TreadMarks
include support for prefetching data, which may improve the performance of bulk-
data transfer. However, these versions of TreadMarks are not available for use in
this evaluation. And, even with prefetching, the consistency protocol overheads
remain an inherent part of TreadMarks.

The performance of MPICH begins to lag behind the performance of Tread-
Marks and Aurora starting (marginally) at 4 processors, with the gap increasing at
8 and 16 processors. For 16 processors, the normalized speedups for Aurora are
between 41% and 43% higher than for MPICH. First, we quantify and compare the
data communication overheads in Aurora and MPICH. The same analysis is not
performed for TreadMarks because it would require substantial modifications to
the TreadMarks source code. Second, we consider some possible explanations as to
why the overheads are higher for MPICH.

We isolated and measured the data-sharing overheads associated with matrix mB
in function mmultiply() for both the Aurora and MPICH programs. The results
for the 704×704 dataset are shown in Fig. 6 in terms of the number of seconds of
real time of overhead. Lower times imply less data-sharing overhead. These real
times are the average of five runs. Note that for the 16 processor case using Aurora,
each processor sends (i.e., local data to all nodes) and receives (i.e., remote data
from all nodes) approximately 1.77 MB of data, for a total of 3.54 MB of network
input/output for each read cache of matrix mB. Since there are two phases and two
read caches, a total of 7.09 MB of data is transferred per-node for each run. Of
course, the amount of data transferred is the same for MPICH.

Recall that the Aurora program applies the read cache scoped behaviour to
matrix mB. Two barriers were added to the Aurora program: one barrier just before

1624 PAUL LU

FIG. 6. Data-sharing overheads in matrix multiplication, 704×704, Aurora versus MPICH.

and one barrier just after the NewBehaviour macros for matrices mA, mB, and mC
in mmultiply(). The execution time between the barriers is taken to be the
data-sharing overhead since there is no more communications after the scoped
behaviours have been applied. Although all the behaviours are measured, the
overhead of the read cache dominates the reported times. Normally, these barriers
are not required because a process can proceed with the multiplication as soon as
its own local cache is ready, regardless of whether any other process is also ready to
proceed. By adding the barriers to this experiment, we measure the worst case times
for all processes to load their read cache.

Recall that the MPICH program loads the contents of matrix mB before calling
mmultiply(). So, by measuring the amount of time required for this localized set
of sends and receives, we obtain the total data-sharing overhead. As with the
Aurora program, we added a barrier before and after this data exchange phase of
the program, and the time between the barriers is taken to be the total data-sharing
overhead.

Figure 6 shows that the real-time overheads of Aurora are between 12% (0.98
seconds versus 8.0 seconds) and 80% (0.53 seconds versus 0.66 seconds) that of
MPICH for this particular data-sharing pattern. In the 16 processor case, the
MPICH overheads are over eight times higher than the Aurora overheads. For
MPICH, the overheads more than double as the number of processors doubles,
which suggests a significant bottleneck as the degree of parallelism is scaled up. In
contrast, Aurora’s overheads grow at a rate that is less than the increase in the
degree of parallelism.

Pinpointing the exact bottleneck in the MPICH program is difficult because a
number of software and hardware layers are involved and not all of these layers
(e.g., AIX’s implementation of TCP/IP) are open for analysis. In the following
discussion, we rely on our hands-on experience, the experimental evidence, and
previously published research to posit some possible explanations. We theorize that
Aurora’s bulk-data transfer protocol for this type of sharing outperforms MPICH
for two main reasons: First, Aurora’s use of UDP/IP avoids some of the protocol
overheads associated with TCP/IP. Second, Aurora avoids some of the overheads
associated with a lack of data buffering in MPICH. Note that Aurora continues to
use MPICH (and, thus, TCP/IP) for non-bulk-data transfers.

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1625

By using UDP, Aurora bypasses TCP’s congestion avoidance algorithms and
flow control mechanisms [3]. In an all-to-all data-sharing pattern, there will be
congestion and contention somewhere in the system, regardless of the parallel
programming system that is used. All processes are communicating at the same
time and contend for resources such as the network, the network interface, and the
network stack in the operating system. But, whereas TCP will conservatively back-
off before retransmitting to avoid flooding a shared network, a UDP-based
approach can retransmit immediately under the assumption that the network is
dedicated to the task at hand. This assumption is not generally valid on a wide area
network (WAN), but it is valid in our cluster environment. If a network is not
shared, waiting before retransmission wastes more network bandwidth through
idleness than it saves in avoiding further congestion. It is also possible that TCP’s
flow control mechanisms are degrading performance for this sharing pattern. The
interaction between TCP’s various mechanisms, such as positive acknowledgments,
windowed flow control, and slow start, can be complex, especially for our data-
sharing pattern [17, 18]. Without access to the AIX internals, it is difficult to be
more conclusive. However, in summary, TCP’s robust and conservative approach
to flow control is well-suited for shared WANs, but it is not necessarily optimal for
dedicated LANs, such as for our applications.

We note that TreadMarks also uses UDP/IP for its network protocol and
TreadMarks’s performance is much closer to Aurora than to MPICH. Although
TreadMarks’s use of UDP is quite different from Aurora, the similarities in
speedups between these two systems suggest that the main bottleneck is probably
either MPICH or TCP and is not the physical network. If the bottleneck lies within
TCP, then a rewrite of MPICH to use UDP for bulk-data transfer may close the
performance gap between all three systems. However, a UDP-based version of
MPICH is not currently available and we could not test this hypothesis. But, based
on the experimental evidence, the performance problems with MPICH are likely the
result of an unfortunate bottleneck instead of a fundamental design flaw with
message passing or MPICH.

Why are the performance problems with TCP/IP not better known? Many of the
published performance numbers for MPICH and TCP/IP are for single sender and
single receiver sharing patterns on a dedicated network. The simple sender-receiver
pattern and the dedicated network likely avoids any of the situations in which
congestion avoidance and flow control mechanisms come into play.

As for MPICH’s approach to data buffering, our experience is that large data
transfers, especially in all-to-all patterns, must be fragmented and de-fragmented by
the application programmer through multiple calls to the send and receive func-
tions. As per the MPI standard, buffering is not guaranteed for the basic
MPI_Send() and MPI_Recv() functions. Therefore, the MPICH programs suffer
from the additional overheads of fragmentation for large data transfers. Admit-
tedly, this problem could potentially be addressed in an alternate implementation of
MPI. Or, different buffering strategies can be tried using other versions of the send
and receive functions. In fact, a number of different strategies were tried without
achieving better results.

1626 PAUL LU

3.4. Parallel Sorting by Regular Sampling

Design and Implementation. The Parallel Sorting by Regular Sampling (PSRS)
algorithm is a general-purpose, comparison-based sort with key exchange [7, 15].
As with similar algorithms, PSRS is communication-intensive since the number of
keys exchanged grows linearly with the problem size.

The basic PSRS algorithm consists of four distinct phases. Assume that there are
p processors and the original vector is block distributed across the processors.
Phase 1 does a local sort (usually via quicksort) of the local block of data. No
interprocessor communication is required for the local sort. Then, a small sample
(usually p) of the keys in each sorted local block is gathered by each processor. In
Phase 2, the gathered samples are sorted by the master process and p−1 pivots are
selected. These pivots are used to divide each of the local blocks into p partitions.
In Phase 3, each processor i keeps the ith partition for itself and gathers the ith
partition of every other processor. At this point, the keys owned by each processor
fall between two pivots and are disjoint with the keys owned by the other proces-
sors. In Phase 4, each processor merges all of its partitions to form a sorted list.
Finally, any keys that do not reside in the local data block are sent to their respec-
tive processors. The end result is a block-distributed vector of sorted keys.

Conceptually, a multi-phase algorithm with several shared-data objects, like
PSRS, is particularly well-suited for the per-context and per-object data-sharing
optimizations in Aurora. The optimizations required, and the objects that are
optimized, differ from one phase to another phase. Table 4 summarizes the phases
of PSRS and the main Aurora optimizations. Note that the data movement in
Phase 3 is implemented with distmemcpy(), which is a memcpy()-like construct
that transparently handles shared-data vectors, regardless of the distribution and
location of the local bodies. Function distmemcpy() is invoked by the reader of
the data and is another example of asynchronous or one-side communication since
it does not require the synchronous participation of the sender. The function inter-
acts directly with the daemon thread on the sender’s node.

TABLE 4

Per-Context and Per-Object Optimizations in Aurora’s PSRS Program

Phase Algorithm Main optimizations in Aurora

1 Sort local data and Sort local data using owner-computes.
gather samples. Samples are co-located with master and

are gathered using release consistency.

2 Sort samples, select pivots, and Master sorts samples using owner-computes.
and partition local data. Pivots are accessed from a read cache.

3 Gather partitions. Partitions are gathered into local memory
using distmemcpy().

4 Merge partitions and Merge partitions in local memory.
update local data. Note. Partitions are merged, NOT sorted.

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1627

In the Aurora program, some optimizations are based on the programmer’s
knowledge of the application’s data-sharing idioms. For example, there is a mul-
tiple-producer and single-consumer sharing pattern during the gathering of sample
keys in Phases 1 and 2 (see [9]). This pattern has also been described as a gather
operation [16]. Note that the vector Sample has been explicitly placed on pro-
cessor node 0. In Phase 1, the samples are gathered by all processor nodes and
optimized using release consistency. Each processor node updates a disjoint portion
of the vector. In Phase 2, the master node (i.e., processor node 0) sorts all of the
gathered samples. Since Sample is co-located with the master, we can use the
owner-computes optimization and call quicksort() using a C-style pointer to
the local data, for maximum performance.

Two other implicit optimizations are also present in the Aurora program. First,
Sample is updated in Phase 1 without unnecessary data movement and protocol
overheads. With many page-based DSM systems, updating data requires the writer
to first demand-in and gain exclusive ownership of the target page. However, with
Aurora, the system does not need to demand-in the most current data values for
Sample because it is only updated and not read in Phase 1. And, since the different
processor nodes are updating disjoint portions of the vector, there is no need to
arbitrate for ownership of the page to prevent race conditions. By design, the
scoped behaviour allows the programmer to optimize disjoint, update-only data-
sharing idioms. Second, since the local body for Sample is explicitly placed on
processor node 0, the updated values are sent eagerly and directly to the master
node when the Phase 1 scope is exited. Therefore, there is no need to query for and
demand-in the latest data during Phase 2, as would be the case for many DSM
systems.

An explicit optimization is the bulk-data transfer protocol that is part of
distmemcpy(). It is presumed that distmemcpy() is primarily used for trans-
ferring large amounts of data, so a specialized protocol is justified. In contrast to
the ‘‘always exchange all the data’’ (i.e., ‘‘allgather’’) semantics and all-to-all
sharing of a read cache in matrix multiplication, distmemcpy() uses a one-to-one
protocol; there is only one receiver of the data transfer. As with the previous bulk-
data protocol, the new protocol uses UDP instead of TCP and improves perfor-
mance by adopting a more aggressive flow control strategy. And, as with the read
cache optimization, bulk-data transfer has a net benefit despite the possibility of
increased contention during the data transfer.

The TreadMarks program is a direct port of the original shared-memory
program for PSRS [7]. All of the shared data structures reside on shared-memory
pages and the basic demand-paging mechanisms of TreadMarks react to the chan-
ging data-access patterns of each phase. Unlike Aurora, there are no mechanisms
for avoiding the protocol overheads for write-only data and to eagerly push data to
the node that will use it in the next phase (i.e., Sample in Phases 1 and 2).
However, for the 6 and 8 million datasets used in this evaluation, the main deter-
minant of performance is the efficiency of the data transfer in Phase 3, as we will
see below.

1628 PAUL LU

The MPICH program implements with explicit sends and receives what Aurora
implements with the scoped behaviour and data placement strategies described
above. For example, like Aurora and unlike TreadMarks, the MPICH program
does not perform a message receive for the contents of Sample in Phase 1 before
updating them. The gathered sample keys are sent eagerly with a single message
send in preparation for Phase 2.

Performance. The performance of PSRS is given in Figs. 7 and 8. The MPICH
version of PSRS is faster than both Aurora and TreadMarks for the 2 processor
data points. The TCP-based data transfer in MPICH is very effective when there is
relatively low contention, such as when only 2 processors exchange data. However,
as the number of senders and receivers increases with the degree of parallelism,
both TreadMarks and Aurora begin to significantly outperform MPICH. Benefit-
ing from the UDP-based bulk-data transfer protocol, Aurora achieves the highest
performance for all the 4, 8, and 16 processor cases.

Except for the 2 processor data points, Aurora is consistently faster than Tread-
Marks by margins of up to 25%. As with matrix multiplication, the performance
difference grows with the size of the problem because Aurora’s bulk-data transfer
protocol is better at pipelining larger data transfers than TreadMarks’s request-
response protocol.

The performance advantage of Aurora over MPICH grows with both the degree
of parallelism and the size of the dataset. With more processors, there is more con-
tention for various hardware and software resources. With more keys to sort,
Phase 3 grows with respect to the amount of data transferred. For the smaller 6
million key dataset, Aurora is 52% faster than MPICH when using 16 processors.

FIG. 7. Speedups for parallel sorting (PSRS), 6 million keys.

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1629

FIG. 8. Speedups for parallel sorting (PSRS), 8 million keys.

For the larger 8 million key parallel sort, Aurora is 380% faster than MPICH on 16
processors. The normalized speedups bars for 16 processors and the 8 million key
dataset are not shown in Fig. 8 because they are too large for this pathological data
point.

The problem with MPICH (and TCP) for this application is even worse than
these numbers indicate. The variations in the real times of the MPICH program on
16 processors are so large that the reported numbers are the minimum values over
five runs, instead of averages. The average values are up to 40% higher than the
minimum values. The problem, once again, is large data transfers between multiple
senders and receivers. As we saw previously with matrix multiplication, Aurora and
TreadMarks are UDP-based and avoid the performance problems with the TCP-
based MPICH for these data transfers. Interestingly, the original implementation of
distmemcpy() in Aurora did not have a UDP-based bulk-data transfer protocol
and it suffered from the same high variability and low performance problems
exhibited by MPICH. When the bottleneck was identified, the new bulk-data
transfer protocol was implemented in the Aurora software layers and without any
changes to the PSRS source code.

4. CONCLUDING REMARKS

When developing applications for distributed-memory platforms, such as a network
of workstations, shared-data systems are often preferred for their ease-of-use.
Therefore, researchers have experimented with a number of DSM and DSD
systems. A system that provides the benefits of a shared-data model and that can
achieve performance comparable with a message-passing model is desirable.

1630 PAUL LU

The Aurora DSD system takes an abstract data type approach to a shared-data
model. Aurora achieves good performance through flexible data-sharing policies
and by optimizing specific data-sharing patterns. What distinguishes Aurora is its
use of scoped behaviour to provide per-context and per-object flexibility in applying
data-sharing optimizations.

Scoped behaviour is both an API to a set of system-provided data-sharing opti-
mizations and an implementation framework for the optimizations. As a frame-
work, one advantage of scoped behaviour is how it carries semantic information
about specific data-sharing patterns across software layers and enables specialized
per-object and per-context protocols. We have described how, when loading a read
cache in matrix multiplication, the scoped behaviour is specified by the application
programmer. Furthermore, the knowledge that all processes must participate in the
bulk-data transfer and all of the data must be transferred is passed down to
Aurora’s run-time layer and exploited using a bulk-data transfer protocol. A similar
protocol is used when exchanging keys in a parallel sort.

In a comparison of the two applications implemented using Aurora, Tread-
Marks, and MPICH, the performance of Aurora is comparable to or better than
the other systems. MPICH appears to suffer performance problems due to its
reliance on TCP/IP for bulk-data transfers, even in a high-contention all-to-all
pattern. TreadMarks suffers from its reliance on a request-response data movement
protocol. In contrast to MPICH, Aurora uses UDP/IP for bulk-data transfers to
avoid the protocol bottlenecks of TCP/IP. In contrast to TreadMarks, the scoped
behaviour pipelines the data transfer to avoid the message and latency overheads of
TreadMarks’s request-response protocol. The pipelining is possible because the
scoped behaviour encapsulates the fact that all of the data must be transferred and
the system can be more proactive instead of reactive. Consequently, on a network
of workstations connected by an ATM network, Aurora generally outperforms the
other systems in the situations where a bulk-data transfer protocol is beneficial.

ACKNOWLEDGMENTS

Thank you to the anonymous referees for their comments. This work was part of my Ph.D. research
at the University of Toronto. Thank you to Toronto’s Department of Computer Science and NSERC
for financial support. Thank you to ITRC and IBM for their support of the POW Project. This work
has been supported by an NSERC Operating Grant and a research grant from the University of Alberta.

REFERENCES

1. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel,
TreadMarks: Shared memory computing on networks of workstations, IEEE Comput. 29(2)
(February 1996), 18–28.

2. H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum, Orca: A language for parallel programming of
distributed systems, IEEE Trans. Software Engrg. 18(3) (March 1992).

3. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R. H. Katz, TCP behavior of a
busy internet server: Analysis and improvements, in ‘‘Proceedings of IEEE Infocom, San Francisco,
CA, March 1998.’’

INTEGRATING BULK-DATA TRANSFER INTO AURORA 1631

4. J. K. Bennett, J. B. Carter, and W. Zwaenepoel, Munin: Distributed shared memory based on type-
specific memory coherence, in ‘‘Proceedings of the 1990 Conference on Principles and Practice of
Parallel Programming,’’ Assoc. Comput. Mach., New York, 1990.

5. J. O. Coplien, ‘‘Advanced C++: Programming Styles and Idioms,’’ Addison–Wesley, Reading, MA,
1992.

6. N. E. Doss, W. D. Gropp, E. Lusk, and A. Skjellum, ‘‘A Model Implementation of MPI,’’ Technical
Report MCS-P393-1193, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, 1993.

7. X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi, On the versatility of parallel
sorting by regular sampling, Parallel Comput. 19(10) (October 1993), 1079–1103.

8. P. Lu, Implementing optimized distributed data sharing using scoped behaviour and a class library,
in ‘‘Proceedings of the 3rd Conference on Object-Oriented Technologies and Systems (COOTS),
Portland, Oregon, June 1997,’’ pp. 145–158.

9. P. Lu, Using scoped behavior to optimize data sharing idioms, in ‘‘High Performance Cluster
Computing: Programming and Applications’’ (R. Buyya, Ed.), Vol. 2, pp. 113–130, Prentice Hall
PTR, Upper Saddle River, NJ, 1999.

10. P. Lu, Implementing scoped behaviour for flexible distributed data sharing, IEEE Concurrency 8(3)
(July–September 2000), 63–73.

11. P. Lu, ‘‘Scoped Behaviour for Optimized Distributed Data Sharing,’’ Ph.D. thesis, University of
Toronto, Toronto, ON, Canada, January 2000.

12. W. G. O’Farrell, F. Ch. Eigler, S. D. Pullara, and G. V. Wilson, ABC++, in ‘‘Parallel Programming
Using C++’’ (G. V. Wilson and P. Lu, Eds.), MIT Press, Cambridge, MA, 1996.

13. E. W. Parsons, M. Brorsson, and K. C. Sevcik, Predicting the performance of distributed virtual
shared-memory applications, IBM Systems J. 36(4) (1997), 527–549.

14. H. S. Sandhu, B. Gamsa, and S. Zhou, The shared regions approach to software cache coherence, in
‘‘Proceedings of the Symposium on Principles and Practices of Parallel Programming, May 1993,’’
pp. 229–238.

15. H. Shi and J. Schaeffer, Parallel sorting by regular sampling, J. Parallel Distrib. Comput. 14(4)
(1992), 361–372.

16. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, ‘‘MPI: The Complete
Reference,’’ MIT Press, Cambridge, MA, 1996.

17. W. R. Stevens, ‘‘TCP/IP Illustrated. Vol. 1. The Protocols,’’ Addison–Wesley, Reading, MA, 1995.

18. G. R. Wright and W. R. Stevens, ‘‘TCP/IP Illustrated. Vol. 2. The Implementation,’’ Addison–
Wesley, Reading, MA, 1995.

PAUL LU is an Assistant Professor of Computing Science at the University of Alberta. His B.Sc. and
M.Sc. degrees in Computing Science are from the University of Alberta. He worked on parallel search
algorithms as part of the Chinook project. His Ph.D. (2000) is from the University of Toronto and is in
the area of parallel programming systems. He has collaborated with researchers at IBM’s Center for
Advanced Studies (CAS) in Toronto. In 1996, he co-edited the book ‘‘Parallel Programming Using
C++’’ (MIT Press). His current research is in the areas of high-performance computing and systems
software for cluster computing. http://www.cs.ualberta.ca/~paullu/

1632 PAUL LU

	1. INTRODUCTION
	TABLE 1

	2. SCOPED BEHAVIOUR AND THE AURORA SYSTEM
	FIG. 1
	FIG. 2
	FIG. 3
	TABLE 2

	3. PERFORMANCE EVALUATION
	TABLE 3
	FIG. 4
	FIG. 5
	FIG. 6
	TABLE 4
	FIG. 7
	FIG. 8

	4. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

