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In this paper several techniques for numerical conformal map-
ping are surveyed and their applications to the development of
novel methods in shape analysis and image classification are dis-
cussed. One of these techniques, based on the Szegd kernel, is
illustrated by examples comprising distance transform and face
representation and recognition. A conformal mapping-based face
representation is presented. This face representation techmique
combined with an eigenface-based method extends and improves
the results obtained with other eigenface algorithms.
demic Press, Inc.
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1. INTRODUCTION

In this paper, several techmiques for the numerical
computation of the conformal transformation between an
arbitrary {but generally closed and simply connected) re-
gion of the complex plane and a fixed domain (e.g., the
unit circle) are surveyed. This work explores the poten-
tial capabilities of these mappings as a way of represent-
ing shapes obtained from a two-dimensional digita}l im-
age, Conformal maps have been proposed as a model of

image representation by the human brain {2]. Since con-
formal mappings are one-to-one, no information is lost,
and their high non-linearity is expected to provide an
easy way of distinguishing small differences between two
such shapes. Furthermore, conformal maps preserve
some essential features of visual information.

The next two sections will be devoted to the analysis
and discussion of several computational techniques ap-
pearing in the literature. All of them rely on the Riemann
Mapping Theorem [3], which guarantees the existence of
a unique function f from a certain region onto the mit
circle, provided that a few conditions on the values of f
and its derivative at a certain fixed point z; are satisfied.
The techniques analyzed are Symm’s integral equation
method [4-7], Schwarz—Christoffel’s methods [8-12],
Fornberg’s method [13], and the Szegd integral equation
[14-17].

In Section 4, some definitions related to conformal
mapping are given. The way “‘relevant features’’ are pre-
served by the application of conformal maps is analyzed.

In Section 5, a conformal map application to “‘eigen-
faces’ (technique developed by Sirovich and Kirby [1]) is
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presented. The conformal map space as a uniform envi-
ronment for face representation is also analyzed. Several
new algorithms for face representation are shown, and a
discussion of experimental results obtained with a face
data base of more than 120 images is also reported.

2. NUMERICAL METHODS FOR CONFORMAL MAPPING

A **conformal mapping”’ of a domain D is any function
S with continuous partial derivatives on D, such that the
oriented angle formed by the tangent vectors of two inter-
secting paths on D is preserved in the image of D by f
[18]. In particular, orthogonal paths, such as equipoten-
tial and field lines, in D are mapped to orthogonal paths in
SD) (Fig. 1).

Every conformal mapping is a holomorphic function
with non-zero derivatives. Besides its theoretical rele-
vance, conformal mapping methods have been applied to
the solution of 2D potential problems on conservative
(temperature, electro-magnetic, gravitational, etc.)
fields; to impedance/admittance charts in electrical engi-
neering; and to cartography (Mercator projection,
Gauss—Kriiger representation, etc.). In [19], it has been
applied to texture mapping in computer graphics.

In this section, three methods for numerical evaluation
of a conformal mapping are reviewed.

2.1. Symm’s Integral Equation Methods

A classical approach [4-7] to the computation of the
conformal mapping f(z) from an arbitrary simply con-
nected domain D with smooth boundary 4D onto the inte-
rior of the unit circle in the w-plane is given by the ex-
pression

w :f(z) — e]Og(Z‘Zﬂ)+7(Z:ZU), (])
where z; is the pre-image of the center of coordinates of
the w-plane, y = g + ik is an analytic function, and
Z € dD,

2(z) = —log |z — z, (2)

8D

FIG. 1. Conformal mapping and orthogonal paths.

is the boundary condition. Setting zp equal to zero, the
single-layer logarithmic potential representation of g(z)
becomes

g = [ o(loglz - ¢ |, 3)

where o (£) is the source density. Since g(z) is continuous
at the border, it follows from (2) and (3) that

[ o@loglz - ¢ |dtl = —log ||, z€aD. @)

To solve the integral equation (4), a suitable approxi-
mation to o (£} must be provided.

In [6], the integration interval is partitioned into N sub-
intervals, and a ladder model for ¢ is proposed. A beiter
approximation is found in [5], where the interval is uni-
formly partitioned and an interpolating piecewise polyno-
mial of degree 2, ¢(s) = 2, Pi(s)o, is constructed,

In [7], an iterative scheme is proposed to calculate the
coefficients f; of the Fourier series expansion of o(u) =
Ef:_x e,

This method computes both the module and the argu-
ment of the mapping function and, due to unavoidable
numerical errors, the uniform model is lost. Also, the
main step of the outlined procedure (i.e., Eq. (4)) is a
Fredholm integral equation of the first kind with a smooth
kernel (wherever { does not belong to the interval of
integration). The ill-conditioning of such equations is
well known (see [20]). Nevertheless, in [5] the authors
assume that the characteristics of the spectrum of the
operator associated to the kernel will guarantee conver-
gence. Neither a method for the computation of the map-
ping f for points in the interior of D nor one for the evalu-
ation of the inverse f'=" is given.

2.2. Schwarz-Christoffel Methods

The Schwarz—Christioffel (SC) formula maps the unit
disk or the upper half-plane onto an arbitrary polygon
with exterior angles 8; at the N corners w;, developing a
one-to-one correspondence f between the borders of
these regions (supposed analytic in the open domain D
and continuous at the boundary 4D; see [3]}.

Starting with the expression of the derivative of f,

ﬁzcﬁ@_gﬂ,

dz k=1 i ()
it is easy to see that the image of the function f turns the
right angles at the points 2, & = 1, . . . , N, which are
called the prevertices and which satisfy w, = f{z;) when
the circle or the X axis is followed such that the region
remains to the left of the curve, Integrating, the SC for-
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mula is obtained:

w=wc+cﬁﬁ (1_9-@% 6)
=1 i

Nevertheless, further normalization conditions are
needed to obtain a uniguely determined map. Two suit-
able choices would be to fix three of the boundary points
Zx, or to fix one point z; and to let w, be equal to an
arbitrary location within the polygon.

The first numerical task is to find the values of the
accessory parameters zi, . . . , Zn, C, and w, that pre-
serve the shape of the region. To do this computation,
Trefethen suggests in [9] normalizing and formulating a
nonlinear system of equations that provides the correct
lengths of the sides of the image polygon.

As the integrand of the equation (6) is analytic, no
problems arise,

For the evaluation of the inverse mapping two alterna-
tive procedures are proposed: the first is inverting (5),
which leads to an ODE system, where any standard
solver may be used; and the second is developing an
iterative. Newton approximation using (6), where the w’s
are known.

In recent years, a number of extensions of the SC for-
mula were presented. As a first example, the solution for
circular arc polygons [10] should be mentioned. In [10], a
differential equation involving first and second deriva-
tives of the desired function—as well as the preimages of
the vertices and the external angles of the polygon—is
solved by the evaluation of the Taylor coefficients cen-
tered at the origin of the vertices, by means of adequate
recurrence relations.

Also, the mapping of an annulus formed by two circles
of radii p, and p, onto a given double-connected region is
presented in [11]. In order to overcome the ill-condition-
ing of the standard SC transform for elongated regions, a
new formula is introduced in [12] for the evaluation of the
conformal mapping from an infinite strip parallel to the x-
axis onto an arbitrary—possibly open—polygon. It re-
mains to be analyzed if this approach does not lead to a
severe scaling problem, due to the dispersion of the pre-
images of the vertices along the two lines that determine
the strip.

Finally, a generalization of the method was introduced
by Davis in [8]. Equation (5), which gives the map from
the upper half-plane onto a polygon, is rewritten as

% - Ce—ZQ’:.ﬁkln(l—Z/Zk)l (7

For a smooth border, differential elements may be con-
sidered; and in the limit, when 8(k) approaches df and z;
approaches {, an integral equation is obtained:

g . Ceﬁ_]'lntl—zf{)d,el (8)

The special case in which the boundary has corners can
be included in (8). It suffices to treat 8 as a step function
at the corners. Of course, the analytic expression for 8 is
not known and must be guessed. The procedure sug-
gested by Davis (which also fits the linear case) involves
the piecewise-polynomial approximation of 8 and per-
forming an iterative calculation of the parameter values
under the assumption that the length of each side of the
polygon is nearly proportional to the length of the corre-
sponding segment of the real axis. At each step the values
are updated using a quadrature of Eq. (8) that employs a
modified trapezoidal rule. Once again it is seen that gen-
eral formulas do not lead to easy calculations. Thus, un-
less a good model for the unknown variable is provided,
less general methods are used.

2.3. The Fornberg Method

This method, presented by Fornberg [13], is based on
the possibility of writing an analytic function as a Taylor
series. The goal is then to find the Taylor coefficients (or
a good approximation to them) that describe the Riemann
function f (analytic) that conformally maps the unit circle
onto a region D bounded by any smooth simply con-
nected curve 4D.

The idea is based on moving N points, ordered mono-
tonically along the boundary curve 4D, so that, through
the unknown mapping f, they will come to correspond to
the N roots of unity on the unit circle.

In [13], an iterative way to calculate an approximation
of the Taylor coefficients and to find the boundary corre-
spondence is presented. This method is general, in the
sense that the mapping of all points of D (the closure of
D) is calculated in the same form. Once the series coeffi-
cients are obtained, computing the function in any point
reduces to the evaluation of the series,

A disadvantage of the method is that it requires infor-
mation about the boundary curve and its first derivative
for moving the points. Another problem is that the Taylor
series may converge slowly, and truncation may produce
large errors in the evaluation of the mapping.

3. THE SZEGO INTEGRAL EQUATION

3.1. Introduction

In this section, a technique based on the Szego kernel
will be reviewed. This method will be used for all the
applications presented in this paper, thus special cover-
age will be devoted to this relatively recent technique for
conformal maps.

Let D be a smooth, bounded, and simply connected
domain. The Szegd kernel S [21] is associated with the
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orthogonal projector onto the subspace of all square-inte-
grable functions of the boundary 4D that are boundaries
of some holomorphic function of D. The Riemann map-
ping f from D onto the unit circle is related to § by the
following two equations:

f(z) =2x i,z((; ;‘)) , forz €D, (9)
_ 1.2
Az) = ; ¥(2) T for z € 4D, (10)

where y(z) is the unit vector tangent to &¢D at z(¢). The
reason for the use of .S is that it can be computed as the
solution of a second-kind Fredholm integral equation,
that is, a numerically stable problem.

3.2. Description of the Method

1t is necessary to make some assumptions: 4D is as-
sumed to be twice continuously differentiable. Conse-
quently, 3D can be parameterized as z(z), 0 =t = 3, with
the property that z(0) = z(8), (0) = (@), 2(0) = #(8), with
Z(8) = dz/dt #+ 0 for all ¢.

THEOREM | [15]. S(z, @) as a function of z Is the
unique solution of the integral equation

B + [ _ A, wihw)do, = g2), z€D, (1)
where o, is the arc length on 3D,
A is the Kerzman-Stein kernel [14], defined as

weEdD, z€dD,w#z

der | H(z, w) — H(w, 2),
Alz, w) =
0, w=z€aD. (12)
H is the Cauchy kernel, defined as
w 1 7@
Haw) = i —w 13
and g is defined as
2(2) ¥ Hia, 2). (14)

Using another parameterization, the integral equation
(11) becomes

Y@ + [C k, 9Yoods = Q). 0=c=p, (15)

with

Y() = |20)]"?h(z(1)), (16}

Q(2) = [2(0)]"g(z(r)), (17)

K, 5) = [0 2s)PACL), 2(s). (18)
The integral equation (15) can be solved using Nystrén's
method. Taking advantage of the periodicity of all the
functions of Eq. (15), » equidistant collocation points t; =
(i — 1)B/n and the trapezoidal ruie for Nystron’s method
are chosen to obtain

Bl xe]

Y() + ﬁ: ki, Y() = Q), 1=i=n (19
i=1

Defining the skew-Hermitian matrix B by

8,5 ki, 1) 20)
and
x; = Y(), yi= ), (21
the equation (19) can be rewritten as
(I + B)x =y. N

The system of complex linear equations (22) can be
solved by application of the Generalized Conjugate Gra-
dient Method ([17] or Appendix B). By discretization of
Eq. (15) the following natural interpolation formula is
provided:

Y(1) = Q1) - 52‘1 k(t, £)Y;. (23)

Unfortunately, Eq. (23) can be used only for the bound-
ary, because A(#;, ¢;) in the integral equation (15) is only
defined on the boundary dD. This formula cannot be gen-
eralized to the interior of the region D. The Riemann
mapping f can be written in terms of the boundary cor-
respondence function §(¢) as

flz(1) = 4. (24)
Differentiating (24) yields
[ (Z0)2(0) = ie®4(). (25)

Using (9), (16), and (25), 6(r) is computed (without inte-
gration) using the following formula:

8(t)y = arg[—iQXnZ()]. (26)
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If the derivative 8(¢) is needed, taking absolute values in
(25) yields
6(1) = m/$(a, @)|Qz). 27)

The value of S(a, a) can be calculated using the following
formula [15}:

Sta. a) = | [Yx0)ldr. (28)

The inverse of the Riemann mapping function, f*-1,
will be approximated by a polynomial of degree m — 1
(m > n). Details of the procedure are given in Appendix
C.

3.2. Discussion

The importance of the Kerzman—Stein method resides
in that it gives a way to calculate the mapping from an
arbitrary region onto the unit circle (briefly, direct map-
ping) and information (without additional cost) for com-
puting the inverse mapping.

Under the conditions of smoothness and boundedness
for the domain D, and the twice differentiability of the
boundary 2D, the second-kind Fredholm equation (15) is
guaranteed to be well-posed [20].

The convergence in solving the equation (22) by using
the Conjugate Gradient Method is assured by the skew-
hermitian property of the system’s matrix.

The principal reasons that motivate the implementa-
tion of this method are that it can be applied to arbitrary
regions, where other methods cannot be used, and the
possibility of calculating the inverse mapping for specific
applications.

Using Cauchy’s theorem and the values of the function
fin the border, it is possible to compute the value of fin
the interior of the region.

3.4. Algorithm

Step 1. Extract samples of the border of the region. This
may be done by application of a contour follow-
ing algorithm, by an analytic expression of the
curve, or in an interactive form.

Step 2. Fit the samples with B-splines, obtaining a para-
metrical description of the border.

Step 3. Choose N equally spaced coltocation points #; =
i/N for the parameter,

Step 4. Construct the matrix B; (Eq. (20)).

Step 5. Solve the system of the equation (22) by applica-
tion of the Generalized Conjugate Gradient
Method.

Step 6. Compute the value of 8(¢} using the equation (26).

Step 7. If the inverse mapping is needed, follow the steps
of Appendix C.

Step 8. Compute the value of the function fin the interior
of the region by application of Cauchy’s theorem.

The mapping obtained by the application of this
method was compared with the analytic result for the
mapping of some simple curves—i.e., ellipse, apple (epi-
trochoid), eccentric circle, etc. In this numerical test the
error obtained was less than 0.3%. For the image size
used (260 x 400), this error is negligible at a pixel level.

3.5. Implementation Details

The Szegd kernel method was implemented for the
conformal mapping from an arbitrary region onto the unit
circle.

An approximation of the region’s boundary was ob-
tained by using B-splines [Appendix A]. This representa-
tion assures the twice continuously differentiability of oD
and gives a direct evaluation of the directions of the tan-
gents in every point,

Taking advantage of the characteristics of the complex
system of equations (the system’s matrix is skew-hermi-
tian}, the resolution was done using the Conjugate Gradi-
ent Method [Appendix B], with the Orthomin variant.
The method described in Section 3 was implemented for
the computation of the inverse mapping.

All programs (B-spline fitting, Conjugate Gradient
Method for complex systems, Szegd integral equation
solution, eigenfaces decomposition (see Sections 4 and
5}, and toois for image manipulation) were written in *‘C”’
on the AIX system running on a RISC System/6000 and
X-windows tools were used to display the results.

4. APPLICATIONS TO IMAGE PRCCESSING

4.1 Definitions

Conformal Transformation. Let D be a region of the
z-plane and let f z — w = f{z) be a conformal map of D
onto a region E of the w-plane, withz = x + ivand w =
u + iv. The coordinates of the z-plane and of the w-plane
arc related by

u
v
Let a real-valued function ¢: (x, ¥) = ¢{x, y) = &(z) be

defined in D. A function  may then be defined in E as
follows: for any w € E,

u(x,y) or [x = x(u, v) 29)

v(x, y) y = y(u, v).

Yw) 1= (ST w)) = d(x(u, v), y(u, v)).  (30)

Thus the value of ¢ at w is equal to ¢ at the pre-image
of w under the map f. The function ¥ is called a conformal
transformation of ¢ under the mapping f. It also holds
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that

dlx, yy = Plulx, y), vlx, y)). (3

The complex gradient of ¢ is the complex function

¢ g

Vo (r, )= S (e ) F i (). ()

The Laplacian of ¢ is the real-valued function

P

2
%mwﬁjmwﬁwmy 33)

ox

4,2, Distance Transform

Consider a digital binary image. A distance transform
is an operation that converts this binary image to a gray-
level image where all pixels have a value corresponding
to the distance to the nearest boundary pixel [22].

For testing the application of conformal transformation
to images, the distance transform of a digital image is
taken as the function ¢. Figure 2A shows the distance
transform of a character and its conformal transforma-
tion. Note that the character structure and the angles
between curves are preserved.

FIG. 2. (A) Distance transform of an image and its conformal trans-
formation. (B} The point density variation for the conformal mapping.

4.3. Preservation of "‘Relevant Features’’

Some of the most relevant features associated with the
appearance of an image are its intensity edges. Classical
methods for detecting edges in an image are based on
gradient operators [23, pp. 351-353]. Estimators for the
gradient functions work best when the gray-level transi-
tions are abrupt, like those of a step function. One fre-
quently encountered operator is the Laplacian operator,
defined as in Subsection 4.1. A well-known edge detec-
tion is given by the position of the zero-ciossings of the
Laplacian of the image. Since the conformal transforma-
tion does not change the sign of the Laplacian (see Theo-
rem 1 below), then its zero-crossings are preserved. Fur-
thermore, since the conformal map preserves angles, the
conformal transformation of an image will show the same
structure of zero-crossings as the original image.

TueoreMm 1 3. If & results from & by conformal
transformation by means of the mapping w = f(z), then

- Vid = Vil (34)

and thus

sgn(Vip) = sgn(Viy).
The proof is given in Appendix D.

(35)

4.4. Variation of the Point Density in the Unit-Circle

When an image is conformally transformed, its point
density changes. This variation is produced by the high
non-linearity of conformal mapping.

A clustering of points appears in the regions where
elongations are mapped. The inverse effect {a dispersion
of the points} occurs for the points that are close to the
point that is mapped onto the origin. These characteris-
tics are shown in Fig. 2B.

This phenomenon may produce numerical instabilities
in the calculation of the conformal mapping for very elon-
gated regions.

5. APPLICATION TO FACE REPRESENTATION
AND RECOGNITION

5.1. Face Representation

The conformal transformation of a face image can be
used as a representation technique. It is first necessary to
define a simply closed curve that will be the border of the
region to be mapped. This curve can enclose the whole
face or a portion of it, depending on the application. An-
other possibility is that the curve can be the original face
outline. The cheice of the face cutline is not acceptable
as conformal maps are very sensitive to small perturba-
tions in the boundary of regions.

The selected curve will be mapped onto the unit circle
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boundary. By fixing the value of the map and its deriva-
tive at a point in the region, the mapping is uniquely
determined.

As the conformal mapping is a one-to-one transforma-
tion, there exists an inverse mapping from the circle onto
the region. By using this inverse, the original face can be
reconstructed without loss of information.

The advantages of this representation are:

» Invariance to rotations, translations, and scale
changes in the original domain and preservation of ori-
ented angles and edge structure (Section 4).

+ All faces are mapped onto the same region (the unit
circle), thus vielding a uniform environment for better
discrimination among different faces.

+ With ellipses enclosing the face to be mapped it is
possible to map some interesting points (for example, the
pupils of the eyes) onto fixed points on the unit circle.
This space warping is very important whenever the rep-
resentation is used for recognition, because all the
mapped images will have the critical areas for image rec-
ognition purposes mapped to the same location on the
unit circle. Thus, the focus of attention and discrimina-
tion analysis can be concentrated in specific regions.

Compared to other space warping techniques, the con-
formal mapping is the only representation scheme that
verifies all the above properties. As existing alternatives,
[24] proposes the mapping (x, ¥) — {(u(x, ¥), vix, ¥)},
where u« and v are harmonic functions. The book by Li ef
al. [25] presents several other transformations (bilinear,
affine, perspective, etc.).

5.2. Face Recognition Techniques

There are in general two approaches to the problem of
machine recognition of human faces.

1. The classical pattern recognition approach, consist-
ing of two basic steps: feature extraction and classifica-
tion. The success of such systems is dependent on the
assumption that the information chosen is adequate for
the task. There is an implicit dimensionality reduction in
the representation by using features, making this ap-
proach computationally attractive. Several systems have
been tried with difterent levels of success [26]. Perhaps
the most impressive is that tried by Harmon et al. [27,
28]. It worked with high contrast photographs of face
profiles, which were geometrically encoded. It achieved
nearly perfect identification with a population of over 100
subjects. Other implementations make use of 2-D infor-
mation [29] (use of deformable templates in the front
view) and even 3-D shape [30].

However, it seems that individual features and their
relationships comprise an insufficient representation to
account for the performance of adult human face identifi-
cation.

2. Global comparison of face images, in which ap-
proach the feature selection step is bypassed. No a priori
Judgement about the importance of face features is made.
Instead, such systems try to characterize and encode var-
iations among faces. They work with the pixel intensities
of the digitized images previously put into a workable
form. This approach to face recognition seeks to capture
the configurational properties of a face, being more in
accordance with the process of face recognition by hu-
mans. One of the main examples of systems for global
comparison is the ‘‘eigenface’ approach by Sirovich et
al. {1], continued by Turk er al. [31], which captures the
variation in a collection of face images, independent of
any judgement of features. The idea is to decompose face
images into linear combinations of a small set of charac-
teristic images (eigenfaces added to the average face).
This ts done by diagonalizing the covariance matrix
which characterizes the variation among faces. The pat-
tern vector is formed by the coefficients of the “‘eigen-
face’ expansion of a face. This information-theoretic ap-
proach to face representation opens a new avenue of
research on face recognition.

5.2.1. Eigenfaces formulation. FEach digitized image
& is represented as a matrix ¢ of gray level values. It is
convenient to regard the matrix ®; as a vector ¢ (concat-
enation of matrix rows). An ensemble of digitized face
images ¢,, # = 1, . . . , M, is considered. The average
face, for this ensemble, is calculated as

1 M
=32 o (36)

The deviation of ¢, with respect to the average face is

F.=¢.— @. (37)
In (1], F, 1s referred as a caricature of the face ¢,. The
dimension D of the space is huge—close to 10° (260 x 400
pixels).

In [1], an optimal representation of the ensemble of
caricatures is presented. It is based om a system of
orthonormal vectors u,, so that

(Un, Um) = Bum (38)
under the usual Euclidian inner product, with w,, calcu-
lated as

M
Uy = 2 Ctmka.
k=1

(39)

The a,, = [}t are the eigenvectors of the matrix L:
ie.,
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(40)

Lay, = ha,,,
where

Lyp = (Fp, Fy). (41
L is a nonnegative symmetric matrix of dimension M X
M (M < D).

This procedure for u,, calculation (40) results from the
application of linear algebra methods to solve another
related problem, i.e., finding the eigenvectors of the cari-
catures correlation matrix C (D x D). This matrix is
defined as

NZE:

1
C =37 2 (Fus F, “2)

r=1
where (F,, F,) = F, - F7. The matrix C is symmetric and
nonnegative, and its eigenvalues and orthonormal eigen-
vectors are just

Ci, = hliy, (43)
providing the same solution as that obtained by the low-
dimensional approach. The numerical resolution of this
original problem, however, is an intractable task. This
alternative view of the problem is connected with the
Karhunen-Loéve expansion [1].

Remark. A detailed analysis of the conditions under
which the equation (40) is obtained shows that the matrix
K =[F . . . Fylmust have a pseudo-inverse. This point
is not mentioned in the literature, and without this condi-
tion the eigenvectors which were calculated based on (40)
are different than those calculated by solving (43), A sim-
ple way to overcome this problem is by calculating the
average face @ with some additional faces out of the en-
semble, making the set of F; vectors linearly indepen-
dent.

5.3. Eigenfaces and Conformal Mapping

The Eigenfaces Method, as described previousty, has
some weak points. Even avoiding scaling and taking im-
ages under controlled conditions, the process of averag-
ing face images suffers from mismatch problems (e.g.,
the eyebrow of one image is superimposed and averaged
with the eye of another image, and so on). The resulting
face becomes extremely blurred, with a lack of detail.

As a result, the caricature or error image F keeps al-
most all the information of the original face. Therefore,
when applying eigen-decomposition to the error image F,
much of the representation power is spent in just restor-
ing basic features (common to all faces) only partially
included in the average face, rather than describing the

distinctive details of a particular face. This results in the
requirement of a considerably large number of terms
when small representation errors are sought.

The eigenvector representation would become much
more efficient if the regions of interest were forced to
coincide somehow. Conformal mapping can be fruitfully
used for this purpose. By pre-warping the face images,
relevant areas (eyes, mouth, nose, etc.) can be made to
coincide on the unit circle. Eigenanalysis can then be
performed on this uniform domain. In particular, the re-
sulting average image on the unit disc keeps most of the
common face features, leaving the error images to better
characterize among individuals.

5.4. Experimental Procedures and Results

In order to carry out the experimental work more than
120 faces were taken. Individuals were drawn from both
male and female populations (65% men, 35% women). In
the construction of the data base no special selection
procedure (sex, race, etc.) was used. Each face was digi-
tized at 360 X 480 pixels with 64 gray level by means of
an IBM Video Capture Adapter and Audio Visual Con-
nection software. All images were processed by changing
the format, the dimensions (260 % 400), and the gray-
level range (0-255). A vertical line passed through the
symmetry line of the face and a horizontal line through
the pupils of the eyes, just te aid in the alignment of the
image. No other conditions (like background lighting or
field depth) were enforced.

Two eigenface-based representation methods were
compared. One method is the classical eigenface tech-
nique based on eigenanalysis carried out in the image
domain [31]. The second method is the new technique
based on eigenanalysis carried out on the unit disc. The
conformal map chosen is the one that realizes the condi-
tions expressed in Fig. 3A, i.e., the five distinguished
points map onto fixed points on the unit circle, In order to
obtain this, two maps need to be done, in which the curve
selected for defining each mapping is an ellipse.

One ellipse was chosen so that its center maps to the
center of the circle, and the axes are such that the pupil
centers map onto two fixed points on the unit circle. The
second ellipse was used to map the corners of the mouth
onto fixed points on the lower haif of the unit circle. See
Fig. 3A.

The final map is done by combining the top half of the
first map with the bottom half of the second map, as
shown in Fig. 4.

For determining the ellipses’ axes, so that the points of
interest (in this case the eye centers and the corners of
the mouth) are mapped onto the fixed points on the unit
circle, the following procedure was used.

Step 1. Fix a point p inside the unit circle C where a
distinguished point g of the original image has to
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FIG. 3. (A) The five distinguished points map onte fixed points on
the unit circle. (B) Parameters used for selecting the boundary cllipse.

be mapped for all images in the face data base
(Fig. 3B).
Step 2. Repeat for different values of ax, ay.
Step 2.1. Select the axes a,, a, of the ellipse E.
Step 2.2. Compute the conformal mapping f so
that E is mapped onto C and f(0z) = 0.
Step 2.3. Compute g = f~'(p).
Step 3. Make a table with all g, ax, and ay obtained in
Step 2.
Step 4. Repeat for all faces in the face data base.
Step 4.1. Given a face, determine the center of
the eyes (or the corners of the mouth).
This step is done manually over the
face data base at the present time.

FIG. 4. The original face and the final map.

Step 4.2. Find in the table the closest g to the
point determined in Step 4. Take ax
and ay as the chosen axes of the ellipse.

The same procedure was used for e,, m,;, m, (Fig. 3A).
It is important to note that the selection of ellipses as
face-enclosing curves precludes the numerical instability
mentioned earlier {Section 4.4), as long as they are only
modecrately elongated (aspect ratio close to one).

One of the most relevant results is related to the aver-
age face: using conformal transformation, the average
face appearance (in human visualization) is much clearer
than the appearance without using conformal transforma-
tion. This happens because more information about the
ensemble of faces is contained in the average image com-
puted on the unit disc.

The average faces with and without conformal map-
ping pre-processing are shown in Fig. 5. Part A corre-
sponds to the average of the original faces and part B
corresponds to the average of the conformal deformed
faces. Figures 6 and 7 show a subset of the corresponding
eigenfaces for both methods.

The most important result is that, for face identification
by humans, fewer eigenfaces are needed with conformal

FIG. 5. Average faces: Original (top) and with conformal map (bot-
tom).



44 BARICCO ET AL.

FIG. 6. A subset of eigenfaces for original faces data base.

transformation than without conformal transformation
(Fig. 8).

Let F be a face and a, = (F, u,} its coefficients in the
eigenface base; the partial face reconstruction for £ is

FIG. 7.

A subset of eigenfaces for conformal faces data base.

FIG. 8. Partial reconstruction using different methods.

defined as

N
FN =05+ O a,* iy, (44)

where
(45)

Two type of experiments were made. Each face was
reconstructed first, using the coefficients in the original
order of the eigenvectors (corresponding to a descending
order of the eigenvalues) and second using the coeffi-
cients ordered by the descending order of their absolute
values.

In the first case the number of eigenfaces reguired for
human recognition of the reconstruction in the proposed
method was **50"" compared to ‘65" for the original
eigenface method [31]. In the other experiment, the num-
ber of eigenfaces were 20" and **40," respectively. See
Fig. 8. Comparisons were made between the faces recon-
structed by the original eigenface method and those re-
constructed by the combination of conformal transforma-
tion, eigenface reconstruction, and inverse conformal
transformation. Figures 9-12 show reconstruction of one
face using 1, 10, 20, 30, 40, 50, 60, 70, 80, and 85 eigen-
faces. Note the improved and smoother reconstruction in
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FIG. 9. Reconstruction of one face with the original method using 1, 10, 20, 30, 40, 50, 60, 70, 80, and 85 eigenfaces.

the conformal mapped case, also free from the artifacts The error or measure of goodness in the reconstruction
observed in the non-mapped representation. Only in the Wwas calculated as

former case can partial reconstructions be enhanced by

using standard image processing techniques, e.g., high- on — iF — F¥ (46)
pass filtering, with no artifact amplification. N [Fll

FIG. 10. Reconstruction of one face with the original method (coefficient sorted) using 1, 10, 20, 30, 40, 50, 60, 70, 80, and 85 eigenfaces.
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FIG. 11. Recenstruction of a face with the conformal method using 1, 10, 20, 30, 40, 50, 60, 70, 80, and 85 eigenfaces.

where in less error for the faces that were preprocessed using
conformal mapping. Figure 13 shows these average er-
rors as a function of the number of eigenfaces used in the
reconstruction. Figure 14 shows the error in the recon-
structions corresponding to the face in Fig. 4.

The mean of the error of the reconstruction for both The accumulated energy in the first N coefficients of a
methods was calculated over the data base set, resulting  face is defined as

M
[Fl = 2 [Fal. Cy)

FIG. 12, Reconstruction of a face with the conformal method (sorted coefficients) using 1, 10, 20, 30, 40, 50, 60, 70, 80, and 85 eigenfaces.
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FIG. 13. Average error vs number of the eigenfaces used in the
reconstruction.

N

EN = z |an|2.

n=1

(48)

The mean of the accumulated energy as a function of the
number of coefficients was calculated for both techniques
(Fig. 15). Currently, different metrics for the recognition
process are being studied.

In short, the face representation technique presented
here extends and improves the results obtained with
eigenface algorithms.

6. CONCLUSIONS

A survey of techaiques for numerical conformal map-
ping is presented along with some applications to image

0.17

e e £

0,067

0,044

0, 021

20, ab. g0, 8o,

FIG. 14. Error in the reconstruction of face of Fig. 4 vs number of
the eigenfaces used in the reconstruction.

1.7 Energy Avrg
0, B
0.6
0.47
0.2
20, ab. 80, 8o,
FIG. 15. The mean of the accumulated energy vs number of coeffi-
cients.

processing. Conformal transforms provide a representa-
tion mechanism in which different shapes can be mapped
onto a single domain, the unit circle. A conformal image
transformation preserves key features such as the zero-
crossings of the Laplacian.

The Kerzman-Stein method was implemented and ex-
plored in detail as a powerful technique for computing
direct and inverse mappings between a region of arbitrary
shape and the unit circle. This mathematical transform
was used to compute conformal maps for binary and
gray-level images.

Finally, a novel conformal mapping-based face repre-
sentation was presented. Based on eigenanalysis of
warped face images on the unit circle, this representation
results in better reconstructions than those obtained with
other eigenface methods. By keeping the most common
face information in a warped face average in the unit
circle, the resulting eigenfaces provided better represen-
tations of the variations among individuals. This result
was validated by extensive experimentation over a me-
dium-sized database of faces.

APPENDIX A: B-SPLINE FITTING

In several tasks in image processing, one has to ap-
proximate the shapes of objects appearing in digital pic-
tures. It is often important and useful to have an analytic
model that comprises the relevant information of the
boundary of the shapes. The model to be chosen shouid
be a suitable parameterization of a closed planar curve
providing the best fit to the set of boundary pixels under
certain criteria. A common criterion involves the minimi-
zation of the Euclidean distance between the model and
the points, that is, the least squares approximation. This
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fitting is preferred upon an interpolating scheme because
of its lower dependence on boundary noise fluctuation
due to the sampling and binarization processes [33].

A powerful enough tool for fitting purposes is the B-
spline form of periodic piecewise polynomials of a certain
fixed degree 4. Normalized B-splines arc themselves pe-
riodic piecewise polynomials, and they are defined by the
well-known relationship [34]

N;(u) {I’ P= U= Ly o
i) = .
! 0, otherwise (49a)
N"‘r(u) — (U - tr')Ni,r—l(u) + (t,‘.ﬂ- - M)NiJrl,r—l(H)’
biyr—1 — & fivr — tin
r=2,. . - ,d, (49b)
fori=0,...,n—-1,1t=u=t, given the sequence

K=1[t,...,r]of parameter values cailed the knots
that correspond to the junction of two polynomial pieces.
This definition holds in the interval 1y = 1 =< ¢,,, assuming
that the knots r; have a periodic numbering. In order to
obtain a function defined over the whole real line, the
parameter ¢ is evaluated module ¢, — #,. In this way, if
the inequalities are strict, N; ; € C4~'. Any C“! periodic
piecewise polynomial P of degree d over K (or spline for
brevity) may be represented as a linear combination of
the normalized B-splines of the same degree, defined by
the same knot sequence, since they constitute a basis for
the subspace of these splines,

n—|

P() = D, c(i)N,, ().

i=0

(50

The weights ¢ are 2-D vectors when just planar curves are
being considered, and may be understood as points of %?
that locally control the shape of the curve being modeled.
They shall be referred to as control points. Given a set of
boundary pixels that may be considered as samples of the
continuous function P, for a sequence [ug, . . . , tm1] Of
values of the parameter
Pi=Puw), i=0,...,m-1, (51)
the following matrix equation summarizes the least-
squares problem to be solved
P = HC, (52)
where P = [, ¥1is the m X 2 data matrix, C = [C,, C,]is
the n X 2 control points matrix, and H = N, (&), { =
0...m—1,j=0...1-1,isthe m X n matrix of the
normalized B-splines evaluated on the data points. The

least-squares approximation is obtained, solving the so-
called normal equations

H'P = H' HC. (53)
This is a non-singular square system of linear equations,
and it can be solved by any of the well-known methods,
profiting from the Toeplitz structure of H'H. The ele-

ments of H are computed using the recurrence relation
(49) for the value u; of the parameter.

APPENDIX B: VARIATIONAL ITERATIVE METHODS FOR
LINEAR SYSTEM SOLVING

B.1. Introduction

A useful tool for solving targe systems of linear equa-
tions is given by iterative methods. One characteristic of
these methods is that they start with an initial solution,
and in each iteration they build a new approximation.
The sequence of approximations converges, under cer-
tain conditions, to a solution of the linear problem.

One of these methods is the conjugate gradient method
(CG). This method, presented by Stiefel, is used to ap-
proximate the solution of system of linear equations

Ax = f. (54)
Applying CG 1o a real, symmetric, and positive-definite
N x N matrix, an exact solution, in the absence of round-
off errors, is obtained in at most N steps. This method
gives a good approximation of the solution of the lingar
system in a few steps.

One generalization (GCG) of the method was intro-
duced by Eisenstat et af. [35] for non-symmetri¢ systems.
Like CG, GCG gives the solution in at most N steps.

B.2. Variations of GCG

The GCG presents some variations according to how the
next direction is calculated. All methods have the same
general form:

(2.1) Choose xq
(2.2) Compute ry = f — Axg
(2.3) Setpo=ry
For | = 0 Step 1 Until Convergence Do
(2.4) a; = (r;, Ax)(Api, Api)
(2.5) xiv1 = x; + Ap:
(26) Vipl1 — H — a,-Ap,-
(2.7) Compute p;

The choice of a;in (2.4) minimizes |7 1{, = [|f — A(x; +
ap;)|. as a function of a, so that the norm of the residual
decreases in each step. The variations of the GCG differ
in the technigue used to compute the new p;y,.
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B.2.1. Conjugate Residual Method (CR).
method, pi;y is calculated as

For this

Pir1 = vl = bip; (55)
with
(Aria, Api)
b = — 2P 56
(Ap:, Api) ©6)

B.2.2. Generalized Conjugate Residual Method
(GCR). The CR can be generalized using all the pre-
vious directions to calculate p;y,

Pis1 =ty + 2, b p; (57)
=0
with
(Ariv1, Ap)) . .
b = — A Ap) - 58
= T ap. Ap) T ©8)

B.2.3, Orthomin(k). The GCR method has high work
and storage requirements for a large N. A variant to GCR
is to use only the k previous directions. This variant re-
ceives the name Orthomin(%). Then p;+ is calculated as

i

= st D, b p;

J=i—k+1

Pi+1 (59)

with b as in GCR.

B.24. GCR(k). Another modification to the GCR
method is to restart it periodically (each & + 1 iterations).
The current value of xju., is used as the new starting
guess. This method is called GCR(k).

B.2.5. Minimum Residual Method (MR). When k =
0, Orthomin(k) and GCR(k) are identical. In this particu-

lar case the method is called the Minimum Residual
Method.

{60)

Piv1 = Fin
APPENDIX C: COMPUTING THE INVERSE MAPPING

The procedure described in this appendix [15] is based
on the approximation of =1, by g, a {m — 1)-degree
polynomial (m > n):

m—1
mm:gwi (61)

Step 1. Define m equidistant points on the unit circle, at
angles 8, = 2= jim.

Step 2. Compute the parameter values 7; = 6¢°V(8;), us-
ing Newton’s method,

e kY
P = 0 4 6; - H(r%)

. 62
87 (62)
where é(—r}“) is provided as a byproduct when the
direct map is calcuiated (Eq. 27).
Step 3. Obtain the pre-images of the equidistant points
on the unit circle:
() = z; = fU(emiim), (63)
Step 4. Compute the coefficients &; such that g interpo-
lates £ at the points e27¥/m:

1 jom
&=5- | steme do. (64)

This can be done by using the FFT in m log m
operations [7].

APPENDIX D: RELATED THEOREMS

Proof of Theorem I. By using the chain rule in the
definition of the conformal transformation (31), it follows
that

0 _dwdu oy

dx du dx  dv dx (65)
80 _dyau b
dy  oudy ovay (66)
By the Cauchy—Riemann equations,
o6 _ _dudv, obou
dy  du ox + du ox’ 67)

From (65) and (66), using the chain rule repeatediy, we

get
Py oy ()’ b Py 2 ()
ax?  du? \ax du axt | av? \dx
B B du ©
dv axt dudv dx dx
and
P o (au)2 a2 0N (av)z
ay?  aut \ay ou ayr  au \ay
by Py, Y u ©)
v ay? dudv dy dy’
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Thus, it follows that
a2y ((au)z (au)z) o (azu azu)
g = S ([2H g4 o au
Vo dut \\ax * ay * du \ax? + ay?

A, ((@)2 N (@)Z) L (Q?E N E?fE)
dv? \\dx dy v \axt  ay?
2
B0 (3 uw)

dudv \dx dy ady

By the Cauchy-Riemann equations,

du v du dv
Ea + 53_)’ =9 {70)
and
Py Pu v W
Furthermore,
6u)1 (au)z (Bv)z (au)2 du P L
— +{=) =l=] +|=) =1—+i—| = .
(ax dy ax ay ax  'ax @)
(72)
Thus,
Vie = ViulfP (73)
and

sgn(Vie) = sgn(Viy). ®
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