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In this paper we present a nonlinear scale-space representation based on a general
class of morphological strong filters, the levelings, which include the openings and
closings by reconstruction. These filters are very useful for image simplification
and segmentation. From one scale to the next, details vanish, but the contours of
the remaining objects are preserved sharp and perfectly localized. Both the lattice
algebraic and the scale-space properties of levelings are analyzed and illustrated.
We also develop a nonlinear partial differential equation that models the generation
of levelings as the limit of a controlled growth starting from an initial seed signal.
Finally, we outline the use of levelings in improving the Gaussian scale-space by
using the latter as an initial seed to generate multiscale levelings that have a superior
preservation of image edgese 2000 Academic Press
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1. INTRODUCTION

In many circumstances, the objects of interest which have to be detected, meas
segmented, or recognized in an image belong to a scale, and all remaining objects,
discarded, to another scale. In some cases, however, such a threshold in the scalesis n
sible, and the information of interest is present at several scales; it has to be extracted
various scales. For such situations, multiscale approaches have been developed, wi
series of coarser and coarser representations of the same image are derived. The reco
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of the objects or segmentation will use the complete set of representations at various sc
not only the initial image.

A multiscale representation will be completely specified if one has defined the tra
formations from a finer scale to a coarser scale. To reduce the freedom of choice, s
properties of these transformations may be specified. Invariance properties are the
general:

e Spatial invariance- invariance by translation.

e Isotropy=invariance by rotation.

e Invariance under illumination change: the transformation should commute with &
anamorphosis, i.e., any pointwise increasing transformation, of the luminance.

One may add some requirements for the effect of the transformation itself:

e The transformation should really be a simplification of the image. As such it will n
be reversible: some information has to be lost from one scale to the next.

e Anparticular form of simplification is expressed by the maximum principle: at any sce
change, the maximum luminance at the coarser scale is always lower than the maxir
luminance at the finer scale, the minimum always higher [6].

e Causality: coarser scales can only be caused by what happened at finer scales [€

e Thetransformation should not create new structures at coarser scales; the most fre
requirement is that it should not create new regional extrema [4, 10].

Furthermore, if the goal is image segmentation, one may require that the contours rel
sharp and not displaced. Finally, one has to care for the relations between the various s
Many scale-space representations in the literature verify a semigroup propdttis the
representation at scateof image f, then the representation at scalef fs should be the
same as the representation at scalet of f: fs. = (fs). In this paper we will present
another structure by introducing an order relation among scales.

Since one rarely adds images, there is no particular reason, except mathematical trac
ity, to ask for linear transformations. If one chooses linearity, however, then various gro
of the constraints listed above lead to the same solution: linear scale-space. The e
tion of images with the scale follows the physics of luminance diffusion: the rate
change of luminance with scale is equal to the divergence of the luminance gradient
The operator for changing scale is a convolution by a Gaussian kernel. Its major
ity is to regularize the images, permitting to compute derivatives. Besides this adv
tage, linear scale-space cumulates the disadvantages. After convolution with a Gau
kernel, the images are uniformly blurred, also the regions of particular interest like
edges. Furthermore, the localization of the structures of interest becomes extremely
precise; if an object is found at one scale, one has to refine its contours along all f
scales. At very large scales, the objects are not recognizable at all, from excess blur
but also from the appearance of spurious extrema in two dimensions. Various solut
have been proposed to reduce this problem. Some notable examples include Peron
Malik’s anisotropic diffusion inhibited by high gradient values [21] and its improvement
Alvarezet al. and [2] using selective nonlinear image smoothing by mean curvature n
tion. Similar recent approaches include a tensor-dependent diffusion [30]. Such approa
reduce the problems but do not eliminate them completely: spurious extrema may
appear.



NONLINEAR SCALE-SPACE REPRESENTATION 247

Other nonlinear scale-spaces consider the evolution of curves and surfaces as a fur
of their geometry. Among them we find the morphological approaches. The basic ingr
ents of all multiscale morphological operators are the dilations and erosions of increa
size [5, 11, 14]. However, dilations and erosions by themselves cannot be used to repr
the successive scales because they displace the image boundaries [7]. The first morpl
ical scale-space approaches have been the granulometries associated to a continuou
family of openings or closings; openings operate only on the peaks and closings onh
the valleys [11, 14]. They obey a semigroup relatidfaxe ) = (fs):. The standard mor-
phological openings (which are serial compositions of dilations and erosions) preserve
vertical image edges but may displace the horizontal contours; however, openings and
ings do not create spurious extrema. A more powerful class of morphological filters t
can also preserve the horizontal contours isdpenings and closings by reconstruction
[23, 29]. These filters, starting fromraferencesignal f consisting of several parts and
a marker (initial seed)g inside some of these parts, can reconstruct whole objects w
exact preservation of their boundaries and edges. In this reconstruction process they
plify the original image by completely eliminating smaller objects inside which the mark
cannot fit. Reconstruction filters have found numerous applications in a large variet
problems involving image enhancement and simplification, geometric feature detect
and segmentation. However, one of their disadvantages is that they treat asymmetri
the image foreground (peaks) and background (valleys). A symmetric treatment of pe
and valleys can be obtained using alternate sequential filters, which are extremely cos
terms of computation, especially if one uses openings and closings by reconstruction
29]. A recent solution to this asymmetry problem came from the development of a m
general powerful class of morphological filters, teeelings introduced by Meyer [16, 17].
They have also been studied by Matheron [15] and Serra [26]. Levelings are transforma
A(f, g) that depend on two signals, the referericand the markeg, and include as special
cases the reconstruction openings and closings.

In this paper, which is a union of our two previous works [13, 18], we present a n
and extremely general nonlinear scale-space representation based on levelings with
extremely interesting features. The most interesting is the preservation of contours. Fur
more, no spurious extrema appear. As a matter of fact, the transformation from one <
to the next, called leveling, respects all the criteria listed above, except that it is not lin
From one scale to the next, the structures of the image progressively vanish, becomin
or quasi-flat zones; however, as long they are visible, they keep exactly the same loce
tion as in the initial image. In Section 2, we present an algebraic characterization anc
scale-space properties of the simplest levelings. In Section 3 we show how to trans
any marker functiorg into a leveling of a functionf using discrete algorithms based on
the algebraic definitions of levelings. We also present extensions of levelings and il
trate the algorithmic results with image examples. The scale-space analysis of levelin
Sections 2 and 3 is algebraic and based on lattice theory. A different formulation, base
ideas from dynamical systems and calculus, is presented in Section 4, where we deve
nonlinear partial differential equation (PDE) that can generate the leveling of a refere
signal starting from a marker signal as initial condition. Finally we conclude in Section
where we also outline the use of levelings for improving the Gaussian scale-space by L
the latter as an initial seed to generate multiscale levelings that have superior preserv
of image edges and boundaries.
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2. MULTISCALE REPRESENTATION THROUGH LEVELINGS

2.1. Flat and Quasi-flat Zones

We are working here on gray-tone functions defined on a digital grid. We call the sei
neighbors of a pixep Ng(p). The maximal (resp. minimal) value of a functidnwithin
Ng(p) represents the elementary dilatidi(resp. erosior f) of the functionf at pixel p.

A path P of cardinaln between two pixelg andq on the gridG is ann-tuple of pixels
(p1, P2, - - -, Pn) such thatp; = p andp, =q, and for alli, (p;, pi-1) are neighbors.

We will see that simple levelings are a subclass of connected operators [23], which me
they extend flat zones and do not create new contours. More general levelings will ex
quasi-flat zones, defined as follows.

Derinimion 2.1, Two pixelsx, y belong to the same R-flat zone of a functibnf and
only if there exists am-tuple of pixels @1, p2, ..., pn) such thatp; =x andp, =y, and
for all i, (pi, pi+1) are neighbors and satisfy the symmetrical relatignR fp, ;1.

The simplestsymmetrical relation Ris equality, = f,, 1, forwhich the quasi-flat zones
are flat. As an example of a more complex relation R, let us define for two neighbor
pixelspandq, f,~ fqby|f, — fq] < A. Thisrelation is symmetrical and defines quasi-fla
zones with a maximal slope equalio

2.2. Characterization of Levelings

We will define a nonlinear scale-space representation of images based on levelings
imageg will be a representation of an imadeat a coarser scale § is a leveling of f,
characterized by the following definition.

Derinimion 2.2, An imageg is a leveling of the imagef iff V(p, q) neighbors:
9p > 0gq = fp>0gpandgg > fy.

Remark. If the functiong is constant, no couple of neighboring pixefs () may be
found for whichg,, > g4. Hence the implicatiofig, > gy = f, > g, andg, > fq} is always
true, showing that a flat function is a leveling of any other function.

The relationg is a leveling of fwill be written asg < f. The characterization using
neighboring points, defining the levelings, is illustrated in Fig. 1b. In [17] we have sho
that adopting a different order relation, giving a new meaningge g4, leads to larger
classes of levelings; such levelings create new quasi-flat zones and enlarge existing

\
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FIG.1. (a) f =reference functionh = marker functiong = associated leveling; (b) characterization of lev-
elings on the transition zones.
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If the new order relation is writteg, > g4 and its negation, < g4, then the symmetrical
relation R of Definition 2.1 is defined big, Rgq} < {9p < 0q andgy < gp}.

2.3. Properties of Levelings
2.3.1. Algebraic Properties

If two functionsg; andg, are both levelings of the same functidn theng; v g, and
01 A g2 are both levelings off . This property permits us to associate new levelings wit
a family of levelings. In particular ifd) is a family of levelings off, the morphological
center f v Agi) A \/g of this family also is a leveling of .

2.3.2. Invariance Properties

In the Introduction, we have listed a number of desirable properties of transformati
on which to build a scale-space. They are obviously satisfied by levelings:

e Invariance by spatial translation.

e Isotropy: invariance by rotation.

e Invariance to a change of illuminatiogbeing a leveling off , if gand f are submitted
to the same increasing anamorphosis, then the transformed fugctihstill be a leveling
of the transformed functior’.

2.3.3. Relation between Two Scales

Levelings will construct a scale-space when a true simplification of the image occ
between two scales. Let us now characterize the type of simplifications implied by levelir
In this section we always suppose thas a leveling off. As shown by the definition, if

there is a transition for the functiambetween two neighboring pixets, > gq, then there
exists an even greater transition betwedgrand fq, as f, > g, > gq > fq. In other words,
to any contour of the functiog corresponds a stronger contour of the functiomat the
very same location, and the localization of this contour is exactly the same. This bracke
of each transition of the functiog by a transition of the functiorf also shows that the
“causality principle” is verified: coarser scales can only be caused by what happene
finer scales.

Furthermore, if we exclude the case wherés a completely flat function, then the
“maximum principle” is also satisfied: at any scale change, the maximal luminance at
coarser scale is always lower than the maximum intensity at the finer scale; the minin
is always larger.

Let us now analyze what happens in the zones where the lewgldeparts from the
function f. Let us consider two neighboring points, @) for which f, > g, and fy > gq.
Forsuch acouple of pixels, the second h&jf¢ g, andg, > fy) of the implication-defining
leveling is wrong, showing that the first half must also be wrong; gg= gq. By reason
of symmetry we also havg, > g4, and hencep = gq. This means that i is a leveling of
f, the connected components of the antiextensivity z¢fies g} are necessarily flat. By
duality, the same holds for the extensivity zofiés< g}.

The last criterion, “no new extrema at larger scales,” also is satisfied, as shown by
following section.
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2.3.4. Life and Death of the Regional Minima and Maxima
Levelings are a particular case of monotone planings:

Derinimion2.3. Animage is aamonotone planing of the ima§éf V(p, q) neighbors:
Op>0q= fp> fq.

Theorem2.1. A monotone planing does not create regional minima or maxima. In oth
words if g is a monotone planing of ,fand if g has a regional minimuifresp. maximumn
X, then f possesses a regional minim(resp. maximumnZ C X.

Hint of the Proof. If X is a regional minimum of, all its neighbors have a higher
altitude. To these increasing transitionsgo€orrespond increasing transitions of It is
then easy to show that the lowest pixel fowithin X belongs to a regional minimura
for f included inX.

2.3.5. Relations between Multiple Scales: Preorder Relation

We have now to consider the relations between multiple scales. Until now, we h
presented how levelings simplify images. To speak about scales, we need some stru
among scales. This structure is a lattice structure. To be a leveling is in fact an order rele
as shown by the following two lemmas.

Lemva. The relation{g is a leveling of § is symmetric and transitivét is a preorder
relation.

Lemma. The family of levelingsrom which we exclude the trivial constant functipns
verify the anti-symmetry relationf f is a nonconstant function and a leveling ofand
simultaneously g is a leveling of, then f=g.

Being an anti-symmetric preorder relation, the relafigiis a leveling off } is an order
relation, except for functions which are constant everywhere. With the help of this or
relation, we are now able to construct a multiscale representation of an image in the form
series of levelingsgp = f, g1, ..., On), Wheregy is aleveling ofgx_1, and as a consequence
of the transitivity,gx is also a leveling of each functiay for j <k.

3. CONSTRUCTION OF THE LEVELINGS

3.1. A Criterion for Characterizing Levelings

It will be fruitful to consider the levelings as the intersection of two larger classes, t
lower levelings and the upper levelings, defined as follows.

Derinmion 3.1. A functiong is a lower leveling of a functiorf if and only if for any
couple of neighboring pixelsp( 0): gp > gq = Jq > fq.

Derinmion 3.2, A functiong is an upper leveling of a functiof if and only if for any
couple of neighboring pixelsy ): gp > gq = 9p < fp.

The name “upper leveling” comes from the fact that all connected components wt
g > f are flat: for any couple of neighboring pixels,@):

gq > fq
gp > fp
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Similarly if g is a lower leveling off, then all connected components where f are
flat.

Obviously, a functiorg is a leveling of a functiorf if and only if it is both an upper and
a lower leveling of the functiorf. Let us now propose an equivalent formulation for the
lower levelings:

Criterion. A function g is a lower leveling of a functiorf if and only if for each pixel
g with a neighborp verifying g, > g4 the relationg, > f is satisfied.

But the pixels with this property are those for which the dilaionill increase the value;
i.e.,0q < 8q9. This leads to a new criterion:

Criterion. A function g is a lower leveling of a functiorf if and only if g4 <849 =
Oq > fg.

Recalling that the logical meaning oA B] is [not Aor B] we may interpret iy <
8q0=0q = fg] as [0q > 849 or g4 > fq] or in a equivalent mannegf > f; A 849]. This
gives the following criterion.

Criterion Low. A functiongis alower leveling of a functiori ifand only ifg > f A8g.
In a similar way we derive a criterion for upper levelings:
Criterion Up. Afunctiongis an upper leveling of a functiofifand only ifg < f veg.
Putting everything together yields a criterion for levelings.
Criterion. A functiong is a leveling of a functiorf ifand only if f Adg<g=< f veg
(see [15]).
3.2.  Openings and Closings by Reconstruction

We recall that a functiog is an opening (resp. closing) by reconstruction of a funcfion
iff g= f Adg (resp.g= f veQ). As it verifies the criterion Low (resp. Up), such a function
g is then a lower (resp. upper) leveling &f The reciprocal is also true. Hence:

ProposiTion3.1. g is an openingresp. closiny by reconstruction of a function f if and
only if g is a lower(resp. uppeyleveling of f verifying g< f (resp. g> f).

Using this characterization, we may particularize the initial definition of lower levelin
in the case wherd > g:

ProposiTIon3.2. @ is an opening by reconstruction of a function f if and only # d
and for any couple of neighboring pix€lp, 4): gp > gq = dq = fq.

ProrosiTion3.3. g is a closing by reconstruction of a function f if and only it ¢f
and for any couple of neighboring pixglp, q): gp > gq = gp = f.

Remark. If g is a leveling or lower leveling off, theng A f is a lower leveling off
verifyingg A f < f, i.e., an opening by reconstruction df Similarly if g is a leveling or
upper leveling off , theng v f is a closing by reconstruction df.

3.3.  An Algorithm for Constructing Levelings

We finally adopt the following general criterion for levelings.
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Criterion. A functiongis a leveling of a functiorf if and onlyif f Aeg<g=< f v g,
wherewx is an extensive operator; i.eg > g, andg is an antiextensive operator; i.8g < g.

With the help of this criterion, we may turn each functmpmto the leveling of a function
f. We will call the functionf the reference function and the functigthe marker function.
Given two functionsg and f, we want to transform g into a leveling df. If g is not a
leveling of f, then the criterionf A ag<g=< f v Bq] is false for at least a pixgh. The
criterion is not verified in two cases:

e Jp < fp Aapg. Hence the smallest modification@f for which the criterion becomes
true isg, = fp A apg. We remark thag, < g, < fp.

e Jp> fp Vv Bp0. Hence the smallest modification@f for which the criterion becomes
true isg, = fp v Bpg. We remark thag, > g, > fp.

We remark that fofg, = f,} the criterion is always satisfied. Hence another formulatio
of the algorithm:

e lev:0On{g< f}dog=f A«ag.
e levt:On{g> f}dog= f v fg.

Itis easy to check that this algorithm amounts to replagify the new valug = (f A
Q) Vv Bg=(f Vv B0) A ag everywhere.

We repeat the algorithm until the criterion is satisfied everywhere. We are certain t
the algorithm will converge, since the modificationsgofre pointwise monotonics: the
successive values gfget closer and closer tb until convergence.

To optimize the speed of the algorithm, we use a unique parallel step of the algoritl
g=(f Aag)V Bg. After this first step the algorithmgdv ] and [lev™] have no effect on
each other and may be used in any order. In particular one may use them as sequential
rithms in which the new value of any pixel is used to compute the values of the neighbor
pixels. This may be done during alternating raster scans, a direct scan from top to bof
and left to right being followed by an inverse scan from bottom to top and right to left. ¢
hierarchical queues may be used, allowing us to process the pixels in decreasing ord
{g < f} and in increasing order ojg > f}.

Let us illustrate in Fig. 1a v a a marker functiom is transformed until it becomes a
function g which is a leveling off. This leveling uses fow the dilations and for g the
erosione. On{h < f}, the leveling increasdsas little as possible until a flat zone is createc
or the functiong hits the functionf ; hence or{g < f}, the functiong is flat. On{h > f},
the leveling decreasdsas little as possible until a flat zone is created or the fungjibits
the function f; hence on{g > f}, the functiong also is flat. For more general levelings,
guasi-flat zones are created.

If g is not modified, while this complete algorithm is applied to a couple of functior
(f, g), theng is a leveling of f. If, on the other handy is modified, one repeats the same
algorithm until convergence as explained above.

3.4. Robustness of Levelings

In this section, we will see that levelings are particularly robust: they are strong morp
logical filters. We recall that an operatgris called anorphological filternf it is:

e Increasing:g > h= y¥g > y¥h. This implies thaty(h A k) <¥h A vk andy(h v
k) > vhv ¢k
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e Idempotentyry = 4. This means that the operator is stable: it is sufficient to app
it once in order to get the final result. (For instance, the median filter, which is no
morphological filter, is not stable and may oscillate when iterated.)

A morphological filter is calledstrong if furthermorey (id v ¥)=v¢(d AY)=1,
whereid represents the identity operator. This property defines that functions within a git
range will yield the same result; i.e., for any functiosatisfyingf A ¢ f <h< f vy f,
we havey f = h.

In our case, we have the levelingy( f, g), which we view as an operator mapping ar
input signalf to its leveling. For a fixed marker functi@pand a varying reference function
f, this operator is a strong morphological filter. If we call the opening by reconstructi
of f based on the marker A~ (f, g) and the closing by reconstructiea™( f, g), it can be
shown that

A(f,g)= AT (AT(f,9).9) = AT(A(f.9). 0). 1)

Thus, the leveling is a commutative product of a reconstruction opening followed by arec
struction closing, which is a sufficient condition for a leveling to be a strong morphologi
filter.

Levelings depend upon several parameters. First, the type of leveling has to be chc
which depends upon the choice of the operatoandg. Figure 2 presents three different
levelings, applied to the same reference and marker image. The operaodss used
for producing them are, from left to right, the following: (&)=6,8=c¢; (2) a=id Vv
(6—-1),B8=id A(e+1);(Qa=id Vv ys, B=id A pe, wherey andy are respectively
an opening and a closing. In Fig. 3a flat leveling based and¢ is applied to the same
reference image (in the center of the figure), using different markers produced by an alte!
sequential filter applied to the reference image, marker 1 using disks as structuring elen
and marker 2 using line segments.

Reference Marker

image

leveling 1 leveling 2 leveling 3

FIG. 2. Three different levelings applied to the same reference and marker image.
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Marker 1 Marker 2

Reference image

Leveling Leveling

FIG. 3. Aleveling applied to the same reference image with distinct marker images.

3.5. Multiscale Levelings

We have now to consider the multiscale aspect, that is, when more than one scale is (
consideration. Levelings permit us to construct various multiscale families. Let us pres
a few of them.

3.5.1. Levelings Associated to Monotone Families of Erosions and Dilations

We use here a family of leveling operators based on a famjlyqf extensive dilations
and the corresponding family of adjunct erosiofig (satisfyinga; < «j and g > g; for
i > j.We callA' f the leveling off built with o; andg; and with a fixed markeg. That
is, A' f is the leveling obtained by iterating until convergence the opetatoff A «;g) v
Big=(f v Big) Anaig. _ _ _ _

It is easy to verify that for > j we havef A A'f <A/f <f v A'f. But sinceA' a
strong operator, these inequalities imply thaiA ! f = A’ f. This means thad' f also is
a leveling of eacm\! f fori > j.

As an example one may construct slope levelings with increasing slopes by set
o =id v(@—i),B =id A(e+1i).

3.5.2. Levelings Associated to an Arbitrary Family of Marker Functions

Consider a fixed leveling. associated to an extensive dilatigmnd the adjunct erosion
B. We may use an arbitrary family of marker functiapsi =1, 2, 3, ..., and consider the
associated levelings: we writeg f for the leveling of f associated to the markgr. We
may then construct an increasing family of levelings associated with the family of mark
by the following mechanism:

C=Ag fly=AgAg T, ..., 0= AgAg , - AgAgT. )

The above sequence of steps ensureséthist a leveling of¢; for j >i. This is due to
the fact that “to be a leveling” is a transitive relation. Based on this idea, Fig. 4 presents
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FIG. 4. lllustration of a multiscale leveling representation with markers produced by alternate sequer
filtering.

example of how levelings can be used to derive a multiscale representation of an imag
Fig. 4 the multiscale markers are produced by alternate sequential filters with disks;
go= f is the original image and, = ¢;jy;0i_1 fori =1, 2, 3, wherey; andy; are standard
closings and openings by a disk of radiughe levelings are produced by following the
sequential hierarchy of (2). The markers,(gs, gs) and the leveling image¥{, ¢z, £s5)
shown in Fig. 4 are arranged as follows:

g1 original ¢;
gs original ¢3
gs original {5
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Semigroup property of flat levelingsin the case where the levelidgis the flat leveling
associated to the dilatiohand the adjunct erosiarn we have a stronger property, in the
form of a semigroup. Let us denote by, f the leveling off associated with the markgr

Then for two different markerg andk we have the absorption propertygAxAgf =
Ak Agf andAgAgAk f =AgAx . It follows that the operator defined as

Ln = Ag,Ag, ;- - AgAg 3)
satisfies the following semigroup property:
Lan = Lan = Lmax(m,n)-

This implies in particular that , is idempotentif = m). Since it is also increasing, it is
a morphological filter.

In By is the invariance set of, i.e., B,={f | L, f = f}, the preceding semigroup
property implies thaB, = L,(By) andB, C By, forn>m.

3.5.3. Levelings Associated to an Alternating Family of Marker Functions

Consider again the fixed leveling associated to an extensive dilati@mnd the adjunct
erosionB. But now the family of marker functiong;,i =1, 2, 3, ..., is an alternating
family, because they satisfyox < - << < f <g1<03=<--- <gx_1. Using the
same notation as above, itis easy to verify thgtis a reconstruction opening for any even
indexi and areconstruction closing for any odd indgdenceln = Ag, Ag,, ; - - - Ag, Ag, T
is an alternating sequential filter, which obeys the usual semigroup property of such fil
[25]: LjLi=Ljforj>i,butLiL; <Lj.

4. A PDE GENERATING LEVELINGS

In computer vision continuous models for scale-space image analysis based on p:
differential equations have been proposed. Motivations for using PDEs include better
more inuitive mathematical modeling, connections with physics, and better approximat
to the Euclidean geometry of the problem. Inspired by the use of the classic heat PD
modelthe linear (Gaussian) scale-space [8], in 1992 three teams of researchers giblarez
[1], Brockett and Maragos [5], and Van den Boomgaard and Smeulders [28]) independe
published nonlinear PDEs that model the nonlinear scale-space of elementary morpholo
operators; each team focused on different aspects of the problem. The PDEs for flat dila
and erosions by disks were numerically implemented by Areéiel. [3] and Sapiro
et al. [24] using the Osher and Sethian [20] algorithm for solving Hamilton—Jacobi PD!
of the curve evolution type. These implementations demonstrated the superiority of
performance of the PDE approach over that of discrete morphology in terms of isotr
and subpixel accuracy. A unified view of this new approach to mathematical morpholc
and related problems based on differential equations and dynamical systems was pres
by Maragos [12].

Inthe rest of this section we shall present a PDE for levelings, firstintroduced in [13]. T
two basic ingredients in developing such a PDE are the PDEs for generating dilations
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erosions. Therefore, before presenting the new PDE for levelings we review somé PL
required for multiscale morphology.

4.1. PDEs for Dilations and Erosions

All multiscale morphological operations, at their most basic level, are generated by n
tiscale dilations and erosions, which are obtained by replacing in the standard transla
invariant dilations and er05|ons the unit-scale kernel (structuring elerkenty) with a
multiscale versiork®(x, y) 2 tk(x/t, y/t), t > 0. Themultiscale dilationof a 2D signal
f(x, y) by k® is the space-scale function

5(%, v, ) = (f @KY)(x, y) = supl f (x — &,y — b) + tk(a/t, b/t)}, t >0,
(a,b)
whered(x, y, 0)= f(x, y). Similarly, the multiscale erosion df is defined as
e(x, Y, )= (f o kO)(x, y) = inf (f(x+a,y +b) - tk(a/t, b/1)).
a,

For 2D signalsf (x, y), and ifk(x, y) is the §/ —oo indicator function of the unit disk,
then the PDEs generating the multiscale flat dilatifn y, t) and erosiore(x, y, t) of f

are
8 = IVéll = /(6x)> + (8y)%, & = —IIVel, 4

with initial valuess(x, y, 0)=¢(x, y, 0)= f(X, y).

These simple but nonlinear PDEs are satisfied at points where the data are smoott
where the partial derivatives exist. However, even if the initial image/si§igksmooth, at
finite scaleg > 0 the above multiscale dilation evolution may create discontinuities in tl
derivatives ofs, calledshockswhich then continue propagating in scale-space. Thus, t
multiscale dilations areveak solution®f the corresponding PDEs.

The above PDEs for dilations of gray-level images by flat structuring elements direc
apply to binary images, because flat dilations commute with thresholding and hence, v
the gray-level image is dilated, each one of its thresholded versions representing
nary image is simultaneously dilated by the same element and at the same scale. |
ever, this is not the case with gray-level structuring functions. For examptéx,ify) =
—a(x?>+y?), a> 0, is an infinite-support parabolic function, the dilation PDE becomes

8t = [(8)7 + (8y))/4a. ®)

4.2. PDE for Levelings

Consider a 2D signal (x, y) and a marker signaj(x, y) from which a levelingA(f, g)
will be produced.

If g < f everywhere and we start iteratively growiggia incremental flat dilations with
a disk of an infinitesimally small radiuat but without ever growing the result above the
graph of f, then in the limit we shall have produced tbpening by reconstructioaf f
(with respect to the markey), which is a special leveling. The infinitesimal generator of thi

1 Notation for PDEs: Fon = u(x, y, t), uy = du/at, uy = au/dx, Uy = 9du/dy, Vu = (ux, Uy).
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signal evolution can be modeled via a dilation PDE that has a mechanism to stop the gr«
whenever the intermediate result attempts to create a function largef tf&gpecifically,
letu(x, y, t) represent the evolutions dfwith initial valueug(x, y) = u(x, y, 0)=g(x, ).
Thenu is a weak solution of the initial-value PDE system

u au\? [ou\?
R

u(x, y, 0) = g(x, y),

(6)

where sign() isequaltot-1ifr > 0,—1ifr <0,and0ifr =0. Sinceg < f, the aboveinitial-
value PDE system modelscanditional dilationthat grows the intermediate result as long
as it does not exceefl In the limit we obtain the final result,, (X, ¥) = lim_ o u(x, v, t).
The mappinglp — U is the opening by reconstruction filter.

If in the above paradigm we reverse the order betwkamdg, i.e., assume thaf> f,
and replace the positive growth (dilation) @fvith negative growth via erosion that stops
when the intermediate result attempts to become smallerfthdren we obtain thelosing
by reconstructiomf f with respectto the marker. This is another special case of a leveling
whose generation can also be modeled by the same PDE (6) but with a marker that exc
f. This dynamical system modelsanditional erosiorthat keeps reducing the intermediate
result as long as it does not decrease befow

What happens if we use any of the above PDEs when there is no specific order bétwe
andg? In such a case the PDE (6) has a varying coefficient dign ) with spatiotemporal
dependence which controls the instantaneous growth and stops it wheheuer (Of
course, there is no growth also at stationary points wiiere- 0.) The control mechanism
is of a switching type: For each at pixels &, y) whereu(x, y,t) < f(x, y) it acts as
a dilation PDE and hence shifts outward the surfacea(af y, t) but does not move the
extrema points. Whereve(x, y, t) > f (X, y) the PDE acts as an erosion PDE and reverse
the direction of propagation. The final result (x) = lim¢_, o u(X, t) is a generaleveling
of f with respect tag. We call (6) aswitched dilationPDE. The switching action of this
PDE model occurs at zero crossingsfof- u where shocks are developed. Obviously, the
PDEs generating the opening and closing by reconstruction are special caseg whiere
andg> f, respectively. However, the PDEs generating the reconstruction filters do |
involve switching of growth.

The switching between dilation- and erosion-type PDEs also occurs in a class of nonlii
time-dependent PDEs which was proposed in [19] to deblur images and/or enhance
contrast by generating shocks and hence sharpening edges. For 2D images a specic
of such a PDE is

Uy = —[|Vu(isign(v2u). @)

A major conceptual difference between the above edge-sharpening PDE and our
generating levelings is that in the former the switching is determined by the edges, i.e..
zero crossing points of the Laplacianwgfwhereas in the latter the switching is controlled
by comparingu against the external reference sigrialNote also that, if at some point
there is an edge in the leveling output, then there must exist an edge of equal or bigger
in the initial (reference) image.
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4.3. Discretization Algorithm and Experiments

To produce a shock-capturing and entropy-satisfying numerical method for solving
general leveling PDE (6), we use ideas from the technology of solving PDESs correspon
to hyperbolic conservation laws [9] and Hamilton—Jacobi formulations [20]. Thus,
propose the following discretization sheme, which is an adaptation of a scheme prop
in [19] for solving (7).

Let Un be the approximation afi(x, y, t) on a grid {AX, jAy, nAt)). Consider the
spatial forward and backward difference operators:

n n n n
n o Yty — Ui noa Ui — Uiy

Ax 8)

Similarly we define the difference operatdds., andD_y along thej direction. Then we
approximate the leveling PDE (6) by the nonlinear difference equation

Ut =
—At[ - (S“,;)K/((D—xuﬁj)*)z + ((D+inr,]j)7)2 + ((D—inr,]j)+)2 + ((D+inr,1j)7)2
+ (Sﬁ,j)i\/((DJrXUir,]j)Jr)z + ((D—Xuiljj)i)z + ((D+in'jj)+)2 + ((D—inrjj)i)Z]’

©)

whereS"; =sign(f (i Ax, jAy) —U/";), and we denote | = max(, 0), ()~ = min(r, 0)
for any realr. For stability, (\t/AX + At/Ay) < 0.5 is required. Further, at each iteration
we enforce the sign consistency

signU" — f) = sign@g — f). (10)

We have not proved theoretically that the above iterated scheme converges wheas,
but through many experiments we have observed that it converges in a finite numbe
steps. Three examples of the action of the above 2D algorithm are shown in Fig. 5.

4.4. PDEs for Levelings with Quasi-Flat Zones

The levelings produced by running the PDE (6) consist of portions of the original refere
signal and of flat zones. Actually they enlarge the flat zones of the reference signal.
possible to generate via PDEs generalized levelings that have quasi-flat zones (for exal
zones with constant linear slope or zones with parabolic surface)? The answer is yes
explain it via the parabolic example. If we replace the flat dilation PDE generator in
with the PDE generator for multiscale dilations by a 2D unit-scale pardkalay) =
—a(x?+ y?) we obtain the PDE for 2D parabolic levelings:

Uy = ~||Vulsign(f — u) 1)
u(x, y, 0) = g(x, y).
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FIG.5. Evolutions of the 2D leveling PDE on the reference top image (a) using three markers. Each colt
shows evolutions from the same marker. In the second row the matke) @re shown, in the third and fourth
rows two evolutions at = 10At andt =20At, and in the fifth row the final levelings (after convergence). For
the left column (b—e), the marker (b) was obtained from a 2D convolutiofi with a Gaussian of = 4. For
the middle column (—i), the marker (f) was an opening by a squarexof pixels and hence the corresponding
leveling (i) is a reconstruction opening. For the right column (j—-m), the marker (j) was a closing by a squart
7 x 7 pixels and hence the corresponding leveling (m) is a reconstruction clasing Ay =1, At =0.25).
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5. CONCLUSIONS AND DISCUSSION

A new morphological scale-space representation has been presented based on «
eral class of morphological strong filters, the levelings, with many desirable features
scale-space. The algebraic and scale-space properties of this leveling scale-space hav
analyzed using tools from mathematical morphology and illustrated with image exp
ments. Further, a PDE formulation has been developed for generating levelings as limi
a switched-dilation growth.

Next, we briefly discuss various issues related to levelings which include some envisic
applications, motivations for their PDE formulation, their use to improve the Gaussian sc
space, and some directions for future research.

5.1. Some Envisioned Applications

In general, levelings are nonlinear filters with many interesting properties for ime
enhancement and simplification. This coupled with the corresponding scale-space re
sentation developed in this paper makes them useful for numerous multiscale image an:
and vision tasks. For example, the leveling scale-space has been applied with succe
reduce the bitstream of an MPEG-4 encoder, when the simplified sequence replace
original sequence. In this case, a sliding temporal window is processed and treated
3D volume, with two spatial dimensions and one temporal dimension: 3D markers and
levelings are then used. Another important application is the simplification of the ima
prior to segmentation. Since the levelings enlarge flat zones, these flat zones may be
as seeds for a segmentation algorithm.

5.2.  Why Use PDEs For Levelings?

In addition to the well-known advantages of the PDE approach (such as more insigt
mathematical modeling, more connections with physics, better isotropy, better approxi
tion of Euclidean geometry, and subpixel accuracy), during construction of levelings
reconstruction filters it is possible in some applications to need to stop the marker grc
before convergence. In such cases, the isotropy of the partially grown marker offerec
the PDE is an advantage. Further, there are no simple digital algorithms for construc
levelings with quasi-flat zones, whereas for the PDE approach only a simple chang
the generator is needed, as we have demonstrated with the PDE producing levelings
parabolic zones.

5.3. From Gaussian Scale-Space to Multiscale Levelings

Consider the hierarchical scenario of Eq. (2) to produce multiscale levelings of a refere
signal f based on a sequence of multiscale markgsrs = 1, 2, 3, .... The sequence of
markersy; may be obtained fronfi in any meaningful way. A particularly interesting choice
we consider next is the case where thare multiscale convolutions df with Gaussians
of increasing standard deviations Examples of constructing multiscale levelings fron
Gaussian convolution markers according to Eq. (2) are shown in Fig. 6 for an ifnage
The sequence of the multiscale markers can be viewed as a scale-sampled Gaussian
space. As shown in the experiments, the image edges and boundaries which have
blurred and shifted by the Gaussian scale-space are better preserved across scales
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Original Reference

Marker Leveling 1
R

e

Marker 2 Leveling 2

Marker 3 Leveling 3

FIG. 6. Multiscale image levelings. The markers were obtained by convolving reference image with
Gaussians of standard deviations=3, 5, 7. (The levelings were produced by running the leveling PDE with
Ax=Ay=1 At=0.25)
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multiscale levelings that use the Gaussian convolutions as markers. Thus, several com
vision applications that employ the Gaussian scale-space may benefit by using the Gat
scale-space as a first phase and the above multiscale leveling scheme as a second ph:
sharpens the Gaussian convolutions toward the original image.

5.4. Future Research

Given the attractive properties of levelings and their scale-space formulations in
paper, there are many interesting directions for research on this nonlinear scale-space.
ideas, which we plan to investigate in future papers, include the following: (1) alternat
systematic approaches for selecting a sequence of markers for multiscale levelings; (2) |
of existence and uniqueness of the solution of the leveling PDE; (3) proof of converge
of the numerical algorithm implementing this PDE; (4) comparison of the complexity
the PDE-based numerical algorithm versus that of the discrete algorithm for construc
levelings based on their algebraic properties; (5) continuous-scale levelings, correspor
semigroups, and possible PDE formulation.
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