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Abstract 

We present an energy based approach to estimate 
a dense disparity map from a set of two weakly cal- 
ibrated stereoscopic images while preserving its dis- 
continuities resulting from image boundaries. We 
first derive a simplified expression for the disparity 
that allows us to estimate it from a stereo pair of 
images using an energy minimization approach. We 
assume that the epipolar geometry is known, and we 
include this information in the energy model. Dis- 
continuities are preserved by means of a regulariza- 
tion term based on the Nagel-Enkelmann operator. 
We investigate the associated Euler-Lagrange equa- 
tion of the energy functional, and we approach the 
solution of the underlying partial differential equa- 
tion (PDE) using a gradient descent method. The 
resulting parabolic problem has a unique solution. 
In order to reduce the risk to be trapped within 
some irrelevant local minima during the iterations, 
we use a focusing strategy based on a linear scale- 
space. Experimental results on both synthetic and 
real images are presented to illustrate the capabili- 
ties of this PDE and scale-space based method. 

1 Introduction 

Energy based methods have been extensively 
used in the last years 14, 5, 6 ,  8, 9, 11, 121 for esti- 
mating the disparity map between images. The goal 
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of this paper is to present a variational approach 
to recover a dense disparity map from a set of two 
weakly calibrated stereoscopic images. To solve this 
problem, we first make full use of the knowledge of 
the so-called fundamental matrix  [7] to derive the 
equations that relate corresponding pixels in the 
two views. The intrinsic and extrinsic parameters of 
the camera are not known. We directly compute the 
disparity map from the grey-level image intensities 
without dealing with any intermediate process such 
as rectification and we address the problem of ac- 
curately determining the dense disparity map while 
smoothing and regularizing this disparity map along 
the contours of the grey level image and inhibiting 
smoothing across the image discontinuities. 

The preservation of discontinuities in the dis- 
parity map is obtained using an anisotropic linear 
operator 13, 101 which allows to develop discontinu- 
ities in the disparity map across the edges of one of 
the 2 images. This important step is achieved by 
considering a well adapted regularization term that 
has already proven to be very useful in optical flow 
estimation. 

In order to avoid converging to irrelevant min- 
ima, a focusing strategy embedding our method 
in a linear scale-space is used [3], as it has al- 
ready been successfully applied in optical flow 
estimation. The coarse-scale solution serves then 
as initial data for solving the problem at a finer 
scale. We have shown that our method leads to 
a mathematically correct concept and we have 
proven the existence and uniqueness of the solution 
of the parabolic equation which governs our method. 

Finally, our approach has been validated on a 
large set of synthetic and real stereo data. All these 
results are presented in a previous work 11). 



2 Formalism of the matching process 

2.1 Notation and Background 

In this paper we use a projective camera model. 
This model maps a 3D point M = [X, Y, ZIt to 
a 2D image point m = [x, ylt through a 3 x 4 
projection matrix P via s m  = PM, where s is a 
nonzero scale factor and the notation p is such that 
if p = [x, y , .  . . I t  then p = [x, y , .  . . ,lit. In the case 
of two images acquired by a binocular stereo system, 
every physical point M in space yields a pair of 2D 
projections ml  and m2 on the two images. The 3 x 4 
projection matrices are defined by the following re- 
lations: 

Assuming that the world coordinate system is as- 
sociated with the first camera, the two projection 
matrices are given by 

where R and t represent the 3 x 3 rotation matrix 
and the 3 x 1 translation vector defining the rigid 
displacement between the two cameras, and 0 de- 
notes the 3 x 1 null vector. The matrices A and A' 
are the 3 x 3 intrinsic parameters matrices of the 
two views, each depending on five parameters and 
having the following well-known form [7]: 

a,  -a, cot8 U,O 

A =  [ 0 a,,/ sin 8 vo 
0 0 1 I 

All these matrices and parameters can be com- 
puted with good accuracy by means of a classical 
calibration method 171. In such a case, thc system is 
said to be calibrated. 

By eliminating the scalars $1 and .sz associated 
with the projection equations (1) as well as the point 
M ,  an equation relating the pair of projections of the 
same 3D point is obtained: 

For a point m l  = [x, y]' in the first image Il, the 
fundamental matrix F = (f,,j) provides the epipolar 
line A of equation 1liZtFnil = 0 in the image I,. Let 
us introduce the notation 

We will use this equation in order to introduce our 
specific parameterization of the disparity, developed 
to yield a simple linear second order differential op- 
erator in the minimization part. 

2.2 The Disparity Term 

Under the Lambertian assumption that corre- 
sponding pixels have equal grey values, the de- 
termination of the disparity from the stereo pair 
comes down to finding a function h(x, y) := 
(u.(x, y), v(x, y))' such that Il(z,  y)  = I,(x + 
u(x, y),  y + V ( Z ,  y)), where the point (x', y') = (x + 
~ ( x ,  y), y + ~ ( x ,  y))  belongs to the epipolar line as- 
sociated to (x, y). 

Let us denote by N (resp. T) the unitary normal 
(resp. tangential) vector of the epipolar line A given 
by the equation mztFni l  = 0, and by D the unitary 
disparity vector associated to the point ml  and m2 

Then we have 

m2 = m l  + 6D = m l  - y N  - AT (9) 

where 6 = represents the disparity. y  rep- 
resents the distance (modulus a sign) of the point 
m l  to its epipolar line A in the second image and X 
represents the dist,ance (modulus a sign) of mo, the 
projection of the point m l  on the epipolar line A, 
to the point m2 that lies along the epipolar line A. 

2.3 The Energy Functional 

Let us now develop an approach to accurately es- 
timate the A(x, y) function associated to a pair of 
stereoscopic images. The easiest possibility would 
be to proceed in a classical way and try to recover 
this important information using a simple correla- 
tion scheme. Unfortunately, this naive solution will 
not provide a correct and accurate result, in par- 
ticular in the regions where the disparity map has 
discontinuities, as is often the case at image edges. 
It is well known that the disparity map of this classi- 
cal method tends to be very smooth across the image 
boundaries. The idea we would like to formalize and 
develop here is to estimate a A(x, y) function which 
is smooth only along the image boundaries and not 
across them. This leads us to consider the minimiza- 
tion of the following energy functional: 

Using this notation, the epipolar line A can be writ- E(A) = In (I,(x, y) - I,(x + h(A(x, yen)))2 dz dy 
ten as 

a(x, y)xl + b(x, y)yl + c(x, y) = 0. (7) + C ~ V A ~ D ( V I , ) V A ~ ~ ~ ~  (10) 
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Here, R denotes the image domain, C is a positive algorithm converges to a local minimum of the en- 
constant, and D(VIl)  is a regularized projection ma- ergy functional (10) that is located in the vicinity of 
trix perpendicular to VIl: the initial data. To avoid convergence to  irrelevant 

where Id  denotes the identity matrix. This projec- 
tion has been introduced by Nagel and Enkelmann 
in the context of optic flow estimation. We use it 
here because of its simplicity (the underlying second 
order differential operator is linear) and because this 
method has demonstrated its performance numerous 
times in the context of optical flow estimations 131. 

2.4 Minimizing the Energy 

In order to minimize our energy functional, we 
solve its associated Euler-Lagrange equation 

C div ( D  (VIl) VX) 

We obtain a solution of the above equation by 
calculating thr asymptotic state (t + co) of the par- 
abolic equation 

local minima, we embed our method into a linear 
scale-space framework [13]. Considering the prob- 
lem a t  a coarse scale avoids that the algorithm gets 
trapped in physically irrelevant local minima. 

The basic idea of embedding our method in lin- 
ear scale-space is as follows : we replace the im- 
ages I1 and I, by IF  := G, * I( and I," := G, * I,, 
where * is the convolution operakor, and G, de- 
notes a Gaussian with standard deviation a .  We 
start with a large initial scale ao. Then we com- 
pute the disparity A,,, a t  scale a0 as the asymptotic 
state of the solution using some initial approxima- 
tion (see below). Next, we choose a. number of scales 
u, < a,-, < .... < 00, and for each scale u, we 
compute the disparity A,, as the asymptotic state 
of the above PDE with initial data A,,-, The final 
disparity corresponds to the smallest scale a,. In 
accordance with the logarithmic sampling strategy 
in linear scale-space theory, we choose a ,  := qlaO 
with some decay rate q E (0 , l ) .  A detailed analysis 
of the usefulness of such a focusing strategy in the 
context of a related optic flow problem can be found 
in 131. 

Our method is governed by the evolution equation 

dX 
- = Cdiv (D (vI,) VX) ax, 
a t  - - 

a t  
- Cdiv ( D  (VIP) VX,) 

X 
a ( )  - b ( % ) l  

(12) a (%)" + (I1 - 1;) JFTP + (I; - d m  (13) 

We observe that in this diffusion-reaction method 
the matrix D(VIl)  plays the role of a diffusion ten- For the initial value X,""(x, y )  we consider two pos- 
sor. Its eigenvectors are vl := VIl and v2 := TI:, sibilities. The first one is to take a constant value 
and the corresponding eigenvalues are given by which depends, in general, on a rough a priori es- 

timation of the expected disparity, following an es- 

In the interior of objects we have IVI,] -+ 0, and 
therefore X1 + 112 and X2 + 112. At ideal edges 
where ]VIlI + co, we obtain X1 -+ 0 arid X2 -, 1. 
Thus, we have isotropic behavior within regions, and 
at image boundaries the process smoothes anisotrop- 
ically along thc edge. 

2.5 A Linear Scale-Space Approach to 
Recover Large Disparities 

In general, the Enler-Lagrange equation (2.4) will 
have multiple solutions. As a consequence, the as- 
ymptotic state of the parabolic equation, which we 
use for approximating the disparity, will depend on 
the initial data. Typically, we may expect that the 

timation of the depth where the interesting objects 
are located. 

3 Experimental Results 

In Figure 1 we present the calculated disparity 
( d w )  using the classical correlation method 
(bottom left) and using our method with the cor- 
relation technique as initialization (bottom right). 
Two epipolar lines are depicted in the right image. 
They correspond to the points represented by a cross 
around the left eye and the nose in the left image. 
Figure 2 shows several views of the 3-D reconstruc- 
tion of the face in the stereo pair, using the disparity 
map obtained by our method. The reconstruction 
looks very realistic. 



References 

Figure 1: Top: the original stereo pair. Bottom 
left: the computed disparity map using a correlation 
window of size 13 x 13. Bottom right: our method 
(a0 = 7, a, = 0.8, a = 1, s = 0.5, q = 0.95), with 
the correlation result as initialization. 
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