N

N

Randomized graph drawing with heavy-duty
preprocessing
David Harel, Meir Sardas

» To cite this version:

David Harel, Meir Sardas. Randomized graph drawing with heavy-duty preprocessing. [Research
Report] RR-2147, INRIA. 1993. inria-00074525

HAL 1d: inria-00074525
https://inria.hal.science/inria-00074525
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074525
https://hal.archives-ouvertes.fr

%IINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Randomized Graph Drawing
With Heavy-Duty Preprocessing

David HAREL, Mcir SARDAS

N° 2147
Novembre 1993

PROGRAMME 2

Calcul symbolique,
programmation
ct génic logicicl

apport
de recherche B

1993

Randomized Graph Drawing with
Heavy-Duty Preprocessing

Dessin de Graphes Randomisé
avec Pré-traitement Lourd

David HAREL* and Meir SARDAS

Dept. of Applied Mathematics and Computer Science
The Weizmann Institute of Science, Rehovot, Israel
{harel,meirs }@wisdom.weizmann.ac.IL

November 4, 1993

Abstract : We present a graph drawing system for general undirected graphs with straight-line
edges. It carries out a rather complex set of preprocessing steps, designed to produce a
topologically good, but not necessarily nice-looking layout, which is then subjected to
Davidson and Harel’s simulated annealing beautification algorithm. The intermediate layout is
planar for planar graphs and attempts to come close to planar for nonplanar graphs. The
system’s results are significantly better, and much faster, than what the annealing approach is
able to acchieve on its own.

Résumé : Nous présentons un algorithme de dessins de graphes qui s’applique a des graphes
généraux non-orientés ou les arétes sont représentés par des lignes droites. Cet algorithme met
en place un ensemble complexe d’étapes de pré-traitement de maniére a produire a une mise en
page qui a de bonnes propriétés topologiques bien quelles ne soient pas particulicrement
esthétiques, et a laquelle on applique ensuite 1’algorithme de recuit simulé de Davidson et
Harel, pour en améliorer la présentation. La présentation intermédiaire est planaire lorsque les
graphes sont planaires et essaye de s’approcher de planarité pour les graphes non-planaires.
Les résultats de ce systeme sont significativement meilleurs et plus rapides que ceux que ’ont
obtient en utilisant le recuit simulé seul.

Keywords : Graph drawing, planarity, planar embedding, randomization, simulated annealing.

* Part of this author’s work was carried out during a visit to INRIA, Sophia Antipolis, in
September, 1993.

Randomized Graph Drawing with
Heavy-Duty Preprocessing

David Harel* and Meir Sardas

Dept. of Applied Mathematics and Computer Science
The Weizmann Institute of Science, Rehovot, Israel
{harel,meirs}@wisdom.weizmann.ac.IL

November 4, 1993

Abstract: We present a graph drawing systém for general undirected graphs
with straight-line edges. It carries out a rather complex set of preprocessing steps,
designed to produce a topologically good, but not necessarily nice-looking layout,
which is then subjected to Davidson and Harel’s simulated annealing beautification
algorithm. The intermediate layout is planar for planar graphs and attempts to
come close to planar for nonplanar graphs. The system’s results are significantly
better, and much faster, than what the annealing approach is able to achieve on its
own.

1 Introduction

A large amount of work on the problem of graph layout has been carried out in
recent years, resulting.in a number of sophisticated and powerful algorithms.
An extensive and detailed survey can be found in [BETT93]. Many of the
approaches taken are limited to special cases of graphs, such as trees or planar
graphs; others concentrate on special kinds of layouts, such as rectilinear grid
drawings, or convex drawings.

In this paper, we continue the work of Davidson and Harel [DH89], which
addresses the general problem of drawing arbitrary undirected graphs on the
plane, with edges drawn as straight-line segments. The goal is to try to achieve
as “nice” a drawing as possible.

*Part of this author’s work was carried out during a visit to INRIA, Sophia Antipolis, in
September, 1993.

The work in [DH89] uses simulated annealing to minimize a cost function
that reflects the aesthetic quality of the drawing, according to the following
criteria: (1) distributing vertices evenly, (ii) making edge lengths uniform, (iii)
minimizing edge crossings, and (iv) keeping vertices from coming too close to
edges.

The system developed in [DH89] performs well on small graphs, but be-
comes unsatisfactory when applied to graphs of over 30 vertices or so, especially
with respect to minimizing edge crossings. Planar graphs that do not result
in planar layouts are particularly annoying.

The basic idea in the present work is to use some rather intricate algorithms
and heuristics — part known and part new — to first obtain a rough approx-
imation to a drawing, with special emphasis on minimizing edge crossing, but
with very little that has to do with aesthetics, and then to submit the result
to the annealing system of [DH89] for beautification according to the other
criteria. _

Our system employs several phases. Phase A tests for planarity, and is
carried out by the algorithm of [BL76, LEC67], using P@Q-trees. The system
then deals somewhat differently with planar and non-planar graphs. The case
of planar graphs is simpler, and in it we carry out the following:

Phase A: Planarity testing.

Phase B: Planar embedding.

Phase C: Planar drawing.

Phase D: Randomized beautification.

Phase B uses the PQ-trees-based algorithm presented in [CNAQO85] to con-
struct a planar embedding, i.e., an ordered list of the neighbors of each vertex,
which, if layed out appropriately in cyclic order around the-vertex, leads to a
planar drawing.

Phase C then uses the embedding lists produced by the previous phase to
actually draw the graph. The output is a planar drawing with (crossing-free)
straight-line edges. To carry out this phase we had to design a special drawing
algorithm, which is a generalization of the algorithm of [FPP88, CP90].! Phase
D is the fine-tuning part of the simulated annealing system of [DH89], slightly
modifed. '

For nonplanar grz‘th{S, the phases are as follows:

IThis is the most technicaly involved part of our work, and we have devoted a separate
paper to the detailed description and analysis of this algorithm; see [HS93].

Phase A: Planarity testing.

Phase B~: Extracting planar subgraph.

Phase B: Planar embedding.

Phase B*: Reinserting removed edges.

.Pha.se C': Planar drawing.

Phase D': Extended randomized beautification.

Phase B~ uses yet another application of the P@-trees algorithm, described
in [Kan92, JTS89], that attempts to find a maximal planar subgraph in the
input graph, by eliminating as few edges as possible. The subgraph produced
by this phase is then subjected to the planar embedding algorithm of phase
B. Following this, phase B* reintroduces the eliminated edges, while trying
to minimize the number of crossings that arise by doing so. At each crossing
point a new vertex is inserted, yielding again a planar graph.

This planar graph is then drawn in phase C' and is beautified by phase
D' in a manner similar to that of planar graphs. However, we have had to
extend the randomized algorithm of [DH89] with new components that try to
overcome distortions introduced by phase Bt.

As far as planar graphs are concerned, our system achieves a significant im-
provement over the annealing system of [DH89]. In general, all planar graphs
are drawn planar. In fact, planar graphs with 50 vertices yield drawings that
have a clear close-to-perfect look. The running time is also significantly im-
proved, as the inherently slow annealing process is not burdened with having
to find a solution, but only with “massaging” a topologically suitable layout
into a nice-looking one. For graphs that can be made planar by extracting
a small number of edges, the results are still good, and compared with the
annealing system ours has the advantage of being stable: In subsequent runs
the results are much the same and are all fairly good, while in the annealing
system results can vary widely from run to run — some are acceptable, and
some are not.

For graphs that are far from planar (i.e., ones that require the elimination
of more than 10 edges or so for planarization), improvements are still required,
and the system’s results can still be worse than a manually produced drawing,
even for medium sized inputs.

Section 2 describes the simulated annealing system of [DH89], which was
the starting point for the current work. We next discuss our treatment of

planar graphs: Section 3 contains a brief description of the drawing algorithm
of phase C for planar graphs, and Section 4 describes some heuristics used to
enhance this drawing algorithm and improve its output. Section 5 describes the
changes and extensions introduced for the case of nonplanar graphs, including
the algorithm used to reinsert edges in phase B*, and the components added
to the randomized algorithm in phase D’ to minimize damage caused by the
reinsertion. '

Section 6 discusses some examples of drawings obtained by the system, with
the goal of highlighting the improvements over [DH89]. Section 7 summarizes
the asymptotic time-complexity of the various parts of the system, and includes
a table of performance statistics for the examples of Section 6. Finally, Section
8 contains some directions for future work.

2 Randomized beautification

This part in our system is an adaptation of the work of Davidson and Harel
[DH89], in which they applied the simulated annealing paradigm to the prob-
lem of drawing graphs nicely. We incorporate their system as our final phase,
after a topologically acceptable, but non necessarily nice-looking layout has
been found in the earlier phases. In this section we briefly describe the system
of [DH89], and our adaptation and use of it.

Simulated annealing tries to find a configuration that minimizes a cost
function [LA87] carefully designed to capture the “niceness” of a drawing.
Minimization is attempted by a process that starts from some initial random
drawing, and repeatedly improves it as follows. Given the current candidate
drawing o, a new candidate o’ is generated, that is close to ¢, and the following
annealing condition is tested:

Let E and E’ be the values of the cost function at ¢ and ¢’ respectively;

—— 4 .
if E' < E or random < e-1 , then accept ¢’ as the current candidate.

Here random stands for a real number between 0 and 1, selected randomly,
and T is the so-called temperature, which is cooled down as the process pro-
ceeds. This fragment of the algorithm is called an annealing step. Generating
the next candidate drawing is carried out as follows:

Choose a vertex v; and an angle 8 at random;
Let P be the current position of v;; Move v; to a position @, such that
the line segment PQ is of length r and forms angle 6 with the X-axis.

Here, r is the offset radius. It starts from some initial value, and decreases
as the process proceeds. The entire process iterates a large number of annealing

4

steps of the kind described above. This number is proportional to the number
of vertices in the graph, and, as mentioned, r and T are decreased as the
process proceeds.

The cost function developed in [DH89] takes into account several empirical
criteria for nice drawings. These are integrated using normalizing factors de-
noted below by A;, that define the relative importance of each criterion in the
overall value. Many of the parameters of the algorithm are open for interac-
tive change by the user. This includes control of the normalizing factors, the
number of annealing steps to perform, and more. Here is a brief description of
the cost function.

The first component tries to spread out the vertices evenly. For each pair
of vertices v; and v;, the term)\l/d;jz is added to the cost function, where d;;
is the Euclidean distance between v; and v; in the candidate drawing,.

The next component prevents vertices from being positioned too close to
the borderline of the drawing space. The following term, for each vertex wv;,
takes care of this:

1 1
,\2(+ 12 + o 37)
Here, ri,1;,t; and b; are the dlstances between v; and the four borderlmes —
right, left, top and bottom.

The next component tries to make the edges short, by adding the term
Asd.? to the cost function, for each edge e, where d. is e’s length.

The next component penalizes edge crossings. A fixed value of A4 is added
to the cost function for each crossing.

The last component tries to keep vertices from coming too close to edges.
For each vertex v and edge e, the term \s/g,? is added to the cost function,
where gy denotes the least distance from v, to any point on e;. Since the
calculation of this component is very time consuming, we have incorporated
two variants of the cost function in our system: The full one, in which this
component appears, and the simple one, in which it is omitted.

[DH89)] contains examples obtained by the simulated annealing system (and
also compares it with the spring-based methods of [Ead84, KK89]). While slow
in general, due to the inherent time-consuming nature of simulatéd annealing,
the results are very good for small graphs of size up to 25-30 nodes; larger
graphs are much harder to handle. Increasing the number of iterations of the
system often helps, but this causes a significant increase in the already quite
high running time.

_ The asymptotic running time of the algorithm of [DH89] is O(n?¢), where
n = |V| and e = |E]| for input graph G = (V, E). This follows from the fact
that updating the cost function can be done with O(ne) per iteration, and the

number of iterations is linear in n. The initial value of the cost function for
the first drawing must be calculated from scratch, which also requires O(n?e)
operations.

In our adoption of the annealing system of [DH89] in phase D, we employ
the same cost function and the same method for generating new candidates for
a drawing. However, experimentation showed that in our context almost all of
the moves accepted were those with £ < E’, and only very few were the up-

hill moves, i.e., those accepted by the annealing condition random < e'gf_"g.
Consequently, we decided to remove this condition and test only for £ < E’
in accepting a candidate drawing. This saves significant running time, with
almost no influence on the results.? This version of the algorithm appears
already in the original system of [DH89], as a fine tuning stage, employed to
further improve the drawing after the annealing process ends. Thus, interest-
ingly, we use the fine-tuning process for the same task as it is used in [DH89],
but here it is preceeded not by a lengthy simulated annealing process, but by
quite different, far more complex, yet faster, methods for reaching a rough
initial layout of the input graph.

We use both variants of the cost function, and have found that alternating
them seems to have the best effect. Start with a number of simple iterations,
i.e., ones that do not test vertex—edge proximity, followed by some iterations
that use the full cost function, including this time-consuming test; then again
a number of simple iterations, followed by some full ones, etc.

3 Planar graphs: The drawing algorithm

In this section we provide a brief description of the drawing algorithm for
planar graphs, that constitutes phase C of our system. A more detailed de-
scription can be found in [Sar93, HS93].

The input to this phase is a planar graph accompanied by the planar em-
bedding constructed in phase B using the PQ-trees algorithm of [CNAOS85].
The output is a planar drawing of the graph that complies with the given
embedding. By a planar embedding of a graph G we mean an array of lists,
one for each vertex, with v’s list containing the edges incident to it in circular
order around v in a possible planar drawing of G.

Our algorithm is a generalized version of the drawing algorithm of Chrobak
and Payne [CP90], which, in turn, is based on an algorithm by de Fraysseix,
Pach and Pollack [FPP88]. This algorithm draws a graph with n vertices on
a grid of size (2n — 4) x (n — 2); vertices are placed on grid points and edges

2We thus call this part of our system the randomized phase, rather than the annealing
phase.

(a))]

Figure 1: The problematics of naively applying the drawing algorithm to a
non-triangulated graph. '

are crossing-free straight lines. It runs in time O(n), and is quite easy to
implement.

The original algorithm of [CP90] requires the graph to be mazimal planar.
However, we want the system to work on planar graphs which are not nec-
essarily maximal. The simplest way to achieve this is suggested in [FPP88], -
namely, triangulation: If the graph is not maximal, dummy edges are added
as follows. For every node v, if u, w are two neighbors of v, adjacent in the cir-
cular ordering of v’s neighbors but not connected by an edge, add the dummy
edge (u,w).

To achieve linear running time for triangulation, we have to be able to check
the existence of an edge in constant time. This can be done by using an n x n
adjacency matrix to represent the graph, and a method suggested in [Rea87]
to avoid the quadratic time that zeroing the matrix at the initialization stage
would take.(However, this requires quadratic space.)

Thus, the method that emerges is to (i) triangulate the graph, (ii) draw
the result by the drawing algorithm, and (iii) delete the dummy edges in-
troduced in the first step. An implementation of this method exists in the
software package GraphEd, which we have used to test its performance. For
example, Figure 1(a) shows an example of the output (after deleting the added
edges). When this drawing was submitted as input to the randomized process
of phase D, Figure 1(b) was obtained, which has a major deficiency: Its ex-
ternal face is drawn concave, in a way too twisted for the randomized phase
to overcome. Other examples show similar problems, which are the result of
the idiosynchrasies of the triangulation step, whose dummy edges often ruin
the structure of the graph, yielding unsatisfactory results.

(a) : ~ (b)

Figure 2: The graph from Fig. 1 as drawn by our system.

To overcome this difficulty, we have developed a variation of the algorithm
of [CP90], which does not require a triangulated graph, but works directly on
the original input graph. Our algorithm constructs the graph in steps, in such
a way that a vertex v appears in G, the graph constructed in step k, only if at
least one of its neighbors appears in G¢—y. This avoids the situation of vertex
w in Fig. 1, which was drawn based only on dummy edges that were removed
in the final drawing. Fig. 2(a) shows the same graph, drawn using our variant
of the algorithm, and Fig. 2(b) shows the final result. Another example of the
results of our algorithm is given in Figure 8, which contains a planar graph of
49 vertices. .

As mentioned, a more detailed description of this algorithm appears in

[HS93].

4 Planar graphs: Some enhancements

We have incorporated a number of heuristics and enhancements that improve
the drawing algorithm of phase C. They are:

1. Choosing the initial edge for the algorithm of phase C in such a way that
the external face in the drawing will be the longest face of the graph.

2. Adding dummy edges, so that the graph that is input to phase C becomes
biconnected.

3. “Centralizing” each vertex with respect to its neighbors prior to the
randomized algorithm of phase D.

4. Preventing the randomized algorithm of phase D from introducing new
edge crossings.

We now discuss each of these briefly.

4.1 Pull a long face

The embedding list that is input to the drawing algorithm of phase C does not
enforce a choice of the face to be made external. In fact, a graph can be drawn
with any of its faces as external, without affecting the embedding list. Since
-one of the criteria for nice drawings is to have short edges, while maintaining
uniform distribution of the vertices, a good heuristic would be to choose a face
with a maximal number of vertices along its boundary. This gives rise to a
large drawing space, enclosed by an external face with relatively short edges.

Given the embedding lists, this heuristic is easy to implement. However,
it is worth mentioning that, in general, embedding lists are not unique®, and
different embeddings can give rise to longest faces of different size. A good
implementation of the longest face heuristic would be to examine all possible
embeddings and choose the one with the longest longest face. This can be
done with the variant of the P@Q-trees embedding algorithm that produces all
possible embeddings, described in [CNAO85]. We have not implemented this
version, and leave it for further improvements.

4.2 Use your biconnections

Our drawing algorithm in phase C requires the input graph to be biconnected,
a fact that is crucial to the existence part of its correctness proof (see [HS93]),
and we have not been able to generalize it to deal directly with general graphs.
Hence, for non-biconnected graphs we have incorporated the following prelim-
inary step, that makes the graph biconnected by adding dummy edges. (These
are removed prior to phase D, of course.)

Let A and B be two biconnected components of a planar graph G, that
have a common vertex v (v is thus a cut-vertex, whose removal will disconnect
A from B). We turn A and B into a single biconnected component by chosing
two vertices u € A and w € B, both neighbors of v, and adding a dummy edge
between them. It is important to realize that this cannot destroy planarity.
However, the particular pair chosen does affect the topological embedding of
the large component: Depending on the pair of vertices chosen, the operation
merges a pair of faces, one from each component, into a single face.

As before, we would like to choose u and w such that the merged face will
be as long as possible. If this face turns out later to be the external one, then
the two components will be drawn as adjacent portions of the graph, connected
at the cut-vertex, and having a long external face (see Fig. 3(a)). Even if the

3In fact, a planar graph has a unique embedding only if it is triconnected [CNAQO85).

9

IS
<

Figure 3: The unified face of two biconnected components, shown after removal
of the dummy edge, and drawn as external (a), and interior (b).

merged face is not destined to become external, the result is better when this
internal face is long, since one component will be contained in its entirety
inside one of the faces of the other, as in Fig. 3(b); having the external face
of the inner .component be larger, as well as the inner containing face of the
outer component, clearly yields a better spreadout of the vertices.

Tracking the longest face for each vertex as components are merged requires
O(n?) running time.

4.3 Play center field

The output of the algorithm of phase C has a typical triangle-like form. The
edge chosen to be initial is drawn as the basis of the triangle, and it is the
longest edge in the drawing. In general, lower edges come out longer and
higher ones shorter (see Fig. 2(a)). Submitting this output, as is, to the
randomized phase is not very wise, since a large number of iterations are
needed to overcome the variance in edge lengths.

We would like to break the typical structure of the output, by moving every
vertex towards the center of gravity of its neighbors, as long as no crossings
emerge. This is achieved by progressing backwards along the straight line from
the desired position to the current position, through some constant number
of “stations” (7 in our implementation). The process stops when no crossings
are formed.” Thus, the vertex is left at the station closest to the center that
still preserves planarity. (Singly-neighbored vertices are placed at a predefined
distance from their neighbor.)

Since the centering algorithm processes the vertlces one by one, the overall
result can be far from optimal. After a vertex is centralized, some of its

- 10

neighbors might be centralized in subsequent steps of the process, possibly
leaving it far from the center of its neighbors’ final positions. Hence, in terms
of optimality, we cannot expect much from this part of the system. However, in
practice it does a pretty good job. The typical triangular shape of the output
from the drawing algorithm is broken, the drawing has a far smaller variance
in edge lengths and is more appropriate as an input to the randomized phase.

As far as complexity goes, testing a new position for a vertex requires O(ne)
running time to re-evaluate the edge crossings component of the cost function
(see [DH89]). As this is done n times here, we have a running time of O(nZe).

4.4 Do not cross

The randomized phase D is carried out as described in Section 2, with one
exception. Since only an overall improvement in the value of the cost function
counts, it is possible that a new position for a vertex will be accepted despite .
the fact that edge crossings emerge. This will happen if other components
of the cost function, i.e., edges lengths and the distribution of vertices, are
greatly improved, but only a small number of crossings emerge. We believe
that a planar graph should be drawn planar even at the cost of some distor-
tions. Therefore, in the case of planar graphs, we have implemented an explicit
rejection of moves that result in edge crossings. Thus, the graph is kept planar
throughout the randomized phase, even when this entails rejecting moves that
improve the overall score.

5 Nonplanar graphs

Our first attempt at drawing nonplanar graphs was to submit the planar sub-
graph found by the algorithm of phase B~, together with the embedding found
in phase B, to the drawing algorithm of phase C, and then to reinsert the edges
removed, letting the randomized phase take care of beautification. This naive
approach proved to be problematic. Reinserting even a small number of edges
into the planar drawing created by the drawing algorithm produced situations
that were very hard for the randomized phase to deal with. The number of
crossings was often large, and the edges reinserted were long. The performance
of the randomized phase was poor, sometimes even worse than its performance
on random initial layouts of the graph. The reason is, of course, that although
the planar subgraph phase attempts to minimize the number of edges removed
and then reinserted, it does not do well in minimizing the number of crossings
or edge lengths, which are the kinds of difficulties that can be very hard for
an algorthm that moves one vertex at a time to deal with.

11

Figure 4: Adding a quasi-edge using the short face-path heuristic.

2

5.1 Add dummies smartly

To solve the aforementioned problem, we have developed a more elaborate
algorithm, that reinserts the edges before executing the drawing algorithm,
rather than after it; this is phase B*. When reinserting an edge, we keep
the graph planar by creating dummy vertices in places where crossings occur.
However, we would like to reinsert an edge while introducing as few dummy
vertices as possible. This is done using a “shortest path of faces” heuristic, as
follows: '

Assume we have a planar subgraph G, of the original input graph G, along
with a planar embedding thereof. Let e € G — G, be one of the extracted
edges, e = (u,v). To insert e into G, causing as few new crossing points as
possible, we carry out a breadth-first shortest path search in the dual graph of
Gy, i.e., the graph of its-faces. (Two faces are neighbors if they have a common
edge in G,.) The search starts with all faces whose boundary contains node u,
and terminates at the first face whose boundary contains node v.

After the shortest path is found, the edge e is inserted into G, as a sequence
of edges that traverses this path of faces, by introducing dummy vertices where
crosses occur. We call such a sequence a quasi-edge; see Fig. 4. This process
is performed repeatedly, reinserting the extracted edges one by one, enriching
(but maintaining the planarity of) the graph G, at each step.

The final graph, call it G, is a quasi-planarization of the original input
graph G, in the following sense. Its vertices contain the vertices of G with
some additional dummy vertices, all of which occur along quasi-edges. The

12

©

Figure 5: Straightening bends in two stages: (a) the dummy vertex, (b) after
the first stage, (c) after the second stage.

edges of G are mapped into edges or quasi-edges in G'.*

5.2 Straighten things out

The (planar) graph that results from the shortest’ face-path heuristic is then
submitted to the drawing algorithm of phase C'. A dummy vertex is not shown
as a vertex, but as a pair of bends, one on the quasi-edge and one on the edge
it crosses. However, since our goal is to produce a straight-line graph, we
would like the randomized algorithm in phase D to try reduce the number of
the bends without increasing the number of crossings by too much. For this
purpose we have enriched the randomized phase in the following two ways:

First, if we can straighten such a pair of bends without causing any damage,
i.e., without increasing the number of crossings (except for the single crossing
that is presumably needed to replace the pair of bends itself), we do it. Testing
for this is carried out in two stages, one for each of the two bent edges involved,
as illustrated in Fig. 5. If both bends pass the test process, the dummy vertex
that caused the bends is eliminated, and the edges are straightened, as in
Fig. 5(c). This replacement and elimination procedure is executed several
times during the randomized phase.

Figure 6(a) shows a graph after the shortest face-path heuristic, in which
3 dummy vertices appear. Its final form is given in Fig 6(b), in which all 3
dummy vertices were eliminated, resulting in 3 crossings in the drawing.

The second modification to the randomized phase is a new component
added to the cost function. It embodies a heuristic, to the effect that the
chance of eliminating bends increases as the angles involved come closer to
being straight. For each dummy vertex v in the graph and each of the two
quasi-edges that pass through it, if the quasi-edge bends at v with angle «,

4As in the longest face heuristic of Section 4.1, a better implementation of this process .
would be to check all possible embeddings of the planar subgraph G, choosing the one that
minimizes the number of dummy vertices. We have not implemented this.

13

N

(a) (b)

Figure 6: A graph drawn using the shortest face-path heuristic.

the following term is added to the cost function:

(AG cos(g)) ’

This term yields small values for « close to 7, and larger values for sharper
angles, as needed.

5.3 Cross if convenient

Recall the strategy we adopted in the randomized phase of the planar case,
whereby moves that introduce edge crossings are rejected, even if they improve
the overall value of the cost function. In the nonplanar case, this strategy leads
to poor performance as far as the straight-angles heuristic goes, in that it tends
to leave more dummy vertices intact. These vertices were usually eliminated
completely when subjected to moves that improve the overall cost function,
even at the expense of introducing new crossings. Moreover, the number of
crossings did not rise dramatically by this. Hence, for nonplanar graphs we
have decided not to reject moves that increase the number of crossings.

14

Figure 7: Final result on a planar graph of 49 vertices and 112 edges.

6 Examples

Many examples are provided in [DH89]. They demonstrate the power of the
simulated annealing approach for graphs of modest size or simple structure,
such as the 3-dimensional cube (8 vertices), the dodecahedron (20 vertices), the
6-by-6 grid, and various trees. For such graphs, the preliminary phases of our
system do not provide much added value. Hence, in this section we concentrate
on cases where a significant improvement over the bare randomized phase is
achieved.

6.1 Planar graphs

Planar graphs of any size are drawn planar by our system, while the annealing
system of [DH89] has difficulty achieving planar drawings for some graphs
of even moderate size. Fig. 7 shows the output of our system on a planar
graph of 49 vertices and 112 edges. Fig. 8 shows the intermediate result, as
output from phase C and prior to phase D. This demonstrates the power of
the randomized algorithm of [DH89] in taking an “ugly”, but planar, version
of the graph and drawing it nicely. In contrast, when applied to a random
layout, without the heavy-duty preprocessing of phases B and C, the system
of [DH89] does quite poorly, as can be seen in Figure 9. Although some of
the graphs inherent structure can be seen, the drawing is far from optimal; it
seems to need some sort of turning things “inside out”.

Repeated runs of the annealing system on this graph, starting from other
initial random drawings, produced other results, none of them planar, and
many even worse than the one shown here. This also illustrates the difference

15

Figure 8: Intermediate result of Fig. 7 after the drawing algorithm

/

Figure 9: The graph of Fig. 7 as produced by the simulated annealing system
of [DH89).

16

@) (b)

Figure 10: A sparse planar graph: (a) our system’s output, and (b) that of
the annealing system of [DH89).

in stability between our system and that of [DH89]. When applied repeatedly
~ to a difficult example, the latter system yields results with large variance, which
is true even when it is always run on the same initial random drawing. In our
system, on the other hand, repeated runs on the same graph yield very similar
(albeit not always identical) results; this is due to the planarizing phases, and
the fact that the randomized phase tends not to distroy the graph’s overall
topology (i.e., it’s embedding).

Fig. 10 contains another example of a planar graph, this time a sparse
graph with 50 vertices and 75 edges. Again, the annealing system was not
able to produce a planar drawing.

6.2 Nonplanar graphs

Our approach to nonplanar graphs is clearly biased towards graphs with only
a small “amount” of nonplanarity, and its success is thus a function of this.
The crucial parameter seems to be the number of dummy vertices that are
added to the graph, as a result of the maximal planar subgraph algorithm of
phase B~ and the minimal face-path heuristic of phase B*.

Figs. 11 and 12 illustrate a successful case of a graph with 37 vertices and
76 edges. The planar subgraph algorithm removed 9 edges; reinserting them
using the face-path heuristic produced 13 dummy vertices, seen as bends on
the edges in Fig. 12. The final result, with only 8 crossings, appears in Fig.
11.

However, managing to add only a small number of dummy vertices is not
always enough. Fig. 13 contains a graph with 37 vertices and 68 edges, similar
to that of Fig. 11. Part (a) shows a manual drawing of the graph, in which 8
crossings occur, and part (b) shows our system’s final output. The intermediate

17

Figure 12: Intermediate result of Fig. 11 after the drawing algorithm.

18

(a) (b)

Figure 13: A less lucky example of a nonplanar graph: (a) a hand-drawn
version, and (b) our system’s output.

result, after phase C, yielded 11 dummy vertices by reinserting 8 edges, values
that are smaller than their counterparts in the previous example. Yet the final
result (Fig. 11(b)), although having only 8 crossings, just as that of Fig. 11(a),
is only partially successful. The problem is due to the embedding produced in
phase B, which is reflected in the topology of the final result, and upon which
the randomized phase was not able to improve. It seems hard to predict such
a situation in the planar embedding phase, so that this kind of phenomenon
will probably have to be tolerated as is.

It is noteworthy that in both examples the number of dummy vertices
produced by phase B* of our system is larger than the minimum possible
(8 in both cases). Fortunately, the randomized phase is powerful enough to
overcome redundant dummy vertices in many cases, by repeatedly effecting
small changes in the drawing’s topology. However, if the number of dummy
vertices is significantly larger than the minimum needed, results will not be as
good.

7 Complexity and performance

We first sumarize the asymptotic time-complexity of our system, for an input
graph G = (V, E), with n = |V|,e = |E|. We refer to parts of the known
algorithms that we use, although their details were not always discussed here,
as well as to parts of our own algorithms, some of which are described more

fully in [HS93).

19

For planar graphs, the system’s phases and their running times are as follows:

Phase A:

1. Finding biconnected components — O(n).
2. Calculating an st-numbering — O(n).
3. Testing planarity using P@Q-trees — O(n).

Phase B:

1. Planar embedding of each biconnected component — O(n).
2. Building faces data structure using right hand walk — O(n?).

3. Merging biconnected components to form biconnected graph — O(n?).

Phase C:

1. Planar drawing algorithm — O(n).

Phase D:

1. Centering vertices — O(nZe).
2. Randomized beautification — O(n?e)..

Since for planar graphs e = O(n), the overall complexity in this case is O(n?).
For non-planar graphs, the phases and their running times are as follows®:

Phase A:

1. Finding biconnected components — O(n + e).
2. Calculating an st-numbering — O(n + e).
3. Testing planarity using PQ-trees — O(n).

Phase | B—:

1. Extracting planar subgraph using PQ-trees — O(n?).
2. Making the planar subgraph maximal — O(n?).

5The graph G' = (V', E') obtained by phase Bt is of size n' = O(e?) and ¢’ = O(e?)).
Hence, the bounds in phases C and D, which are both applied to this graph.

20

Phase B:

1. Planar embedding of each biconnected component — O(n).
2. Building faces data structure using right hand walk — O(n?).
3. Merging biconnected components to form biconnected graph — O(n?).

Phase B*:

1. Reinserting extracted edges using the face-path heuristic — O(e3).
Phase C:

1. Planar drawing algorithm — O(e?).

- Phase D:

1. Centering vertices — O(e*).
2. Randomized beautification — O(e*).

This gives a total upper bound of O(e*) for nonplanar graphs.

As can be seen, for both kinds of graphs the highest asymptotic complexity
is incurred by the randomized annealing-like phase. In actual tests this phase
was indeed the most costly, as the following table shows. It gives the running
time (in seconds) of our system on a Sun Sparc-2 for the examples discussed in
Section 6. The “planarization” column gives the running time used by phases
A - C of the algorithm. The “randomized” column gives the running time
of phase D, including the vertex centering step. Interestingly, the heavy-duty
preprocessing that our system carries out, i.e., phases A — C, requires only a
very small fraction of the entire running time (up to 3%).

Figure || vertices | edges | planar | planarization | randomized | total
7 49 112 | yes 0.2 79.0 79.2
10 50 75 | yes 0.2 44.1 44.3
11 37 68 no 1.2 39.1 | 40.3
13 37 76 | no 0.7 34.1 34.8

21

@ ')

Figure 14: Symmetry vs. planarity.

8 Future work

Clearly, much remains to be done. Some topics that pertain to harder problems
(e.g., richer graphical objects, such as curved-line graphs, hypergraphs [Ber73]
or higraphs [Har88]) were alluded to in [DH89]. Some work on hypergraphs has
already been done; see [BETT93]. However, even in the more humble realm of
straight-line graphs, the present paper, although improving [DH89], leaves a
lot to be desired. The main reason is that it is heavily oriented towards planar
or close-to-planar graphs. Here are some specific directions where more work

could probably be done.

8.1 Symmetry

The examples we have presented might give the impression that symmetry
comes for free, since, although it does not look for symmetry explicitly, our
system often produces drawings that are highly symmetrical. However, this is
not always so, as has often been pointed out in the literature. For example,
consider the graph of Fig 14(a), which was drawn by hand. It has 20 vertices
and 34 edges, and in this drawing we have 5 edges, mutually inter-crossed,
giving a total of 10 crossings. Running our system on it produces the far
worse Fig 14.(b), in which there are only 5 crossings and one bent edge.

This graph is a hard example for the simulated annealing system of [DH89]
too, as well as for other algorithms based on physical forces, such as spring-
based methods (see [BETT93]). The same is true even when the weight at-
tributed to crossings in the cost function is reduced to 0. Symmetry in such
cases should be sought for explicitly, since it is hard to obtain as a by-product of
other criteria for nice drawing. While the general symmetry problem is closely

22

related to graph isomorphism, which is not known to have a polynomial-time
solution, improvements based on randomization or heuristics should definitely
be sought for.

8.2 Better planarization

It seems that one could develop better heuristics for planarizing nonplanar
graphs using a smaller number of dummy vertices (which will result in a smaller
number of crossings in the final drawing). Poor performance in any of several
parts of our system can be responsible for a larger-than-needed number of
dummy vertices:

e The search for a maximal planar subgraph in phase B~ might cause the
elimination of a larger number of edges than is really needed.

e The construction of a planar embedding in phase B, which ignores the
edges to be reinserted, might produce an embedding that is problematic
for the minimal face-path algorithm of phase BY. There could exist
other embeddings, in which reinserting the same set of edges produces a
smaller number of crossings.

e Given an embedding and a set of edges to reinsert, the face-path algo-
rithm might still introduce a larger number of dummy vertices than is
needed, since it works sequentially, edge by edge. Reinserting the edges
in a different order, or reinserting an edge via a different path of faces
might decrease the overall number of dummy vertices.

These difficulties can be partly eased by incorporating randomization at
points where choices are made. The user (or perhaps the system) can then
carry out several runs, choosing the best. For example, there are cases where
the face-path algorithm constructs two or more paths of the same length on
the dual graph. The current implementation picks the first path found, while it
could have made random choices among the set of possible paths. Similarly, the
initial order in which the edges are reinserted could be determined randomly.
Points of arbitrary choice exist in many places in the maximal planar subgraph
algorithm and in the embedding algorithm, and a similar treatment can be
implemented there too.

Sometimes a point of choice can be dealt with more intelligently, by taking
the specific circumstances into account. For example, it might be possible
to develop a new planar embedding algorithm, which at points of arbitrary
choice will inspect the list of edges to be later reinserted and will choose its
way accordingly.

23

8.3 Automatic tuning

As in the original system of [DH89], our randomized phase has various param-
eters, all of which have predefined values in the current implementation. Some
can be adjusted by the uset before running on a new graph. One of these is the
very number of rounds carried out by the randomized phase. In many cases,
a stable and satisfactory result is reached early in the run, and much of the
costly running time of the randomized phase could be eliminated if the system
‘were able to detect these cases and terminate without wasting time on rounds
that contribute nothing. This was observed in [DH89).

The relative weights of the different components in the cost function can
also be changed by the user prior to a new run. It would be nice to in-
corporate intelligent heuristics that would enable the system to change these
in accordance with the input graph, or even during the run itself. We have
made a humble step in this direction, concerning a problem we ran into with
the size of the drawing: Large graphs tended to spread widely, and vertices
were “pressed” against the borderline of the drawing space, due to the relative
weight of the vertex-distribution component. The solution we implemented
was to let the weight of the edge attraction component be dependent (in a
linear fashion) on the size of the graph. Thus, for large graphs we have strong
attraction forces along edges, obtaining a balance with respect to the repelling
forces between vertices. This yields reasonable results, and large graphs are
now drawn better.

One can think of other parameters to be adjusted automatically. For ex-
ample, if the variance of edge lengths grows too large during the run, it might
be beneficial to increase the weight of this component for a few rounds. We
have not implemented this.

Acknowledgements: The first-listed author wishes to thank Gerard
Berry and Gilles Kahn for hosting him on a visit to INRIA, Sophia Antipolis,
where parts of the paper were written. We wish to thank Goos Kant from
The University of Utrecht and Matthias Stallmann from North Carolina State
University for their implementations of the planar subgraph algorithm and the
planar embedding algorithm, respectively. Both programs were integrated into
our system with permission of their authors and saved a large amount of work.

References

[BETT93] Di Battista, G., P. Eades, R. Tammassia and I G. Tollis, “Algo-
rithms for Automatic Graph Drawing: An Annotated Bibliogra-

24

[Ber73]

[BL76)
[CNAOSS)

[CP90]
[DH89]
[Ead84]

[FPP8S]

[Har88]
[HS93]

[JTS89]

[KK89)

phy”, Technical Report, Dept. of Computer Science, Brown Uni-
versity, Providence, 1993.

Berge, C., Graphs and Hypergraphs, North-Holland, Amsterdam,
1973.

Booth, K.S. and G.S. Lueker, “Testing for the Consecutive Ones
Property, Interval Graphs, and Graph Planarity Using PQ-tree
Algorithms”, J. Comput. Syst. Sci. 13 (1976), 335-379.

Chiba, N., T. Nishizeki, S. Abe, and T. Ozawa, “A Linear Algo-
rithm for Embedding Planar Graphs Using PQ-trees”, J. Comput.
Syst. Sci. 30:1 (1985), 54-76.

Chrobak, M. and T.H. Payne, “A Linear Time Algorithm for Draw-
ing a Planar Graph on a Grid”, Technical Report UCR-CSS-90-2,
Dept. of Math. and Comp. Science, University of California, River-

side, CA, 1990.

Davidson R. and D. Harel, “Drawing Graphs Nicely Using Sim-

-ulated Annealing”, Technical report, The Weizmann Institute of

Science, Rehovot, Israel, 1989; revised 1992, 1993; Comm. Assoc.
Comput. Mach., to appear.

Eades, P., “A Heuristic for Graph Drawing”, Cong. Numer 42
(1984), 149-160.

Fraysseix, H. de, J. Pach, and R. Pollack, “Small Sets Supporting
Fary Embeddings of Planar Graphs”, In Proc. 20th ACM Symp.
on Theory of Comput., pp. 426-433, 1988.

Harel, D., “On Visual Formalisms”, Comm. Assoc. Comput. Mach.
31 (1988), 514-530.

Harel, D. and M. Sardas, “An Incremental Drawing Algorithm for
Planar Graphs”, in preparation.

Jayakumar, R., K. Thulasiraman and M.N.S. Swamy, “O(n?) Algo-
rithm for Graph Planarization”, IEEE Trans. on Computer-Aided
Design 8:3 (1989), 257-267.

Kamada., T., and S. Kawai, “An Algorithm for Drawing General
Undirected Graphs”, Inf. Proc. Lett. 31 (1989), 7-15.

25

[Kan92]

[LA87]

[LEC67]

[Rea87]

[Sar93]

Kant, G., “An O(n?) Maximal Planarization Algorithm Based on
PQ-trees”, Technical Report RUU-CS-92-03, Dept. of Computer
Science, Utrecht University, The Netherlands, 1992.

Laarhoven, P.J.M. van and E.H.L. Aarts, Simulated Annealing:
Theory and Applications, D. Reidel Publishing Co., Dortrecht,
1987. '

Lempel, A., S. Even and I. Cederbaum, “An Algorithm for Pla-
narity Testing of Graphs”, In Theory of Graphs: International
Symposium (P. Rosenstiehl, Ed.), Gordon and Breach, New York,
1967, pp. 215-232.

Read, R.C., “A New Method for Drawing a Planar Graph Given
the Order of Edges at Each Vertex”, Cong. Numer. 56 (1987),
31-44.

Sardas, M., “Drawing Graphs Nicely on the Plane”, M.Sc. Thesis,
Department of Applied Mathematics and Computer Science, The
Weizmann Institute of Science, Rehovot, Israel, 1993.

26

Unité de Recherche INRIA Sophia Antipolis
2004. route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

Unité de Recherche INRIA Lorraine Technopole de Nancy-Brabois - Campus Scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rennes IRISA. Campus Universitaire de Beanlieu 35042 RENNES Cedex (France)
Unité de Recherche INREA Rhone-Alpes 46, avenue Félix Viallet - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Rocquencourt Domaine de Volucean - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

EDITEUR
INRIA - Domaine de Voluccau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

W

