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of Linear Regression Models with 1/f Errors
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*Centre for Speech and Language, University of Cambridge, United Kingdom; and tBrain Mapping Unit and Wolfson Brain Imaging
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Long-memory noiseiscommon to many areas of sig-
nal processing and can seriously confound estimation
of linear regression model parameters and their stan-
dard errors. Classical autoregressive moving average
(ARMA) methods can adequately address the problem
of linear timeinvariant, short-memory errors but may
beinefficient and/or insufficient to secure type 1 error
control in the context of fractal or scale invariant
noise with a more slowly decaying autocorrelation
function. Here we introduce a novel method, called
wavelet-generalized least squares (WLS),whichis(toa
good approximation) the best linear unbiased (BLU)
estimator of regression model parametersin the con-
text of long-memory errors. The method also provides
maximum likelihood (ML) estimates of the Hurst ex-
ponent (which can be readily translated to the fractal
dimension or spectral exponent) characterizing the
correlational structure of the errors, and the error
variance. Thealgorithm exploitsthewhitening or Kar-
hunen-Loéve-type property of the discrete wavelet
transform to diagonalize the covariance matrix of the
errors generated by an iterative fitting procedure af-
ter both data and design matrix have been trans-
formed to the wavelet domain. Properties of this esti-
mator, including its Crameéer—-Rao bounds, are derived
theoretically and compared to its empirical perfor-
mance on a range of simulated data. Compared to or-
dinary least squares and ARMA-based estimators,
WLSisshown tobemoreefficient and to give excellent
type 1 error control. The method is also applied to
some real (neurophysiological) data acquired by func-
tional magnetic resonance imaging (fMRI) of the hu-
man brain. Weconcludethat wavelet-generalized least
squares may be a generally useful estimator of regres-
sion models in data complicated by long-memory or
fractal noise.

"To whom correspondence and reprint requests should be ad-
dressed at present address: GREYC-ISMRA Image CNRS UMR 6072
6, Bd du Maréchal Juin, 14000 Caen Cedex, France. Fax: +33-(0)31-
45-26-98. E-mail: Jalal .Fadili@yreyc.ismra.fr.

Key Words: 1/f noise; wavelets; maximum likelihood;
Monte Carlo simulation; fMRI; fractal.

INTRODUCTION

Suppose that we observe a data vector y or {y}i =1,
2, 3,..., N together with corresponding explanatory
variables x, k = 1,2, 3,..., p. Define X tobe the N X
p design matrix whose columns are the vectors x,. The
standard regression model offers a framework where
the observation y is related to the explanatory factors
or covariates x, via an additive linear model. This
simple relationship can be written

y =XB+e e~NO,2) (1)
where e is a N X 1 zero mean random vector with
covariance matrix 3, B is the p-dimensional model pa-
rameter vector with a coefficient corresponding to each
factor or covariate, and the observation vector y has
finite energy in R".

This equation divides the total variance of the obser-
vations into two main components independent from
each other: one deterministic and one stochastic. The
deterministic part is alinear function of the regressors
through the model coefficients. The stochastic part
models the uncertainty on the measurements. Stan-
dard assumptions arethat the errors e areindependent
and normally distributed. The effect of deviations from
normality has been one of the main topics of robust
statistics (see, e.g., Beran, 1994; Huber, 1981; Hampel
et al., 1986; Koul, 1993). There is also an extended
literature on deviations from independence, which
have been modeled by autoregressive and other short-
memory processes (e.g., ARMA, ARIMA) (Box and Jen-
kins, 1976; Pollock, 1999), as well as by state-space
approaches (Jones, 1993). Here, we consider the linear
regression model where e is a wide sense stationary
long-memory process.

The problem of estimating regression model param-
eters in the presence of contaminating errors with



strong correlation between observations far apart from
each other is now widespread in many diverse fields,
simply because natural signals very commonly exhibit
long-range dependence (see examples in physics, Cas-
sandro and Jona-Lasinio, 1978), geophysics (Foufoula-
Georgiou and Kumar, 1994; Torrence and Compo,
1998; Whitcher et al., 2000), electronics (Voss, 1979;
Ziel, 1986), econometrics (Jensen and Whitcher, 2000;
Jensen, 1994), electrophysiology (Goldberger et al.,
1990; Raz et al., 1999), and imaging (Mallat, 1989;
Lundahl et al., 1986; Krueger et al., 1996). In particu-
lar, there is some evidence to suggest that the error
structure of functional magnetic resonance imaging
(fFMRI) time series may be complicated by long-range
dependencies or, to put it another way, may be char-
acterized by a 1/f-like power spectrum (Zarahn et al.,
1997).

The statistical problems of regression in the context
of long-memory or self-similar errors have already at-
tracted the attention of several investigators (Beran,
1994; Koul, 1993, 1994; Robinson and Hidalgo, 1997).
In particular, Beran investigated relationships be-
tween the design matrix X, long-range dependence in
the errors, and the distribution of the regression model
parameter estimates. He also quantified the asymp-
totic loss when using the ordinary least squares (OLS)
estimator instead of the best linear unbiased (BLU)
estimator through several useful theorems (Beran,
1994, pp. 172-194) and showed that the variance of
both OLS and BLU estimators converged more slowly
towards zero than in the case of short-memory errors,
the asymptotic efficiency depending on both the com-
plexity of the design matrix and the decaying speed of
the autocorrelation function. Although, as expected,
the BLU estimator was consistently more efficient
than OLS, it requiresiterative estimation of the covari-
ance matrix 3, which is generally unknown a priori,
entailing a computationally demanding and numeri-
cally unstable inversion of 3 at each step of the algo-
rithm (Beran, 1994; Azzalini, 1996).

The purpose of this paper is to propose a novel wave-
let-based estimator for the parameters of a linear re-
gression model with long-memory errors. We first pro-
vide a theoretical introduction to the class of long-
memory processes and to the principles of time-scale
analysis by wavelets (more comprehensive accounts of
wavelets are provided elsewhere (Mallat, 1998; Wick-
erhauser, 1994; Chui, 1994; Daubechies, 1992)). We
then provetheusefulness of the discrete wavelet trans-
form in the context of regression models with long-
memory errors. The key idea is that the orthonormal
wavelet decomposition provides us with a near Kar-
hunen—Loéve-type expansion (Wornell, 1990, 1996;
Flandrin, 1992; Tewfik and Kim, 1992) and will there-
fore be a good whitening filter for self-similar pro-
cesses. This allows us to assume that the off-diagonal
elements of the error covariance matrix 3 are zero—

which makes the inversion 3" much faster and more
stable to compute. An iterative algorithm is proposed
which approximates the maximum likelihood (BLU)
estimator of both model and noise parameters, this
approximation being as good as the approximation of
the discrete wavelet transform tothe ideal Karhunen—
Loéve expansion. Monte-Carlo simulations are re-
ported to validate theoretically anticipated properties
of thiswavelet-generalized |least squares estimator and
to compare it, in terms of sensitivity, efficiency and
inferential validity (nominal type 1 error control), to
the well known OLS estimator and an ARMA-based
generalized least squares procedure, denoted ARLS,
which assumes a short-memory autoregressive AR(Q)
model for the errors. Finally, the method is illustra-
tively applied to analysis of fMRI data acquired at rest
and during simple visual stimulation.

THEORETICAL BACKGROUND

Stationary Long-Memory Processes

One well-known model of long-memory processes,
proposed by Mandelbrot and van Ness (1966), is frac-
tional Brownian motion, of which classical Brownian
motion is a special case. Fractional Brownian motion is
self-similar or fractal and characterized by a single
scalar self-similarity parameter 0 < H < 1, called the
Hurst exponent (Hurst, 1951) (H = 3 for classical
Brownian motion). Although fractional Brownian mo-
tion is not stationary in the usual sense (Beran, 1994),
the associated increment process is stationary. For
classical Brownian motion, the increment process is
white Gaussian noise. Two more general examples of
this class are fractional Gaussian noise (fGn) and au-
toregressive fractionally integrated moving average
(ARFIMA) processes. We shall show that both fGn and
ARFIMA processes have 1/f spectral properties, i.e., no
single characteristic frequency but disproportionate
power at low frequencies, suggesting that wavelets will
provide a natural basis for their decomposition
(Flandrin, 1992; Wornell, 1996).

Fractional Gaussian noise. Fractional Gaussian
noise was first defined as the increments between suc-
cessive values of a fractional Brownian motion param-
eterized by Hurst exponent 0 < H < 1 (Mandelbrot and
Ness, 1968; Beran, 1994; Deriche and Tewfik, 1993;
Wornell, 1996). More formally, for H € 10, 1[, there
exists exactly one Gaussian process G, that is the sta-
tionary increment of a self-similar process F,. This
process is called a fractional Gaussian noise (fGn) and
the corresponding self-similar process is called frac-
tional Brownian motion (fBm). The autocovariance
structure of the fGn G, = F, — F,_; is given by (Beran,
1994; Wornell, 1996):
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for lagT =0 and Rg(1) = Rg(—7)for < 0.For i <H <
1, the process has long-range dependence or persis-
tence; for H = } the process is white; and for 0 < H <
3, the process has short-range dependence or anti-
persistence and the correlations sum to zero (Beran,
1994). Under the constraint that 0 < H < 1, the spec-
tral density of G, can be derived by Taylor expansion
(Beran, 1994):

o}

S(f) =

fof 2H—1

a2 = oX2m) ~Msin(mH)['(2H + 1).

(3)

In fact, this approximation is very good even for rela-
tively large frequencies and will be assumed for f €
[—1/2, 1/2]. As shown by Eqg. (3), the fGn has a 1/f
spectral density with an exponent -1 <y =2H — 1 <1.

The ARFIMA process. Thefractional ARIMA model
is a natural extension of the classical ARIMA(p, d, q)
model (Granger and Joyeux, 1980). The ARFIMA
model captures the slowly decaying autocovariance
structure of a long-memory process with fractional dif-
ference parameter d = H — 1, where the parameter d
is allowed to take non-integer values. By definition, an
ARFIMA process is a zero-mean stationary long-mem-
ory process A, (Beran, 1994) such that:

1 |d| < 1/2
P(z")(1 -z ") %A=Q(z" )Et{eti.i.d. ~N(, o?)

wherez 'istheusual lag operator, and P and Q arethe
short-memory polynomials of order p and q with roots
outside the unit circle. Note that the case d > 3 can be
reduced to the case —3 < d = } by appropriate differ-
ences (Beran, 1994). However, only the range specified
in Eq. (4) is of interest in most situations.

Ignoring the short-memory terms, one can prove that
the covariance structure of such a process is (Beran,
1994)

oI (1 — 2d)T (7 + d)

RalT) = T —d)(r+1—d)

|T|2d71,

(5)

and its spectral density function is

2
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Thus the ARFIMA(O, d, 0) process, or simply ARFIMA
process for ease of notation, has a nearly 1/f power
spectrum with y = 2d = 2H — 1. To avoid any patho-
logical behaviour, the ARFIMA process is defined for [d]
< 3:hence, the spectral exponent yisin therange]—1,
1[ (Beran, 1994).

Discrete Wavelet Transform

Thedyadicorthonormal wavelet transform of a finite
energy signal f is defined as the inner product (Mallat,
1989, 1998):

dj,k = <f, ll/j,k> = 27“2 J f(t)d/(Z 7Jt - k)dt, (J, k) S ZZ.

(7)

The coefficient d, is the detail coefficient (or the wave-
let coefficient) at scale j and position k. The function s
is the wavelet function, whose collection of dilations j
and translations k form an orthonormal basis in the
Hilbertian space L*(R). Any continuous function qual-
ifies if the admissibility conditions are satisfied: s is
well-localized around zero (rapid decay to zeroas t —
) and oscillates (f y(t)dt = 0). These conditions can be
strengthened to include more vanishing moments (up
to an order R) and/or higher order continuous deriva-
tives (Daubechies, 1992). From a filter-bank point of
view, the wavelet ¢ can be viewed as an octave band-
pass filter in [—@/2', —@/2"""] U [#/2'"", #/2']. In a
multiresolution framework, the wavelet coefficient at
scale j can be interpreted as the difference of informa-
tion between two approximations to f at scales j — 1
and j.

The multiresolutional approximation of the signal,
i.e., the smooth component of the data, at scalej isthe
inner product (Mallat, 1989, 1998):

aj=(f, by =277 J f(H)p(277t — k)dt,
(8)

(j, k) € 72,

The coefficient aj is the approximation coefficient at
scale j and position k. The function ¢ is the scaling
function (f ¢(t)dt # 0), whose collection of translations
k form an orthonormal basis. From a filter-bank point
of view, the scaling function ¢;x can be viewed as a
low-pass filter in the octave |—n/2'*", #/2/*"[. A signal
analyzed up to a scale J can be perfectly reconstructed
from its detail coefficients dy(j € {1,..., J}) and the
remaining approximation coefficient(s) at the scale J
(Mallat, 1989).

The wavelet transform has become very popular in
digital signal processing owing to the pyramidal of S.



Mallat (Mallat, 1989), routinely used to calculate the
discrete wavelet transform (DWT) of a sampled signal,
which requires only O(N) operations and is thus faster
than the fast Fourier transform, which requires O(N
log N) operations. In practical applications to finite
time series (N = 2’ without loss of generality), we must
choose the regularity and type of wavelet, and the
method of boundary correction adopted to estimate
wavelet coefficients at the limits of the data.

It has been shown that the wavelet coefficients of a
long-range stationary 1/f process have a correlation
structure whose magnitude decays as (Wornell, 1990,
1996; Tewfik and Kim, 1992):

O(|2/k — 21k’|2H-D-2R) ()

[ -~

k-2l k'—>=

where R is the number of vanishing moments. There-
fore, for 0 < H < 1, the intercoefficient correlations,
both within and between scales of the decomposition,
can be reasonably ignored for any wavelet with suffi-
cient number of vanishing moments (i.e., with R = 1).
For the fBm process, Flandrin (Flandrin, 1992) has
shown this property even for the simplest Haar wave-
let (R =1)for 0 <H < 1/2. It should be noted that,
when dealing with finite length data (as is the case of
course in fMRI time series analysis), increasing the
regularity of the wavelet will theoretically diminish
the magnitude of correlation between wavelet coeffi-
cients but also increases the risk of artifactually large
intercoefficient correlations arising due to boundary
effects. A simulation illustrating this fact is given in
(McCoy, 1994). Hence, a compromise has to be negoti-
ated in choosing a wavelet with reasonable regularity.
Here we have used a Daubechies wavelet with four
vanishing moments. This wavelet has a large enough
number of vanishing moments toensurerapid decay of
the wavelet coefficient autocorrelation function in Eq.
(9). It isalsothe most compactly supported wavelet for
any number of vanishing moments and this compact-
ness mitigates the extent of intercoefficient correla-
tions introduced by periodic boundary correction in
computing wavelet coefficients at thelimits (O and N —
1) of a finite times series (Mallat, 1998).

WAVELET-GENERALIZED LEAST SQUARES

Model Formulation

As before we write a linear regression model in the
time domain

y =XB+e (10)

but now we specify that the random errors have a
long-memory covariance structure parameterized by

one of a number of simply related fractal noise param-
eters, H, vy or d, i.e.,, e ~ N(0, 2(H)). The power-law
spectrum of such processes can be generally written as
S(f)m:O(crzcy/|f|V), where c, is a dimensionless func-
tion of the spectral exponent v (e.g., see Eq. (3)).
Taking the discrete wavelet transform of Eq. (10)
gives us the following linear model in the wavelet do-

main

yW=XWB+EW1 (11)

where X,, is the column-wise DWT of the original de-
sign matrix X, y,,, and €, are, respectively, the wavelet
transforms of the observed data and the noise process
up tothe maximum scale J. The transform coefficients
can be expressed at each scale j and position k:

p

Vik= 2 XiBntex V(. KER
m=1 (12)
R={je{1,...,J,ke{0,...,N/22i—1}}.

The orthonormal wavelet basis decomposition acts like
a Karhunen-Loéve expansion of 1/f processes. To a
good approximation, the variance-covariance matrix of
the noise is therefore diagonalized by the wavelet
transform to take the following form:

EJZ

where S,, and Sy, j =1,2,...,J, arethevariances of
the scaling and wavelet coefficients as defined in the
next section.

Fractal Noise Parameter Estimation

The wavelet coefficients of a 1/f Gaussian process at
level j are a set of stationary i.i.d. variables (Flandrin,
1992; Tewfik and Kim, 1992) ¢, ~ N(0, Sy). The
smooth component at scale J is alsoa normally distrib-
uted variable with variance S,,.

The variances of the detail coefficients at scale j and
the approximation at scale J are given by:
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where ¥ and ® are, respectively, the Fourier trans-
forms of the wavelet and the scaling functions. This
general expression can be simplified when the wavelet
function is approximated by an ideal bandpass filter,
and the scaling function by an ideal low-pass filter; in
this case, Eq. (14) simplifies to:

2j+1 2] O'ZCV
S —dfforje{1,...,J}

I @2m 5=+ f

2+t (27U O'ZCV
S, df.

Sem) P

Integration gives the following expressions for —1 <
vy<1

o?c,(2))Y
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Likewise, the variance of the scaling coefficient at level
Jis

02CV(2J+1) y

~ 17
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Equations (16) and (17) are not valid for the limiting
value y = 1 (H = 1), although the result in this case
remains easy to calculate. From Eq. (16), it can be seen
that there exists a linear relationship in log—log space
between the detail variance at each scale and the scale
index:

|092(de) =9 + k. (18)
A similar relationship can be shown even for higher
order cumulants (Pesquet-Popescu, 1999) and this
property has been exploited to synthesize 1/f-like pro-
cesses. It has also been extensively used to character-
ize self-similar processes and to estimate the self-sim-
ilarity parameter in the context of the classical DWT
(Flandrin, 1992; Mallat, 1989; Jensen, 1994, 1999; Per-
cival, 1992) or using the stationary DWT (also called
the maximum overlap DWT) (Jensen and Whitcher,
2000; Whitcher and Jensen, 2000). However, despite
its simplicity and flexibility, this estimator requires a

robust estimate of the variance of the coefficients at
each level, which naturally becomes more problematic
when bigger detail levels (with fewer coefficients) are
involved and/or when the time series is not very long
(Percival, 1995).

Approximately Maximum Likelihood Estimation in
the Wavelet Domain

Maximum likelihood (ML) estimators provide an al-
ternative approach to estimation, classification, dis-
crimination, or prediction of long-memory of 1/f errors
and have been developed in the wavelet domain by
several authors (Deriche and Tewfik, 1993; Wornell,
1992, 1996; Wornell and Oppenheim, 1992a, b; McCoy,
1994; McCoy and Walden, 1996; Taqqu et al., 1995;
Jensen, 1994, 2000; see Wornell, 1996, for review). The
ML estimator of the fractal noise parameter H de-
scribed below is therefore not original; but, to the best
of our knowledge, this wavelet-generalized |east
squares (WLS) algorithm for combined maximum like-
lihood estimation of both H and the linear model pa-
rameter vector B (and the error variance ¢?) is dis-
tinctly novel. However, it is worth noting that we will
assume the off-diagonal elements of the projected co-
variance matrix 3 to be zero (Wornell, 1990; McCoy
and Walden, 1996) in the calculation of the likelihood
function. Thisis a reasonable approximation, given the
well-known Karhunen—Loéve-type properties of the
wavelet transform applied toa 1/f process, but it is still
an approximation. (We later show by Monte Carlo
studies that some empirical properties of the estimator
coincide closely with the expected performance of the
maximum likelihood estimator, further suggesting
that diagonalization of the error covariance matrix is
an acceptable approximation in the wavelet domain).

The likelihood function for the model in the wavelet
domain is

e~ (w—Xup)'Sy (yw—XuB)2)

(19)
0t = (B', v, 09,
which can berearranged togivethelog-likelihood func-

tion,

1
LL(6) = — 5N log(2m0?) + 10g(S,,)
+2 N(j)log(84)l
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whereN(j) = N/2/, Sq,and §,, are, respectively, defined
in Egs. (16) and (17). The ML parameter estimates are
those that maximize the log-likelihood, i.e., 6y, =
arg max(LL(6).
0EO®

TheWLS algorithm. The wavelet-generalized least
squares algorithm we propose for solving this equation
can now be fully specified as follows:

1. Define the wavelet basis to be used, the method
for boundary correction, and the maximum scale of
decomposition J.

2. Initialize by an ordinary least squares fit of the
regression model in the time domain.

3. Take the DWT of each column of the design ma-
trix X and of the data vector y.

4. Let djx = Yjx — Zh-1 X{kBm be the detail residuals
at scalej and location k, and a,, =y, — 28 -1 XToBn be
the approximation residual at scale J and location 0.
Differentiating Eq. (20) with respect to o’ givesdirectly
the ML estimate of the residual variance

2
J,k]
g

5. The long-memory parameter v is then estimated
by substituting ¢* in Eq. (20) to minimize the concen-
trated log-likelihood, either directly (if the noise has an
exactly 1/f spectrum (Wornell, 1992, 1996) or by nu-
merical methods. We used the golden section search
method, which will generally work well provided we
start with an initial interval containing vy (Press et al.,
1992). Since we here expect 0 < H < 1, it follows that
an appropriate initial interval is —1 < v < 1. (An
additional advantage of numerical minimization is
that it allows us to consider nearly-1/f processes where
the octave bandpass variances are only known numer-
ically). In any case, since vy is related to H via an

o

1 [a3
52 = [ 0 (21)
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invertible transformation, its ML estimator corre-
sponds with that of H.

6. Finally, using backsubstitution, the parameter
vector B is estimated in matrix form by

B =Xy X)Xy 2y (22)

It is obvious that since X, is diagonal, its inverse is
easily accessible by taking the reciprocals of the diag-
onal elements.

7. Goto step 4 and iterate until the change in suc-
cessive parameter estimates is arbitrarily small, i.e.,
=1072 Typically the algorithm converges quickly, re-
quiring threeiterations or less tofind stable parameter
estimates.

This approach issimilar in flavor tothe Box—Jenkins
methodology for ARMA model fitting (Box and Jenkins,
1976). In fact, it can be regarded as a generalization of
ARMA model estimation to the classically intractable
case of error processes with infinite-range dependence.

Properties of the WLS Estimator

It iswell known that under regularity conditions, the
ML estimator exists, is efficient and consistent in both
simple and mean-square senses (at least asymptoti-
cally) (Azzalini, 1996). The Gauss—Markov theorem
provides a formal proof that the ML estimate of B is
asymptotically unbiased with minimal variance, i.e., it
is the best linear unbiased estimator. In addition to
these properties, asymptotically the ML estimator is
Normal and the variances of the parameter estimates
are well-approximated by the Crameér—Rao lower
bounds (CRLB) derived from the expected Fisher infor-
mation matrix.

Derivation of Cramer—Rao bounds for WLS esti-
mates. First, wedefinethe Fisher information matrix
as follows:

N_ A 0 0
2A0* A
- 1
——  oxL(og(S,)")? N(i)(loaS.))2] O 0
| T 2mleua))E 2 NG)(ogsy) )
- , (23)
0 0

(XLE™XW ™



where A = (1/25%)[log(S.,)" + 2 N(j)log(Sq)'] and A =
(N[(log(8.,)")* + = N(j)(I0g(Sq) ) 1/40*) — A®.

The Cramér—Rao lower bounds are then given by the

diagonal elements of | "

2N

N[(log(S,)")? + Z; N(j)(log(S4)")?]
—[log(S,)" + Z; N(j)log(S,)'1?

Var(y) =

Var(62/a?)
2[(log(84,)")% + Z; N(j)(log(S4)")?]
- N[(log(S,,))")? + Z; N(j)(log(S4)")?]
— [log(8a)" + = N(j)log(S4)'1?

(24)

Var(B) = diag((X,, 'S, 'X,) ).

In this equation, the symbol ' stands for the first
derivative with respect to y. The bound on the Hurst
exponent H can be directly deduced from Eq. (24)
(Var(H) = Var(y/4) and clearly this bound depends only
on H.

MONTE CARLO SIMULATIONS

In this section, we present the results of Monte Carlo
studies using simulated data to cross-validate wavelet-
generalized squares by comparison to ordinary least
squares (OLS), i.e.,, assuming the model errors are
serially independent or white, the ARMA-generalized
least squares (ARLS), i.e., assuming a short-memory
AR(qg) model for the errors. The order of the AR process
was selected in an unsupervised way for each realiza-
tion by minimizing the Schwarz Bayesian criterion
(SBC) (Schwarz, 1978).

Simulated Data

Zero-mean periodic signals of various frequencies
were generally embedded in a realization of stationary
Gaussian 1/f noise, i.e., an ARFIMA or fGn process.
Signals were simulated as three different frequencies
by convolving square waves with a Poisson function
(N = 4). All simulated series had N = 256, J = 8. The
following parameters were varied in simulated data to
investigate their impact on the performance of the
three estimators: the long-memory exponent H charac-
terizing the 1/f process; the standard deviation o; the
frequency of signal embedded in the noise; and the
amplitude of the signal or the signal-to-noise ratio
(SNR) in decibels:
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FIG. 1. (a, b) Boxplots of 1/f noise parameter H and variance o”
estimated by wavelet-generalized least squares (WLS) in simulated
time series. In both plots, the solid line y = x denotes perfect corre-
spondence between simulated and estimated parameters, and the
dashed lines on either side of it denote + approximate CRLB on
variances of the parameters. (c) Boxplot of the SNR estimated by
WLS (in decibels) as a function of the simulated SNR.
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Tosynthesize 1/f noise we could have used a wavelet-
based algorithm (Wornell, 1996; McCoy and Walden,
1996; Deriche and Tewfik, 1993). However, we pre-
ferred a Fourier-based method (Davies and Harte,
1987) to synthesize both the fGn and ARFIMA pro-
cesses, on the grounds that using a wavelet-based
model for simulation might immediately bias the com-
parison of estimators in favor of wavelet-generalized
least squares.

In experiments where the focus was on the impact of
one parameter in particular, the values of all other
parameters in the simulation were allowed to vary
randomly.

Effects of Varying H, o%, and SNR

For each of 10 different values of the Hurst exponent,
and each of 10 different amounts of error variance, 100
time series were realized. The results of estimating H
and o” by WLS in these data are shown in Figs. 1a and
1b. We can see that the performance of the estimator is
encouraging. The estimated parameters are unbiased
over the whole range of values simulated and the vari-
ances are not much greater than their Cramer—Rao
bounds. It is of course expected that the parameter
variances should be somewhat greater than their lower
bounds simply due tothefinite length of the simulated
time series. We also investigated the relationship be-
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FI1G. 2. Root mean square (RMS) errors in estimation of model
and noise parameters by wavelet-generalized least squares (WLS)
and ordinary least squares (OLS) in simulated data with different
frequencies of periodic signal. Top left: RMS error in H versus SNR
for three different signal frequencies: solid line—period length = 64;
dash-dotted line—period length = 32; dashed line—period length =
16. Top right: RMS error in o versus SNR for three different signal
frequencies—line types coding for frequency as before. Bottom |eft:
RMSerror in 8 versus SNR for three different signal frequencies and
two estimators, WLS and OLS. Line types code for signal frequency
as before; point markers code for estimator: (+) WLS, (OJ) OLS.
Bottom right: RMS error in B versus H for three different signal
frequencies and two estimators, coded by line type and point mark-
ers as before. The lines without any marker correspond with the
predicted approximate CRLB given by Eq. (24).

tween estimated and simulated SNR, allowing H to
vary randomly. As shown in Fig. 1c, there was very
good agreement and the variability tended to decrease
as simulated SNR became greater, which isintuitively
acceptable.

Effects of Varying Frequency of Signal

We also investigated the effects of varying the fre-
quency of the embedded signal on the efficiency of WLS
estimation of H and o°. Efficiency was quantified in
terms of theroot mean square error between simulated
and estimated values of H and o®. Three different
frequencies were studied, corresponding to period
lengths of 16, 32, or 64 time points. As shown in Fig. 2,
there was little evidence for any systematic effects of
signal frequency on efficiency of estimation.

Comparison to OLS and ARLS

The alternative estimators do not provide estimates
of H but all three methods can be compared in terms of
efficiency of estimation of the linear model parameter
vector B. These results are shown in Fig. 2 (bottom
left). It can be seen that WLS is more efficient than
OLS for all three signal frequencies and over the full

range of SNR; although, as expected (Beran, 1994), the
advantages of WLS are most salient for the lowest
frequency design. As a consequence of the finite length
of the observations, these errors are also bounded by
thetheoretical limit, which depends on the structure of
the design matrix (see Eq. (24)).

Differential efficiency of the estimator of B was also
assessed in relation to variability in the fractal noise
parameter H. As shown in Fig. 2 (bottom right), and as
hypothetically expected, therelative merits of the WLS
estimator become increasingly salient as H becomes
large.

Comparison to Generalized Least Squares (GLS)

In the absence of prior knowledge about the form of
the full error covariance matrix 3, generalized least
squares (GL S) is computationally expensive and poten-
tially unstable numerically. However, GLS is the ML
estimator in the time domain and we have therefore
alsocompared WLSto GLS, using prior knowledge of H
and o in simulated data to specify the error covariance
matrix 3. This comparison provides a measure of any
bias in estimation by WLS due to our assumption that
the off-diagonal elements of the error covariance ma-
trix are zero.

A periodic input function (period = 32) with g = 0,
0.2,0.6,1,1.4 (SNR = 1.5 dB) was added to each of 100
ARFIMA model series generated with H = 0, 0.1, 0.3,
0.5, 0.7, 0.99. Theroot mean square error (RMSE) and
bias of the WLS and time-domain ML estimators were
calculated; see Table 2.7

In these simulations, there is only slight difference
between WLS and GLS in terms of empirical bias and
RMSE. There was not a great deal of difference be-
tween efficiency of the WLS estimator and the exact
Cramér—Rao lower bounds. Furthermore, there is no
evidence for any influence of the input signal ampli-
tude on the performance of the WLS estimator. These
empirical findings stand in favor of WLS as an unbi-
ased and optimally efficient estimator for regression
models with long-range dependent errors. More specif-
ically, they indicate that our assumption of zero off-
diagonal elements in the error covariance matrix does
not importantly bias WL S estimates with respect tothe
performance of the GLS estimator which does not
share that assumption.

2 Monte Carlo experiments using Daubechies wavelets with R = 4
vanishing moments (D4) are presented here. To assess the influence
of the choice of wavelet on WL S estimation, the DWT of each simu-
lated series was also calculated using the Daubechies wavelet family
with increasing regularity R = {1, 2, 4, 6, 8, 10} and the Haar
wavelet, R = 1. Tables reporting the empirical bias and RMSE of
WL S based on the other Daubechies wavelets can be obtained upon
request from M.J.F. In brief, therewas nodifferential bias of WLS as
a function of R.



TABLE 1

Expected and Mean Observed False-Positive Fractions for
Wavelet-Generalized Least Squares (WLS), Ordinary Least
Squares (OLS), and ARMA-Generalized Least Squares (ARLS)
Estimators Applied to Analysis of 7 “Null” fMRI Datasets

Expected WLS OoLS ARLS
0.0010 0.0008 (0.0004) 0.0035 (0.0027) 0.0015 (0.0014)
0.0020 0.0017 (0.0007) 0.0069 (0.0053) 0.0030 (0.0027)
0.0030 0.0025 (0.0010) 0.0103 (0.0079) 0.0045 (0.0041)
0.0040 0.0033 (0.0014) 0.0136 (0.0105) 0.0060 (0.0054)
0.0050 0.0042 (0.0017) 0.0170 (0.0131) 0.0075 (0.0067)
0.0060 0.0050 (0.0021) 0.0203 (0.0156) 0.0090 (0.0080)
0.0070 0.0058 (0.0024) 0.0236 (0.0181) 0.0105 (0.0093)
0.0080 0.0067 (0.0027) 0.0269 (0.0206) 0.0119 (0.0106)
0.0090 0.0075 (0.0030) 0.0301 (0.0230) 0.0134 (0.0118)
0.0100 0.0083 (0.0034) 0.0333 (0.0254) 0.0149 (0.0131)

Note. Standard deviations are in parentheses.

Inferential Aspects of Linear Model Estimation

Normality of signal parameter estimates. Another
important characteristic of an estimator is the distri-

bution of its estimate. In the context of linear models,
it is well known that the OLS estimator tends to un-
derestimate the error variance when the contaminat-
ing process presents a nonnegligible serial correlation
(Box and Jenkins, 1976; Darlington, 1990; Pollock,
1999). As a consequence, standardized statistics con-
structed as the ratio of estimated linear model param-
eters to their standard errors will be overestimated
resulting in an inflated or uncontrolled probability of
type 1 error.

_In these simulated data, we can predict that s; =
(B — Buuwe)log should have a standard Normal distribu-
tion. We checked this assumption, estimating o, by
(X'X) " for OLS and ARLS and by Eq. (24) for WLS.

As shown in Fig. 3, the WLS estimates are graphi-
cally indistinguishable from standard Normal for all
three signal frequencies. However, OLS estimates are
clearly not standard Normal, especially when the sig-
nal frequency is lowest. The distribution of ARLS esti-
mates also departs from Normal in the tails, especially
in the lowest frequency design, although it performs
considerably better than OLS.

TABLE 2

Bias and Root Mean Square Error of Wavelet-Generalized Least Squares (WLS) and GLS

Bias
B H=0 H =0.1 H =03 H =05 H =07 H = 0.99
GLS 0 —0.0035 0.0010 0.0052 —0.0036 0.0097 —0.0028
0.2 —0.0020 —0.0010 0.0033 —0.0209 —0.0098 0.0082
0.6 —0.0007 0.0020 0.0031 —0.0056 —0.0089 —0.0148
1 0.0004 —0.0006 —0.0047 -0.0127 0.0039 0.0048
1.4 0.0029 0.0019 0.0025 0.0063 -0.0135 —0.0203
WLS 0 —0.0019 —0.0002 0.0061 —0.0038 0.0080 —0.0073
0.2 —0.0012 —0.0016 0.0036 —0.0207 -0.0125 0.0060
0.6 —0.0004 0.0011 0.0033 —0.0055 —0.0079 —0.0143
1 0.0002 —0.0015 —0.0043 -0.0127 0.0032 0.0013
1.4 0.0025 0.0023 0.0037 0.0062 -0.0144 -0.0175
Root mean square error
Exact Crameér—Rao lower bound 0.0330 0.0387 0.0534 0.0735 0.1008 0.1578
B H=0 H =0.1 H =03 H =05 H =07 H = 0.99
GLS 0 0.0331 0.0432 0.0610 0.0765 0.0935 0.1496
0.2 0.0320 0.0379 0.0498 0.0779 0.1126 0.1656
0.6 0.0309 0.0436 0.0571 0.0685 0.0993 0.1436
1 0.0326 0.0353 0.0541 0.0870 0.0844 0.1415
1.4 0.0326 0.0421 0.0591 0.0795 0.1024 0.1672
WLS 0 0.0337 0.0451 0.0614 0.0765 0.0943 0.1533
0.2 0.0323 0.0392 0.0508 0.0779 0.1132 0.1716
0.6 0.0320 0.0442 0.0574 0.0687 0.1010 0.1501
1 0.0353 0.0362 0.0544 0.0870 0.0843 0.1463
1.4 0.0338 0.0427 0.0587 0.0799 0.1017 0.1681

Note. Bias and root mean square of WL S using a Daubechies wavelet with R = 4 vanishing moments, is compared by analysis of simulated
data tothe performance of generalized least squares (GLS), which is the maximum likelihood estimator in the time domain. The specification
of the full error covariance matrix 2 for GLS isinformed by prior knowledge of H and o in these simulated data. These data suggest that the
WL S assumption of zero off-diagonal elementsin 3 does not cause any differential bias or loss of efficiency in estimation compared tothe ML

estimator in the time domain.
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FIG. 4. Normal quantile plots of linear model parameters esti-
mated by wavelet-generalized least squares (WLS), ordinary least
squares (OLS), and autoregressive-based least squares (ARLS) in
simulated data with signal period = 32. Columns, left toright: WL,
OLS, ARLS. H was randomly varied in the range [0.9, 0.98]. In all
panels, the dash-dotted line is the line of identity. ¢ and SNR are
randomly generated.

We also considered the relative merits of the estima-
tors as the value of H was manipulated at a given
design frequency. Figure 4 shows the results for high
values of the Hurst exponent H € [0.9, 0.98], in the
case of the intermediate period length 32. These re-
sults can be compared to the middle row in Fig. 3. As
one might predict intuitively, the Normality of param-
eter estimates obtained by OLS and ARLS is particu-
larly compromised when H is large; although WLS
continues to yield standard Normal parameter esti-
mates under those circumstances. These results sug-
gest that the WLS estimator is robust vis-a-vis H,
despite a slight increase in the estimate error (as
shown in Fig. 2); whereas numerical instability prob-
lems were posed for the short-memory AR(q) model,
which becomes inadequate, when H is large.

Type1 error calibration. To assess the relative per-
formance of the estimators in terms of type 1 error
control, we simulated a set of data in which the signal
amplitude was set to zero. We then tested the null
hypothesis Hy: B8 = 0 over a range of critical values of
the standard Normal distribution corresponding to

FIG. 3. Normal quantile plots of linear model parameters esti-
mated by wavelet-generalized least squares (WLS), ordinary least
squares (OLS), and autoregressive-based least squares (ARLS) in
simulated data with three different signal frequencies. Columns, left
toright: WLS, OLS, ARLS. Rows, top to bottom: signal period = 16,
signal period = 32, signal period = 64. H wasrandomly varied in the
range [0, 0.9]. In all panels, the dash-dotted line is the line of
identity.
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FIG. 5. Type 1 error calibration curves for wavelet-generalized
least squares (WLS, left column), ordinary least squares (OLS, mid-
dle column), and autoregressive-based least squares (ARLS, right
column). Top row: observed versus predicted type 1 error probabili-
tiesin the range [0, 1]. Bottom row: observed versus predicted type
1 error probabilities in the range [0, 0.1]. In all panels, the dash-
dotted lineis the line of identity.

probabilities of type 1 error « in the range [0, 0.1].
Nominal type 1 error control is indicated by the ob-
served number of positive tests (over M = 500 realiza-
tions) being less than or equal to the expected number
= aM.

First, to assess the global ability of the estimatorsin
controlling the type 1 error, the noise parameters were
allowed to vary randomly. The results are summarized
in Fig. 5 for a wide range of «. In the first row are
displayed the observed vs simulated type 1 errors for
the whole interval [0, 1], while in the second row is a
zoom on the range [0, 0.1]. It is clear from Fig. 5 that
type 1 error control by WLS is excellent over the full
range of probability thresholds and that type 1 error
control by OLS is unacceptably poor: the number of
observed positive tests by OLS, when the nominal dou-
ble-sided a = 0.05, is approximately three times its
predicted level. The performance of the ARLS estima-
tor is intermediate. In the second experiment, the
value of H is fixed. As shown in Fig. 6, and as might be
expected intuitively, the performance of OLS is sensi-
tive to the size of H and type 1 error control becomes
worse as H becomes large. It is also shown that ARLS
is rather more likely to yield a greater than predicted
number of positive tests than WLS, especially at me-
dium or large values of H.

APPLICATION TO REAL fMRI DATA

Neurophysiological time series measured using func-
tional magnetic resonance imaging (fMRI) can be ana-
lyzed by linear regression in the context of autocorre-

lated errors (Bullmore et al., 1996). The spectral
structure of fMRI noise is 1/f-like (Zarahn et al., 1997)
and this residual or endogenous autocorrelation is
probably generated by both physical and physiological
mechanisms. We have previously investigated the
noise structure of fMRI data (Fadili et al., 2000) and
exploited the whitening property of the discrete wave-
let transform in this context to make nonparametric
statistical inference by resampling in the wavelet do-
main (Bullmore et al., 2001). This latter work illus-
trated the superiority of the wavelet whitening ap-
proach over short-memory (first and third order) AR
models in dealing with the potentially complex auto-
correlational structure of fMRI noise.

Experimental Designs and Data Acquisition

Gradient-echo echoplanar imaging data were ac-
quired as follows:

Null (1.5T and 3T). Seven normal volunteers were
studied (5 at 1.5 Tesla (T) and 2 at 3T) while they lay
quietly in the scanner with their eyes closed (6 min for
the 1.5T data and 17 min for the 3T). For the 1.5 T
datasets, 68 T 5>-weighted images were acquired at each
of 26 contiguous slices of data in an oblique axial plane
using the GE LX EchoSpeed system (General Electric,
Milwaukee, WI) at CHU of Caen, France: time to echo
(TE) 60 ms, TR = 5 s, inplane resolution 3.5 X 3.5 mm,
slicethickness = 5 mm, number of excitations = 1. For
the 3T datasets, 512 T’-weighted images were ac-
quired at 17 contiguous slices in an oblique plane using
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FI1G.6. Observedtype 1 error rate versusH for three estimators:
wavelet-generalized least squares (WLS, X), autoregressive-based
least squares (ARLS, O), and ordinary least squares (OLS, (). The
predicted type 1 error probability is fixed at 0.05. It is clear that type
1 error control by the OLS estimator isincreasingly poor as the noise
parameter H is increased in the simulated data; and that ARLS is
consistently more likely than WLS to yield an excess number of
positive tests.
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the Bruker system (Bruker Medical, Etlinger, Ger-
many) at the Wolfson Brain Imaging Centre (WBIC),
Cambridge, UK: TE = 40 ms, TR = 2 s, in-plane reso-
lution 1.72 X 3.4375 mm, slice thickness = 5 mm,
number of excitations = 1.

Visual stimulation (3T ER). We studied a single
male subject during a discrete-trial or event-related
experiment in which a black-and-white checkerboard
visual stimulus was flashed for 500 ms every 16.5 s
over the course of 4 min, 28 s. Each time the subject
saw the checkerboard flash he pressed a button with
his right hand. During this experiment, 17 slices of
gradient echo echoplanar imaging data were acquired
using a 3T Bruker MRI system with acquisition pa-
rameters as above. This simple experiment is expected
to activate areas of the brain (occipital cortex) that are
important in visual perception.

Time Domain Models for Design Matrix

For all of the null experimental data the same gen-
eral approach to regression model specification was
adopted. An N-length boxcar vector was constructed to
indicate which images were acquired during presenta-
tion of an activation condition and which were acquired
during presentation of a baseline condition. This vector
was convolved with a Poisson kernel, parameterized by
N = 4 s. This Poisson-convolved input function was
combined with a unitary constant column vector to
form the (N X 2) design matrix X. Again, to assess the
influence of the experimental design complexity, high
(0.032 Hz), intermediate (0.016 Hz), and low (0.008 Hz)
frequency boxcar functions were modelled. The design
matrix was fit after motion correction of each observed
fMRI time series; we did not initially detrend the time
series in any way.

Results

Functional MRI: Null data. Each of the 7 null data-
sets was analyzed by fitting a periodicinput function at
each of the 3 frequencies to each of the M intracerebral
voxels. For a valid test of size o, the number of positive
voxels observed when the null hypothesis (of zero pe-

riodictrend) is true, as presumably it is in these data,
should be less than or equal tothe expected number of
positive voxels = aM. The results are shown graphi-
cally in Fig. 7. Table 1 shows the expected and the
mean observed type 1 probability errors with their
standard deviations across all datasets. These frac-
tions are shown for a low probability threshold range
([0, 0.01]). The WLS is clearly superior tothe OLS and
the ARLS estimators. The OLS is not valid for almost
all images and performs particularly badly at low de-
sign frequencies. Moreover, there is more variability
between images in the expected type 1 probability er-
ror after ARLS prewhitening and the observed number
exceeds the expected number of positive tests in 8
images. This variability increases as the input function
frequency decreases, which shows the sensitivity of AR
prewhitening to the complexity of the design matrix.
The overall poor performance of the OLS and ARLS
methods provides circumstantial support for the valid-
ity of a 1/f power law noise model for fMRI. Again, as
for the simulation studies, the type | error calibration
curves provided by the WL S estimator are valid for all
images and thereis no evidence for sensitivity of WLS
to the input function frequency. In many images with
intermediate and high frequency input function, the
ARLS prewhitening and WLS methods are evidently
somewhat over-conservative, which is consistent with
our previous findings with a wavelet domain resam-
pling scheme (Bullmore et al., 2001).

Functional MRI: Activation Mapping

As shown in Fig. 8, the brain areas which show
significantly large values of the model parameter vec-
tor B estimated by OLS are very similar tothe areas of
functional activation identified by thresholding the
same parameters estimated by WLS. In fact, the WLS
estimator appears to provide a somewhat fuller or
more sensitive characterization of the cerebral re-
sponse. WLS additionally estimates o at each voxel of
theimage, demonstratingthat the noise varianceis not
homogeneously distributed but tends to be larger in
outer (cortical) areas of the brain. WLS also estimates
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F1G. 8. Statistical maps generated by linear modelling of fMRI time series measured during an event-related visual experiment. Top left:
the linear model parameter vector 3 estimated by ordinary least squares (OLS) is mapped at each voxel of a single slice of imaging data and
thresholded. Areas indicated by large parameter values are located in occipital cortex, at the back of the brain. Top right: the linear model
parameter vector estimated by WLS is identically mapped and thresholded. The extent of occipital activation is somewhat greater than in
the OLS map. Bottom right: the noise variance is mapped at each voxel by WLS. Bottom left: the fractal noise parameter H is mapped at each
voxel by WLS. Note that the value of H is large, i.e., >0.5, at most voxels in the image representing brain tissue.

H at each voxel, demonstrating that fMRI time series
in the brain may be contaminated by long-memory
processes with large fractal noise parameters,i.e., H =
0.5. These preliminary observations suggest that WLS
is feasible for fMRI data analysis and may offer con-
siderable advantages over alternative estimators given
the prevalence of long-memory errors in these data.

DISCUSSION

Here we have presented a new linear estimator for
signal and noise parameters in the context of long-
memory errors. Our approach, which we have called
wavelet-generalized least squares (WLS), depends for
its validity on some recently established mathematical
results concerning the properties of the discrete wave-
let transform (DWT). Specifically, it has been shown
that the DWT is a near-optimal whitening filter for
long-memory or 1/f-like noises. To put it another way,
the DWT of a 1/f process closely approximates the ideal
Karhunen—-Loéve expansion. This result underwrites
our key assumption that the covariance matrix of the
regression errors can be diagonalized, i.e., the off-diag-
onal elements can be set to zero, after projection of both

the data and the design matrix into the wavelet do-
main. Diagonalization simplifies numerical identifica-
tion of parameter estimates and implies that the WL S
estimator is theoretically approximate to the best lin-
ear unbiased (BLU) estimator and can provide maxi-
mum likelihood estimates of both signal and noise pa-
rameters.

It could be argued that these theoretically antici-
pated and desirable characteristics of the WL S estima-
tor will be compromised if the wavelet expansion of the
data does not have ideal whitening properties. Indeed,
itislikely that the DWT of areal, finitetime series will
not be ideal in this respect, at least partly because of
artifactual inter-coefficient correlations introduced by
boundary correction at the limits of the data. We have
therefore used Monte Carlomethods rigorously toeval-
uate the bias and efficiency of the estimator in analysis
of simulated data and have shown, encouragingly, that
WLS is unbiased over a wide range of data conditions
and its efficiency closely approximates theoretically
derived limits. We conclude that the method can be
regarded as a good candidate for the best linear unbi-
ased estimator of regression models with 1/f errors.



The potential benefits of wavelet-generalized least
squares for fMRI data analysis were illustrated by
comparison to ordinary least squares and ARMA-gen-
eralized least squares. WLS demonstrated consistently
superior type 1 error control and also revealed inter-
esting heterogeneities in the spatial distribution of
noise properties. Time series recorded in cerebral cor-
tex seem especially liable to complication by large
amounts of noise with persistent or long-memory struc-
ture (H = 0.5). Our simulations suggest that it is
precisely in this context, of highly persistent error au-
tocorrelations, that WLS will most markedly out-per-
form alternative estimators assuming only a short-
memory structure in the errors (ARLS), or simply no
autocorrelational structurein theerrorsat all (OLS). It
remains a very interesting question whether the con-
centration of persistent autocorrelational structuresin
cortical regions indicates a neurophysiological source
for errors of this sort. It is tempting to speculate that
persistent fractal noise, of the sort that we have dem-
onstrated by univariate analysis of each voxel, might
determine corticocortical correlations identified by
multivariate analysis of fMRI data acquired from hu-
mans “at rest” (Lowe et al., 2000). In general, the
possibility that fMRI “noise” may in fact beinformative
about the brain probably warrants further investiga-
tion and WLS provides a convenient summary of the
most important parameters of 1/f-like noises.

Our methods can be compared towork by Craigmile
and colleagues (Craigmile et al., 2000), using the DWT
to estimate both trend and long-memory noise compo-
nents of a signal. Detail coefficients at the boundaries
of each level and the scale coefficients of the DWT
encode information about trends and the within-level
boundary-independent wavelet coefficients can be re-
garded as independent or an auto-regressive process.
Wavelet-generalized least squares differs from this ap-
proach in that we are using the parameters of a linear
model (not a subset of wavelet coefficients) to account
for experimentally determined and other trendsin the
data. However, one approach that may be interesting
to consider in futureis the use of partly linear models
(PLM) of the form

Yi=XB +g(t) + €. (26)

Here B is a vector of unknown parameters, g(t) is an
arbitrary and unknown (possibly nonlinear) function
over R, X, are vectors of explanatory variables that are
either random i.i.d. or fixed design points, and ¢, are
zero-mean long-memory error processes with finite
variance. PLMs are semiparametric models since they
contain both parametric X, and nonparametric g(t)
components. They allow easier interpretation of each
variable and may be preferred to a completely non-
parametric approach because of the well-known curse

of dimensionality. Partly linear models are also more
flexible than the standard linear models, since they
combine both parametric and nonparametric compo-
nents, which may be useful if it is believed that the
response depends linearly on some covariates but non-
linearly on others. Wavelets are natural tools for esti-
mating such models and we are currently exploring
this application in the context of fMRI.

It isinteresting also to compare wavelet-generalized
least squares to the wavelet resampling scheme we
have previously proposed for computational (nonpara-
metric) inference on fMRI time series (Bullmore €t al.,
2001). Both WLS and wavelet resampling exploit the
same key mathematical result—namely, that the DWT
is a good whitening filter for 1/f processes. However,
the resampling scheme uses this property principally
tojustify exchangeability of wavelet coefficients under
the null hypothesis; see (Nicholls and Holmes, 2001)
for an introduction to exchangeability in relation to
nonparametric inference on functional neuroimaging
data. This allows us to resample fMRI time series
while preserving their unknown autocorrelational
structure, so that test statistics estimated in the ob-
served data are not biased with respect to statistics
estimated by fitting the same regression model to data
reconstituted in the time domain after wavelet resam-
pling. And this in turn allows us to construct a valid
test of the null hypothesis by comparing the observed
statistics to the critical values of the permutation dis-
tribution ascertained by repeated wavelet resampling.
However, the estimator in this resampling scheme is
ordinary least squares, which will be less than opti-
mally efficient in the context of long-memory errors,
whether observed or resampled. Wavelet-generalized
least squares can also support valid inference but it
has the crucial advantage of greater efficiency, i.e., less
variability in estimation of model parameters. It also
provides a quantitative summary of the noise proper-
ties at each voxel, rather than “blindly” reproducing
these properties by resampling of wavelet coefficients.

From a theoretical perspective, the method could be
refined in respect of at least two underlying assump-
tions. First, we have assumed that the long-memory
process in the data is uncontaminated by Gaussian
(white) noise. Extension to the case of stationary 1/f
processes contaminated with Gaussian white noise
could also be handled using a more complicated Expec-
tation—-Maximization (EM) type algorithm to partition
the total error variance into white and colored compo-
nents (Wornell and Oppenheim, 1992a; Wornell, 1996).
Second, we have assumed that the long-memory pa-
rameter H is time invariant. There are a number of
ways in which our approach could be developed to
obviate this assumption. For example, assuming the
process is at least locally stationary, one can simply
apply the proposed estimator using the classical fixed-
window-length segmentation technique. Finally, it is



worth emphasizing that the goodness of DWT as a
whiteningfilter for real datais considerably influenced
by the way in which wavelet coefficients are estimated
at the boundaries of thetime series. We have here used
a simple convolutional method of periodic boundary
correction but there are nonconvolutional filters one
can apply to estimate coefficients at the edges of each
level of detail, and these may offer worthwhile im-
provements in performance of the estimator by dimin-
ishing artifactual inter-coefficient correlations due to
periodic boundary correction. In particular, the slightly
over-conservative nature of tests based on WLS esti-
mates may be attributable to artifactual inter-coeffi-
cient correlations and consequently treatable by use of
a nonconvolutional boundary correction algorithm.

CONCLUSION

We conclude that wavelet-generalized least squares
is an optimal estimator of linear model and fractal
noise parameters that may be of widespread utility
given the natural ubiquity of long-memory errors.
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