
Real-Time Imaging 6, 241±249 (2000)
doi:10.1006/rtim.1999.0190, available online at http://www.idealibrary.com on
A Parallel Pipeline Based Multiprocessor
System For Real-Time Measurement of
Road Tra�c Parameters

R
eal-time measurement and analysis of road tra�c ¯ow parameters such as volume, speed
and queue are increasingly required for tra�c control and management. Image
processing is considered as an attractive and ¯exible technique for automatic analysis of

road tra�c scenes for the measurement and data collection of road tra�c parameters. In this
paper, the authors describe a novel image processing based approach for analysis of road tra�c
scenes. Combined background di�erencing and edge detection techniques are used to detect
vehicles and measure various tra�c parameters such as vehicle count and the queue length. A
RISC based multiprocessor system was designed to enable real-time execution of the authors
algorithm. The multiprocessor system has nine processing modules connected in a parallel
pipeline fashion. Results shows that the authors multiprocessor system is able to provide
measurement of tra�c parameters in real-time. Results are presented for real tests of our system
by analysing tra�c scenes on the highways of Singapore.

2000 Academic Press

M.Y. Siyal1, M. Fathi1 and M. Atiquzzaman2;3

1School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798
Tel: +65 790-4464, Fax: +65 792-0415

2Department of Elect. & Comp. Eng., University of Dayton, Dayton, Ohio 45469-0226, USA
Tel: +1937 229 3183, Fax: +1937 229 4529, E-mail: atiq@engr.udayton.edu
Introduction

Processing of road tra�c images has been the subject of
vigorous research for many years. It is well known that a
fully automatic image processing system will have a
major impact on both the collection and analysis of road
tra�c data [1±4]. Many techniques have been proposed
to speed up the analysis of road tra�c images, and some
intelligent approaches have been developed to compen-
sate for the e�ects of variable ambient lighting,
shadows, occlusions, etc. in the road tra�c images.
3Author for Correspondence.

1077-2014/00/060241+09 $35.00/0
Many of these algorithms are either not accurate or
cannot be applied to real-time, real-world scenes.

The authors have developed a number of algorithms,
which can be used to analyse road tra�c scenes for
obtaining tra�c ¯ow parameters [1,5]. Here, the
algorithms required for pre-processing of the images
are ®ltering and segmentation. Pre-processing is fol-
lowed by background di�erencing to isolate the vehicles
from the images [5]. However, this technique of back-
ground di�erencing has problems of accurately updating
the background frame and automatically selecting a
suitable threshold value used in the isolation of the
vehicles from the background. Edge detection based
segmentation of tra�c scene has the advantage of being
2000 Academic Press

242 M.Y. SIYAL ETAL.
less sensitive to variation of ambient lighting and
shadows [6]. However, the combination of background
di�erencing and edge detection technique has the
advantage of being able to eliminate stationary vehicles,
shadows and the road markings, and is less sensitive to
variation of ambient lighting [2]. This combined vehicles
detection technique was used to detect moving vehicles,
and measure tra�c parameters such as vehicle count
and queue length.

Since real-time analysis of tra�c scenes involves very
fast processing and analysis of sequences of tra�c
images, a large volume of data to be processed in a very
short period of time; thus that it is very expensive in
terms of computing power requirements. Therefore, for
real-time image processing tasks, various forms of
parallelism in the processing algorithms must be
exploited to reduce the computing requirements. So
far, a wide range of general and special purpose
computers have been developed. To achieve, real-time
processing it is necessary to design special purpose
multi-processor systems consisting of a number of
cooperating special purpose processors, each executing
a part of the task. Besides multi-processors, powerful
RISC type processors have also been an attractive
research topic [7±9]. Computer systems built with RISC
type processors are more cost e�ective than multi-
processor systems using special purpose processors. This
system can execute, in real-time, the image processing
algorithms for analysis of road tra�c scenes.

The proposed multiprocessor system described here
has three identical pipelines, each having three proces-
sing modules. A RISC type array processor was
designed, which is used in the processing modules of
the pipelines. The array-processing module was designed
with high degree of parallelism to speed up the image
processing operations. By combining data parallelism
found in array processors into the architecture, a high
degree of concurrency has been achieved. The array-
processing module has nine processing elements (PE)
connected in a mesh fashion. Because 363 masks are
used in image processing algorithms for tra�c analysis,
image area operations with a 363 mask in the design of
the authors processor was implemented. However, other
area processing with larger masks can be easily realized
through several 363 basic mask operations. The
authors show that their system is able to provide
information on tra�c parameters in real-time. Results
of real tests for analysing tra�c scenes on the highways
of Singapore are presented here.
The rest of this paper is organized as follows. First the
experimental setup is described and this is followed by
the authors algorithm to analyse images of tra�c ¯ow in
roads. The design of the authors proposed pipelined
multiprocessor system using array processors is dis-
cussed next. Accuracy of the results of measurements
carried out in a real highway are then presented and are
followed by the concluding remarks.

The Processing Scheme

A CCD camera installed over a road, which provided
the raw tra�c ¯ow images, was used and the images
were analysed in order to extract the necessary tra�c
¯ow information. The processing scheme was directed
into three steps called, vehicle detection, vehicle count and
queue parameters. One window per lane was placed
across the road (see Fig. 2). Three windows were used,
with each pipeline in the proposed multiprocessor
system being dedicated to a window. This is because in
Singapore (and in many countries), roads/express-ways
have three lanes. Each pipeline has three processing
modules responsible for the vehicle detection, vehicle
count and queue parameter extraction operations. The
multiprocessor system (to be described later) is inter-
faced to a host computer, which in this case is a Pentium
based PC. The picture output from the camera system is
fed to the system. The data acquisition and control
circuit controls and manages the data. Control signals
from the camera system are used to synchronize and
load the image from the camera system into the
multiprocessing system.

The Vehicle Detection Process

A common and simple vehicle detection technique is the
background di�erencing technique. This technique is
based on a pixel-by-pixel comparison of a background
image of a tra�c scene (without any moving vehicles)
and the current frame of the scene. The technique has
been successfully used by a number of researchers [3,4].
The background image needs to be periodically updated
in order to account for changes in ambient lighting. In
practice, the e�ectiveness of this method depends on the
accuracy of the background updating technique and the
selection of a suitable threshold value. Various research-
ers [1,2,4] have proposed di�erent algorithms for
updating the background. However, they don't work
well under all lighting and weather conditions. Therefore,

MULTIPROCESSORSYSTEMFORREAL-TIMEMEASUREMENT 243
they are not suitable for real-world applications, such as
tra�c analysis as carried out in this study.

An alternative technique to the background di�eren-
cing is based on edge detection. Edge-detection based
techniques are generally more e�ective than the back-
ground di�erencing technique. In fact, the edge infor-
mation of the objects remains signi®cant despite the
variation of the ambient lighting. Analysis of tra�c
images has proved that various surfaces and di�erent
parts and colors of a vehicle create signi®cant edges.
Even cars having the same color as the surface of the
road, re¯ect more light and can be more easily detected.

There are two types of edge-based detection techni-
ques: conventional gradient based edge detectors and
morphological edge detectors. The conventional gradi-
ent-based edge detection operations have found wide
acceptance in image processing applications. However,
morphological edge detectors have shown better perfor-
mance than conventional edge detectors while having a
lower computational cost [10]. The authors have
developed a novel morphological edge detector, consist-
ing of separable median ®ltering and morphological
operators, called SMED (Separable Morphological
Edge Detector). The SMED has a lower computational
requirement and better performance, compared to the
other morphological edge-detection operators. This
Figure 1. The ¯ow chart of the vehicle detection algorithm.
operator can be de®ned as:

SMDED � �D�s� f �� ÿ E�S� f ��� �1�
Where S� f � is the result of applying a separable

median ®ltering to the original image f.D() and E() are
dilation and erosion operators, respectively.

The algorithm used here for vehicle detection is based
on applying low pass ®ltering, combined background
di�erencing and SMED edge detector on windows
located across the road. Following the application of
the vehicle detection operation, the pixels having values
that are greater than the threshold are used to recognize
vehicles. The above procedure of vehicle detection is
shown in detail in Figure 1.

The size of the window has a strong e�ect on the
performance of the whole system. The window size
should be located vertical to the road direction for
vehicle counting. As the width of a window is increased
up to the length of vehicles, the accuracy increases but
the computation time increases, which slows down the
whole system On the other hand, the width of the
window is dependent on the road type, as in highways
(expressways, motorways, etc.) the vehicles move more
rapidly than other roads. On highways the width of the
windows should be more, as there is a risk of missing
vehicles on some frames.

Figure 2. Graph of window width vs. percentage of errors for detecting vehicles.

244 M.Y. SIYAL ETAL.
The authors have conducted extensive experiments in
order to determine the best window size for various
situations. The percentage of errors of vehicle detection
algorithm vs. window width for a road is shown in
Figure 2. The graph of the computation times against
window width for the same road is shown in Figure 3.
As it can be seen, a compromise can be made between
the accuracy needed and the processing speed required
by selecting the width of the window.

In the system used here, the location of the windows,
the number of lanes on the road, and the road type are
manually determined by an operator as a part of the
initialization procedure. The size of windows is com-
puted and located automatically across the road. The
width of the windows is automatically adjusted every 30
min to account for slight changes in tra�c conditions.
The width of a window is computed as follows:

E � L�V �2�

Where L is the length of each window (equal to the
width of the lane) and V is a speed factor that is
determined initially by the operator, and later on is
continuously automatically adjusted by comparing the
Figure 3. Graph of window width vs. processing speed for detec
relative speed of vehicles. If the vehicles are moving at a
higher speed, the width of the window is increased.

Following the computing of windows and their sizes,
the vehicle detection program uses the co-ordinates of
each window to detect vehicles. Figure 4 shows the
placing of windows on the road for a typical vehicle
detection operation.

Measurement of Tra�c Parameters

As shown in Figure 4, in order to detect vehicles,
windows of appropriate sizes are placed across each lane
of the road. Here, the SMED edge detector is applied to
each window, and the number of edge points is
compared with a threshold value to decide, whether
the window contains a vehicle. The threshold value is
automatically calculated by analysing the histogram for
each window.

Following the application of edge detection operation
to the windows, a status vector is created. To count the
number of vehicles, the status vector is analysed. In this
manner, for each frame, if a vehicle is detected in a
window, a `1' is stored at the status vector of the
ting vehicles.

Figure 4. The placing of windows on the road.

MULTIPROCESSORSYSTEMFORREAL-TIMEMEASUREMENT 245
window; otherwise a `0' is stored at the status vector of
the window. The group of 1s (ones) corresponds to a
vehicle and a group of 0s (zeros) corresponds to the
distance between two vehicles. An isolated 1 alone could
be considered as a motor cycle or a fast moving vehicle.

The vehicle detection operation along with a motion
detection operation is used for queue length measure-
ment [10]. In this case, the window is located along the
road direction. The algorithm used to detect and
measure queue parameters consists of two operations,
one involving motion detection and the other vehicle
detection. These operations are applied to a window
to detect the size of the queue. Since microcomputer
systems operate sequentially, a motion detection opera-
tion is ®rst applied. If the algorithm detects no motion,
the vehicle detection operation is used to decide whether
there is a queue or not. The reason for applying the
motion detection operation ®rst is that the tra�c scenes
that we analysed for queue detection are expected to
contain vehicles. In this case, vehicle detection gives
mostly the positive result, while in reality there may not
be any queue at all.

The method for motion detection is based on
di�erencing two consecutive frames and applying
median ®lters for removing noise. The vehicle detection
algorithm is only applied when the motion detection
algorithm detects ``no motion''. To reduce the amount
of data and to eliminate the e�ects of minor motion of
the camera, the key region has to be at least a 3 pixels
wide pro®le of the image along the road. In this method,
a median ®ltering operation is ®rstly applied to the key
region (pro®le) of each frame and then, the di�erence of
the two pro®les is compared to detect motion. When
there is motion, the di�erence of the pro®les is larger
than the case when there is not motion. Therefore, the
motion can be easily detected.

Design Considerations

The desire to run applications faster and the availability
of cheaper and faster microprocessors and other
components has resulted in much research activity in
the ®eld of computer architecture. Many computer
experts have come up with various design methodolo-
gies. In order to decide the structure of the computer for
the multiprocessor system, pipeline, array processor
and multiprocessor structures were explored, as these
techniques are widely used in today's modern computers.

Array processors no doubt are best suited to image
processing based problems as the processing element's
organization matches exactly with the 2-dimensional
nature of images. However, as the size of the array
processor increases, the cost and complexity of the
system increases [11]. Since most sensors (e.g. camera)
deliver data sequentially, an e�cient conversion to
parallel format is necessary for array processor systems.
In most array processor systems, the picture is ®rst
stored in an intermediate place and then loaded into the
machine; therefore, useful execution time is wasted in
converting sequential data into a suitable parallel data
format [12].

On the other hand pipelining takes full advantage of
the sequential nature of image data. As the pictures are
generated, they can be directly input to the pipeline.
Once the pipeline is ®lled, the throughput is equal to the
input data rate. Pipeline systems also cost much less
than array processor systems. The advantage of the
pipeline structure is that the basic speed is constant. The
delay from the input to output is constant. Furthermore,
common input and output devices such as video camera
and monitor can be easily interfaced to a pipeline, since
the pipeline contains only one common data stream [7].

Obviously, there is limit to the parallelism achieved in
the pipelining. Although attractive, pipelining alone will
not achieve the goal of executing image processing
algorithms in real-time. This will only come with parallel
processing and array processing.

Thus the authors used parallel pipeline architecture
for the multiprocessor system, and designed a RISC

246 M.Y. SIYAL ETAL.
type array processor with nine processing elements for
the processing module of the pipeline. To exploit
parallelism, the whole image was partitioned into sub-
images (windows), which are processed by di�erent
pipelines in parallel. The rationale behind a distributed
approach is that the image data can be accessed in a
parallel manner by all pipelines within the system.

The Multiprocessor System

Since the architecture for this project had to re¯ect
image processing algorithms developed for tra�c
analysis, which were of serial form, was adopted the
pipeline architecture as the parallel processing structure
Figure 5. Block diagram of the multiprocessor system.
for the authors system. The main operations for the
multiprocessor system are:

. detect vehicles;

. count vehicles;

. calculate the queue parameters.

In order to reduce the load on the system and improve
its response time, each pipeline is dedicated to process
one window. Two frame bu�ers M1 and M2 serve as the
communication interface between the camera system
and the multiprocessor system, and between the multi-
processor system and the host computer respectively, as
shown in Figure 5. The camera system transmits the
lines of a picture, serially one after another, and is

Figure 6. The array processor.

Figure 7. Structure of the PE.

MULTIPROCESSORSYSTEMFORREAL-TIMEMEASUREMENT 247
connected to all pipelines via their local memories. The
pixels, which are required by a pipeline, are clocked into
the pipeline by a data acquisition and control circuit.
The address generation circuit drives its input from the
camera system and generates addresses of the pixels,
which are being output from the camera system.

As soon as the pipelines receive that data, they start
executing the algorithms. After completing their tasks,
each pipeline sends its data to memory (M2) for storage.
These data are accessed by the host computer to present
the tra�c information in graphical form.

The Array Processor Module

Figure 6 shows the block diagram of the array-
processing module. The mesh of 363 processing
elements forms this computation module. The nine
PEs are fully inter-connected. They could therefore,
work synchronously, the same way as mesh-connected
array processors work. Each PE in the array would
access its corresponding input, along with inputs from
its neighboring PEs.

As shown in Figure 7, every PE consists of a PALU
(Processing Arithmetic and Logical Unit) providing
Figure 8. Results of counting vehicles.
Boolean as well as arithmetic functions, instruction and
constant registers, and a LCU (Logic Control Unit).
Each processing element has a local memory, which is
used to store instructions and the data. Initially, both
instructions and constant registers in each PE are loaded
with the corresponding instructions and the data. After
the initialization phase, the PEs execute their instruc-
tions. During the process, every PE in the array executes
the operations de®ned in its own instruction register
simultaneously. Note that the whole process in the array
is well connected and is controlled by a host system.

The processing module has 64 instructions with 8-bit
format. Apart from instructions for normal functions,
there are few distinctive instructions to take advantage
of the special architecture of the processor.

Results

The authors have conducted extensive experiments for
continuous periods of 6±8 hours. The result of counting
vehicles under various weather conditions is shown in
Figure 8. As can be seen, the error is around 15%. The

Figure 9. Results of counting vehicles by placing windows between the lanes.

248 M.Y. SIYAL ETAL.
authors believe that these errors are due to drivers
supposedly driving one lane, but instead straddle two
lanes. To further improve the accuracy of the vehicle
counting operation, the windows are placed in between
two lanes. With this approach the accuracy achieved
was more than 97% (Figure 9).

Comparison of the results of queue parameter
measurement using the authors system and manual
measurement of the queue is shown in Figure 10. As can
be seen, the system is able to detect the queue with a
good accuracy.

The multiprocessor system together with the host
computer is able to provide tra�c information in real-
time. During the experiment, the results were reported
online in graphical form. The authors system is able to
execute image processing algorithms at a rate of 15
frames per second, which is more than su�cient for real-
time operation, as only key regions of the image
(windows) are processed and not a full image.
Figure 10. The result of queue parameters.
Conclusions

In this paper, a multiprocessor system based on a RISC
type programmable image processor for executing
image-processing algorithms for road tra�c applica-
tions was described. The processor is designed to take
advantage of parallelism in mesh-connected array
processor for image area processing. Due to this small
mesh-connected PE array, a high degree of concurrency
has been achieved.

A novel vehicle detection technique based on edge
detection and key region processing was also introduced
in the paper. To implement the algorithm in real-time, a
low computational cost technique for edge detection,
which eliminates noise and detects thin edges has been
used. The information extracted by the vehicle detection
algorithm was used for measuring other tra�c para-
meters, such as the volume of vehicles and queue length.
The algorithm was implemented on the proposed
multiprocessor system, and the results obtained demon-
strate that the system can provide tra�c parameters
from road tra�c images in real-time.

MULTIPROCESSORSYSTEMFORREAL-TIMEMEASUREMENT 249
References

1. Dickinson, K.W. & Waterfall, R.C. (1984) Image proces-
sing applied to tra�c: Practical experiences. Tra�c
Engineering and Control, Feb. 1984, pp. 60±67.

2. Fathy, M and Siyal, M.Y ``An image detection technique
based on morphological edge detection and background
di�erencing for real-time tra�c analysis'', Pattern Recog-
nition Letters, Vol. 16 (1995), pp. 1321±1330.

3. Hoose, N. (1991) Computer image processing in tra�c
engineering, Taunton, Research Studies Press.

4. Ali, A.T and Dagles, E.L., Recent progress in Real-Time
Image Analysis for real-world tra�c analysis,
ICARVC'92, second international conference on Auto-
mation, Robotics and Computer Vision proceedings,
vol. 1, pp. 10±15, 1992.

5. Siyal, M.Y and Fathy, M ``A window-based image
processing technique for quantitative and qualitative
analysis of road tra�c parameters'', to appear in
IEEE Transactions on Vehicular Technology, September
1998.

6. Fathym, M and Siyal, M.Y ``A window-based edge
detection technique for measuring road tra�c parameters
in real-time'', Real-Time Imaging I, pp. 297±305, 1995.
7. Navaux, P.A and Cesar, A.F ``Performance evaluation in
image processing with GAPP array processor'', Micro-
processors and Microprogramming', pp. 71±82, March
1995.

8. Abnous, A and Bagherzadeh, N ``Architectural Design
and Analysis of VLIW Processor'', Computer and
Electrical Engineering', Vol. 21, pp. 119±142, 1995.

9. Aleksic, ``CISC vs RISC processors for Graphics: A
Simulation Study'', Microprocessors and Microprogram-
ming, Vol. 37, pp. 45±48, 1993.

10. Fathy, M and Siyal, M.Y, ``A Real-Time Image Proces-
sing Approach To measure Tra�c Queue Parameters'',
IEE Proceedings on Image, Vision and Signal processing,
Vol. 142, No. 5, pp. 297±303. October, 1995.

11. Konstantinides and Bhaskaran, Z ``Monolithic Architec-
tures for Image Processing and Compression'', IEEE
Computer Graphics and Applications, pp. 75±86, 1992.

12. Tokhi, M.O and Hossain, M.A ``CISC, RISC and DSP
processors in real-time signal processing and control'',
Microprocessors and Microsystems, June 1995.

13. Turner, C.J and Bhavsar, V.C ``Parallel implementations
of convolution and movements algorithms on a multi-
transputer system'', Microprocessing and Microprogram-
ming', pp. 283±290, June 1995.

	Introduction
	The Processing Scheme
	The Vehicle Detection Process
	Figure 1
	Figure 2

	Measurement of Traffic Parameters
	Figure 3
	Figure 4

	Design Considerations
	The Multiprocessor System
	Figure 5
	Figure 6

	The Array Processor Module
	Figure 7

	Results
	Figure 8
	Figure 9

	Conclusions
	Figure 10

	References

