
Real-Time Imaging 8, 137–144 (2002)
doi:10.1006/rtim.2001.0266, available online at http://www.idealibrary.com on
Fast Computation of Moments on
Compressed Grey Images using Block
Representation

I
n image processing, moments are useful tools for analyzing shapes. Suppose that the input
grey image with size N�N has been compressed into the compressed image using the block
representation, where the number of blocks used is K, commonly KoN2 due to the

compression effect. This paper presents an efficient OðN
ffiffiffiffi
K

p
Þ-time algorithm for computing

moments on the compressed image directly. Experimental results reveal a significant computa-
tional advantage of the proposed algorithm, while preserving a high accuracy of moments and a
good compression ratio. The results of this paper extend the previous results in [7] from the binary
image domain to the grey image domain.

2002 Elsevier Science Ltd. All rights reserved.

Kuo-Liang Chung,*,1 Wen-Ming Yan2 and Zhi-Hor Liao1

1Department Computer Science and Information Engineering,
National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672,

R. O. C. E-mail: klchung@cs.ntust.edu.tw
2Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Section 4,

Roosevelt Road, Taipei, Taiwan 100, R. O. C. E-mail: ganboon@csie.ntu.edu.tw
Introduction

In image analysis, moments are useful tools for analyzing
shapes. For an N�N image, let g(x, y) denote the grey
level of the pixel at location (x, y) for 0� x; y � N � 1.
The (p+q)-order moment is defined as

mpq ¼
XN�1

x¼0

XN�1

y¼0

xpyqgðx; yÞ ð1Þ

In fact, zero- to third-order moments are most widely
used in applications [1–6]. Recently, Spiliotis andMertzios
[7] presented a very efficient algorithm for computing
moments on binary images using the block representation.
*Author to whom all correspondence should be addressed.

1077-2014/02/$35.00
Their algorithm first partitions the given binary image
into a set of rectangular blocks. Then some analytic
formulas are derived to speed up the computation of
moments. Based on the compressed grey image using the
STC method, which is described in the next paragraph,
the motivation of this research is to extend the results [7]
from the binary image domain to the grey image domain.
For convenience, the concerning low-order moments are
called the moments and the compressed grey image using
the STC method is called the compressed image through-
out this paper in order to avoid confusion.

Previously, based on the B-tree triangular approach,
Distasi et al. [8] presented an efficient image compres-
sion method. Their method has a shorter execution time
than that of the standard JPEG [9], although the bit rate
is higher by a factor of about 2. Based on the S-tree data
r 2002 Elsevier Science Ltd. All rights reserved.

Figure 1. Homogeneous block.

138 K.-L. CHUNG ET AL.
structure [10] and the Gouraud shading technique [11],
an improved compression method called the STC
method [12] is presented to partition the given image
into a set of blocks. Without the mosaic effect, the STC
method has shorter encoding/decoding time than [8],
while preserving the same image quality. In fact, the
STC method can be viewed as a promising spatial data
structure (SDS) that extends the previous SDSs [13,14]
from the binary image domain to the grey image
domain.

Suppose that the given grey image has been com-
pressed into the compressed image with K blocks,
KoN2. This paper presents an efficient OðN

ffiffiffiffi
K

p
Þ-time

algorithm for computing moments on the compressed
image directly. A detailed time complexity analysis is
also provided. Some real experiments are carried out to
demonstrate the significant computational advantage of
the proposed algorithm while preserving a high accuracy
of moments and good compression ratio. The results of
this paper can be viewed as the extension of [7] from the
binary image domain to the grey image domain.

Compressed Images

In the STC method, the original grey image is
partitioned into several homogeneous blocks based on
the bintree decomposition principle, then the S-tree
representation is used to represent these homogeneous
blocks. A quantified definition of a homogeneous block
will be defined in Eqn (2).

The S-tree representation is based on the breadth-first
search (BFS) technique [15] and consists of two tables,
namely the linear-tree table and the colour table.
Following the BFS tree traversal method, the bintree
representation is based on dividing the image into two
equal-sized subimages recursively. At each division step,
the partition is alternated between the x- and y-axis. If
the subimage is not a homogeneous block, then it is
subdivided into two equal-sized subimages until all the
homogeneous blocks are obtained in the S-tree repre-
sentation, traversing the bintree in the BFS manner, at
each time, we emit a ‘0’ when an internal node is
encountered; emit a ‘1’ when a leaf node is encountered.
After traversing the bintree, the sequence of these
ordered binary values is saved in the linear-tree table.
Meanwhile, at each time, we do nothing when an
internal node is encountered. When a leaf node is
encountered, we emit the grey-levels of the four corner
pixels of the related homogeneous block, say (g1, g2, g3,
g4). The sequence of these ordered values is stored in the
colour table.

We now give a quantified definition for the homo-
geneous block as shown in Figure 1. Using the Gouraud
shading method, the estimated grey-level of the pixel at
(x, y), gest(x, y), in the homogeneous block is calculated by

gestðx; yÞ ¼ g5 þ
g6 � g5

y2 � y1
ðy� y1Þ ð2Þ

where

g5 ¼ g1 þ
g2 � g1

x2 � x1
ðx� x1Þ

and

g6 ¼ g3 þ
g4 � g3

x2 � x1
ðx� x1Þ

Given a specified error tolerance �, if the following image
quality condition holds

jgðx; yÞ � gestðx; yÞj � �

then it holds for all the estimated pixels at positions
(x, y)’s in the block for x1 � x � x2 and y1 � y � y2,
where g(x, y) denotes the real grey-level of the pixel at
(x, y), then the block is called a homogeneous block.

Given an 8� 8 grey image as shown in Figure 2(a),
suppose that the error tolerance is set to � ¼ 5 and the
four corners of Figure 2(a) have the four grey-levels
g1(0, 0)=4, g2(7, 0)=4, g3(0, 7)=25, and g4(7, 7)=4. By
Eqn (2), the estimated grey-level of the pixel at (1, 0) is
calculated by

gestð1; 0Þ ¼ 4þ
22� 4

7� 0
ð0� 0Þ ¼ 4

Figure 2. An example using the STC method (a) The original 8� 8 image. (b) The partitioned homogeneous blocks of (a). (c) The
bintree representation of (b). (d) The estimated image of (a).

COMPRESSEDGREY IMAGESUSINGBLOCKREPRESENTATION 139
where

g5 ¼ 4þ
4� 4

7� 0
ð1� 0Þ ¼ 4

and

g6 ¼ 25þ
4� 25

7� 0
ð1� 0Þ ¼ 22

The absolute difference between g(1, 0) and gest(1, 0) is

jgð1; 0Þ � gestð1; 0Þj ¼ j14� 4j ¼ 10

Since the value 10 is larger than the specified error
tolerance � ¼ 5, it violates � ¼ 5. Therefore, Figure 2(a)
is subdivided into two equal-sized subimages by cutting
the x-axis. By the same argument, the resulting
partitioned homogeneous blocks are denoted by B0,
B1, and B2 and depicted in Figure 2(b). The correspond-
ing bintree representation is illustrated in Figure 2(c).
The four corners of the homogeneous block B0 have
grey levels g1(0, 0)=4, g2(3, 0)=34, g3(0, 7)=25, and
g4(3, 7)=97. By Eqn (2), the estimated grey-level of the
pixel at (0,1) is calculated by

gestð0; 1Þ ¼ 4þ
25� 4

7� 0
ð1� 0Þ ¼ 7
where

g5 ¼ 4þ
34� 4

3� 0
ð0� 0Þ ¼ 4

and

g6 ¼ 25þ
97� 25

3� 0
ð0� 0Þ ¼ 25

Similarly, we have gest(0, 2)=10, gest(0, 3)=13, . . .,
and gest(3, 6)=88. Finally, the estimated image of
Figure 2(a) is shown in Figure 2(d), which depicts all
the corresponding estimated grey-levels obeying � ¼ 5.
From Figure 2(c) and (d), the corresponding S-tree
representation is listed below:

linear-tree table: 0 1 0 1 1

color table: (B0g1,B0g2,B0g3,B0g4), (B1g1, B1g2,B1g3,B1g4),
(B2g1,B2B2,B2g3,B2g4)=(4, 34, 25, 97), (1, 22, 10, 4), (1, 4,
10, 22)

In the above S-tree representation, there are four
entities in the colour table, where each entity contains
four grey-levels. The binary string 01011 in the linear-

140 K.-L. CHUNG ET AL.
tree table is used to capture the geometrical relationship
among these homogeneous blocks.

Computing Moments on Compressed Images

Let I ¼ fðx; yÞgj0� x � N � 1; 0� y � N � 1g be the
image domain, decomposed into a set of K homoge-
neous blocks using the STC method mentioned above.
Let fBi ji ¼ 0; 1; . . . ;K � 1g denote the set of these K
homogeneous blocks. Following the notations used in
Figure 1, Bi is represented by

Bi ¼ fðx; yÞjxðiÞ1 � x � x
ðiÞ
2 ; y

ðiÞ
1 � y � y

ðiÞ
2 g

where Bi \ Bj ¼ � for iaj and I ¼
SK�1

i¼0 Bi.

From Eqns (1) and (2), the computation of mpq is
given by

mpq ¼
XN¼1

x¼0

xp
XN�1

y¼0

yqgestðx; yÞ ð3Þ

It takes O(N2) time to compute the moments based on
Eqn (3) directly. In what follows, we need to reduce the
time requirement from O(N2) to OðN

ffiffiffiffi
K

p
Þ, commonly

KoN2 due to the compression effect (see section,
Experimental Results). For each x, let
Ix ¼ fðx; yÞ j0� y � N � 1g and we have

Ix ¼ I \ Ix ¼
[k�1
i¼0

ðBi \ IxÞ

Since ðBi \ IxÞ \ ðBj \ IxÞ ¼ � for iaj, we further have

XN�1

y¼0

yqgestðx; yÞ ¼
X

ðx; yÞ2Ix

yqgestðx; yÞ

¼
X

ðx; yÞ2
SK�1

i¼0
ðBi\IxÞ

yqgestðx; yÞ

¼
XK�1

i¼0

X
ðx; yÞ2Bi\Ix

yqgestðx; yÞ ð4Þ

Let vðBiÞ
q ðxÞ ¼

P
ðx; yÞ2Bi\Ix

yqgestðx; yÞ ¼
Py

ðiÞ
2

y¼y
ðiÞ
1

yqgestðx; yÞ
and

rqðxÞ ¼
XN�1

y¼0

yqgestðx; yÞ ¼
XK�1

i¼0

vðBiÞ
q ðxÞ

for x ¼ 0; 1;

 ;N � 1

The following lemma shows that the computation of
vðBiÞ
q ðxÞ can be reduced from OðyðiÞ2 � y

ðiÞ
1 Þ time to O(1)

time.
Lemma 1. vðBiÞ
q ðxÞ ¼

Py
ðiÞ
2

y¼y
ðiÞ
1

yqgestðx; yÞ for q=0, 1, 2,

and 3 that can be computed in O(1) time.

Proof. Consider the pixels on the top boundary and
the bottom boundary at positions (x, y1) and (x, y2),
respectively, for x1 � x � x2. By Eqn (2), we have

gestðx; y1Þ ¼ g1 þ
g2 � g1

x2 � x1
ðx� x1Þ

and

gestðx; y2Þ ¼ g3 þ
g4 � g3

x2 � x1
ðx� x1Þ

For simplifying the notations used, let

D1 ¼ g1 þ
g2 � g1

x2 � x1
ðx� x1Þ

and

D2 ¼
ðg3 þ

g4�g3
x2�x1

ðx� x1ÞÞ � ðg1 þ
g2�g1
x2�x1

ðx� x1ÞÞ

y2 � y1

¼
g3 � g1 þ

g4�g3�g2þg1
x2�x1

ðx� x1Þ

y2 � y1

¼
g3 � g1

y2 � y1
þ

g4 � g3 � g2 þ g1

ðy2 � y1Þðx2 � x1Þ
ðx� x1Þ

then we have gest(x, y)=D1+(y�y1)�D2, where the
values of D1 and D2 are dependent on the values of x.
The computation of vðBiÞ

q ðxÞ ¼
Py2

y¼y1
yqgestðx; yÞ can be

rewritten as

vðBiÞ
q ðxÞ ¼

Xy2
y¼y1

yqgestðx; yÞ

¼
Xy2
y¼y1

yqðD1 þ ðy� y1Þ �D2Þ

¼ðD1 � y1D2Þ
Xy2
y¼y1

yq þD2

Xy2
y¼y1

yqþ1

The following four equalities are well-known and they
will be used later:

XN�1

y¼0

y ¼
NðN � 1Þ

2
;

XN�1

y¼0

y2 ¼
NðN � 1Þð2N � 1Þ

6

COMPRESSEDGREY IMAGESUSINGBLOCKREPRESENTATION 141
XN�1

y¼0

y3 ¼
N2ðN � 1Þ2

4
and

XN�1

y¼0

y4 ¼
NðN � 1Þð2N � 1Þð3N2 � 3N � 1Þ

30

The summation term
Py2

y¼y1
yq for q=0, 1, 2, and 3 can

be calculated directly by the following formulas:

Xy2
y¼y1

y ¼
Xy2
y¼0

y�
Xy1�1
y¼0

y ¼
y2ðy2 þ 1Þ � y1ðy1 � 1Þ

2

Xy2
y¼y1

y2 ¼
Xy2
y¼0

y2 �
Xy1�1
y¼0

y2

¼
y2ðy2 þ 1Þð2y2 þ 1Þ � y1ðy1 � 1Þð2y1 � 1Þ

6

Xy2
y¼y1

y3 ¼
Xy2
y¼0

y3 �
Xy1�1
y¼0

y3 ¼
y22ðy2 þ 1Þ2 � y21ðy1 � 1Þ2

4

and

Xy2
y¼y1

y4 ¼
Xy2
y¼0

y4 �
Xy1�1
y¼0

y4

¼
y2ðy2 þ 1Þð2y2 þ 1Þð3y22 þ 3y2 � 1Þ � y1ðy1 � 1Þð2y1 � 1Þð3y21 � 3y1 � 1Þ

30

For vðBiÞ
q ðxÞ, 0� q � 3, v

ðBiÞ
0 ðxÞ, v

ðBiÞ
1 ðxÞ, v

ðBiÞ
2 ðxÞ, and

v
ðBiÞ
3 ðxÞ can be computed by

v
ðBiÞ
0 ðxÞ ¼ðD1 � y1D2Þ � ðy2 � y1 þ 1Þ

þD2 �
y2ðy2 þ 1Þ � y1ðy1 � 1Þ

2

v
ðBiÞ
1 ðxÞ ¼ðD1 � y1D2Þ �

y2ðy2 þ 1Þ � y1ðy1 � 1Þ
2

þD2�
y2ðy2þ1Þð2y2þ 1Þ�y1ðy1�1Þð2y1�1Þ

6

v
ðBiÞ
2 ðxÞ ¼ðD1 � y1D2Þ

�
y2ðy2 þ 1Þð2y2 þ 1Þ � y1ðy1 � 1Þð2y1 � 1Þ

6

þD2 �
y22ðy2 þ 1Þ2 � y21ðy1 � 1Þ2

4
;

and

v
ðBi Þ
3 ðxÞ ¼ ðD1 � y1D2Þ �

y22ðy2 þ 1Þ2 � y21ðy1 � 1Þ2

4

þD2 �
y2ðy2 þ 1Þð2y2 þ 1Þð3y22 þ 3y2 � 1Þ � y1ðy1 � 1Þð2y1 � 1Þð3y21 � 3y1 � 1Þ

30
;

It is clear that vðBiÞ
q ðxÞ, 0� q � 3, can be computed in

O(1) time since each vðBiÞ
q ðxÞ only needs a few arithmetic

operations. We complete the proof.

After considering one block case Bi, let us look at the
right-hand side of Eqn (4). Totally, there are K blocks to
be considered. For exposition, let us return to Figure 2.
There are three blocks, B0, B1, and B2 to be considered.
From Figure 2(a) and Eqn (3), we have
mpq ¼

P7
x¼0x

p
P7

y¼0y
qgestðx; yÞ.

We first consider the first interval 0� x � 3. For
x=0, we only consider B0 due to I0 \ B0a�, but
I0 \ B1 ¼ � and I0 \ B2 ¼ �. By Lemma 1, it takes O(1)

time for computing
PN�1

y¼0 y
qgestð0; yÞ ¼

P7
y¼0y

qgestð0; yÞ.
By the same arguments, for x=1 with respect to I1, it

takes O(1) time for computing
P7

y¼0y
qgestð1; yÞ, and so

on. Combining the total time required for I0, I1, I2, and

I3, it takes Oðxð0Þ2 � x
ð0Þ
1 Þ time for computingP3

x¼0x
p
P7

y¼0y
qgestðx; yÞ.

We next consider the remaining interval 4� x � 7.
In this interval, we only consider B1 and B2 due to
Ix \ B0 ¼ �, but Ix \ B1a� and Ix \ B2a�. By the
same arguments discussed in the last paragraph, it

takes Oððxð1Þ2 � x
ð1Þ
1 Þ þ ðxð2Þ2 � x

ð2Þ
1 ÞÞ time for computingP7

x¼4x
p
P7

y¼0y
qgestðx; yÞ. Consequently, for the whole

interval 0� x � 7, it takesOððxð0Þ2 � x
ð0Þ
1 Þ þ ðxð1Þ2 � x

ð1Þ
1 Þþ

ðxð2Þ2 � x
ð2Þ
1 ÞÞ time for computing

P7
x¼0x

p
P7

y¼0y
qgestðx; yÞ.

In the S-tree representation mentioned above, if the
number of leaves in the S-tree is K, then it means that
the number of homogeneous blocks is K for the
N�N=(2n� 2n) image. Among these K blocks, let the
number of squared blocks be k1 and the number of
rectangular blocks be k2 such that K=k1+k2. For
convenience, let these k1-squared blocks be of sizes
(s1� s1), (s2� s2), . . ., and (sk1 � sk1), where si ¼ 2li ,
1� i � k1 and 1� li � n; let these k2 rectangular
blocks be of sizes (2r1� r1), (2r2� r2), . . ., and
(2rk2 � rk2), where rj ¼ 2mj , 1� j � k2 and 1� mj �
n� 1.

From Lemma 1 and the above description, we have
the following result.

Lemma 2. For each squared homogeneous block with
size si� si, the time complexity required in the computa-
tion of mpq is proportional to si; for each rectangular

142 K.-L. CHUNG ET AL.
block with size 2rj� rj, the time complexity required in
the computation of mpq is proportional to rj.

We now require to analyze the total time complexity
in the worst case for the proposed method. We have the
main result.
Theorem 3. Given an N�N grey image, suppose it is
compressed into a compressed image with K blocks,
then the computation of moments can be done in
OðN

ffiffiffiffi
K

p
Þ time.

Proof. From Lemma 2, it is known that the total time
complexity is bounded by

T ¼
Xk1
i¼1

siþ
Xk2
j¼1

rj

Since the image size is of N�N, we have
Pk1

i¼1s
2
iþPk2

j¼12r
2
j ¼

Pk1
i¼1s

2
i þ 2

Pk2
j¼1r

2
j ¼ N2. Let ~uu be a K-dimen-

sional vector and ~uu ¼ ðs1; s2; . . . ; sk1 ;
ffiffiffi
2

p
r1;

ffiffiffi
2

p
r2;

. . . ;
ffiffiffi
2

p
rk2 Þ. In addition, let ~vv ¼ ð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k1

;

1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p
; . . . ; 1=

ffiffiffi
2

p
|ffl{zffl}

k2

Þ. By the Cauchy–Schwarz in-

equality [16], we have

j~uu
~vvj � jj~uujj2 � jj~vvjj2

From

~uu
~vv ¼
Xk1
i¼1

siþ
Xk2
j¼1

rj

jj~uujj2 ¼

ffiXk1
i¼1

s2i þ 2
Xk2
j¼1

r2j

vuut ¼ N

and

jj~vvjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ

k2

2

r

Table 1. Performance comparison

Figure BPP SNR K Proposed

Lena 1.12 26.9 8676 0.010
Pepper 1.50 26.5 11680 0.013
F16 1.67 30.8 13070 0.015
by Cauchy–Schwarz inequality, we have

T ¼
Xk1
i¼1

siþ
Xk2
j¼1

rj � N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ

k2

2

r
� N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

p

¼N �
ffiffiffiffi
K

p

From the definition of the big–O notation [15], we thus

have T ¼ OðN
ffiffiffiffi
K

p
Þ. We complete the proof.

By traversing the S-tree representation and from
Theorem 1, the computation of moments m00, m10, m20,
m30, m01, m11, m21, m02, and m12 can be done in
OðN

ffiffiffiffi
K

p
Þ time.

Experimental Results

In the STC method, a minimum block allowable
contains four pixels, and for this case, no data
compression is achieved in encoding the minimum
block. In order to have a better robustness to noises
and get a better compression ratio, we allow one pixel in
a homogeneous block to exceed the specified error
tolerance. This leads to one noise robustness for any
homogeneous block. Three 512� 512 grey images,
Lena, F16, and Pepper are used to compare the
performance among the proposed method, the indirect
method (first decompressing the compressed image, then
computing moments on the decompressed image), and
the conventional method. Here, the conventional
method computes the moments on the decompressed
image directly. All the related implementations are
performed using Borland C++ Builder 5.0 on the
IBM compatible Celeron microprocessor with 450MHz.

Given the error tolerance � ¼ 21, Table 1 lists the
average bits per pixel (BPP), signal-to-noise ratios
(SNRs) [9], the number of partitioned blocks (K), and
the execution time in terms of seconds. The SNR is used
to measure the similarity between the original image and
method Indirect method Conventional method

0.241 0.090
0.238 0.090
0.235 0.090

Table 2. Accuracy comparison

m00 m10 m20 m30 m01 m11 m21 m02 m12

Lena-O 3.25E07 8.67E09 3.01E12 1.16E15 8.05E09 2.19E12 7.71E14 2.70E12 7.38E14
Lena 3.24E07 8.63E09 3.00E12 1.16E15 8.02E09 2.18E12 7.67E14 2.69E12 7.35E14
F16-O 4.66E07 1.22E10 4.26E12 1.66E15 1.17E10 3.04E12 1.06E15 4.00E12 1.02E15
F16 4.65E07 1.22E10 4.24E12 1.65E15 1.17E10 3.04E12 1.06E15 3.99E12 1.02E15
Pepper-O 3.07E07 7.88E10 2.69E12 1.04E15 7.56E09 1.88E12 6.29E14 2.54E12 6.15E14
Pepper 3.07E07 7.88E10 2.69E12 1.04E15 7.56E09 1.88E12 6.30E14 2.54E12 6.16E14

COMPRESSEDGREY IMAGESUSINGBLOCKREPRESENTATION 143
the decompressed image and is defined by

SNRðdBÞ ¼ 10 log10

PN�1

x¼0

PN�1

y¼0
g2ðx; yÞ

PN�1

x¼0

PN�1

y¼0
fgðx; yÞ � gestðx; yÞg

2

It is observed that the average executing time improve-
ment ratio of the proposed method over the indirect
method is

95% ¼
Time ðIndirect MethodÞ � Time ðProposed MethodÞ

Time ðIndirect MethodÞ

¼
0:238� 0:014

0:238

the executing time improvement ratio of the proposed
method over the conventional method is 86%=
(0.090�0.014)/0.90.

Table 2 illustrates the calculated values of the
concerning moments. In Table 2, the symbol Lena-O
denotes the original Lena image without any distortion;
the symbol Lena is the same as the compressed Lena
image in Table 1. It is observed that the proposed
method has a high accuracy when compared to the
conventional method running on the original Lena
image, i.e. Lena-O. For example, the calculated value of
m10 is 8.63� 10

9 using the proposed method on the
compressed image; the calculated value of m10 is
8.67� 109 using the conventional method on Lena-O.
For this case, the relative error is about 0.46% which is
infinitesimal.

In summary, experimental results reveal a significant
computational advantage of the proposed algorithm
while preserving a high accuracy of moments and good
compression ratio.

Conclusions

We have presented an efficient algorithm for computing
low-order moments in OðN

ffiffiffiffi
K

p
Þ time. The detailed time
complexity analysis is also given. Three real images have
been used to test the performance comparison among
the proposed method, the indirect method, and the
conventional method. Experimental results reveal a
significant computational advantage of the proposed
algorithm while preserving a high accuracy of moments
and good compression ratio. The results of this paper
extend the previous results by Spiliotis and Mertzios [7]
from the binary image domain to the grey image
domain. The question as to how to plug the refined
moment calculation technique [17] into our computa-
tional method is an interesting research issue.

References

1. Hu, M.K. (1962) Visual Pattern Recognition by Moment
Invariants. IEEE Transactions on Information Theory 8:
179–187.

2. Pei, S.C. & Liou, L.G. (1994) Using Moments to Acquire
the Motion Parameters of a Deformable Object Without
Correspondences. Image and Vision Computing 12:
475–485.

3. Pei, S.C. & Horng, J.H. (1999) A Moment-based
Approach for Deskewing Rotationally Symmetric Shapes.
IEEE Transactions on Image Processing 8: 1831–1834.

4. Sonka, M., Hlavac, V. & Boyle, R. (1998) Image
Processing, Analysis, and Machine Vision (2nd edn). New
York: PWS.

5. Tsai, W.H. (1985) Moment-preserving Thresholding: a
New Approach. Computer Vision, Graphics, and Image
Processing 29: 377–393.

6. Yang, C.K., Lin, J.C. & Tsai, W.H. (1997) Color Image
Compression by Moment-preserving and Block Trunca-
tion Coding Techniques. IEEE Transactions on Commu-
nications 45: 1513–1516.

7. Spiliotis, I.M. & Mertzios, B.G. (1998) Real-time Compu-
tation of Two-dimensional Moments on Binary Images
using Image Block Representation. IEEE Transactions on
Image Processing 7: 1609–1615.

8. Distasi, R., Nappi, M. & Vitulano, S. (1997) Image
compression by B-tree Triangular Coding. IEEE Transac-
tions on Communications 45: 1095–1100.

9. Pennebaker, W.B. & Mitchell, J.L. (1993) JPEG: Still
Image Data Compression Standard. New York.

10. Jonge, W.D., Scheuermann, P. & Schijf, A. (1994)
S+�Trees: An Efficient Structure for the Representation

144 K.-L. CHUNG ET AL.
of Large Pictures. Computer Vision and Image Under-
standing 59: 265–280.

11. Foley, J.D., Dam, A.V., Feiner, S.K. & Hughes, J.F.
(1990) Computer Graphics, Principle, and Practice (2nd
edn). Reading, MA: Addison-Wesley.

12. Chung, K.L. & Wu, J.G. (2000) Improved Image
Compression using S-tree and Shading Approach. IEEE
Transactions on Communications 48: 748–751.

13. Samet, H. (1990) The Design and Analysis of Spatial Data
Structures. New York: Addison-Wesley.
14. Samet, H. (1990) Applications of Spatial Data Structures.
New York: Addison-Wesley.

15. Cormen, T.H., Leiserson, C.E. & Rivest, R.L. (1990)
Introduction to Algorithms. Cambridge, MA: The MIT
Press.

16. Hoffman, K. & Kune, R. (1971) Linear Algebra (2nd edn).
New Jersey: Prentice-Hall.

17. Flusser, J. (2001) Refined Moment Calculation using
Image Block Represenation. IEEE Transactions on Image
Processing 9: 1977–1978.

	Introduction
	Compressed Images
	Figure 1
	Figure 2

	Computing Moments on Compressed Images
	Experimental Results
	Table 1
	Table 2

	Conclusions
	References

