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Abstract: This paper presents an original approach to the problem of camera calibration
using a calibration pattern. It consists of directly searching for the camera parameters that
best project three-dimensional points of a calibration pattern onto intensity edges in an
image of this pattern, without explicitly extracting the edges. Based on a characterization
of image edges as maxima of the intensity gradient or zero-crossings of the Laplacian, we
express the whole calibration process as a one-stage optimization problem. A classical
iterative optimization technique is used in order to solve it.

Contrary to classical calibration techniques which involve two consecutive stages (ex-
traction of image features and computation of the camera parameters), our approach does
not require any customized feature extraction code. As a consequence, it can be directly
used with any calibration pattern that produces image edges, and it is also more robust.

First, we describe the details of the approach. Then, we show some experiments in
which two implementations of our approach and two classical two-stage approaches are
compared. Tests on real and synthetic data allow us characterizing our approach in terms
of convergence, sensitivity to the initial conditions, reliability, and accuracy.
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Calibration d’une caméra sans extraction de
points d’intérét.

Résumé : Nous penchant sur le probléeme de la calibration d’une caméra a partir d’une
mire, nous présentons dans cet article une approche originale qui consiste a rechercher di-
rectement les parameétres de la caméra qui projettent les points du modéle tridimensionnel
sur des contours de I'image, sans extraire ces contours explicitement. Nous fondant sur une
caractérisation des contours comme maxima du gradient de 'intensité ou zéros du Laplacien,
nous ramenons le probléme de calibration & un simple probléme d’optimisation, résolu au
moyen d’une méthode d’optimisation itérative classique.

Contrairement aux techniques de calibration classiques qui comportent deux étapes
consécutives (extraction des primitives de calibration d’une image de la mire, puis calcul
des paramétres de la caméra a partir de ces primitives), notre approche ne nécessite pas
de code spécifique destiné a extraire les primitives de calibration. On peut donc 'utiliser
directement avec toute mire de calibration (la seule condition étant que la mire produise des
contours dans I'image), et elle est aussi plus robuste.

Dans une premieére partie, nous décrivons les détails de notre méthode. Ensuite, nous
présentons des expériences menées sur des données réelles et synthétiques, visant a com-
parer notre approche avec quelques techniques classiques. Nous étudions en particulier les
propriétés de convergence, sensibilité aux conditions initiales, fiabilité et précision.

Mots-clé : Calibration, caméra
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1 Introduction

Calibrating a camera means determining the geometric properties of the ima-
ging process, i.e., the transformation that maps a three-dimensional point,
expressed with respect to a reference frame, onto its two-dimensional image
whose coordinates are expressed in pixel units. This problem has been a ma-
jor issue in photogrammetry and computer vision for years. The main reason
for such an interest is that the knowledge of the imaging parameters allows
relating the image measurements to the spatial structure of the observed scene.

(Classical calibration techniques, as opposed to recently developed auto-
calibration techniques [7], proceed by analyzing an image of one or several
reference objects whose geometry is accurately known.

These approaches proceed in two steps: First, some features are extracted
from the image by means of standard image analysis techniques. These features
are generally points or lines, but conics can also be used [12]. Then, they are
given as input to an optimization process which searches for the projection
parameters that best project the three-dimensional model onto them.

We will not describe in detail the different methods that have been de-
veloped. Detailed reviews of the main existing approaches can be found in
[13, 14, 16]. We just remark that the approaches can be classified into several
categories, with respect to

o the camera model: most existing calibration methods assume that the
camera follows the pinhole model. Some of them (mostly in photogram-
metry) consider additional parameters that model image distorsions. A
good study of the different geometrical distorsion models can be found

in [16].

e the optimization process: linear optimization processes are often used in
computer vision because they are faster and provide satisfactory results
for vision applications. This is possible when the projection equations
can be expressed in a linear way, for instance with the pinhole model.
When sophisticated camera models are considered, one often needs to
use a direct non-linear optimization technique.

It is well known that in a process composed of consecutive stages, nume-
rical errors tend to propagate along the different steps of the process. In the
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4 L. Robert

case of two-stage calibration, if the detected features are inaccurate, then the
optimization cannot recover the exact camera parameters. In fact, the calibra-
tion process cannot perform better than the less accurate of the two steps, i.e.,
feature detection and projection parameters recovery.

In order to avoid such a problem, we propose an alternate approach that
performs calibration in one step, without introducing the intermediate feature
representation. It computes the projection parameters by iteratively minimi-
zing a criterion directly related to the image grey-level intensity.

In the first part of this paper, we describe the camera and grid models that
we use. Then, we describe the principles and details of our method. In the
last part, we show an experimental study of the behavior of our calibration
technique, and compare it to some other classical approaches. Using real and
synthetic image sequences, we investigate the following cues: convergence and
sensitivity to initial conditions, reliability, and accuracy of the computed pa-
rameters. We show that our method compares favorably with some classical
two-stage approaches.

1.1 The camera model. Notations

The camera model that we consider is the standard pinhole model. If M has
world coordinates [X,,,Y,,, Z,]" and projects onto a point m that has pixel
coordinates [u, v]’, the operation can be described by the linear equation:

(1)

where S is a scale factor, and P is the 3 x 4 projection matrix of the camera.
The projection matrix can be decomposed into the product

P=pP="K (2)
where:

e K represents the mapping from world coordinates to camera coordinates.
Thus, it accounts for the six extrinsic parameters of the camera (three

Inria



Camera Calibration without Feature Extraction )

for the rotation R, three for the translation t).
R t .

e P i5 the matrix of intrinsic parameters, of the following form [6]:

3 a, —aycotd ug 0
P =10 aysinf vy 0 (4)
0 0 1 0

It holds for the five intrinsic parameters of the camera:

— Qu, o, are the scale factors along the axes of pixel coordinates,

— ug, v are the pixel coordinates of the principal point (orthogonal
projection of the optical center on the image plane),

— 0 is the angle of the two axes of pixel coordinates.

The parameter 6 allows the representation of any projective transformation
from the space to the plane, since it brings the total number of parameters to
11, i.e., the number of degrees of freedom of an homogeneous 3 x 4 matrix.

1.2 Calibration object

The geometry of the objects that are used for calibration needs to be known
very accurately. For this reason, either the calibration objects are specially ma-
nufactured in order to conform as accurately as possible to a three-dimensional
model, or the model is obtained a-posteriori by measuring the calibration ob-
ject with some specific devices such as theodolites. The first solution leads to
much simpler experiments, but is less accurate. For reasons of time and sim-
plicity of experimentation, it is usually preferred in computer vision. Because
they use optical devices of much higher precision, photogrammeters usually
prefer the latter solution.

As an example, the calibration object designed and used at INRIA is shown
in Figure 1, These are the grid and the reference frame we used for the expe-
riments presented in this article.
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6 L. Robert

calibration points

Figure 1: The INRIA calibration grid and the associated geometric model. The
model points are the corners of the small square regions. Their coordinates are
expressed with respect to the frame represented in the figure.

2 Calibrating from images

Two-stage calibration approaches proceed in the following manner: First, a set
Aj; of calibration features are extracted from the images. Then, an optimization
process finds the camera parameters that best project the set A3 of three-
dimensional model features onto the extracted image features, by minimizing
a distance d(f)(A3), Ay) between these two sets of features. This distance can
be considered as a measure of the edge-ness of the projected features.

The basic idea of our approach is to measure the edge-ness of projected
model points directly in the image, without extracting calibration features A,.
For any given set of camera parameters, we can compute an energy value from
the image characteristics at the projected model features. Camera calibration
consists of minimizing this energy iteratively, in an image-driven process so-
mewhat analogous to a snake [10, 1]. The process starts from an initial value of
the projection parameters which is either computed from six reference points
(sufficient for deriving the 11 camera parameters) entered manually, or by any
existing calibration technique.

Inria



Camera Calibration without Feature Extraction 7

2.1 Edge features

As in most of the existing edge detectors, we characterize edges either as zero-
crossings of the intensity Laplacian AT [11], or as local maxima of the module
of the intensity gradient ||[VI|| in the direction of the gradient [2, 4]. It has
been proved that these models are accurate along regular edges, but not at
image corners or junctions [5]. Therefore, the model features we choose are
points Ajz; lying on three-dimensional edges, as far as possible from any corner
or junction. We end up with the two following criteria to be minimized:

1. Fdges are defined as maxima of the intensity gradient: we maximize

Cvi(P) = Y |IVI(P(As))|*

el

2. Fdges are defined as zeros of the Laplacian of intensity: we minimize

Cas(P => |AT(P(As))?

el

An advantage of this approach is that it can be applied directly to any calibra-
tion object that produces edges, while two-stage approaches generally require
customized feature extraction code for each target pattern. For instance, the
same process can be applied to the two different calibration patterns shown in
Figure 2, only the coordinates of the three-dimensional model points differ.
We remark that a point constrained to lie on an edge still still has one
degree of freedom (it is allowed to “slide” along the edge), so at least 11 points
are required in order to constrain the 11 parameters of the projection matrix.

2.2 Parameterization of P

The projection matrix can be represented by the set of 11 intrinsic and extrinsic
parameters:

e 5 numbers for o, a,, ug, vg, 0

e 3 numbers tx,ty,ty for the translation t
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8 L. Robert

Figure 2: Calibration objects and points of the model As for the INRIA grid
(left) and the CMU cube (right).

e 3 numbers ny,ny,nz for the rotation R (n defines the direction of the
axis of rotation, and its module is the angle of the rotation).

Another representation consists of setting one of the coefficients of P to 1,
after checking that this coefficient is non zero around the solution. The matrix
is then represented by its other 11 coefficients.

The choice of this coefficient is guided by the following remark: Eq. (2), (3)
and (4) show that pss4 (the bottom-right coefficient of f’) is equal to the third
component of the translation vector t. Given the choice of the reference frame
(cf. Figure 1) and the position of the camera that observes the grid, ps4 cannot
be zero if P is close to the actual projection matrix. Thus, we set p34 = 1 and
define P with respect to this coefficient.

2.3 Implementation details

The minimization procedure we use is a Newton-type iterative method. In
practice, we use a gradient descent routine of the NAG [9] library. The estimate
of the gradient of the criterion is obtained by finite difference approximations.
We evaluate subpixel intensity derivatives at a given point by means of bilinear
interpolation of the values at the four adjacent pixels.

An example of execution of the algorithm is shown in Figure 3. On average,
convergence requires 20 iterations (numerical estimations of the gradient) with

Inria



Camera Calibration without Feature Extraction 9

a maximum of 400 elementary descent steps at each iteration. Computation
time remains quite reasonable: 15 seconds on a Sun Sparc 2 workstation for a
model containing 208 points.

3 Experimental results

In this section, we show the results of experiments conducted in order to com-
pare two implementations of our method (based on image gradient or Lapla-
cian) with two classical two-stage methods, one using direct linear optimiza-
tion, the other using non-linear iterative minimization. We study the influence
of the initial estimate of the projection matrix on the resulting parameters.
Then we compare the reliability of the four methods in the estimation of in-
trinsic parameters, and relate it to the recovery of extrinsic parameters.

3.1 Influence of the initial conditions

Two essential points in the study of an iterative process are the influence of
the initial conditions and the convergence properties. In order to study these
two points, we use a real image and generate a set of initial data that are close
to the solution. By measuring the variation of the results produced by three
iterative methods, we compare their convergence properties. It is important to
notice that the exact solution of the calibration process is unknown, but this
is not really a problem since we are only interested in the consistency of the
results.

The initial projection matrices are determined in the following manner: a
set of calibration points are extracted from the image; using these points with
the Faugeras-Toscani method, we compute a good estimate of the projection
matrix. Since we want to perturb this matrix, we add some noise to the points,
and use the noisy data as input to the Faugeras-Toscani method. The compu-
ted projection matrices are used as initial values for the iterative algorithms.
Average and standard deviation of the parameters of the initial matrices are
represented in the last two columns of the top two tables in Table 1.

We compare the three following iterative methods:

e maximization of the image gradient (denoted by (GR)),

RR n~ 2204



10 L. Robert

Figure 3: Evolution of the iterative calibration process: the top image repre-
sents projections of the 3D model grid onto the calibration image, with both
initial and final estimates of the projection matrix. The trajectories of the mo-
del points of A3 are also represented on the image. Both bottom images show
enlargements of sub-regions of the image, outlined by white rectangles in top
and bottom-left images.

Inria



Camera Calibration without Feature Extraction 11

e minimization of the image Laplacian (denoted by (LAP)),

e minimization of the distance between the projected points and the non-
perturbated calibration points [15] (denoted by (DIST)).

In the following, we will refer to the Faugeras-Toscani method as (FT).

The average and standard deviation of the parameters computed for 50
different initial matrices are given in Table 1. For the first table, calibration
points are slightly perturbated (a gaussian noise with a standard deviation
of 0.2 pixel is added to the points). In the second table, the amplitude of
the added noise is 2 pixels. The columns of the first two tables represent the
averages and standard deviations on the parameters computed with the three
iterative methods. By ¢ we denote the cosine of the angle § between the pixel
axes. The third table shows the results of the Faugeras-Toscani method when
the points are not perturbated.

We observe the following properties :

e Overall, the values of standard deviations are very small with respect
to the camera parameters, and with respect to the standard deviations
on the initial parameters. In other words, the influence of the initial
value is very limited. This is confirmed by the fact that average values
and standard deviations are comparable from one table to the other,
even though the level of noise is not the same. This property is very
important, because without it, the method could not be used reliably.

e The standard deviations for the (LAP) method are much smaller than
for the (GR) and (DIST) methods. In other words, the optimum of the
criterion involving the Laplacian is sharper. This seems advantageous,
since the solution is computed with better accuracy, and the process
converges faster. However, another consequence is that the algorithm is
more likely to end in a local minimum, so the (LAP) method has to be
initialized closer to the solution than (GR) and (DIST). We actually no-
ticed a few cases where the (LAP) process converged to a local minimum,
when a 2-pixel noise was added to the starting points. These cases were
not included in the statistics.

e The differences between the average values computed for the three itera-
tive methods and for the (FT) method are small. But comparison with

RR n~ 2204



12 L. Robert
initial noise : 0.2 pixel
gradient (GR) Laplacian (LAP) points (DIST) inatial
average | std. dev. || average | std. dev. || average | std. dev. || average | std. dev.
ay | 772.01 1.14 763.94 0.238 774.16 0.922 768.13 2.23
oy | 1175.2 1.65 1163.9 0.345 1178.5 1.35 1169.7 3.25
ug | 262.54 0.609 262.32 0.162 259.11 0.263 257.5 0.781
vy | 275.36 1.12 269.63 0.393 278.14 0.5 276.06 1.76
¢ |-3.8e-07 | 1.3e-07 || -4.9e-07 | 8.8e-08 || -2.1e-07 | 5.1e-08 || -2.8e-07 | 2.8e-07
rx | -1.5995 0.005 -1.5775 | 0.00164 | -1.6206 | 0.00198 | -1.6135 | 0.00688
ry | 4.9287 | 0.00241 4.9383 | 0.000737 || 4.9196 | 0.000909 || 4.9228 | 0.00325
rz 1.166 0.00357 1.1578 | 0.000771 || 1.1842 | 0.00106 1.1839 | 0.00374
tx | -516.07 1.01 -509.24 0.155 -516.76 0.76 -511.92 1.91
ty | -201.82 0.48 -199.06 0.0704 -203.36 0.342 -201 0.892
tz | -655.93 0.755 -650.21 0.19 -658.55 0.739 -653.84 1.65
initial noise : 2 pixels
gradient (GR) Laplacian (LAP) points (DIST) initial
average | std. dev. || average | std. dev. || average | std. dev. || average | std. dev.
oy | T71.85 1 763.97 0.154 774.53 1.13 648.34 12.4
ay | 11749 1.36 1163.9 0.305 1179.1 1.61 994.78 19
up | 262.72 0.594 262.28 0.159 259.15 0.283 250.91 5.94
v | 274.84 1.08 269.67 0.41 278.16 0.59 249.96 18.3
¢ | -3.4e-07 | 1.3e-07 || -4.9e-07 | 9.6e-08 || -1.9¢-07 | 6.1e-08 || -1.5e-06 | 3.7e-06
rx | -1.5971 | 0.00467 | -1.5777 | 0.00174 || -1.6208 | 0.00223 | -1.5037 0.086
ry | 4.9299 | 0.00218 4.9383 0.0008 4.9195 | 0.00101 4.9757 0.0378
rz | 1.1644 | 0.00313 1.1579 | 0.000757 || 1.1843 | 0.00105 1.1502 0.0384
tx | -515.98 0.947 -509.25 0.132 -517.03 0.952 -408.32 10.7
ty | -201.72 0.396 -199.06 0.0558 -203.51 0.436 -154.62 5.87
tz | -655.79 0.563 -650.21 0.147 -658.88 0.846 -567.4 10.3
Faugeras-Toscani (FT)
intrinsic ertrinsic
ay | 769.36 || rx | -1.6156
ay | 11715 || ry | 4.9217
ug | 267.72 || rz | 1.1842
v | 276.66 || tx | 513.03
c | -2.3e-07 || ty | -201.50
ty | -654.71

Table 1: Experiment (a) :

influence of the initial conditions.

Inria




Camera Calibration without Feature Extraction 13

the standard deviations tends to prove that these differences are sys-
tematic. Further experiments are necessary in order to find out which
methods are biased, and what could be the reason of the bias.

e We notice, by comparing the last two columns of the first two tables,
that the parameters yielded by the (FT) method vary systematically
with the level of noise added to the points. This tends to show the (FT)
method introduces a bias in the estimation of the camera parameters,
that becomes detectable if the level of noise on the calibration features
increases.

3.2 Study of the intrinsic parameters

The intrinsic parameters should, by definition, remain unchanged if the posi-
tion of the camera with respect to the grid changes. Thus, in a first step we
study the variations of the intrinsic parameters that can be extracted from a
sequence of images acquired while the camera is moving with respect to the
grid. The average values and standard deviations computed for a sequence of
30 grid images (cf. Figure 4) are given in Table 2.

Based on these results, we make the following remarks:

o While yielding comparable values for ug, vg, the different methods pro-
duce significantly different estimates of «,,, «,,. However, the ration a,,/a,
is almost constant. In other words, all the methods yield consistent re-
sults as far as the shape of the pixels is concerned, but not for the size
of the pixels.

e The standard deviations computed with the four different programs have
the same orders of magnitude, but the methods that use calibration
points ((DIST) and (FT)) yield somewhat less accurate results. The La-
placian gives the most accurate results. The fact that vy is determined
with a much better accuracy than wug, already pointed out in [15], has
never been really explained.

e The relative differences between the values of intrinsic parameters yielded

by the image-based ((GR) or (LAP)) and point-based ((DIST) (or (FT))
methods are much bigger than in the data of Table 1. We believe that this
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14 L. Robert

real sequence

ay, ay ay /oy
average | std. dev. || average | std. dev. || average | std. dev.
gradient (GR) 937.52 14.5 1388.8 20.8 0.6750 0.0010
Laplacian (LAP) 920.56 6.59 1364.6 9.16 0.6746 0.0008
points (DIST) 849.35 18.6 1254.1 26.8 0.6772 0.0013
Faugeras-Toscani (FT) | 831.23 23.1 1229.4 33.4 0.6761 | 0.0010

real sequence

Up Vo [
average | std. dev. || average | std. dev. || average | std. dev.
gradient (GR) 272.51 11 205.93 13.1 2.1e-06 | 1.1e-06
Laplacian (LAP) 269.28 13.8 226.78 4.26 2.1e-06 | 5.4e-07
points (DIST) 266.23 20.9 220.45 10.3 9.1e-07 | 1.0e-06
Faugeras-Toscani (FT) | 258.91 22.3 212.01 11 1.5e-06 | 1.0e-06

Table 2: Experiment (b) : study of intrinsic parameters on a real sequence.

is related to the fact that the grid lies at a longer range from the camera,

and the experiment that we describe in the next paragraph illustrates
this fact.

It is impossible to know the exact values of the parameters of a real camera.
In order to compare the accuracy of the different methods, we generate a
sequence of synthetic images, that simulates what a camera moving around
the calibration grid would produce. The camera is represented by the matrix
of intrinsic parameters Pem (Eq. (2) and (4)) which remains by definition
unchanged for all the sequence. The consecutive positions of the camera are
defined by a sequence of displacement matrices K;. By means of a ray-tracing
program, we projected a synthetic model of the INRIA grid on the virtual
cameras of projection matrices f’camKt. Each image of the sequence is then
corrupted by a gaussian noise. The results obtained for the two image sequences
are shown in Table 3.

e Globally, the (GR) and (LAP) methods provide quite accurate estimates
of the intrinsic parameters. The fact of adding noise to the images has a
very small affect on the results of (GR). The (LAP) method is seemingly

Inria



Camera Calibration without Feature Extraction 15

less robust, even though the error on the estimated parameters is close
to 1% for the sequence of noisy images.

e The (DIST) and (FT) methods give less accurate results.

e Once again, the ratio a, /a, does not depend on the method that is used.

=E

Figure 4: Examples of images from real, synthetic and noisy sequences.

3.3 Relation with the extrinsic parameters

Assuming that pixel axes are orthogonal (6 = %), Eq. (1) and (4) yield

X
Ze
Y.
A

Qy, = u—1ug

' = v—ug

When M has depth Z?, its projection on the retina is characterized by the

ratios 2x Qv Ag a consequence, if we consider that the points of the grid lie

70 7Y
at appro;im;tely the same depth (which is even more valid when the grid is far
from the cameras) the estimation of the pixel sizes (a, a,) must be directly
correlated to the estimation of the distance between the grid and the camera.
In order to investigate this, we acquire a sequence of 15 images in which the
grid is a various distances from the camera. For each image, we measure the
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16 L. Robert
synthetic sequence without noise
oy, ay, [y
average | std. dev. || average | std. dev. || average | std. dev.
nominal 940.00 0.00 1400.00 0.00 0.6714 0.00
gradient (GR) 940.45 10.2 1400.6 15.4 0.6715 0.0004
Laplacian (LAP) 939.57 3.3 1399.5 4.86 0.6714 0.0002
points (DIST) 951.6 10.2 1416 14.5 0.6720 0.0005
Faugeras-Toscani (FT) | 932.87 8.09 1388.7 11.7 0.6718 0.0004
synthetic sequence without noise
ug o c
average | std. dev. || average | std. dev. || average | std. dev.
nominal 270.00 0.00 205.00 0.00 0.00 0.00
gradient (GR) 270.47 3.94 205.32 8.99 1.5e-07 | 6.62e-07
Laplacian (LAP) 269.94 2.08 205.08 3.23 -1.3e-08 | 2.1e-07
points (DIST) 270.31 5.78 209.33 9.4 -4.7e-07 | 5.2e-07
Faugeras-Toscani (FT) | 270.37 5.27 207.28 8.39 -2.9e-07 | 4.6e-07
synthetic sequence with noise
ay ay ay /oy
average | std. dev. || average | std. dev. || average | std. dev.
nominal 940.00 0.00 1400.00 0.00 0.6714 0.00
gradient (GR) 941.73 11.8 1402.4 17.6 0.6716 0.0005
Laplacian (LAP) 934.4 5 1392 7.13 0.6713 0.0003
points (DIST) 950.87 15.1 1415.4 22.4 0.6718 0.0005
Faugeras-Toscanit (FT) | 928.3 7.9 1382.3 11.8 0.6715 0.0004
synthetic sequence with noise
ug o c
average | std. dev. || average | std. dev. || average | std. dev.
nominal 270.00 0.00 205.00 0.00 0.00 0.00
gradient (GR) 269.96 5.32 204.04 9.92 1.2e-07 | 7.5e-07
Laplacian (LAP) 270.39 2.98 203.17 5.4 8.6e-08 | 4.4e-07
points (DIST) 268.9 7.55 204.51 10.8 -5.3e-07 | 5.3e-07
Faugeras-Toscani (FT) | 270.12 5.89 203.07 8.72 -4.3e-07 | 5. 1e-07

Table 3: Experiment (c)

images, with and without noise.

. intrinsic parameters for the sequence of synthetic
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distance between the optical center of the camera and the origin of the frame
on the grid. Figure 5 shows three images of the grid sequence, including the
closest and the furthest ones.

We denote by dy, . the distance from the origin of the grid to the optical
center, and by dpyan the value of d,, . measured manually. Figure 6 represents
the values of d,, . computed with different calibration methods, as functions of
dman- Figure 7 shows the values of «, (thin lines) and of da—“dman (thick lines)

m,c

as functions of dypan.

e At short range, all the methods estimate dy, . correctly (up to 1.30m, the
highest error is 1%). The values for «, are also close.

o If the distance between the grid and the camera increases, the values of
dm . given by methods (DIST) and (FT) start differing noticeably and
systematically from the manually measured values. The (GR) and (LAP)
methods give results that remain much closer to these values. There is
also a noticeable gap between the values of «, computed with the two-
stage and the one-stage calibration methods. This gap increases with the
distance between the grid and the camera.

e Since the origin of the grid is relatively close from the optical axis (the
maximum distance is of the order of 20cm), dp . is a good estimate of
the depth of the grid (the relative error is of the order of 3% if the origin
of the grid is 90cm away from the camera, less than 1% if it is 1.50m
away). dman is also very close to the actual value. Figure 7 illustrates
the above assertion that the error on dp,. is compensated by an error
on «,. Indeed, even if the estimate of «, varies with dy,., for the four
methods (thin lines), the parameter da—"dman remains almost constant

m,c

(thick lines), all the methods yielding approximately equal values.

In their study of the evolution of the results of (DIST) when calibration
points are perturbated with isotropic noise from their nominal position, Chau-
mette [3] and Vaillant [15] did not notice any bias on the results. This tends
to show that the coupled errors in the estimation of the intrinsic and extrinsic
parameters are not directly related to the determination of P itself, but to the
first steps, which introduce a bias in the position of the calibration points. This
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Figure 5: Experiment (d): Three images of the sequence.
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Figure 6: Experiment (d): distances evaluated with different calibration me-

thods.
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Figure 7: Experiment (d): correlation of a,, and dp, .
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could either be caused by the discretization performed while extracting edges
from the image, or by the imperfections in the construction of the physical
grid. At any rate, it illustrates that even though the search for the projection
parameters is unbiased for an isotropic perturbation of the input features, it
can provide biased results because the output of the feature detector is itself
biased. Our one-stage approach does not suffer from this problem.

4 Conclusion

In this article, we present an method for camera calibration which is different
from the classical ones, in that it does not extract any image feature but uses
the grey-levels image itself.

Contrary to classical calibration techniques, our approach can be directly
used with various types of calibration objects. It can be initialized by hand,
or by a process that recognizes a small number of model points in the image.
Therefore, it is easier to use than most classical calibration techniques, which
rely on a complicated feature-extraction process that depends on the shape
of the calibration object that is used and on the kind of features that are
extracted.

From a numerical standpoint, we experiment with two different formula-
tions of the approach, one based on the maximization of the image intensity
gradient (GR), the other on the minimization of the image Laplacian (LAP).
We compare them to two feature-based methods, one that minimizes a non li-
near criterion [15] (DIST), the other that minimizes a linear criterion [8] (FT).
The results are satisfactory, and the main conclusions are the following:

e In a first experiment (a), we point out the good convergence and stability
properties of the three iterative methods, i.e., (GR), (LAP) and (DIST).
The (LAP) method is somewhat less stable that the others, and has to
be initialized closer to the solution.

e The two methods based on calibration points yield noticeably biased
estimates of «,, a,, and the translation parameters. The bias increases
with the distance between the grid and the camera (experiment (d)). Our
one-stage methods do not introduce such a noticeable systematic error
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(experiments (a) and (d)), which is due to the feature-extraction process
(experiment (d)).

e Minimizing the image Laplacian (LAP) seems more reliable than maxi-
mizing the image gradient (GR), but it is slightly biased when the image
is corrupted by noise (experiments (c) and (d)).

Though we have only considered the case of pinhole cameras, we believe that
the approach can be easily adapted to other camera models that would, for
instance, include image distorsion. It is also suited to the case when one or
several camera parameters are already known and do not need to be computed
(for instance, one can impose the pixel axes to be orthogonal, or can consider
that the intrinsic parameters do not change between several experiments). If
the intrinsic parameters of the camera are known, the same method can be used
to recover the pose of an object. Further work is needed in order to investigate
all these issues.
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