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According to the formulation of the Hough Transform, it is pos-
sible to extract any shape that can be represented by an analytic
equation with a number of free parameters. Nevertheless, the extrac-
tion of arbitrary shapes has centered on nonanalytic representations
based on a table which specifies the position of edge points relative
to a fixed reference point. In this paper we develop a novel approach
for arbitrary shape extraction which combines the analytic repre-
sentation of shapes with the generality of the characterization by
Fourier descriptors. The formulation is based on a definition of the
Hough Transform obtained by considering the parametric represen-
tation of shapes and extends the descriptional power of the Hough
Transform beyond simple shapes, thus avoiding the use of tables.
Since we use an analytic representation of shapes, the developed
technique inherits the robustness of the original formulation of the
Hough Transform. Based on the developed formulation, and by us-
ing different strategies of parameter space decomposition, various
methods of shape extraction are presented. In these methods the pa-
rameter space is reduced by using gradient direction information as
well as the positions of grouped edge points. Different methods rep-
resent a compromise between speed, noise sensitivity, simplicity, and
generality. Some examples of the extraction process on a selection
of synthetic and real images are presented, showing the successful
extraction of target shapes from noisy data. c© 1998 Academic Press
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Hough Transform; model based recognition; arbitrary shape ex-
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1. INTRODUCTION

An important problem in image understanding is to extract or
recognize global structures from local image data. In a model-
based paradigm [1], descriptions of objects are characterized
based on previous knowledge about their features. A common
way of defining these features is by means of geometric prim-
itives which represent the boundaries of shapes [2]. Geometric
primitives can be described by analytic curves with a set of free
parameters which define all the possible instances of a shape that
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might appear in an image. Accordingly, objects are recognized
by determining the value of the free parameters. This process is
equivalent to finding the optimum value of a cost function that
represents the fit of a primitive to image data [2]. An effective
way of computing the value of the free parameters is based on
gathering evidence derived according to the mapping defined
between the locus of a curve and the value of its parameters.
This mapping constitutes the underlying concept of the Hough
Transform (HT) .

In the HT, a parameter space is defined as a multidimensional
space where each dimension represents a free parameter of a
primitive. The parameters of a particular shape are computed by
a common intersection of a set of loci in the parameter space.
Each locus is defined for each image edge point and it comprises
all the points in the parameter space which define a primitive
that passes through the edge point. Only one point in each locus
defines the shape in the image and this must be the same point for
all loci. The HT computes robustly the intersection of all the loci
as a maximum in an array which represents a discrete version
of the parameter space wherein the loci are accumulated. The
technique provides adequate results even in noisy conditions or
where there are gaps in the boundary due to occlusion.

The HT was originally formulated to detect lines. It was then
extended to include more complex primitives such as circles
and ellipses [3–5]. Since these primitives are characterized by
an increasing number of free parameters, and this number has
an exponential relationship with the size of the parameter space,
most of the research in the HT focuses on reducing its compu-
tational requirements. Other research has considered different
implementation details such as optimizing the search for lo-
cal maxima, and the study of the bounding and resolution of
the accumulator array which represents the parameter space. An
extensive review of the literature on the HT can be found in [6, 7].

In this paper we focus on the extension of the HT to extract
arbitrary shapes. In a model-based approach to shape identifi-
cation it is necessary to recognize large scale structures which
define complex forms. Thus, the extension of the HT extraction
process to arbitrary shapes has an important significance. This
extension has been based on two main approaches. First, it is
possible to constrain the HT technique to a feature detection
method based on simple geometric primitives such as lines and
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quadratic shapes. In this approach complex forms are defined
following a structural feature decomposition characterized by
these simple shapes [2, 8–10]. This type of decomposition is rec-
ognized as necessary for an efficient representation of the HT [7]
and it relies on using additional postprocessing to extract com-
plete models. In a second approach, an arbitrary model shape is
defined by a nonanalytic representation in a form of a table. This
model shape extends the simple definition of analytic curves, al-
lowing entire shapes to be extracted. The original idea of this
extension was presented in [11]. The Generalized Hough Trans-
form (GHT) [12] improved the technique by constraining the pa-
rameter computation by including the orientation of edge points
in the discrete representation. In this approach, when orientation
and scale invariance are required, the extraction process involves
a four-dimensional parameter space. Invariance to scale and ori-
entation is achieved by including straightforward transforma-
tions of the tabular representation. Recent research has focused
on reducing the computational burden of the technique [13–19].

Both approaches have important features. Structural decom-
position maintains a complete specification of the parts through
an analytic form. Nevertheless, in this specification primitives
may not be sufficiently complex to provide an adequate descrip-
tion of the whole model. The importance of a complex charac-
terization of shapes has been previously discussed [20]. On the
other hand, the nonanalytic representation extends the descrip-
tion power via a complex characterization of shapes. This avoids
additional postprocessing, but implies a partial knowledge of the
border points (limited by the discretization and the size of the
table). Additionally, the discrete nature of the nonanalytic repre-
sentation may cause distortion in the accumulation process due
to scale and rotation transformations.

In this paper we present a novel approach that extends the an-
alytic form of simple geometric primitives to arbitrary shapes.
This is achieved by reformulating the concepts of the extrac-
tion of nonanalytic shapes in terms of an analytic representa-
tion defined by the Fourier expansion of a curve. This analytic
representation provides a description where models can be suffi-
ciently complex for adequate shape characterization. In addition
to developing the mapping for the accumulation process for a di-
rect formulation of the HT, we will consider other formulations
based on constraining the parameter space by exploiting edge
direction information and the position of a collection of points.

Considering the formal definition of the HT [21], we intro-
duce a mathematical formalism which embraces the methods
for extracting nonanalytic shapes. This allows us to generalize
the HT to extract analytically defined arbitrary shapes. In the-
ory, the original formulation of the HT can be used to extract
any primitive that can be represented by an analytic equation
with a number of free parameters. Some research [4, 22] has
suggested that the HT can be generalized to extract arbitrary
analytic shapes by changing the equation of the curve under de-
tection. In fact, the evolution of the HT from lines to ellipses
corresponds to this generalization. Nevertheless, this concept
has not been developed further, and the extraction of arbitrary

shapes has preferred the use of a nonanalytic representation or
a simple structural decomposition. This might have been moti-
vated by the impression that the technique will present an expo-
nential growth in memory and computation requirements when
applied to more complex shapes. Intuitively, since the analytic
extension from lines to ellipses implies a large increase in mem-
ory space and computational effort, the analytic generalization
to extract arbitrary shapes appears to be infeasible. As such, the
only viable alternative to extract shapes without performing a
decomposition into simple geometric primitives is to follow a
nonanalytic formulation. Actually, the number of free parame-
ters required in the HT is independent of the complexity of a
shape. The free parameters are related to the transformations
which define all the instances of a shape that can appear in an
image. Here it will be shown that if the allowed transformations
are restricted to similarity transformations, then the extraction
process requires a four-dimensional accumulator space.

Our approach to detect analytically defined primitives refor-
mulates the concepts developed for the extraction of nonanalytic
shapes by using a parametric representation based on Fourier
descriptors. The analysis of curves by Fourier theory has been
used in image understanding for several years [23–33]. The main
interest in this analysis has focused on computing features or de-
scriptors which provide a useful characterization for shape dis-
crimination. These descriptors are defined by the amplitude and
the phase of the harmonics obtained by expanding the paramet-
ric representation of a curve in Fourier series. Fourier descrip-
tors can be generated by different parametric representations
of curves. These representations have been defined via two ap-
proaches. The first approach is to transform the two-dimensional
information of a curve into a one-dimensional periodic function,
which is expanded in a Fourier series [24]. The second approach
considers that the curve is described in the complex plane. Then,
a Fourier expansion is performed in a complex-valued function
[23]. The coefficients obtained with the second characterization
are denoted as the elliptic Fourier descriptors of a curve [29].

Here, we shall use elliptic descriptors to characterize arbitrary
shapes for primitive extraction. These descriptors were used in
a parametric deformable model [34] to detect objects which are
poorly represented in terms of fixed shapes. Probabilistic con-
straints derived from sample images were used to perform a
local search in the parameter space. Although a local search is a
plausible alternative in a model-free interpretation, the parame-
ter space potentially has many local maxima [2]. This makes an
evidence gathering technique, which performs a robust global
search, more attractive when primitives are confined to rigid
models.

The use of Fourier descriptors as a parameterized curve in
the HT has been previously considered. The model presented in
[35] highlights the bounding properties of the parameter space
defined by Fourier descriptors; however, the underconstrained
nature of the approach leads to an ill-posed technique with an
enormous parameter space. This technique appears to await fu-
ture application to images. Here, we show that it is possible
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to develop evidence gathering techniques for arbitrary shapes
in a model-based approach based on a representation of curves
characterized by elliptic Fourier descriptors. In order to obtain
an analytic mapping between the image space and the parameter
space, we relate the function which defines the position of points
in a curve in a Fourier description to the definition of a nonan-
alytic curve. This mapping replaces the table used in a discrete
representation by a continuous function. This function provides
a compact and precise description of the border of a shape which
minimizes errors caused by a discretization. The formulation in-
cludes variations in shape (e.g., scale and rotation) as changes
in parameters of a continuous function, avoiding inherent dis-
cretization errors which are produced when transformations are
performed on a tabular description.

This paper is organized as follows. In Section 2 we extend
the formal definition of the HT to include the concepts of the
extraction of arbitrary shapes. In Section 3 we introduce the pa-
rameterization of shapes by elliptic Fourier descriptors. A set of
free parameters are obtained by applying similitude transforma-
tions on arbitrary shapes. By following the formal definition of
the extraction of nonanalytic shapes presented in Section 2, we
obtain an analytic formulation of the HT for arbitrary primitives.
Section 4 is devoted to achieving a reduction in the parameter
locus by exploiting the information provided by gradient direc-
tion and the position of several image points. In Section 5 we
discuss the implementation and we present the results for the
new formulation applied to synthetic and real images. Finally,
Section 6 includes conclusions and further work.

2. ARBITRARY SHAPE EXTRACTION VIA
THE HOUGH TRANSFORM

2.1. Hough Transform for Nonanalytic Shapes

In this section we extend the formal definition of the HT
presented in [21] to encompass the concepts of the extraction
of arbitrary nonanalytic shapes. Instead of representing shapes
by using an implicit form of a curve, here we characterize the
extraction process by a parametric form. Thus, a primitiveZ is
defined as the set of points in a continuous curvez̄(s, ā) such
that each point is identified by a parameters. That is,

Z = {z̄(s, ā) | s ∈ Ds}, (1)

FIG. 1. Definition of curves in the image space and parameter space.

whereDs is the domain of the function. For clarity, two types
of parameters are used as arguments of the functionz̄(s, ā):
The parameters specifies different points on the curve, and the
parameter vector̄a defines the shape of the curve.

According to the definition in Eq. (1) the problem of primitive
extraction is to obtain the parameter vectorā from a set of points
Z. In the HT, the extraction process is achieved by means of the
relationship between the definition of a primitive and the param-
eter space. This relationship is illustrated in Fig. 1. For a point in
Z given whens takes a particular values0 (i.e., z̄(s0, ā)), a locus
As0 is defined in the parameter space. This locus is composed
of all the points which represent the parameters that define a
primitive which passes through the pointz̄(s0, ā).

If the functionz̄(s, ā) is invertible, the locusAs0 can be defined
as

As0 = {z̄−1(s, z̄(s0, ā)) | s ∈ Ds}, s0 ∈ Ds. (2)

The inverse function defines the kernel of the transformation
and is specified by the curve under detection. In the HT, the locus
As0 is defined for a set of edge points in an imageI . If these points
are represented by a primitive defined by a parametric function,
then I = {λ̄(t) | t ∈ DI } and the locusAs0 can be redefined as

At = {z̄−1(s, λ̄(t)) | s ∈ Ds}, t ∈ DI . (3)

One point inAt defines the primitiveZ, and this point must
be the same for all the loci obtained for any value oft . Conse-
quently, the vector̄a in Eq. (1) corresponds to the intersection
of the loci At defined for all the points inI . That is,

ā =
⋂
t∈DI

At . (4)

This intersection is computed in the HT by counting the num-
ber of times that the traces of the lociAt pass through the cells
of an array defined congruent to the parameter space. The array
will contain a peak where different lociAt intercept. The prob-
lem of primitive extraction is then transformed into the problem
of searching for local peaks in an array. The robustness of the
technique is based on the fact that a peak will appear if the im-
age I contains points which do not belong to the primitiveZ
(i.e., noise) or if it contains only a subset of all the points (i.e.,
occlusion).
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The accumulation process in the HT can be formalized by us-
ing a matching function which provides a value to be
accumulated for each point inAt . That is, for a point̄b in the
parameter space and a pointd̄ in the setAt ,

D(b̄, d̄) =
{

1 if b̄ = d̄

0 if b̄ 6= d̄
. (5)

Thus, based on this function it is possible to determine whether
a pointb̄ should be incremented according to a locusAt . That
is, the HT of the function̄λ(t) can be defined as

SHT(b̄) =
∫ ∫

D(b̄, z̄−1(s, λ̄(t))) ds dt, (6)

and ā can be computed by finding a local maximum in this
function. In implementation, this expression is discretized by
the image and the accumulator array. Thus, the integrals are
replaced by summations and the values ofλ̄(t) are given by a
set of discrete edge points̄λt . In this case, the possible pointsb̄
correspond to the cells of the array which represent the parameter
space. A discrete version of the HT can be written as

SDHT(b̄) =
∑
t∈DI

∑
s∈Ds

D(b̄, z̄−1(s, λ̄t )), (7)

where the summation ins defines a set of points congruent to
the discretization of the parameter space.

2.2. Nonanalytic Representation of Shapes

2.2.1. Hough Transform for nonanalytic shapes.The use
of the HT based on an analytic representation of primitives has
been developed for lines and quadratic forms. Within this rep-
resentation, the extraction of arbitrary shapes is constrained to
a structural feature method where objects are decomposed into
parts based on simple shapes. In general, a better representation
of objects can be obtained by more complex shapes which com-
prise more elaborate components. These components might cor-
respond to arbitrary shapes, and extend the descriptional power
of the extraction process by taking advantage of all the infor-
mation of a shape. The extraction of arbitrary shapes by the
HT, without decomposition into simple primitives, has conven-
tionally been based on nonanalytic representations [11–19]. This
type of representation was introduced by Merlin and Farber [11].
In their method, a model shape is described by a discrete set of
pointsW = {w̄B|B ∈ DB}, whose positions are defined relative
to an arbitrary reference point̄R. Thus, the primitive in Eq. (1)
can be redefined as a set of points obtained by translating the set
W to R̄. That is,

Z = {z̄B | z̄B = R̄ + w̄B, B ∈ DB}. (8)

This definition of a shape can be considered in the gathering
process of the HT by identifying the point̄R with the parameter
ā in Eq. (1). Thus, the kernel in Eq. (3) is defined for analytic

shapes by

Rt = {λ̄t − w̄B | B ∈ DB}, t ∈ DI . (9)

This expression corresponds to a transformation of the set of
pointsW composed of a translation to the pointλ̄t and a reflec-
tion about the origin. In the Merlin–Farber method the reflection
is defined as a rotation byπ radians. Thus, the extraction pro-
cess is performed by accumulating the traces of a rotation of the
representationW translated to each point̄λt .

By defining Eq. (9) as the kernel of the HT, it is possible to
rewrite Eq. (7) for a nonanalytic representation as

SNA(b̄) =
∑
t∈DI

∑
B∈DB

D(b̄, λ̄t − w̄B). (10)

By comparing Eqs. (10) and (7) it can be seen that in order to
gather evidence in the same way as in the original formulation of
the HT, it is necessary to provide a shape representation obtained
by the sampling defined by the discretization in the parameter
space. That is, the points inW must correspond to the discretiza-
tion of the functionz̄−1(s, λ̄t ). Since the parameter space and
the image space are congruent, the method requires that the dis-
crete representation corresponds exactly to a discretization of
the shape in the image.

2.2.2. Generalized Hough Transform.Ballard [12] improved
the Merlin–Farber method by including gradient direction in the
nonanalytic representation of a primitive. In the GHT, the locus
in the parameter space defined by each point in an image is
reduced to a set of plausible values constrained by edge direc-
tion information. That is, in Eq. (10) only a subset of points
which formW are considered in the definition ofSNA(b̄). These
points are determined by comparing the gradient direction of a
primitive and the gradient direction computed on the point in an
image. This makes the extraction process faster and increases ro-
bustness by reducing the probability of obtaining false instances
of a shape due to coincidental arrangements of points [12].

The GHT can be formulated by considering the derivative at
the points defined by the nonanalytic representation in Eq. (8). If
the gradient directionz′

B in a pointz̄B is obtained by a functionϕ,
thenz′

B = ϕ(z̄B). Since the points in Eq. (9) must be constrained
to those points where the gradient direction inλ̄t , denoted asλ′

t ,
is equal to the derivative in̄zB, thenλ′

t = ϕ(z̄B). By considering
the value ofR̄ as constant, the relationship between the gradient
direction of a point in an image and the definition in Eq. (8) is
given by

λ′
t = ϕ(z̄B) = ϕ(w̄B). (11)

By using this expression it is possible to redefine the locus in
Eq. (9) as the set of points

Rt = {λ̄t − ϕ−1(λ′
t )}, t ∈ DI , (12)

which defines a version of Eq. (3) for the GHT. Notice that in this
equation the inverse functionϕ−1(λ′

t ) can provide several points
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of the representationW. That is, several points inW might have
the same slopeλ′

t . By considering Eq. (12), the accumulation
process defined by the GHT is given by

SGHT(b̄) =
∑
t∈DI

D(b̄, λ̄t − ϕ−1(λ′
t )). (13)

This equation contains only one summation because the lo-
cus of the parameter space is reduced. Namely, the kernel does
not define all the points of the representation, but only those
obtained by the inverse functionϕ−1(λ′

t ). In Ballard’s method,
this function is stored in a table (R-table) which is indexed by
the gradient direction computed at a point in an image. That
is, given the gradient direction computed at a point, a setWt is
determined. This set contains all the entries that have the same
gradient direction. Thus,Wt = {w̄B | ϕ(w̄B) = λ′

t , B ∈ DB}.
The points inWt are mapped into the parameter space by the
relationshipRt = {λ̄t − w̄B | w̄B ∈ Wt }. That is, an alternative
version of Eq. (13) can be written as,

SGHT(b̄) =
∑
t∈DI

∑
wB∈Wt

D(b̄, λ̄t − w̄B). (14)

The accumulation processes defined in Eqs. (10) and (13)
show that the algorithms for gathering evidence based on non-
analytic representations correspond to special implementations
of the HT. The accumulation defined in Eq. (10) will be identical
to the HT whenW is sampled, according to the discretization in
the image. In the case of Eq. (13) the same requirement implies
that the valuesλ′

t must have at least one associated value inW
through the inverse functionϕ−1(λ′

t ) (i.e., ∀λ̄t , Wt 6= {[}).
For primitives which do not suffer any transformation (e.g.,

without change of scale and rotation) their discrete definition
can be based on a table obtained from a template shape sampled
by the quantization in the image. Nevertheless, it is difficult to
obtain an adequate representation for a transformed shape based
on this definition. A straightforward redefinition of the table for
transformed shapes can cause difficulties in the accumulation
process. In the case of the accumulation process in Eq. (10), two
points can merge into one cell, or some cells can be missed. This
problem of distortion is illustrated in Fig. 2. Figure 2a shows the
nonanalytic representation of a shape as a set of points in an
image space. Figure 2b shows the points in the discrete parame-
ter space obtained by the application of the mapping defined in
Eq. (9). The points in Figs. 2c and 2d were obtained by a straight-
forward scale transformation of the discrete representation and
show the type of problems arising due to the discrete represen-
tation. In the expanded region in Fig. 2c, it can be seen that two
points appear in one discrete cell, while in the expanded region
in Fig. 2d not all the cells (through which the curve passes) are
defined by the discrete representation.

In the case of the accumulation process in Eq. (13), when
a primitive suffers transformations, and due to the limitations
of the computation of gradient direction by local operators, the
gradient direction values may not necessarily correspond ex-

FIG. 2. Example of a distortion due to straightforward transformations on a
nonanalytic representation.

actly to the values in the discrete representation. That is, for a
point in a shape, different gradient directions can be computed
when the shape is transformed and discretized. Thus, although
the nonanalytic formulations for primitive extraction correspond
to particular developments of the HT, which is itself optimum in
terms of detection error [4], the discrete nature of the approach
reduces robustness with respect to the original formulation. As
a consequence, these techniques can suffer when the image con-
tains noise and shapes are occluded [36, 37].

3. ANALYTIC REPRESENTATION OF SHAPES VIA
FOURIER DESCRIPTORS

3.1. Fourier Parameterization of Arbitrary Shapes

The first step for performing a generalization of the HT based
on an analytic representation is to obtain an equation of a curve
which can represent arbitrary model shapes. In general, there
exist many ways of defining a curve. In this paper the exten-
sion is developed by using a parametric representation based
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on Fourier descriptors. This type of representation provides an
accurate and compact characterization of curves, and can be
defined by a vectorial parameterization which is adequate for
the HT formulation developed in the previous section. Desir-
able properties such as convergence and generality have been
widely recognized in their application to shape discrimination.
An interesting computational feature is the direct access to fre-
quencies, which facilitates the description of curves at multiple
scales [33]. This feature is important because it gives the pos-
sibility of later use of multiresolution approaches of the HT
[38, 39]. The main motivations for using Fourier descriptors are
the generality of their definition, the simplicity in the calculation
of derivatives, and the vectorial parameterization which can be
directly related to nonanalytic representations.

The most direct and flexible representation of an entire shape
is a parametric form of a curve. This representation can be math-
ematically described by a vector function which defines the po-
sition of the points in a curve by their components in two or-
thonormal axes. That is,

c̄(s) = cx(s) Ux + cy(s) Uy, (15)

whereUx = [1, 0],Uy = [0, 1] are two orthonormal vectors and
the values of the parametersserve to distinguish different points
on the curve.

In order to obtain a representation of arbitrary shapes it is
possible to parameterize the curvec̄(s) by the expansion of the
componentscx(s) andcy(s) in Fourier series. Then, the curve in
Eq. (15) will be represented by its Fourier expansion given by
the function

v̄(s, v̄) = vx(s, v̄x) Ux + vy(s, v̄y) Uy, (16)

wherev̄ is a parameter vector which characterizes the form of
the curve and is defined by the elliptic Fourier descriptors [23,
28, 29]. This vector is decomposed into two subsets of parame-
ters: The vectors ¯vx andv̄y which define the components of the
function along thex andy axes, respectively (i.e., ¯v = v̄x ∪ v̄y).

For s ∈ [0, 2π ), the Fourier expansion ofcx(s) andcy(s), v̄x

andv̄y, can be expressed in trigonometric form as

vx(s, v̄x) =
n∑

k=1

axk cos(ks) + bxk sin(ks),

vy(s, v̄y) =
n∑

k=1

ayk cos(ks) + byk sin(ks),

(17)

for v̄x = (ax1, bx1, . . . , axn, bxn), v̄y = (ay1, by1, . . . , ayn, byn),
andn is the maximum frequency in̄c(s). The DC terms have been
omitted since the curve is defined with its center on the origin
of the coordinate system (i.e., without translation). Each term in
the summations in Eqs. (17) describes an elliptic phasor. The el-
liptic locus is defined by four parameters (axk, ayk, bxk, byk) and
rotates at a frequency determined byk. An example of a shape
generated by Eq. (17) is shown in Fig. 3a. In this figure, a point
A in a closed curve is the result of a vectorial summation of three

FIG. 3. Example of a contour defined by elliptic Fourier descriptors.
(a) Closed contour. (b) Open curve defined by a subset of points. (c) Open
curve defined by a double trace.

elliptic phasors (i.e., p1, p2, and p3). Each rotating phasor defines
an ellipse, and each ellipse is characterized by a different value
of k. Although this Fourier expansion was originally devised for
representing closed contours, the extension to open curves can
be achieved easily. Two possible representations of open curves
are illustrated in Figs. 3b and 3c. In Fig. 3b the entire curve is
defined but the start and end points restrictt to a set of values
which trace a particular segment. In the example in the figure,
whens∈ [0, π

2 ) one quarter of the curve is obtained. In Fig. 3c
the open curve is composed of a double trace in the opposite di-
rection. In this case, the curve must be parameterized such that
the trace of the arc in one direction is defined fors∈ [0, π ), and
the curve is retraced in the opposite direction fors ∈ [π, 2π ).

The elliptic Fourier descriptors of the curve in Eq. (15) are
defined by

axk = 1

π

∫ π

−π

cx(s)cos(ks) ds,

ayk = 1

π

∫ π

−π

cy(s)cos(ks) ds,

(18)

bxk = 1

π

∫ π

−π

cx(s)sin(ks) ds,

byk = 1

π

∫ π

−π

cy(s)sin(ks) ds.

Generally, the computation of these values must be performed
for a model shape stored in a discrete image. If a model is
composed ofm points, the integrals can be approximated by
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summations. That is,

axk = 2

m

m∑
s=1

xs cos

(
ks

2π

m

)
,

ayk = 2

m

m∑
s=1

ys cos

(
ks

2π

m

)
,

(19)

bxk = 2

m

m∑
s=1

xs sin

(
ks

2π

m

)
,

byk = 2

m

m∑
s=1

ys sin

(
ks

2π

m

)
,

where (xs, ys) represents the position of a point in a model shape.
Notice that according to the Nyquist sampling theorem the pos-
sible values ofk are the integers between 1 andm/2 . That is, the
value ofn in Eq. (17) is given bym/2 andk ∈ {1, 2, . . . , m/2}.
A particular form of the computation in Eq. (19) can be based
on the incremental change defined by a set of points organized
in a chain-coded contour [29].

Since the problem of primitive extraction focuses on recogniz-
ing a class of shapes, the curve in Eq. (16) must be parameterized
to form an appropriate shape model. That is, the Fourier coeffi-
cients will be used to describe the essential features of a family
of primitives which will be parameterized by a transformation
that generates all the instances of objects that might appear in
an image. Each member in the family will be characterized by
particular values of the parameters of the transformation. In the
extraction of rigid parts, instances of shapes are formed by the
different appearance of an original shape which has been rotated
and scaled. These changes correspond to similarity transforma-
tions. A curve parameterized by similarity transformations re-
quires four parameters: Two parameters define its position; one
parameter specifies the scale; and the fourth parameter describes
the rotation.

The parameterization of the curve in Eq. (16) by a similar-
ity transformation can be obtained by defining two orthogonal
functionsζx(s, āx) andζy(s, āy) according to the matrix expres-
sion

[ζx(s, āx) ζy(s, āy)]

= [a0 b0] + l [vx(s, v̄x) vy(s, v̄y)]

[
cos(ρ) sin(ρ)
−sin(ρ) cos(ρ)

]
, (20)

whereāx = (a0, l , ρ), āy = (b0, l , ρ), the point (a0, b0) describes
a translation, the value ofl is a scale factor, andρ specifies the
rotation. Hence,

ζx(s, āx) = a0 + l (vx(s, v̄x) cos(ρ) − vy(s, v̄y) sin(ρ)),

ζy(s, āy) = b0 + l (vx(s, v̄x) sin(ρ) + vy(s, v̄y) cos(ρ)).
(21)

In this definition, the Fourier coefficients in the vectors ¯vx and
v̄y which characterize the form of the curve in Eq. (16) are not
considered as parameters ofζx(t, āx) and ζy(t, āy) since they
are constant for all the curves which constitute the family of
primitives. Namely, the curves are parameterized only by the
parameters in the transformation. Thus, by taking this param-
eterization, the extraction problem can be defined based on a
geometric primitive obtained by the orthogonal composition of
the functions in Eq. (21). That is,

z̄(s, ā) = ζx(s, āx) Ux + ζy(s, āy) Uy, (22)

for ā = (a0, b0, l , ρ). The extraction process is performed by
determining the value of the parametersā in this equation that
best match the model ¯v(s, v̄) in Eq. (16) to image data.

3.2. Hough Transform for Shapes Represented
by Fourier Descriptors

The extraction of a model shape characterized by Fourier de-
scriptors can be formulated based on the gathering evidence
process defined by the HT. In this section this formulation is de-
veloped by extending the concepts of the extraction of arbitrary
nonanalytic shapes presented in Section 2 to shapes represented
by analytic curves. In order to define the HT for arbitrary analytic
shapes it is necessary to establish the kernel of the transforma-
tion in Eq. (3). This kernel can be obtained by a particular form
of the parameterization in Eq. (22) which defines a curve without
the translation term. This curve will be denoted by

w̄(s, l , ρ) = ξx(s, l , ρ) Ux + ξy(s, l , ρ) Uy, (23)

where the functionsξx(s, l , ρ) andξy(s, l , ρ) are given by

ξx(s, l , ρ) = lg(s, ρ),

ξy(s, l , ρ) = lh(s, ρ),
(24)

for g(s, ρ) andh(s, ρ) which are two functions that define the
rotation around each coordinate axis. That is,

g(s, ρ) = vx(s, v̄x) cos(ρ) − vy(s, v̄y) sin(ρ),

h(s, ρ) = vx(s, v̄x) sin(ρ) + vy(s, v̄y) cos(ρ).
(25)

Thus, the definition of̄z(s, ā) in Eq. (22) can be rewritten in
terms ofw̄(s, l , ρ) in Eq. (23) as

z̄(s, ā) = (a0, b0) + w̄(s, l , ρ). (26)

Since this equation corresponds to the function which defines
the setZ in Eq. (8) with the reference point given by the values of
(a0, b0), then the kernel and the accumulation process in the HT
can be obtained analogously to Eqs. (9) and (10), respectively.
Nevertheless, in this case the locus in the parameter space is
defined by an analytic representation. According to Eq. (3), the
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locus in the parameter space for an analytic representation, when
the points in the image are defined byI = {λ̄(t) | t ∈ DI }, is given
by

At = {λ̄t − w̄(s, l , ρ) | s ∈ Ds}, t ∈ DI . (27)

This kernel is based on a continuous function ¯w(s, l , ρ) whose
parametersl andρ define a curve in specific orientation and
scale. Then, if each possible instance of the function is consid-
ered, the HT for the imageI can be defined by

SF (b̄, l , ρ) =
∫ ∫

D(b̄, λ̄(t) − w̄(s, l , ρ)) dt ds, (28)

for b̄ = (a0, b0) . This expression combines the analytic form
of Eq. (6) with the kernel of an arbitrary shape defined in the
accumulation process in Eq. (10). The discrete version of this
formulation is analogous to Eq. (7). That is,

SDF(b̄, l , ρ) =
∑
t∈DI

∑
s∈Ds

D(b̄, λ̄t − w̄(s, l , ρ)). (29)

Thus, given an image point̄λt the accumulation process traces
a curve λ̄t − w̄(s, l , ρ) in the plane (a0, b0) in the four-dimen-
sional array defined by (a0, b0, l , ρ) . The parametric nature of
w̄(s, l ,ρ) provides an adequate representation for the fast and
accurate computation of the trace of the curve in the plane [40].
Nevertheless, the dimensionality of the parameter space imposes
an important constraint which implies that unless the number of
parameters is reduced or the quantization of the parameter space
is coarse, it will be necessary to consider an implementation that
includes other HT developments. For example, extensions based
on a parallel implementation [7] could provide accurate results
in a reduced processing time. An alternative way of reducing
the computational requirements is to decompose the parameter
space by the inclusion of gradient direction information or the
use groups of edge points.

4. PARAMETER SPACE REDUCTION

4.1. Inclusion of Gradient Direction Information

By following the development in Section 2 it is possible to
consider the use of gradient direction information to constrain
the locus of the parameter space defined in Eq. (29). Gradient
direction can be included in the formulation of the extraction
of arbitrary analytic curves by rewriting Eq. (29) in terms of
the mappingϕ−1 in Eq. (12). In this case the mapping must be
defined according to the Fourier representation of a curve.

The gradient direction at a point ¯w(s, l , ρ) will be denoted
asw′(s, ρ). That is,w′(s, ρ) = ϕ(w̄(s, l , ρ)). This value can be
obtained as the tangent of the angle defined by the tangent vector
functionw̄′(s, l , ρ) = ξ ′

x(s, l , ρ) Ux + ξ ′
y(s, l , ρ)Uy. According

to Eq. (24) the components of this vectorial expression are given

by

ξ ′
x(s, l , ρ) = ∂ξx(s, l , ρ)

∂s
= lg′(s, ρ),

ξ ′
y(s, l , ρ) = ∂ξy(s, l , ρ)

∂s
= lh′(s, ρ),

(30)

and the tangent angle is

w′(s, ρ) = tan−1

(
h′(s, ρ)

g′(s, ρ)

)
, (31)

where

g′(s, ρ) = (v′
x(s, v̄x) cos(ρ) − v′

y(s, v̄y) sin(ρ)),

h′(s, ρ) = (v′
x(s, v̄x) sin(ρ) + v′

y(s, v̄y) cos(ρ)),
(32)

and

v′
x(s, v̄x) =

n∑
k=1

k(−axk sin(ks) + bxk cos(ks)),

v′
y(s, v̄y) =

n∑
k=1

k(−ayk sin(ks) + byk cos(ks)).

(33)

According to Eq. (11) the gradient directionλ′
t computed at an

image point must be equal to the gradient direction at the point
z̄(s, ā). By considering the definition in Eq. (26), the value ofλ′

t
can be related to ¯w(s, l , ρ) by λ′

t = ϕ(z̄(s, ā)) = ϕ(w̄(s, l , ρ)).
That is,

λ′
t = w′(s, ρ) = tan−1

(
v′

x(s, v̄x) sin(ρ) + v′
y(s, v̄y) cos(ρ)

v′
x(s, v̄x) cos(ρ) − v′

y(s, v̄y) sin(ρ)

)
.

(34)

In order to obtain the inverse mapping ¯w(s, l , ρ) = ϕ−1(λ′
t ),

this equation is expressed in terms of a functionγ which depends
ons,

λ′
t = γ (s) + ρ, (35)

for

γ (s) = tan−1

(
v′

y(s, v̄y)

v′
x(s, v̄x)

)
. (36)

Then, based on a value ofλ′
t it is possible to obtain a set of

values ofs given by

s = γ −1(λ′
t − ρ). (37)

In general, this mapping does not have a closed-form solution
and it must be solved using a numerical method. According
to the definition ofγ (s) in Eq. (36), the solution of Eq. (37)
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corresponds to the zeroes of the equation

tan(λ′
t − ρ)v′

x(s, v̄x) − v′
y(s, v̄y) = 0. (38)

Since this equation only has one variable (s) an adequate
estimate of the solutions can be easily determined. Notice that
Eq. (38) is independent of scale, consequently it only has to be
computed for each value ofρ in the accumulation process.

By considering Eq. (38), the inverse function in Eq. (37) can
be expressed as

γ −1(λ′
t − ρ)

= {s| tan(λ′
t − ρ)v′

x(s, v̄x) − v′
y(s, v̄y) = 0, s ∈ Ds}. (39)

Thus, the functionϕ−1(λ′
t ) is obtained by substitution of the

values given by this equation in ¯w(s, l , ρ). That is, the points in
the model with edge directionλ′

t are given by

ϕ−1(λ′
t ) = w̄(γ −1(λ′

t − ρ), l , ρ). (40)

Accordingly, the locus in Eq. (27) constrained by edge direc-
tion is redefined by

At = {λ̄t − w̄(γ −1(λ′
t − ρ), l , ρ)}, t ∈ DI , (41)

and the HT in Eq. (29) becomes

SDFG(b̄, l , ρ) =
∑
t∈DI

D(b̄, λ̄t − w̄(γ −1(λ′
t − ρ), l , ρ)). (42)

In this expression, the inclusion of gradient directional infor-
mation reduces the number of points to be accumulated in the
parameter space: Instead of considering all the points defined by
w̄(s, l , ρ), only some points ¯w(γ −1(λ′

t − ρ), l , ρ) are used. This
decreases noise in the accumulator array. Naturally, this requires
the computation of directional information which can itself be
susceptible to noise.

In general, the inclusion of gradient direction information in
analytic formulations of the HT has been used to reduce the
dimensions of the parameter space (e.g., [5, 41–43]). In the pre-
vious formulation, although the parameter space is incremented
by using more selected information, the accumulation process
is still in a four-dimensional space. Nevertheless, the space can
be reduced since the parameters has been eliminated. Then,
any other parameter can be used to draw a curve in a three-
dimensional parameter space. This idea can be explained by
considering the definition of ¯w(s, l , ρ) in the angle–magnitude
form. The vector defined by ¯w(s, l , ρ) can be expressed in an
angle–magnitude form (ψ, r ) according to Eq. (23) as

ψ(s, ρ) = tan−1

(
h(s, ρ)

g(s, ρ)

)
,

(43)
r (s, l , ρ) = l

√
g2(s, ρ) + h2(s, ρ).

That is,

ψ(s, ρ) = tan−1

(
vx(s, v̄x) cos(ρ) − vy(s, v̄y) sin(ρ)

vx(s, v̄x) sin(ρ) + vy(s, v̄y) cos(ρ)

)
,

(44)

r (s, l , ρ) = l

√√√√ (vx(s, v̄x) cos(ρ) − vy(s, v̄y) sin(ρ))2

+ (vx(s, v̄x) sin(ρ) + vy(s, v̄y) cos(ρ))2.

Analogous to Eq. (35) we can express the angleψ(s, ρ) by
using a function which depends ons. That is,

ψ(s, ρ) = 9(s) − ρ, (45)

for

9(s) = tan−1

(
vx(s, v̄x)

vy(s, v̄y)

)
. (46)

Based on this function and on the definition of the parameter
s in Eq. (37), the angleψ(s, ρ) can be reparameterized to be
independent ofs by the composite mapping

ψ(λ′
t , ρ) = 9(γ −1(λ′

t − ρ)) − ρ. (47)

This mapping obtains the tangent of the angle of a point in the
model from the derivative computed at a point. Figure 4 illus-
trates this mapping. Figures 4b and 4c represent the functions
9 andγ for each point in the curve shown in Fig. 4a. Figure
4d represents the composite mapping and displays the result of
the parametric function (γ (s), 9(s)). According to Eq. (47), a
valueλ′

t can be mapped into9 by first finding a value ofs in
the functionγ −1 in Fig. 4c and then using this as the parameter
in the function9 in Fig. 4b. It can be seen that for a particular
value ofλ′

t (e.g., 1.25) there exist several possible values ofs.
As an example, the mapping fors = 4 is mapped (into Fig. 4b)
to obtain the valueψ(s, ρ) = 1.75. This is the same result as
obtained by the composite mapping in Fig. 4d.

By considering Eq. (26) we can relate the value ofψ(s, ρ)
and the locus in the parameter space by

yt − b0

xt − a0
= h(s, ρ)

g(s, ρ)
= tan(ψ(λ′

t , ρ)) (48)

for λ̄t = (xt , yt ).
Then, by substitution of the mapping in Eq. (45), the locus

in the parameter space given by Eq. (48) can be redefined by a
line. That is,

At = {b̄ | yt − b0 − (xt − a0) tan(9(γ −1(λ′
t − ρ)) − ρ) = 0},

t ∈ DI . (49)

Based on this locus it is possible to gather evidence of the
three parametersa0, b0, andρ; in general (except for circles
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FIG. 4. Example of the composite map9(γ −1(λ′
t )). (a) Example shape. (b) Function of the angle for the model in (a). (c) Function of the derivative for the model

in (a). (d) Composition of the mapping shown in (b) and (c).

and ellipses) one value ofλ′
t will define several lines. By repara-

meterizing the line in Eq. (49) by a parameterτ = xt − a0, an
alternative form of the HT in Eq. (42) can be defined by

SDFG(b̄, ρ) =
∑
t∈DI

∑
τ

D(b̄, λ̄t − (xt − τ, yt

−τ tan(9(γ −1(λ′
t − ρ)) − ρ))), (50)

which is equivalent to gathering the evidence given by the trace
of the lines in Eq. (49) for allt ∈ DI .

The value of the parameterl can be obtained by performing a
second stage in the accumulation process. Once the values of the
parametersa0, b0, andρ of an instance of a shape in an image
are known, the parameterl can be solved by using the magnitude
expression in Eq. (44). That is,

l =
√

(xt − a0)2 + (yt − b0)2√
(vx(s,v̄x) cos(ρ) − vy(s,v̄y) sin(ρ))2 + (vx(s,v̄x) sin(ρ) + vy(s,v̄y) cos(ρ))2

. (51)

In order to evaluate the denominator of this equation, the
values ofvx(s, v̄x) andvy(s, v̄y) can be computed by taking the
values ofs defined according to the tangent of the angle in Eq.
(48). That is,

yt − b0

xt − a0
= vx(s, v̄x) sin(ρ) + vy(s, v̄y) cos(ρ)

vx(s, v̄x) cos(ρ) − vy(s, v̄y) sin(ρ)
, (52)

and the value ofs corresponds to the zeroes of the function

yt − b0

xt − a0
= tan

(
ρ + tan−1

(
vy(s, v̄y)

vx(s, v̄x)

))
, (53)

which can be expressed as

α(λ̄t , ρ)

=
{

s

∣∣∣∣ yt − b0 − (xt − a0) tan

(
ρ + tan−1

(
vy(s, v̄y)

vx(s, v̄x)

))}
. (54)
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Thus, the position of a point̄λt in the image is used to ob-
tain the value ofs which definesvx(s, v̄x) andvy(s, v̄y). These
values are used in Eq. (51) to gather evidence of the parameter
l in a histogram (i.e., one-dimensional accumulator array). The
maximum in this histogram corresponds to the value ofl for
the instance of a shape defined bya0, b0, andρ. Accordingly,
Eqs. (50) and (51) define an evidence gathering technique for
arbitrary shape extraction which requires a three-dimensional ar-
ray for the accumulation of the location and rotation parameters
and a histogram for computing the scale.

4.2. Use of Sets of Points

In the previous section we have shown how the inclusion of
gradient direction information in the formulation of the HT can
be used to reduce the parameter space required in the extraction
of arbitrary shapes. The four-dimensional parameter space de-
fined for primitive extraction was reduced to a three-dimensional
parameter space by defining an extra equation which determines
the angular relationship between gradient information in an im-
age and a model shape. This idea can be extended by using
the equations provided by other information within an image.
This section shows three alternative reductions in the parameter
space that are obtained by combining the information provided
by several edge points. Use of simultaneous points to constrain
the parameter space has been a common approach in the extrac-
tion of analytic curves by the HT. In the case of simple analytic
curves such as lines, circles, and ellipses, there exist geomet-
rical relationships between groups of points and parameters.
These relationships can be exploited to obtain analytic forms of
HT mappings which reduce the dimensionality of the parameter
space. In the case of arbitrary shapes, it is not possible to define
constraints by geometric properties of shapes, and consequently,
it is necessary to use a more general formulation.

Instead of using gradient direction information, the parameter
space can be reduced by the constraint imposed by the position
of a second point. This provides a pair of equations which can be
solved to obtain the values of one parameter. By considering two
image points̄λt1 andλ̄t2, the locus in the parameter space defined
in Eq. (27) is constrained to be the solution of the intersection
At1,t2 = At1 ∩ At2, for At1 = {λ̄t1 − w̄(s1, l , ρ) | s1 ∈ Ds}, t1 ∈
DI , and At2 = {λ̄t2 − w̄(s2, l , ρ) | s2 ∈ Ds}, t2 ∈ DI . That is, the
locus in the parameter space is constrained by the solution of
the system of two equations,

(a0, b0) = λ̄t1 − w̄(s1, l , ρ),

(a0, b0) = λ̄t2 − w̄(s2, l , ρ).
(55)

Accordingly, the intersection (a0, b0) is defined by the vecto-
rial equation

λ̄t1 − λ̄t2 − w̄(s1, l , ρ) + w̄(s2, l , ρ) = 0. (56)

The solution of this equation can be obtained by considering

the angular relationship between the pointsλ̄t1 and λ̄t2. If the
components of these points are defined byλ̄t1 = (xt1, yt1) and
λ̄t2 = (xt2, yt2), then the tangent of the angle with respect to the
x-axis of the line which joins the two points is

β = yt2 − yt1

xt2 − xt1

. (57)

By taking the definitions ofxt1, xt2, yt1, andyt2 from Eq. (55)
and the decomposition of ¯w(s, l , ρ) in Eq. (23), this relationship
becomes

βξx(s2, l , ρ) − ξy(s2, l , ρ) − βξx(s1, l , ρ) + ξy(s1, l , ρ) = 0.

(58)

Based on this equation it is possible to define a function
s2 = q(s1, ρ). By considering the definitions ofξx(s, l , ρ) and
ξy(s, l , ρ) in Eq. (24) this function is given by

q(s1, ρ)

=
{

s2

∣∣∣∣vx(s2, v̄x)(β cos(ρ) − sin(ρ))
− vy(s2, v̄y)(β sin(ρ) + cos(ρ)) + d(s1, l , ρ) = 0

}
,

(59)

whered(s1, l , ρ) = −βξx(s1, l , ρ) + ξx(s1, l , ρ) is a constant
term so the only variable iss2 .

Based on this definition, it is possible to express the solution
of the system in Eq. (55) independently ofs2. That is,

ϑ
(
λ̄t1, λ̄t2, l , ρ

) = {
s1

∣∣ λ̄t1 − λ̄t2 − w̄(s1, l , ρ)

+ w̄(q(s1, ρ), l , ρ) = 0, s1 ∈ Ds
}
. (60)

Thus, if we consider once more the components in Eq. (24),
the equation in this function can be written as the system of
equations given by

xt1 − xt2 − lg(s1, ρ) + lg(q(s1, ρ), ρ) = 0,

yt1 − yt2 − lh(s1, ρ) + lh(q(s1, ρ), ρ) = 0,
(61)

and the function in Eq. (60) can be defined independent ofl as

ϑ(λ̄t1, λ̄t2, ρ)

{
s1

∣∣∣∣ yt1 − yt2

h(s1, ρ) − h(q(s1, ρ), ρ)

− xt1 − xt2

g(s1, ρ) − g(q(s1, ρ), ρ)
= 0, s1 ∈ Ds

}
. (62)

Thus, the locus constrained by a pair of points is given by

At1,t2 = {
λ̄t1−w̄

(
ϑ(λ̄t1, λ̄t2, ρ

)
,

0
(
λ̄t1, λ̄t2, ρ, ϑ

(
λ̄t1, λ̄t2, ρ

))
, ρ

)}
, t1, t2 ∈ DI , (63)
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for

0
(
λ̄t1, λ̄t2, ρ, s

) = yt1 − yt2

h(s, ρ) − h(q(s, ρ), ρ)
. (64)

Accordingly, the HT is defined in a three-dimensional space
as

SDF2P(b̄, ρ) =
∑

t1,t2∈DI

D
(
b̄, λ̄t1 − w̄

(
ϑ(λ̄t1, λ̄t2, ρ

)
,

0
(
λ̄t1, λ̄t2, ρ, ϑ

(
λ̄t1, λ̄t2, ρ

))
, ρ

))
. (65)

In this definition the value ofs1, obtained fromϑ(λ̄t1, λ̄t2, ρ),
defines a trace of a curve in the plane (a0, b0). This locus de-
pends onρ, and therefore it must be accumulated in a differ-
ent plane (a0, b0) forming a three-dimensional parameter space
(a0, b0, ρ). In a complete extraction process, a second accumu-
lation stage, defined according to Eq. (51), can be used to obtain
the parameterl . Thus, it is possible to reduce the parameter
space either by using directional information or by taking pairs
of points simultaneously. Both approaches constrain the param-
eter calculation by including an extra equation which provides
more information about the geometry of a shape.

In a further extension we can consider another point to con-
strain the parameter space by three equations. The extra con-
straint replaces the curve traced in the plane (a0, b0) by a single
point. This can be used to reduce noise in the accumulator array
or to further reduce the dimensionality of the accumulation array
by considering more selected information. By including a third
restriction in Eq. (55) the locus in the parameter space is con-
strained to the intersection defined byAt1,t2,t3 = At1 ∩ At2 ∩ At3.
Based on the intersection ofAt1 andAt3, it is possible to define
an equation similar to Eq. (58) but the pointλ̄t2 is replaced by
a third image point̄λt3 = (xt3, yt3). This new equation provides
a function equivalent to Eq. (59) which obtains the value of
s3 from the value ofs1. That is,s3 = p(s1, ρ). Then, the sys-
tem in Eq. (61) is constrained by two extra equations. That
is,

xt1 − xt2 − lg(s1, ρ) + lg(q(s1, ρ), ρ) = 0,

yt1 − yt2 − lh(s1, ρ) + lh(q(s1, ρ), ρ) = 0,

(66)
xt1 − xt3 − lg(s1, ρ) + lg(p(s1, ρ), ρ) = 0,

yt1 − yt3 − lh(s1, ρ) + lh(p(s1, ρ), ρ) = 0.

Accordingly, the values which define a point in the plane
(a0, b0) can be obtained by redefining the function in Eq. (62)

as

ϑ(λ̄t1, λ̄t2, λ̄t3ρ) = s1

∣∣∣∣ yt1− yt2
h(s1,ρ) − h(q(s1,ρ),ρ) − xt1− xt2

g(s1,ρ) − g(q(s1,ρ),ρ) = 0,

yt1− yt3
h(s1,ρ) − h(p(s1,ρ),ρ) − xt1− xt3

g(s1,ρ) − g(p(s1,ρ),ρ) = 0, s1 ∈ Ds

 .

(67)

Based on this definition a locus similar to Eq. (63) and an
accumulation process similar to Eq. (65) can be obtained. The
only difference is that the new function will reduce the curve
traced for each valueρ in the plane (a0, b0) into a single point.
Namely, three points define the traces of two curves in the plane
(a0, b0) whose points are distinguished by the value ofρ. The
constraints in Eq. (66) specify the conditions that must be sat-
isfied by the parameters1 in order to define an intersection of
the two traces. Since the HT searches for the intersection of all
the curves instead of gathering evidence of the traces of the two
curves, only their intersection point can be accumulated.

In another alternative formulation we can consider the use
of an extra point together with edge direction information. In
this case the locus in the parameter space is constrained by the
intersection of two loci defined by Eq. (49). That is, the locus in
Eq. (49) is redefined byAt1,t2 = At1 ∩ At2 for

At1 = {
b̄

∣∣ yt1 − b0 − tan
(
9

(
γ −1

(
λ′

t1 − ρ
)) − ρ

)
× (

xt1 − a0
) = 0

}
, t1 ∈ DI ,

At2 = {
b̄

∣∣ yt2 − b0 − tan
(
9

(
γ −1

(
λ′

t2 − ρ
)) − ρ

)
× (

xt2 − a0
) = 0

}
, t2 ∈ DI .

(68)

The locusAt1,t2 is obtained by computing the intersection of
the functions which define these loci. Thus, the HT defined by
taking a pair of points and their gradient direction is given by

SDFG2P(b̄, ρ) =
∑

t1,t2∈DI

D
(
b̄,

(
σx

(
λ̄t1, λ̄t2, λ

′
t1, λ

′
t2, ρ

)
,

σy
(
λ̄t1, λ̄t2, λ

′
t1, λ

′
t2, ρ

)))
, (69)

for

σx
(
λ̄t1, λ̄t2, λ

′
t1, λ

′
t2, ρ

)
= yt2 − yt1 + 9

(
λ′

t1, ρ
)
xt1 + 9

(
λ′

t2, ρ
)
xt2

9
(
λ′

t1, ρ
) − β9

(
λ′

t2, ρ
) ,

σy
(
λ̄t1, λ̄t2, λ

′
t1, λ

′
t2, ρ

)
= 9

(
λ′

t1, ρ
)
yt2 − 9

(
λ′

t2, ρ
)
yt1 − 9

(
λ′

t1, ρ
)
9

(
λ′

t2, ρ
)(

xt2 − xt1

)
9

(
λ′

t1, ρ
) − 9

(
λ′

t2, ρ
) .

(70)

The HT defined by two points and derivatives constrains the
locus in the parameter space to a single point. Therefore, the
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resulting accumulator will present less noise than the three-
dimensional parameter accumulator defined by Eq. (50) which
traces a set of lines. Additionally, as in the case of the use of
the information of three image points, the locus in the parameter
space is independent ofs andl , therefore, it can be used to trace
a curve whose points are parameterized for the valuesρ in a
two-dimensional array.

5. IMPLEMENTATION AND RESULTS

In general, the four-dimensional parameter accumulator in
Eq. (29) will impose a significant computational burden. This is
impractical unless some parameters are known or the quantiza-
tion of the parameter space is coarse. Hence, this section con-
centrates on the formulation which defines a three-dimensional
accumulator array. In addition to showing how the technique can
be implemented, this illustrates the effects of noise when point
pairing strategies are considered.

As a first implementation (implementation A), we consider
the formulation obtained by including directional information.
The line in Eq. (49) provides a mapping which can be used to
gather evidence of the center and the rotation parameters of a
primitive. After edge pixels with directional information are ob-
tained, each point is used to compute the values ofψ(λ′

t , ρ) in Eq.
(47). This is performed by evaluating the zeroes of the function
γ −1(s), defined in Eq. (39), in the tangent angle definition9(s)
in Eq. (46). Once the values ofψ(λ′

t , ρ) are computed, the line
in the parameter space given by the values of (a0, b0) in Eq. (49)
is obtained. Since the value ofψ(λ′

t , ρ) depends on the rotation
ρ, each line defined by a particular value ofρ is used to incre-
ment the cells in the plane (a0, b0) in a three-dimensional array
(a0, b0, ρ). After all the points are considered, local maxima in
this accumulator correspond to the parameters of an instance of a
shape. These parameters are used in a second accumulation stage
to gather evidence of the scale parameter. In the second stage,
each image point is used to find the zeroes of Eq. (53). These
values are used in Eq. (51) to obtain the cell in the scale array
which must be incremented. After all the image points have been
considered, a local maximum in this array represents the scale
parameterl of the primitive. In our implementation, the zeroes of
Eqs. (38) and (53) were determined using a Newton–Raphson
method. These equations correspond to a single variable real
function expressed as a Fourier expansion so their derivatives
can be easily obtained, analogous to Eq. (33).

In the extraction process, it is convenient to normalize the
scale parameterl in such a way that a set of integer values can
be related to the radius of the image shape in pixel units. The
normalization can be achieved by redefining the scale parameter
as l/g(s0, ρ) for a value ofρ of zero, and wheres0 addresses
the point whose angle with respect to thex-axis is zero degrees.
This point is illustrated in Fig. 5a. Within this definition, each
integer value ofl characterizes a shape whose line traced from
the center of the shape to the point ¯w(s0, l , ρ) has a length ofl
pixels.

FIG. 5. Synthetic image example. (a) Original image. (b) Edge image. (c)
Resulting image. (d) Plane of the accumulation array (implementation A). (e)
Scale histogram for one maximum in (d). (f) Scale histogram for the second
maximum in (d). (g) Accumulator results for implementation B (point pairing).
(h) Accumulator results for implementation C (using three points). (i) Accumu-
lator results for implementation D (gradient information and point pairing).

An example of the results of implementation A is illustrated
in Fig. 5. Figure 5a shows a synthetic image (256× 256 pixels)
which contains two shapes defined by three Fourier coefficients.
Figure 5b shows the edges computed by using the Canny edge
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FIG. 6. Example of implementation A. (a) Model shape. (b) Original image. (c) Edge image. (d) Resulting image. (e) A plane of the accumulator array. (f) Scale
histogram.

operator. The result of the extraction process is shown in Fig. 5c
where the detected primitives are superimposed on black on
the original image. Figure 5d shows the plane (a0, b0) of the
three-dimensional accumulator space (a0, b0, ρ) whereρ is at
its maximum value. The magnitude of each point represents the
accumulated evidence for the position of the center of the shape.
In this case the two peaks correspond to different instances of
the shape. Figures 5e and 5f show the scale histograms obtained
for the two maxima in Fig. 5d.

Figure 6 illustrates the application of the extraction process to
a real image, the model shape corresponding to a helicopter cabin
is shown in Fig. 6a. The model was extracted by manually tracing

the edges in a high-contrast image and it was approximated
by 15 harmonics in a Fourier expansion (whose amplitude was
significantly greater than the remaining descriptors; an analysis
of the number of harmonics needed in a Fourier approximation
can be seen elsewhere [29]). In this figure the reference point
is indicated by a cross. The definition of this model was used
to accumulate evidence for the image shown in Fig. 6b. The
edge information of this image is shown in Fig. 6c. The result
is presented in Fig. 6d superimposed on the original image;
Figs. 6e and 6f present the final accumulators from which the
parameters were derived to draw the result. In this example,
each accumulator contains a peak which defines the primitive
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accurately even when the image is corrupted by incomplete data
and noise.

A second implementation (implementation B) can be based
on the formulation of Eq. (65) which avoids using directional in-
formation by pairing points. Since edge gradient direction does
not always provide accurate information, we should expect that
avoiding its use will lead to a reduction in the noise in the accu-
mulator array. Nevertheless, this reduction is not without com-
putational cost. The computation of the locus in the parameter
space by Eq. (63) is more complex than Eq. (49) because it
involves the solution of the function in Eq. (62). An impor-
tant consideration in this formulation is the number of pairs of
points that should be evaluated in the accumulation process. In
principle, for each point in the image it is only necessary to
take another point to accumulate complete information (i.e., the
number of pairs of points evaluated is equal to the number of
points in an image). Nevertheless, it is necessary to ensure that
each point in a pair belongs to the same primitive. Although this
condition cannot be fully satisfied for complex images, the ef-
fects of pairing points which do not belong to the same primitive
can be ameliorated by increasing the number of pairs per pixel.
Additionally, it is convenient to establish a filtering constraint
which verifies that pairs of points are close to each other. This
restriction is based on the premise that close points are more
likely to belong to the same primitive. In our implementation,
each point in the image is paired to five other points which lie
within a distance of 80 pixels. The effectiveness of the accu-
mulation process for the synthetic image in Fig. 5a can be seen
in the accumulator shown in Fig. 5g. The scale histograms are
the same as Figs. 5e and 5f, and the extracted shape is equiva-
lent to the one shown in Fig. 5c. Figure 5g shows that the use
of pairs of points reduces the noise in the accumulator array
while the peak remains in the same position. The application
of this implementation to a real image is illustrated in Fig. 7.
The model shape is defined by an open curve approximated by
eight harmonics in a Fourier expansion, shown in Fig. 7a. In
this example, the model shape (the wing) appears twice in the
image, but with a different rotation. The located instances of
the shape are superimposed on black on the original image in
Fig. 7d. The accumulators in Figs. 7e and 7f correspond to the
evidence for the instance of the shape in the superior part in
the image while Figs. 7g and 7h correspond to the evidence for
the instance of the shape in the inferior part. The accumula-
tors in Figs. 7e and 7g correspond to two slices of the three-
dimensional parameter space (a0, b0, ρ) for two different values
of ρ.

A further reduction of the noise in the accumulator array can
be achieved by including a third point in the formulation (imple-
mentation C). This constrains the parameter locus to the points
given by the solution of the function in Eq. (67). In the imple-
mentation developed, the solution is found by considering the
first constraint to obtain the value ofs1 analogous to Eq. (62) and
then it is verified that this value satisfies the second constraint in
Eq. (67). As shown in Fig. 5h, when a three-point restriction is

included, the accumulator is less noisy than the accumulators in
Figs. 5d and 5g. An example of the application on a real image is
shown in Fig. 8. The model shape and description used in Fig. 8
is the same as that used in Fig. 7. There are again two instances of
the shape in this image and both are found accurately, in spite of
the image noise. In this case the accumulators for both instances
present a clear peak.

The formulation which combines point pairing and gradi-
ent directional information in Eq. (69) (implementation D) can
be used to reduce the noise in the accumulation process with
less computational effort than implementations B and C, which
use groups of points exclusively (pairs and triplets). The inter-
section in Eq. (70) can be used to accumulate more relevant
information than that obtained by Eq. (50). Nevertheless, the
accumulated points still depend on noisy gradient directional
information and it is unlikely that the intersection in Eq. (70)
gives an accurate position of the primitive, unless it is robustly
computed. In order to ameliorate the effect of using gradient
direction, it was necessary to increase the number of points
per pixel considered in the accumulation process. In the im-
plementation developed, the accumulation of the intersection of
a line with any line defined by 25 other points provided ade-
quate results. Figure 5i shows the result of implementation D
for the image in Fig. 5a. The noise in the accumulator is slightly
greater than that in Fig. 5g. Nevertheless, the computational
time spent in the extraction process is less. The application of
this formulation to a real image is shown in Fig. 9. The model
shape used has the same description as the model shown in
Fig. 9a. In this case, the instance in Fig. 9a suffered a three-
dimensional rotation which caused only part of the model (the
front of the cabin) to match the image data. Additionally, the
borders in Fig. 9b present noise and some data is missed. De-
spite this, the location of the primitive is accurately obtained
and the accumulators in Figs. 9d and 9e show a significant
peak.

Besides the computational requirements and noise reduction,
the consideration of noise sensitivity is important in applications.
The results shown in Fig. 5 illustrate the effect of the inclusion
of directional information in the accumulation process. In this
sense, point pairing techniques seem to be sufficiently robust
to eliminate the use of gradient information. Nevertheless, pro-
cessing time and the requirement that the points in a subset must
belong to the same primitive could make the use of gradient
information more attractive than point pairing. This idea is il-
lustrated in the example in Fig. 10, which shows the shape of the
accumulator for the four implementations when a shape is ex-
tracted from noisy data. Figure 10a shows the type of noise used
in the analysis. This image was generated by adding a random
edge point for each edge point deleted from the primitive. In
this image only 30% of the data pertains to the primitive. Figure
10b shows the same result obtained by each of the four imple-
mentations, superimposed on the edge data. The sensitivity of
each implementation can be seen in the accumulators shown in
Figs. 10c, 10d, 10e, and 10f. These results correspond to the
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FIG. 7. Example of implementation B. (a) Model shape. (b) Original image. (c) Edge image. (d) Resulting image. (e) The plane of the accumulator array for one
maximum. (f) Scale histogram for the maximum in (e). (g) The plane of the accumulator array for the second maximum. (h) Scale histogram for the maximum in
(g).

projection of the two-dimensional location accumulator into a
plane defined by thex-axis; the sequence shows the accumula-
tors obtained by varying the noise from 0, 30, 50, 70, and 90%.
In this figure it can be seen that although techniques which avoid
using edge direction provide a better peak for less noise, they can
present false peaks when noise is increased. Namely, the noise
sensitivity in the implementation that uses point pairing decays
faster than the implementation based on gradient direction in-
formation. As a consequence, false peaks can be more evident
in the techniques which consider pairs of points. An example
of this can be seen in Fig. 10d with a small peak developing
to the left of the main peak with 70% of noise. It is important

to notice that in this analysis the use of distance constraints for
pairs and triplets of points was avoided, and only two sets are
considered for each point in the image. In the case of pairs of
points and gradient information, six points were paired per pixel.
This consideration was made in order to show the results of the
straightforward formulations. Nevertheless, the decrease in the
sensitivity may be reduced by using filters that ensure that the
paired points belong to the same primitive. The implementation
of this may not be simple, and the effectiveness often depends on
particular applications. Additionally, the results only show the
noise sensitivity when there are points in the image which do
not belong to the primitive, and they presuppose that the noise
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FIG. 8. Example of implementation C. (a) Original image. (b) Edge image. (c) Resulting image. (d) A plane of the accumulator array for the first maximum.
(e) Scale histogram for the first maximum. (f) A plane of the accumulator array for the second maximum. (g) Scale histogram for the second maximum.

does not contribute to the error of the computation of gradient
direction.

6. CONCLUSIONS AND FURTHER WORK

A novel method for extracting arbitrary shapes has been de-
veloped. This method corresponds to the formulation of the HT

to model shapes characterized by elliptic Fourier descriptors
and is based on the extension of the formal definition of the
HT to embrace arbitrary shapes which are not analytically de-
scribed. The technique extends the descriptional power of the
analytic formulation of the HT beyond simple shapes, avoid-
ing the use of tables. Since the formulation maintains an an-
alytic representation, the method inherits the robustness of the
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FIG. 9. Example of implementation D. (a) Original image. (b) Edge image. (c) Resulting image. (d) A plane of the accumulator array. (e) Scale histogram for
the maximum.

original formulation of the HT and errors caused by a discretiza-
tion are minimized.

The new technique can be used to extract shapes with differ-
ing orientation and size, in a four-dimensional parameter space.
By using different strategies of parameter space reduction four
methods of shape extraction have been developed. These meth-
ods include the information of the position of a set of points as
well as gradient direction, and decompose the parameter space
into a three-dimensional accumulator and a single histogram.
The results demonstrate that the effectiveness of the accumula-
tion process is maintained even when image data is corrupted by
occlusion and noise. The choice between different implementa-
tions is a compromise: While the use of gradient direction allows
the development of faster algorithms, the limitations of local op-

erators can produce wide peaks in the resulting accumulators.
Nevertheless, the peak’s position is accurate and is maintained
even with severe image clutter. When using a collection of points,
the accumulator will present a narrow peak. Although this could
be interpreted as an increase in robustness, the technique based
on sets of points can suffer in noisy imagery and when points be-
longing to other primitives are presented. In general, when most
data in an image define a primitive, the implementation obtained
without using directional information appears better than when
directional information is included. Nevertheless, when the im-
age noise is increased, false peaks can emerge in the accumulator
array, reducing the apparent improvement in performance. This
effect can be reduced by incorporating some heuristic rules for
selecting the points in a set as well as by increasing the number
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FIG. 10. Noise sensitivity. (a) Example of noisy image (70%). (b) Result. (c) Accumulators for implementation A. (d) Accumulators for implementation B.
(e) Accumulators for implementation C. (f) Accumulators for implementation D.

of pairs of points formed per edge point, but with increase in
computational cost. The type of algorithms which combine both
the use of gradient direction and the information of the position
of a small number of points provide a sensible alternative for
general applications.

The implementations developed for extracting arbitrary
shapes result in a three-dimensional space. This implies a com-
plexity that might not meet the required speed for some applica-
tions, given current standard computational capabilities. Future
work focuses on a further decrease of the computational load
to make the technique more attractive. The basic idea is to con-
sider in the formulation the concepts of the methods developed

for reducing the computational load of the GHT. This can be
achieved in a similar way, since the concepts of the GHT were
considered in the presented formulation. Additionally, other ap-
proaches for computational reduction can be included in our
extraction algorithm. We are particularly interested in the po-
tential for extension to multiresolution descriptors. The capa-
bility of handling different levels of detail by manipulating the
frequencies in the Fourier representation of a shape might be
useful for shape extraction by using a multiresolution HT ap-
proach [38, 39]. Finally, other methods which extend the HT to
three-dimensional object recognition [29, 44] might provide a
suitable avenue for further research.
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