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According to the formulation of the Hough Transform, it is pos-
sible to extract any shape that can be represented by an analytic
equationwith anumber of free parameters. Nevertheless, the extrac-
tion of arbitrary shapes has centered on nonanalytic representations
based on a table which specifies the position of edge points relative
to a fixed reference point. In this paper we develop a novel approach
for arbitrary shape extraction which combines the analytic repre-
sentation of shapes with the generality of the characterization by
Fourier descriptors. The formulation is based on a definition of the
Hough Transform obtained by considering the parametric represen-
tation of shapes and extends the descriptional power of the Hough
Transform beyond simple shapes, thus avoiding the use of tables.
Since we use an analytic representation of shapes, the developed
technique inherits the robustness of the original formulation of the
Hough Transform. Based on the developed formulation, and by us-
ing different strategies of parameter space decomposition, various
methods of shape extraction are presented. In these methods the pa-
rameter space is reduced by using gradient direction information as
well as the positions of grouped edge points. Different methods rep-
resentacompromise between speed, noise sensitivity, simplicity, and
generality. Some examples of the extraction process on a selection
of synthetic and real images are presented, showing the successful
extraction of target shapes from noisy data.  © 1998 Academic Press
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1. INTRODUCTION

An important problem in image understanding is to extract
recognize global structures from local image data. In a mod
based paradigm [1], descriptions of objects are characterizegg
based on previous knowledge about their features. A commo

might appear in an image. Accordingly, objects are recognizec
by determining the value of the free parameters. This process i
equivalent to finding the optimum value of a cost function that

represents the fit of a primitive to image data [2]. An effective

way of computing the value of the free parameters is based or
gathering evidence derived according to the mapping definec
between the locus of a curve and the value of its parameters
This mapping constitutes the underlying concept of the Hough
Transform (HT) .

Inthe HT, a parameter space is defined as a multidimensiona
space where each dimension represents a free parameter of
primitive. The parameters of a particular shape are computed b
a common intersection of a set of loci in the parameter space
Each locus is defined for each image edge point and it comprise
all the points in the parameter space which define a primitive
that passes through the edge point. Only one point in each locu
defines the shape in the image and this must be the same point fi
all loci. The HT computes robustly the intersection of all the loci
as a maximum in an array which represents a discrete versiol
of the parameter space wherein the loci are accumulated. Th
technique provides adequate results even in noisy conditions o
where there are gaps in the boundary due to occlusion.

The HT was originally formulated to detect lines. It was then
extended to include more complex primitives such as circles
and ellipses [3-5]. Since these primitives are characterized by
an increasing number of free parameters, and this number ha
an exponential relationship with the size of the parameter space
most of the research in the HT focuses on reducing its compu:
tational requirements. Other research has considered differer
implementation details such as optimizing the search for lo-

A maxima, and the study of the bounding and resolution of

accumulator array which represents the parameter space. A
ensive review of the literature onthe HT can be found in [6, 7].
n this paper we focus on the extension of the HT to extract

fine complex forms. Thus, the extension of the HT extraction
tess to arbitrary shapes has an important significance. Thi
extension has been based on two main approaches. First, it |

* Present address: INRIA Rhone-Alpes, ZIRST, 655 Avenue de I'EuroppOSsible to constrain the HT technique to a feature detectior
38330 Montbonnot Saint Martin, France. method based on simple geometric primitives such as lines an

parameters which define all the possible instances of a shape
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EXTRACTING ARBITRARY SHAPES 203

quadratic shapes. In this approach complex forms are defirsgdhpes has preferred the use of a nonanalytic representation
following a structural feature decomposition characterized laysimple structural decomposition. This might have been moti-
these simple shapes [2, 8-10]. This type of decomposition is reeted by the impression that the technique will present an expo
ognized as necessary for an efficient representation of the HT fintial growth in memory and computation requirements when
and it relies on using additional postprocessing to extract coapplied to more complex shapes. Intuitively, since the analytic
plete models. In a second approach, an arbitrary model shapextension from lines to ellipses implies a large increase in mem
defined by a nonanalytic representation in a form of a table. Thisy space and computational effort, the analytic generalizatior
model shape extends the simple definition of analytic curves, td-extract arbitrary shapes appears to be infeasible. As such, tf
lowing entire shapes to be extracted. The original idea of ttosly viable alternative to extract shapes without performing a
extension was presented in [11]. The Generalized Hough Tradscomposition into simple geometric primitives is to follow a
form (GHT) [12] improved the technique by constraining the pazonanalytic formulation. Actually, the number of free parame-
rameter computation by including the orientation of edge pointisrs required in the HT is independent of the complexity of a
in the discrete representation. In this approach, when orientatgirape. The free parameters are related to the transformatior
and scale invariance are required, the extraction process involwdsch define all the instances of a shape that can appear in a
a four-dimensional parameter space. Invariance to scale and oniage. Here it will be shown that if the allowed transformations
entation is achieved by including straightforward transformare restricted to similarity transformations, then the extraction
tions of the tabular representation. Recent research has focysextess requires a four-dimensional accumulator space.
on reducing the computational burden of the technique [13-19].0Our approach to detect analytically defined primitives refor-
Both approaches have important features. Structural decamulates the concepts developed for the extraction of nonanalyti
position maintains a complete specification of the parts throughapes by using a parametric representation based on Fouri
an analytic form. Nevertheless, in this specification primitivedescriptors. The analysis of curves by Fourier theory has bee
may not be sufficiently complex to provide an adequate descrigsed inimage understanding for several years [23—33]. The mai
tion of the whole model. The importance of a complex charagiterest in this analysis has focused on computing features or de
terization of shapes has been previously discussed [20]. On sogiptors which provide a useful characterization for shape dis-
other hand, the nonanalytic representation extends the desceijimination. These descriptors are defined by the amplitude an
tion power via a complex characterization of shapes. This avoitthe phase of the harmonics obtained by expanding the parame
additional postprocessing, butimplies a partial knowledge of thie representation of a curve in Fourier series. Fourier descrip:
border points (limited by the discretization and the size of thers can be generated by different parametric representation
table). Additionally, the discrete nature of the nonanalytic repref curves. These representations have been defined via two a
sentation may cause distortion in the accumulation process gueaches. The first approach is to transform the two-dimensione
to scale and rotation transformations. information of a curve into a one-dimensional periodic function,
In this paper we present a novel approach that extends the which is expanded in a Fourier series [24]. The second approac
alytic form of simple geometric primitives to arbitrary shapesonsiders that the curve is described in the complex plane. Ther
This is achieved by reformulating the concepts of the extraa-Fourier expansion is performed in a complex-valued function
tion of nonanalytic shapes in terms of an analytic represen{a3]. The coefficients obtained with the second characterizatior
tion defined by the Fourier expansion of a curve. This analytice denoted as the elliptic Fourier descriptors of a curve [29].
representation provides a description where models can be suffiHere, we shall use elliptic descriptors to characterize arbitrary
ciently complex for adequate shape characterization. In additisinapes for primitive extraction. These descriptors were used il
to developing the mapping for the accumulation process for a diparametric deformable model [34] to detect objects which are
rect formulation of the HT, we will consider other formulationgoorly represented in terms of fixed shapes. Probabilistic con
based on constraining the parameter space by exploiting edtiaints derived from sample images were used to perform ¢
direction information and the position of a collection of pointdocal search in the parameter space. Although a local search is
Considering the formal definition of the HT [21], we intro-plausible alternative in a model-free interpretation, the parame:
duce a mathematical formalism which embraces the methddsspace potentially has many local maxima [2]. This makes ar
for extracting nonanalytic shapes. This allows us to generalieeidence gathering technique, which performs a robust globa
the HT to extract analytically defined arbitrary shapes. In theearch, more attractive when primitives are confined to rigid
ory, the original formulation of the HT can be used to extrachodels.
any primitive that can be represented by an analytic equationThe use of Fourier descriptors as a parameterized curve i
with a number of free parameters. Some research [4, 22] as HT has been previously considered. The model presented i
suggested that the HT can be generalized to extract arbitr§3$] highlights the bounding properties of the parameter space
analytic shapes by changing the equation of the curve under defined by Fourier descriptors; however, the underconstraine
tection. In fact, the evolution of the HT from lines to ellipsesature of the approach leads to an ill-posed technique with ar
corresponds to this generalization. Nevertheless, this concepbrmous parameter space. This technique appears to await f
has not been developed further, and the extraction of arbitrauye application to images. Here, we show that it is possible
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to develop evidence gathering techniques for arbitrary shapesere Ds is the domain of the function. For clarity, two types

in a model-based approach based on a representation of cunfeparameters are used as arguments of the fundisra):

characterized by elliptic Fourier descriptors. In order to obtaifhe parametes specifies different points on the curve, and the

an analytic mapping between the image space and the parampéeameter vectaa defines the shape of the curve.

space, we relate the function which defines the position of pointsAccording to the definition in Eg. (1) the problem of primitive

in a curve in a Fourier description to the definition of a nonamxtraction is to obtain the parameter ve@drom a set of points

alytic curve. This mapping replaces the table used in a discr&eln the HT, the extraction process is achieved by means of the

representation by a continuous function. This function provideslationship between the definition of a primitive and the param-

a compact and precise description of the border of a shape whatar space. This relationship is illustrated in Fig. 1. For a pointin

minimizes errors caused by a discretization. The formulation iZ-given whers takes a particular valus (i.e., z(sg, a)), a locus

cludes variations in shape (e.g., scale and rotation) as changgsis defined in the parameter space. This locus is composec

in parameters of a continuous function, avoiding inherent disf all the points which represent the parameters that define ¢

cretization errors which are produced when transformations gmémitive which passes through the poifto, a).

performed on a tabular description. If the functionz(s, a) is invertible, the locug\s, can be defined
This paper is organized as follows. In Section 2 we exterad

the formal definition of the HT to include the concepts of the

extraction of arbitrary shapes. In Section 3 we introduce the pa- As, ={Z (s Zs0.a))|s € D}, s € Ds. 2)

rameterization of shapes by elliptic Fourier descriptors. A set of

free parameters are obtained by app|y|ng similitude transforma.The inverse function defines the kernel of the transformation

tions on arbitrary shapes. By following the formal definition otnd is specified by the curve under detection. Inthe HT, the locus

the extraction of nonanalytic shapes presented in Section 2, fxeis defined for aset of edge points in animagkthese points

obtain an analytic formulation of the HT for arbitrary primitivesare represented by a primitive defined by a parametric function,

Section 4 is devoted to achieving a reduction in the parametBen! = {A(t) |t € D} and the locusA, can be redefined as

locus by exploiting the information provided by gradient direc- . _

tion and the position of several image points. In Section 5 we Ai={Z Y(s.Mt))|se Ds}, teD. )

discuss the implementation and we present the results for the

new formulation applied to synthetic and real images. Finally, One point inA; defines the primitiveZ, and this point must
Section 6 includes conclusions and further work. be the same for all the loci obtained for any valuet o€onse-

quently, the vectoa in Eq. (1) corresponds to the intersection

of the loci A; defined for all the points ih. That is,
2. ARBITRARY SHAPE EXTRACTION VIA

THE HOUGH TRANSFORM a— ﬂ A @)
2.1. Hough Transform for Nonanalytic Shapes <
This intersection is computed in the HT by counting the num-
of times that the traces of the lo&i pass through the cells
n array defined congruent to the parameter space. The arra
contain a peak where different loéi; intercept. The prob-
em of primitive extraction is then transformed into the problem
of searching for local peaks in an array. The robustness of the
technique is based on the fact that a peak will appear if the im-
agel contains points which do not belong to the primitiZe
_ (i.e., noise) or if it contains only a subset of all the points (i.e.,
Z = {z(s,a)|s € Ds}, (1) occlusion).

In this section we extend the formal definition of the H
presented in [21] to encompass the concepts of the extract
of arbitrary nonanalytic shapes. Instead of representing sha E%
by using an implicit form of a curve, here we characterize t I
extraction process by a parametric form. Thus, a primiivie
defined as the set of points in a continuous curig a) such
that each point is identified by a paramedefhat is,

Z.(5,2(5,3))

v
—_— )
As,
z Z(50,8) Asy

Image space Parameter space

FIG. 1. Definition of curves in the image space and parameter space.
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The accumulation process in the HT can be formalized by ushapes by
ing a matching function which provides a value to be - _
accumulated for each point iA,. That is, for a poinb in the Ri={\—-ws[BeDs}, teD. 9)

arameter space and a paihin the setA;, . . .
P P P t This expression corresponds to a transformation of the set o

o 1 ifb=d pointsW composed of a translation to the pointand a reflec-
D(b,d) = { - (5) tionaboutthe origin. In the Merlin—Farber method the reflection
0 ifb#d is defined as a rotation by radians. Thus, the extraction pro-

cess is performed by accumulating the traces of a rotation of th
IT‘%ﬁbresentatiofW translated to each point.

By defining Eq. (9) as the kernel of the HT, it is possible to
rewrite Eq. (7) for a nonanalytic representation as

Thus, based onthis functionitis possible to determine whet
a pointb should be incremented according to a lo&ys That
is, the HT of the function.(t) can be defined as

Sir(b) = / / D(b, Z-X(s. A(t))) ds dt (6) Swb) =" > D(b. A — ws). (10)

t€D| BEDB

anda can be computed by finding a local maximum in this By comparing Egs. (10) and (7) it can be seen that in order tc
function. In implementation, this expression is discretized kyather evidence in the same way as in the original formulation of
the image and the accumulator array. Thus, the integrals ge HT, itis necessary to provide a shape representation obtaine
replaced by summations and the values.() are given by a by the sampling defined by the discretization in the paramete
set of discrete edge points. In this case, the possible poiriis space. That s, the pointsW must correspond to the discretiza-

correspond to the cells of the array which represent the paramei@f of the functionz (s, 1;). Since the parameter space and

space. A discrete version of the HT can be written as the image space are congruent, the method requires that the di
_ - - crete representation corresponds exactly to a discretization c
Srr(b) = Y Y Db, Z7X(s, &), (7)  the shape in the image.
teD) seDg

2.2.2. Generalized Hough TransformBallard [12] improved
where the summation is defines a set of points congruent tahe Merlin—Farber method by including gradient direction in the

the discretization of the parameter space. nonanalytic representation of a primitive. In the GHT, the locus
_ _ in the parameter space defined by each point in an image i
2.2. Nonanalytic Representation of Shapes reduced to a set of plausible values constrained by edge direc

2.2.1. Hough Transform for nonanalytic shapedhe use tion information. That is, in Eq. (10) only a subset of points
of the HT based on an analytic representation of primitives h4&lich formW are considered in the definition & (b). These
been developed for lines and quadratic forms. Within this reBOints are determined by comparing the gradient direction of &
resentation, the extraction of arbitrary shapes is constrainedPf§nitive and the gradient direction computed on the pointin an
a structural feature method where objects are decomposed iftg9€- This makes the extraction process faster and increases r
parts based on simple shapes. In general, a better representél‘i’&tuness by reducmg th_e probability of obtaining fal_se instance:
of objects can be obtained by more complex shapes which cofh& Shape due to coincidental arrangements of points [12].
prise more elaborate components. These components might cof-N€ GHT can be formulated by considering the derivative at
respond to arbitrary shapes, and extend the descriptional potf& Pints defined by the nonanalytic representationin Eq. (8). I
of the extraction process by taking advantage of all the infdfl€ gradient direction; in a poinizg is obtained by a functiop,
mation of a shape. The extraction of arbitrary shapes by tH¥¥NZg = ¢(zs). Since the points in Eq. (9) must be constrained
HT, without decomposition into simple primitives, has converf0 those points where the gradient directionindenoted as,
tionally been based on nonanalytic representations [11-19]. Tii§dual to the derivative ips, theni; = ¢(zg). By considering
type of representation was introduced by Merlin and Farber [11f}€ value ofR as constant, the relationship between the gradien
In their method, a model shape is described by a discrete sefl5ction of a point in an image and the definition in Eq. (8) is
pointsW = {wg|B € Dg}, whose positions are defined relatived!Ven by
to an arbitrary reference poiR. Thus, the primitive in Eq. (1)

can be redefined as a set of points obtained by translating the set A =¢(28) = ¢(we). (11)
Wto R Thatis, By using this expression it is possible to redefine the locus in
_ - _ Eq. (9) as the set of points
Z ={zg|zg = R+ wg, B € Dg}. (8) B
R ={—¢ ')}, teDi, (12)

This definition of a shape can be considered in the gathering
process of the HT by identifying the poiRtwith the parameter which defines a version of Eq. (3) for the GHT. Notice that in this
ain Eq. (1). Thus, the kernel in Eq. (3) is defined for analytiequation the inverse functigm (1) can provide several points
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of the representatiow. That is, several points W might have g image space f  parameter space
the same slopg;. By considering Eq. (12), the accumulation
process defined by the GHT is given by

Serr(b) = ) " D(b, A — 91 (2)). (13)

t€D|

This equation contains only one summation because the lo []
cus of the parameter space is reduced. Namely, the kernel do i
not define all the points of the representation, but only those |
obtained by the inverse functigm(;). In Ballard’s method,
this function is stored in a table (R-table) which is indexed by
the gradient direction computed at a point in an image. Tha '
is, given the gradient direction computed at a point, a/geis

determined. This set contains all the entries that have the san ! talm
gradient direction. Thush: = {wg | ¢(ws) = A, B € Dg}. N Iiﬁ“'
The points inW; are mapped into the parameter space by the —~ A 1
relationshipR, = {A; — wg | wg € W;}. That is, an alternative a:
version of Eq. (13) can be written as, Pf“l“l' =2 :
Serr(0) = ) Y D(b, A — wp). (14)
teD; wgeW;
| I O
i | 1 [y

The accumulation processes defined in Eqgs. (10) and (13
show that the algorithms for gathering evidence based on nor
analytic representations correspond to special implementatior
of the HT. The accumulation defined in Eq. (10) will be identical e
to the HT whenW is sampled, according to the discretization in i = ]
the image. In the case of Eq. (13) the same requirement implie g e HIH
that the values; must have at least one associated valug/in e L e
through the inverse functiop=1(1;) (i.e., Vi, W # {@}). L1l

.FOI‘ primitives which do not suff(_ar any tr,ans,formatlon _(e_'_gPIG. 2. Example of a distortion due to straightforward transformations on a
without change of scale and rotation) their discrete definitiQRnanalytic representation.
can be based on a table obtained from a template shape sampled
by the quantization in the image. Nevertheless, it is difficult to

obtain an adequate representation for a transformed shape baggd 4 the values in the discrete representation. That is, for a
on this definition. A straightforward redefinition of the table fof)oint in a shape, different gradient directions can be computed

transformed shapes can cause difficulties in the accumulatige, the shape is transformed and discretized. Thus, althougl

process. In the case of the accumulation process in Eq. (10), §4@ honanalytic formulations for primitive extraction correspond

points can merge into one cell, or some cells can be missed. TS ticylar developments of the HT, which is itself optimum in
problem of distortion is illustrated in Fig. 2. Figure 2a shows thg ¢ of detection error [4], the discrete nature of the approach
nonanalytic representation of a shape as a set of points in@f,ces robustness with respect to the original formulation. As

image space. Figure 2b shows the points in the discrete para@‘ébnsequence, these techniques can suffer when the image co
ter space obtained by the application of the mapping definedt(jﬂns noise and shapes are occluded [36, 37].
Eq. (9). The points in Figs. 2c and 2d were obtained by a straight- '

forward scale transformation of the discrete representation and

show the type of problems arising due to the discrete represer?’—' ANALYTIC REPRESENTATION OF SHAPES VIA

tation. In the expanded region in Fig. 2c, it can be seen that two FOURIER DESCRIPTORS

points appear in one discrete cell, while in the expanded regigrl

in Fig. 2d not all the cells (through which the curve passes) aré

defined by the discrete representation. The first step for performing a generalization of the HT based
In the case of the accumulation process in Eq. (13), when an analytic representation is to obtain an equation of a curve

a primitive suffers transformations, and due to the limitationshich can represent arbitrary model shapes. In general, thert

of the computation of gradient direction by local operators, thexist many ways of defining a curve. In this paper the exten-

gradient direction values may not necessarily correspond &ien is developed by using a parametric representation base

. Fourier Parameterization of Arbitrary Shapes



EXTRACTING ARBITRARY SHAPES 207

on Fourier descriptors. This type of representation provides a a
accurate and compact characterization of curves, and can |
defined by a vectorial parameterization which is adequate fa
the HT formulation developed in the previous section. Desir-
able properties such as convergence and generality have be
widely recognized in their application to shape discrimination.
An interesting computational feature is the direct access to fre
guencies, which facilitates the description of curves at multiple
scales [33]. This feature is important because it gives the pos
sibility of later use of multiresolution approaches of the HT b c
[38, 39]. The main motivations for using Fourier descriptors are /2 T
the generality of their definition, the simplicity in the calculation
of derivatives, and the vectorial parameterization which can b~ .«* .
directly related to nonanalytic representations. P

The most direct and flexible representation of an entire shapf \ 0
is a parametric form of a curve. This representation can be matt, 2
ematically described by a vector function which defines the po ™. o
sition of the points in a curve by their components in two or-  “«.., _ .. v
thonormal axes. That is,

w

FIG. 3. Example of a contour defined by elliptic Fourier descriptors.
c(s) = cx(s) Uy + cy(s) Uy, (15) (a) Closed contour. (b) Open curve defined by a subset of points. (c) Oper
curve defined by a double trace.
whereUy =[1, 0], Uy =[O, 1] are two orthonormal vectors and
the values of the parameteserve to distinguish different points
on the curve. elliptic phasors (i.e.,{ p2, and g). Each rotating phasor defines
In order to obtain a representation of arbitrary shapes itas ellipse, and each ellipse is characterized by a different valus
possible to parameterize the cu(s) by the expansion of the of k. Although this Fourier expansion was originally devised for
components,(s) andcy(s) in Fourier series. Then, the curve inrepresenting closed contours, the extension to open curves ce
Eqg. (15) will be represented by its Fourier expansion given Iipe achieved easily. Two possible representations of open curve
the function are illustrated in Figs. 3b and 3c. In Fig. 3b the entire curve is
_ _ _ defined but the start and end points restritd a set of values
v(S. v) = x(S, v3) Ux + vy (S, vy) Uy, (18)  \which trace a particular segment. In the example in the figure

whereuis a parameter vector which characterizes the form $ihens < [0, 3) one quarter of the curve is obtained. In Fig. 3¢
the curve and is defined by the elliptic Fourier descriptors [241€ OPen curve is composed of a double trace in the opposite d
28, 29]. This vector is decomposed into two subsets of paranfgction. In this case, the curve must be parameterized such th
ters: The vectors, andvy, which define the components of thethe trace of the arc in one direction is definedser[0, ), and
function along the andy axes, respectively (i.e.,= v, U 1y). the curvel|s.retrace.d in the qpposne dlrectlonsfgr [7, 27).

Fors e [0, 27), the Fourier expansion af(s) andcy(s), vx The elliptic Fourier descriptors of the curve in Eq. (15) are

andvy, can be expressed in trigonometric form as defined by
n 1 g
ux(S. U) = ) _ 8k COSKS) + by sin(ks). B = — / cx(s)cosks) ds,
k=t 17)
_ . 1/
vy(S. y) = Y aykCosks) + by sinks), By =~ / cy(s)cosks) ds,
k=1 .
(18)
for ;X = (axl, bxla ..., Axn, bxn), v_y = (ay]_, byl, . ayn, byn), N E T .
andnis the maximum frequency ir{s). The DC terms have been bk = _,,CX (s)sinfks) ds

omitted since the curve is defined with its center on the origin

of the coordinate' system (i.e., Withput transla'\tiqn). Each termin by = 1 /n o (S)sinks) ds.
the summations in Egs. (17) describes an elliptic phasor. The el- _

liptic locus is defined by four parameteggg, ayk, byk, byk) and

rotates at a frequency determinedibyAn example of a shape Generally, the computation of these values must be performe:
generated by Eq. (17) is shown in Fig. 3a. In this figure, a poiftr a model shape stored in a discrete image. If a model is
Ainaclosed curve is the result of a vectorial summation of threemposed ofn points, the integrals can be approximated by

T
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summations. That is, In this definition, the Fourier coefficients in the vectoygand
vy Which characterize the form of the curve in Eq. (16) are not
2 M o considered as parameters ®ft, ax) and¢y(t, ay) since they
Ak = o ZXS co ) are constant for all the curves which constitute the family of
s=1 primitives. Namely, the curves are parameterized only by the
parameters in the transformation. Thus, by taking this param-

m
ayk = %Z Vs cos(kS 277), eterization, the extraction problem can be defined based on :

s=1 geometric primitive obtained by the orthogonal composition of
(19) the functions in Eq. (21). That is,
2 & . 2
Boc = o ;XSS'”Q‘SH)’ Z(s. @) = £u(S. &) Uy + 4y(s. ay) Uy, (22)
m . o for a = (ag, bo, I, p). The extraction process is performed by
byk = m Z Ys S'”<ksﬁ>, determining the value of the parametari this equation that
s=1

best match the models, v) in Eq. (16) to image data.

where ks, ys) represents the position of a pointin amodel shapg.2. Hough Transform for Shapes Represented
Notice that according to the Nyquist sampling theorem the pos-py Fourier Descriptors

sible values ok are the integers between 1 and2 . That s, the h i ‘ Ish h . .
value ofn in Eq. (17) is given byn/2 andk € {1, 2, ..., m/2}. The extraction of a model shape characterized by Fourier de-

A particular form of the computation in Eq. (19) can be basés&:riptors can be formulated ba_\sed on the_ gathering_ evi_denC(
on the incremental change defined by a set of points organi%&cess defined by the HT. In this section this forr_nulanon is de-
in a chain-coded contour [29]. veloped by extending the concgpts of .the extraction of arbitrary
Since the problem of primitive extraction focuses on recognigp nanalyyc shapes presented n Section 2 to sha-pes represent
ing a class of shapes, the curve in Eq. (16) must be parameteri ¥&nalytlc curves. Inorderto define the HT for arbitrary analytic

to form an appropriate shape model. That is, the Fourier coeﬁhapes itis necessary to establish thg kernel of the' transforma
cients will be used to describe the essential features of a fa in Eq. (3). This kernel can be obtained by a particular form

of primitives which will be parameterized by a transformatioff! € Parameterization in Eq. (22) which defines a curve without
that generates all the instances of objects that might appeal'1fi translation term. This curve will be denoted by

an image. Each member in the family will be characterized by _

particular values of the parameters of the transformation. In the w(s, |, p) = &(s,1, p) Ux + §y(s,1, p) Uy, (23)
extraction of rigid parts, instances of shapes are formed by the . ,

different appearance of an original shape which has been rotafifre the functionsy(s, I, p) andéy(s, I, p) are given by

and scaled. These changes correspond to similarity transforma-

tions. A curve parameterized by similarity transformations re- &(s,1, p) =19(s, p), (24)
quires four parameters: Two parameters define its position; one £y(s,1, p) = Ih(s, p),

parameter specifies the scale; and the fourth parameter describes

the rotation. for g(s, p) andh(s, p) which are two functions that define the

The parameterization of the curve in Eq. (16) by a similafptation around each coordinate axis. That is,
ity transformation can be obtained by defining two orthogonal

functionsgy (s, ax) andzy(s, ay) according to the matrix expres- a(s, p) = vx(s, vx) cosp) — vy(s, vy) sin(p),

: 25
ston h(s, p) = vx(S, 73) SINe) + vy (S, Ty) COS). (3)

[¢x(s, ax) &y(s ay)] Thus, the definition oE(s, a) in Eq. (22) can be rewritten in

i t fw(s, |, p) in Eq. (23
{30 bo] +1[ux(s. 52) vy(s,ay)][fﬁﬂ‘(;’) E;l“g))], (20) EMeOMts 1 p)inEa. (23)as

Z(s, @) = (ao, bo) + w(s, I, p). (26)
whereay = (ao, I, p), ay = (bo, |, p), the point o, by) describes
a translation, the value ofis a scale factor, and specifies the
rotation. Hence,

Since this equation corresponds to the function which defines
the setZ in Eq. (8) with the reference point given by the values of
(ao, bp), then the kernel and the accumulation process in the HT
—\ — —\ can be obtained analogously to Egs. (9) and (10), respectively
Ex(S. &) = 20 +1(vx(S, 1) €OSP) — vy (S, vy) sin(p)), 21y Nevertheless, in this case the locus in the parameter space |
Zy(s, ay) = bo + 1 (vx(s, vy) sin(p) + vy(s, vy) cOsp)). defined by an analytic representation. According to Eq. (3), the
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locus in the parameter space for an analytic representation, wign
the points in the image are definedlby: {A(t) |t € D, }, is given

b , 3éx(s, 1, p) /
Y E(s 1 p) = = =1g((s. p),
A ={i—w(sl, p)|seDs, teD (27) € (2S| ) (30)
= - y 1y ) |- , s 1y O ’
o ) §(s.1.p) = =52 =1n'(s. p).
This kernelis based on a continuous functia(s, T, p) whose _
parameter$ and p define a curve in specific orientation andnd the tangent angle is
scale. Then, if each possible instance of the function is consid- )
ered, the HT for the imagk can be defined by w'(s, p) = tam (h/(s, P)) 7 (31)
g'(s, p)
S(B.1.)= [ [DB.0) - B 1 p)ckds  (28) where
- g'(s. p) = (vi(s. vx) coso) — vi(s, vy) sin(p)),
for b = (ag, bp) . This expression combines the analytic form ) f _X . /y _y (32)
of Eq. (6) with the kernel of an arbitrary shape defined in the ~ N'(S, £) = (vi(S, vx) Sin(p) + vi(s, vy) cOsf)),
accumulation process in Eq. (10). The discrete version of this
formulation is analogous to Eq. (7). That is, and
n
Sr.1.p)= > Y Db A —w(s.l.p). (29 vi(s. vx) = > K(—ayk Sin(Ks) + by cosks)).
teD, seDsg k=1 (33)

n
. . = . (s, vy) = k(— i .
Thus, given animage point the accumulation process traces vy(S vy) ; (—aycsinks) + by cosks))

a curve Ay — w(s, I, p) in the plane &g, bo) in the four-dimen-
sional array defined byag, bo, I, p) . The parametric nature of  According to Eq. (11) the gradient directiapcomputed at an
w(s, |, p) provides an adequate representation for the fast ajpghge point must be equal to the gradient direction at the poin
accurate computation of the trace of the curve in the plane [48{s, a). By considering the definition in Eq. (26), the valuepf
Nevertheless, the dimensionality of the parameter space impogsgs be related tas(S, I, p) by A = o(Z(s, ) = p(w(s, 1, p)).
an important constraint which implies that unless the numberphat is,
parameters is reduced or the quantization of the parameter space
is coarse, it will be necessary to consider an implementation that 1 {(Vx(s, vx) sin(o) + vy (s, vy) cOS()
includes other HT developments. For example, extensions baded w'(s, p) = tan < e = e o )

: : ) (S, vx) €Os(o) — vi(s, vy) sin(p)
on a parallel implementation [7] could provide accurate results
in a reduced processing time. An alternative way of reducing (34)
the computational requirements is to decompose the parameter
space by the inclusion of gradient direction information or the In order to obtain the inverse mappingds,1, p) = ¢ (1),

use groups of edge points. this equation is expressed in terms of a funcjiamhich depends
ons,
4, PARAMETER SPACE REDUCTION
M =v()+0, (35)
4.1. Inclusion of Gradient Direction Information for
By following the development in Section 2 it is possible to o
consider the use of gradient direction information to constrain (s) = tan? vy(S, vy) (36)
the locus of the parameter space defined in Eq. (29). Gradient Y v (s, vx) /)

direction can be included in the formulation of the extraction
of arbitrary analytic curves by rewriting Eq. (29) in terms of Then, based on a value &f it is possible to obtain a set of
the mappingy—1 in Eq. (12). In this case the mapping must bealues ofs given by
defined according to the Fourier representation of a curve.

The gradient direction at a poimi(s, |, p) will be denoted s=y ' —p) (37)
asw'(s, p). Thatis,w'(s, p) = ¢(w(s, 1, p)). This value can be
obtained as the tangent of the angle defined by the tangent vectdn general, this mapping does not have a closed-form solutior
functionw’(s, 1, p) = &(s, I, p) Ux + &y(s,1, p)Uy. According and it must be solved using a numerical method. According
to Eq. (24) the components of this vectorial expression are givienthe definition ofy(s) in Eq. (36), the solution of Eq. (37)
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corresponds to the zeroes of the equation That is,
tan(; — p)vy(s, vx) — v}(s, vy) = 0. (38) (s, p) = tarr L (vx(s, vx) COS(0) — vy (S, vy) sin(p))
’ ux(S, vx) Sin(p) + vy(s, vy) cosfp) )’
Since this equation only has one variab® &n adequate (44)

(vx(s, vx) €OS() — vy (S, vy) Sin(p))?
+ (vx(s, vx) Sin(p) + vy(S, vy) COS())?.

Eq. (38) is independent of scale, consequently it only hasto b
computed for each value gfin the accumulation process.

By considering Eq. (38), the inverse function in Eg. (37) can
be expressed as

estimate of the solutions can be easily determined. Notice that
I, p) = |J

Analogous to Eg. (35) we can express the anf(s, p) by

P using a function which depends enThat is,
Yy (A —p)

= {s|tan(; — p)v(s. 1) — vy(s. vy) = 0.s € Dg}.  (39) ¥ (s, p) = ¥(s) — p, (45)

Thus, the functionp=1(1}) is obtained by substitution of the for
values given by this equation in(s, |, p). That is, the points in

the model with edge directiox{ are given by w(s) =tan! (UX(S’ IZX)). (46)
vy(S, vy)
) =wly g — o) 1, p). 40
¢ k) 0= 21 ) (40) Based on this function and on the definition of the parameter
Accordingly, the locus in Eq. (27) constrained by edge direg-in EQ- (37), the anglé/ (s, p) can be reparameterized to be
tion is redefined by independent o$ by the composite mapping
A= —w(y X3 —p)l.p)}, teD,,  (41) YA, 0) = Wy 0 — p)) — p- (47)
and the HT in Eq. (29) becomes This mapping obtains the tangent of the angle of a pointin the

model from the derivative computed at a point. Figure 4 illus-
Sors(b, 1, p) = Z D(b, A — w(y (A — p).1,p)). (42) trates this mapping. Figures 4b and 4c represent the function:
{eD, ¥ andy for each point in the curve shown in Fig. 4a. Figure
4d represents the composite mapping and displays the result ¢
In this expression, the inclusion of gradient directional infothe parametric functiom/(s), ¥(s)). According to Eq. (47), a
mation reduces the number of points to be accumulated in #gue A; can be mapped int@ by first finding a value of in
parameter space: Instead of considering all the points definedi functiony —* in Fig. 4c and then using this as the parameter
w(s, 1, p), only some pointsu(y ~*(x; — p), |, p) are used. This in the function¥ in Fig. 4b. It can be seen that for a particular
decreases noise in the accumulator array. Naturally, this requivatue of; (e.g., 1.25) there exist several possible values. of
the computation of directional information which can itself b@s an example, the mapping fer= 4 is mapped (into Fig. 4b)
susceptible to noise. to obtain the valuey (s, p) = 1.75. This is the same result as
In general, the inclusion of gradient direction information imbtained by the composite mapping in Fig. 4d.
analytic formulations of the HT has been used to reduce theBy considering Eq. (26) we can relate the valueyds, p)
dimensions of the parameter space (e.g., [5, 41-43)). In the p&@éd the locus in the parameter space by
vious formulation, although the parameter space is incremented
by using more selected information, the accumulation process Yt —bo _ h(s, p)
is still in a four-dimensional space. Nevertheless, the space can Xt —ao 9(s p)
be reduced since the paramesehas been eliminated. Then,
any other parameter can be used to draw a curve in a threg-1, = (X, Vo)-
dimensional parameter space. This idea can be explained bfhen, by substitution of the mapping in Eg. (45), the locus
considering the definition ab(s, I, p) in the angle—magnitude in the parameter space given by Eq. (48) can be redefined by
form. The vector defined by (s, I, p) can be expressed in anline. That is,
angle—magnitude formy(, r) according to Eq. (23) as

h(s, p)
a(s, p))’

= tan@ (1, p)) (48)

Ac = {b]y; — bo — (% — ao) tan@(y ~(x — p)) — p) = 0},
teD,. (49)

Y(s, p) =tant (

5 5 (43) Based on this locus it is possible to gather evidence of the
r(s.1,p) = 1vV/g%s. p) + h2(s, p). three parametersy, by, and p; in general (except for circles
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FIG.4. Example of the composite maip(y ~1(1)). (a) Example shape. (b) Function of the angle for the model in (a). (c) Function of the derivative for the mod

in (a). (d) Composition of the mapping shown in (b) and (c).

and ellipses) one value af will define several lines. By repara- In order to evaluate the denominator of this equation, the
meterizing the line in Eq. (49) by a parametes x; — ap, an  values ofu,(s, vy) anduy(s, vy) can be computed by taking the

alternative form of the HT in Eq. (42) can be defined by values ofs defined according to the tangent of the angle in Eq.
_ _ (48). That is,
Sors(b, p) = Z Z D(b, At — (% — T, Wt _ _
teD; T Vi — bo _ vx(S, vx) Sin(p) + vy(S, vy) COS() (52)
—ttan@@ i — p) — p),  (50) X —a k(S vx) COSp) — vy(s, vy) sin(p)’

which is equivalent to gathering the evidence given by the tra@8d the value o corresponds to the zeroes of the function
of the lines in Eq. (49) for all € D;. _

The value of the parametecan be obtained by performing a Yt —bo — tan(,o +tan ! <vy(5v ‘iﬁ))’ (53)
second stage in the accumulation process. Once the values of the Xt — @ vx(S, vx)
parametersy, by, andp of an instance of a shape in an image
are known, the parametecan be solved by using the magnitudévhich can be expressed as
expression in Eq. (44). That is,

a(ht, p)

Yt — bo — (% — @) tan <p + tan* (”y(s’ JV))) } (54)

vX (Sa ITX)

(Xt — a0)? + (yr — bg)? (51) =1s
A/ (0x(5.0) COS(p) — vy (5.y) SiN())? + (v (S, V) SIN() + vy (S.1y) COS())2
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Thus, the position of a poirit; in the image is used to ob-the angular relationship between the poirgsandi,. If the
tain the value o6 which definesu, (s, vx) andvy(s, vy). These components of these points are definedihy= (x,, y;,) and
values are used in Eqg. (51) to gather evidence of the parameter= (x,, ¥,), then the tangent of the angle with respect to the
[ in a histogram (i.e., one-dimensional accumulator array). Theaxis of the line which joins the two points is
maximum in this histogram corresponds to the valué fur
the instance of a shape defineddyy by, and p. Accordingly, g Vi, — Yy (57)
Egs. (50) and (51) define an evidence gathering technique for T X, — Xy
arbitrary shape extraction which requires a three-dimensional ar-
ray for the accumulation of the location and rotation parameterspy taking the definitions ok, x,,, yt,, andy;, from Eq. (55)
and a histogram for computing the scale. and the decomposition af(S; |, p) in Eq. (23), this relationship

. becomes
4.2. Use of Sets of Points

In the previous section we have shown how the inclusion oBéx(sz, |, p) — &y(S2, 1, p) — Béx(s1, I, p) + &y(S1, 1, p) = 0.
gradient direction information in the formulation of the HT can (58)
be used to reduce the parameter space required in the extraction
of arbitrary shapes. The four-dimensional parameter space degased on this equation it is possible to define a function
fined for primitive extraction was reduced to athree-dimensiong! _ (s, o). By considering the definitions @k(s, I, p) and
parameter space by defining an extra equation which determi@)g(%, I, p) in Eq. (24) this function is given by
the angular relationship between gradient information in an im-
age and a model shape. This idea can be extended by usig, p)

the equations provided by other information within an image. (52, 5.)(B cos(p) — sin(p))
This section shows three alternative reductions in the parametes {sg ?‘ Sz( A )(B sin(o) + cos)) + d(se. 1. p) = O}’
space that are obtained by combining the information provided Vy(S2: vy S0 p) = (59)

by several edge points. Use of simultaneous points to constrain
the parameter space has been a common approach in the extédered(sy, |, p) = —B&(sw |, p) +&x(s1, 1, p) is a constant
tion of analytic curves by the HT. In the case of simple analytterm so the only variable & .

curves such as lines, circles, and ellipses, there exist geomeBased on this definition, it is possible to express the solution
rical relationships between groups of points and parametes$the system in Eq. (55) independentlyssf That is,

These relationships can be exploited to obtain analytic forms of

HT mappings which redu.ce the dimens?o.nality of thg parametgr 19();17 )th, I p) — {51 | k_tl _ ;tz —w(sw 1, p)

space. In the case of arbitrary shapes, it is not possible to define N

constraints by geometric properties of shapes, and consequently, +w(q(st, p).1,0) =0,5 € DS}- (60)

it is necessary to use a more general formulation.

Instead of using gradient direction information, the parameterThus, if we consider once more the components in Eq. (24),
space can be reduced by the constraint imposed by the positiod equation in this function can be written as the system of
of a second point. This provides a pair of equations which can eguations given by
solved to obtain the values of one parameter. By considering two

image points.,, andk,, the locus in the parameter space defined X, — X, — 9(s1. p) +19(a(st, p), p) = O,
in Eq. (27) is constrained to be the solution of the intersection (61)
Atl,tz = Atl N A_‘tz! for At1 = {)\'tl - J(Sﬂ.» |, :0) | S € Ds}a tl € ytl - yt2 N |h(51, IO) + |h(q(51, p)’ 'O) - 0’

D, and A, = {A;, — w(s, |, p) | S2 € D}, to € Dy. That is, the o _ _
locus in the parameter space is constrained by the solution@®d the function in Eq. (60) can be defined independehtsf
the system of two equations,

- - y'[l - ytz
(0, bo) = u, — (s 1 p), PG ) {Sl ‘ h(ss. £) — h(a(se. 7))
_ _ (55)
(a07 bo) = )\'tz - w(SQ’ |7 p) th — th 0 D 62
TG p) — 9@ o)) € } (62)

Accordingly, the intersectioraf, bp) is defined by the vecto-

rial equation Thus, the locus constrained by a pair of points is given by

My — Aty — w(s1, 1, p) + w(s, 1, p) = 0. (56) - - -
R Aut, = {r—w (9 (A, A, 0),

The solution of this equation can be obtained by considering T (Ays My 05 9 (htrs A 0))s 0))s ti o € Dy, (63)
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for as

9 (hty» Ays M) =
ytl_ytz t : :

1—‘()‘_‘tl’ };2’ o, S) = : (64) Yt — Ve Xty — Xt
h(s. p) = h(a(s, ). ») Sl‘h(sl,m—lh(q(zsl,p),p) B CHErCCmm Y
Yiu— Vg _ Xtg — Xtz -0 S € DS
Accordingly, the HT is defined in a three-dimensional space ")~ NPELeke) — asnp) = g(p(ssp)0) (67)
as

Based on this definition a locus similar to Eq. (63) and an
_ o o accumulation process similar to Eq. (65) can be obtained. Th
Sorae(b, p) = Y D(b, a, — w(P (A Aye ). only difference is that the new function will reduce the curve

t,teD) traced for each valug in the plane &, bp) into a single point.

o _ Namely, three points define the traces of two curves in the plane
I (A, Ao 0, F (At As 0)), 0)). (65) (a0, bo) whose points are distinguished by the valugofrhe
constraints in Eq. (66) specify the conditions that must be sat
- isfied by the parametey in order to define an intersection of
In this definition the value of;, obtained from? (i, At,, 0),  the two traces. Since the HT searches for the intersection of al
defines a trace of a curve in the plamg, (o). This locus de-  the curves instead of gathering evidence of the traces of the tw
pends orp, and therefore it must be accumulated in a diffecyrves, only their intersection point can be accumulated.
ent plane &, bo) forming a three-dimensional parameter space |n another alternative formulation we can consider the use
(a0, bo, p). In a complete extraction process, a second acCun$-an extra point together with edge direction information. In
lation stage, defined according to Eqg. (51), can be used to obt@jig case the locus in the parameter space is constrained by tt
the parametef. Thus, it is possible to reduce the parametghtersection of two loci defined by Eq. (49). That s, the locus in
space either by using directional information or by taking paits. (49) is redefined by, (, = A, N A, for
of points simultaneously. Both approaches constrain the param-
eter calculation by including an extra equation which provides A - {5| Vi — bo — tan(W (y 1A, — p)) — p)
more information about the geometry of a shape. '
In a further extension we can consider another point to con- X (Xt1 - aO) = 0}’ e D,
strain the parameter space by three equations. The extra con- p, — {5| Yi, — bo — tan(¥ (y 12}, — p)) — p)
straint replaces the curve traced in the plamgl§y) by a single :
point. This can be used to reduce noise in the accumulator array X (th - ao) = 0}’ 2 € D.
or to further reduce the dimensionality of the accumulation array _ _ _ ) )
by considering more selected information. By including a third The l0CusAy, 1, is obtained by computing the intersection of
restriction in Eq. (55) the locus in the parameter space is cdf€ functions which define these loci. Thus, the HT defined by
strained to the intersection defined By ,, = A, N A, N Aq,. taking a pair of points and their gradient direction is given by
Based on the intersection 8§, and A, it is possible to define _ _ _
an equation similar to Eq. (58) but the poin} is replaced by Sorcar(b. p) = Z D(b, (UX()% Mo Aty Ay P)’

(68)

a third image point., = (X, ¥1,)- This new equation provides t.12€Dy
a function equivalent to Eq. (59) which obtains the value of - = .,
s; from the value ofs;. That is,s3 = p(s1, p). Then, the sys- UV()‘tv My Ao My p))), (69)

tem in Eq. (61) is constrained by two extra equations. Thfat
; or
is,

Ox (Mg Mgy Mo M0 0)
X, — X, —19(s1. p) +19(a(st. p). p) = 0, Yoo — Yo + (A 0)Xy + W (AL, 0)X,
- (A, p) — BY (A, 0)
(66)  ay(Ay. Ay, Ao Agys 0)
_ qj()‘{lv P)YIZ - \II()\‘{z’ p)yh B “I’[()‘{v p)qj()‘éz’ p)(th _ th)

Yu — Yt — Ih(s1, p) + Ih(p(st, p), p) = 0. W (A, p) — ¥ (2,0 0)

)

Y — Yo, — Ih(s1, p) +1h(q(s, p), p) =0,

X, — X, —Ig(s1. p) +19(p(s1. p). p) = 0,

(70)

Accordingly, the values which define a point in the plane The HT defined by two points and derivatives constrains the
(ag, bp) can be obtained by redefining the function in Eq. (64pcus in the parameter space to a single point. Therefore, th
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resulting accumulator will present less noise than the thre a b
dimensional parameter accumulator defined by Eq. (50) whic coo
traces a set of lines. Additionally, as in the case of the use _1}"..}.
the information of three image points, the locus in the paramet L ‘:—f' —
space is independent sfindl, therefore, it can be used to trace AN

a curve whose points are parameterized for the vatugsa INYS,
two-dimensional array. ::; -

[T

LA N

5. IMPLEMENTATION AND RESULTS

In general, the four-dimensional parameter accumulator
Eq. (29) will impose a significant computational burden. This i
impractical unless some parameters are known or the quanti:
tion of the parameter space is coarse. Hence, this section ct
centrates on the formulation which defines a three-dimensior
accumulator array. In addition to showing how the technique c¢
be implemented, this illustrates the effects of noise when poi
pairing strategies are considered.

As a first implementation (implementation A), we considel
the formulation obtained by including directional information.
The line in Eq. (49) provides a mapping which can be used 1
gather evidence of the center and the rotation parameters o
primitive. After edge pixels with directional information are ob-
tained, each pointis used to compute the valugsaf, p) in Eq.
(47). This is performed by evaluating the zeroes of the functic & i
y~(s), defined in Eq. (39), in the tangent angle definitib(s) ;
in Eq. (46). Once the values gf(A;, p) are computed, the line ’
in the parameter space given by the valuesgflly) in Eq. (49) ||| -J|
is obtained. Since the value ¢f(){, o) depends on the rotation Y B, Y
p, each line defined by a particular valuemfs used to incre-
ment the cells in the planad, by) in a three-dimensional array
(ag, bo, p). After all the points are considered, local maxima ir g h
this accumulator correspond to the parameters of an instance «
shape. These parameters are used in a second accumulation s
to gather evidence of the scale parameter. In the second sta™
each image point is used to find the zeroes of Eq. (53). The
values are used in Eq. (51) to obtain the cell in the scale arri
which must be incremented. After all the image points have bet
considered, a local maximum in this array represents the sci
parameter of the primitive. In our implementation, the zeroes of
Egs. (38) and (53) were determined using a Newton—Raphs
method. These equations correspond to a single variable r__.
function ex_presse(_j as a Fourier expansion so their derlvatl\g?a 5. Synthetic image example. (a) Original image. (b) Edge image. (c)
can be easily obtained, analogous to Eq. (33). Resulting image. (d) Plane of the accumulation array (implementation A). (e)

In the extraction process, it is convenient to normalize thgale histogram for one maximum in (d). (f) Scale histogram for the second
scale parametérin such a way that a set of integer values camaximum in (d). (g) Accumulator results for implementation B (point pairing).
be related to the radius of the image shape in pixel units. Tﬁ)éAccumuIator_ results for ir_nplementat_ion (_I(using _three point_s). (0] _A_ccumu-
normalization can be achieved by redefining the scale paramézig[ results for implementation D (gradient information and point pairing).
asl /g(so, p) for a value ofp of zero, and wherg, addresses
the point whose angle with respect to thaxis is zero degrees.

This point is illustrated in Fig. 5a. Within this definition, each An example of the results of implementation A is illustrated
integer value of characterizes a shape whose line traced from Fig. 5. Figure 5a shows a synthetic image (25856 pixels)

the center of the shape to the poinfsy, I, p) has a length of  which contains two shapes defined by three Fourier coefficients
pixels. Figure 5b shows the edges computed by using the Canny edg

L
l':ri- &,

gy, :

=

A




EXTRACTING ARBITRARY SHAPES 215

FIG.6. Example of implementation A. (a) Model shape. (b) Original image. (c) Edge image. (d) Resulting image. (e) A plane of the accumulator array. (f) ¢
histogram.

operator. The result of the extraction process is shown in Fig. he edges in a high-contrast image and it was approximate
where the detected primitives are superimposed on black lmn15 harmonics in a Fourier expansion (whose amplitude wa:s
the original image. Figure 5d shows the plaag, bp) of the significantly greater than the remaining descriptors; an analysi
three-dimensional accumulator spaeg, bo, p) Wherep is at  of the number of harmonics needed in a Fourier approximatior
its maximum value. The magnitude of each point represents tten be seen elsewhere [29]). In this figure the reference poin
accumulated evidence for the position of the center of the shajseindicated by a cross. The definition of this model was used
In this case the two peaks correspond to different instancest@faccumulate evidence for the image shown in Fig. 6b. The
the shape. Figures 5e and 5f show the scale histograms obtaieggle information of this image is shown in Fig. 6¢c. The result
for the two maxima in Fig. 5d. is presented in Fig. 6d superimposed on the original image

Figure 6 illustrates the application of the extraction processkigs. 6e and 6f present the final accumulators from which the
arealimage, the model shape corresponding to a helicopter cgimnameters were derived to draw the result. In this example
isshownin Fig. 6a. The model was extracted by manually traciegch accumulator contains a peak which defines the primitive
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accurately even when the image is corrupted by incomplete dateluded, the accumulator is less noisy than the accumulators ir
and noise. Figs. 5d and 5g. An example of the application on arealimage is
A second implementation (implementation B) can be basstiown in Fig. 8. The model shape and description used in Fig. €
on the formulation of Eq. (65) which avoids using directional inis the same as that used in Fig. 7. There are again two instances «
formation by pairing points. Since edge gradient direction do&se shape in this image and both are found accurately, in spite o
not always provide accurate information, we should expect ttae image noise. In this case the accumulators for both instance
avoiding its use will lead to a reduction in the noise in the accpresent a clear peak.
mulator array. Nevertheless, this reduction is not without com-The formulation which combines point pairing and gradi-
putational cost. The computation of the locus in the parametant directional information in Eq. (69) (implementation D) can
space by Eq. (63) is more complex than Eq. (49) becauseéb@ used to reduce the noise in the accumulation process witl
involves the solution of the function in Eq. (62). An impor{ess computational effort than implementations B and C, which
tant consideration in this formulation is the number of pairs afse groups of points exclusively (pairs and triplets). The inter-
points that should be evaluated in the accumulation processséttion in Eq. (70) can be used to accumulate more relevan
principle, for each point in the image it is only necessary taformation than that obtained by Eq. (50). Nevertheless, the
take another point to accumulate complete information (i.e., thecumulated points still depend on noisy gradient directional
number of pairs of points evaluated is equal to the number ioformation and it is unlikely that the intersection in Eq. (70)
points in an image). Nevertheless, it is necessary to ensure thises an accurate position of the primitive, unless it is robustly
each pointin a pair belongs to the same primitive. Although thi®mputed. In order to ameliorate the effect of using gradient
condition cannot be fully satisfied for complex images, the eflirection, it was necessary to increase the number of points
fects of pairing points which do not belong to the same primitiyeer pixel considered in the accumulation process. In the im-
can be ameliorated by increasing the number of pairs per pixelementation developed, the accumulation of the intersection of
Additionally, it is convenient to establish a filtering constraina line with any line defined by 25 other points provided ade-
which verifies that pairs of points are close to each other. Thisate results. Figure 5i shows the result of implementation D
restriction is based on the premise that close points are méwethe image in Fig. 5a. The noise in the accumulator is slightly
likely to belong to the same primitive. In our implementationgreater than that in Fig. 5g. Nevertheless, the computationa
each point in the image is paired to five other points which lime spent in the extraction process is less. The application of
within a distance of 80 pixels. The effectiveness of the accthis formulation to a real image is shown in Fig. 9. The model
mulation process for the synthetic image in Fig. 5a can be sedrape used has the same description as the model shown |
in the accumulator shown in Fig. 5g. The scale histograms d&fig. 9a. In this case, the instance in Fig. 9a suffered a three-
the same as Figs. 5e and 5f, and the extracted shape is equiigensional rotation which caused only part of the model (the
lent to the one shown in Fig. 5c. Figure 5g shows that the uent of the cabin) to match the image data. Additionally, the
of pairs of points reduces the noise in the accumulator arragrders in Fig. 9b present noise and some data is missed. De
while the peak remains in the same position. The applicatigpite this, the location of the primitive is accurately obtained
of this implementation to a real image is illustrated in Fig. 7and the accumulators in Figs. 9d and 9e show a significant
The model shape is defined by an open curve approximatedgsak.
eight harmonics in a Fourier expansion, shown in Fig. 7a. In Besides the computational requirements and noise reduction
this example, the model shape (the wing) appears twice in tite consideration of noise sensitivity isimportantin applications.
image, but with a different rotation. The located instances @he results shown in Fig. 5 illustrate the effect of the inclusion
the shape are superimposed on black on the original imageofrdirectional information in the accumulation process. In this
Fig. 7d. The accumulators in Figs. 7e and 7f correspond to thense, point pairing techniques seem to be sufficiently robus
evidence for the instance of the shape in the superior parttineliminate the use of gradient information. Nevertheless, pro-
the image while Figs. 7g and 7h correspond to the evidence &@ssing time and the requirement that the points in a subset mus
the instance of the shape in the inferior part. The accumulaelong to the same primitive could make the use of gradient
tors in Figs. 7e and 7g correspond to two slices of the thraeformation more attractive than point pairing. This idea is il-
dimensional parameter spaeg,(bo, ) for two different values lustrated in the example in Fig. 10, which shows the shape of the
of p. accumulator for the four implementations when a shape is ex-
A further reduction of the noise in the accumulator array caracted from noisy data. Figure 10a shows the type of noise uset
be achieved by including a third point in the formulation (implein the analysis. This image was generated by adding a randon
mentation C). This constrains the parameter locus to the poietige point for each edge point deleted from the primitive. In
given by the solution of the function in Eq. (67). In the implethis image only 30% of the data pertains to the primitive. Figure
mentation developed, the solution is found by considering th@&b shows the same result obtained by each of the four imple-
first constraint to obtain the value @fanalogous to Eq. (62) and mentations, superimposed on the edge data. The sensitivity o
then itis verified that this value satisfies the second constraingach implementation can be seen in the accumulators shown i
Eq. (67). As shown in Fig. 5h, when a three-point restriction Bigs. 10c, 10d, 10e, and 10f. These results correspond to the
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FIG.7. Example of implementation B. (a) Model shape. (b) Original image. (c) Edge image. (d) Resulting image. (e) The plane of the accumulator array fc
maximum. (f) Scale histogram for the maximum in (e). (g) The plane of the accumulator array for the second maximum. (h) Scale histogram for the maxim

(9)-

projection of the two-dimensional location accumulator into @ notice that in this analysis the use of distance constraints fo
plane defined by the-axis; the sequence shows the accumulg@airs and triplets of points was avoided, and only two sets are
tors obtained by varying the noise from 0, 30, 50, 70, and 90%onsidered for each point in the image. In the case of pairs o
In this figure it can be seen that although techniques which avaidints and gradient information, six points were paired per pixel.
using edge direction provide a better peak for less noise, they @dris consideration was made in order to show the results of the
present false peaks when noise is increased. Namely, the nagisaightforward formulations. Nevertheless, the decrease in th
sensitivity in the implementation that uses point pairing decagensitivity may be reduced by using filters that ensure that the
faster than the implementation based on gradient direction aired points belong to the same primitive. The implementation
formation. As a consequence, false peaks can be more evidgfthis may not be simple, and the effectiveness often depends o
in the techniques which consider pairs of points. An exampparticular applications. Additionally, the results only show the
of this can be seen in Fig. 10d with a small peak developimpise sensitivity when there are points in the image which do
to the left of the main peak with 70% of noise. It is importanbot belong to the primitive, and they presuppose that the noist
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FIG. 8. Example of implementation C. (a) Original image. (b) Edge image. (c) Resulting image. (d) A plane of the accumulator array for the first maxim
(e) Scale histogram for the first maximum. (f) A plane of the accumulator array for the second maximum. (g) Scale histogram for the second maximum.

does not contribute to the error of the computation of gradietat model shapes characterized by elliptic Fourier descriptors

direction. and is based on the extension of the formal definition of the
HT to embrace arbitrary shapes which are not analytically de-
6. CONCLUSIONS AND FURTHER WORK scribed. The technique extends the descriptional power of the

analytic formulation of the HT beyond simple shapes, avoid-
A novel method for extracting arbitrary shapes has been deg the use of tables. Since the formulation maintains an an-
veloped. This method corresponds to the formulation of the Hilytic representation, the method inherits the robustness of the
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FIG. 9. Example of implementation D. (a) Original image. (b) Edge image. (c) Resulting image. (d) A plane of the accumulator array. (e) Scale histogra
the maximum.

original formulation of the HT and errors caused by a discretizarators can produce wide peaks in the resulting accumulator:
tion are minimized. Nevertheless, the peak’s position is accurate and is maintaine

The new technique can be used to extract shapes with differen with severe image clutter. When using a collection of points
ing orientation and size, in a four-dimensional parameter spatige accumulator will present a narrow peak. Although this could
By using different strategies of parameter space reduction fdae interpreted as an increase in robustness, the technigue bas
methods of shape extraction have been developed. These mettsets of points can suffer in noisy imagery and when points be
ods include the information of the position of a set of points dsnging to other primitives are presented. In general, when mos
well as gradient direction, and decompose the parameter spdata in an image define a primitive, the implementation obtainec
into a three-dimensional accumulator and a single histograwithout using directional information appears better than when
The results demonstrate that the effectiveness of the accumuliaectional information is included. Nevertheless, when the im-
tion process is maintained even when image data is corruptecdme noise is increased, false peaks can emerge in the accumula
occlusion and noise. The choice between different implementaray, reducing the apparent improvement in performance. Thi:
tions is a compromise: While the use of gradient direction allovesfect can be reduced by incorporating some heuristic rules fol
the development of faster algorithms, the limitations of local ogelecting the points in a set as well as by increasing the numbe
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a o b

FIG. 10. Noise sensitivity. (a) Example of noisy image (70%). (b) Result. (c) Accumulators for implementation A. (d) Accumulators for implementation
(e) Accumulators for implementation C. (f) Accumulators for implementation D.

of pairs of points formed per edge point, but with increase fior reducing the computational load of the GHT. This can be
computational cost. The type of algorithms which combine bo#dthieved in a similar way, since the concepts of the GHT were
the use of gradient direction and the information of the positiaonsidered in the presented formulation. Additionally, other ap-
of a small number of points provide a sensible alternative fproaches for computational reduction can be included in our
general applications. extraction algorithm. We are particularly interested in the po-

The implementations developed for extracting arbitratgntial for extension to multiresolution descriptors. The capa-
shapes result in a three-dimensional space. This implies a cdaility of handling different levels of detail by manipulating the
plexity that might not meet the required speed for some applidaequencies in the Fourier representation of a shape might be
tions, given current standard computational capabilities. Futwrseful for shape extraction by using a multiresolution HT ap-
work focuses on a further decrease of the computational lopbach [38, 39]. Finally, other methods which extend the HT to
to make the technique more attractive. The basic idea is to ctinree-dimensional object recognition [29, 44] might provide a
sider in the formulation the concepts of the methods developsgitable avenue for further research.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. J. Sklansky, On the Hough technique for curve detecti®BE Trans.

EXTRACTING ARBITRARY SHAPES

REFERENCES

23.

R.T.Chinand C. R. Dyer, Model-based recognition in robot vigk@iy
Comput. Surveys8, 1986, 67—108.

. G. Roth and M. D. Levine, Extracting geometric primitiv€/GIP:

Image Understanding8, 1993, 1-22.

. R. O. Duda and P. E. Hart, Use of the Hough transform to detect lines

and curves in picture§ommun. ACMS5, 1972, 11-15.

Comput.27, 1978, 923-926.

. S. Tsuji and F. Matsumoto, Detection of ellipses by a modified Hough 27.

transform|EEE Trans. CompuR7, 1978, 777—781.

. J. lllingworth and J. Kittler, A survey of the Hough transfoit@gmput.

Vision Graphics Image Proces48, 1988, 87-116.

. V. F. Leavers, Which Hough transforr@¥GIP: Image Understanding

58, 1993, 250-264.

. C. Hoffman,Geometric and Solid Modeling, an Introductiokorgan

Kaufmann, San Mateo, CA, 1989.

. D. Kriegman and J. Ponce, On recognizing and positioning curved 3-D

objects from image contourtEEE Trans. Pattern Anal. Mach. Intell.
12,1990, 1127-1137.

J. Ponce, A. Hoggs, and D. Driegman, On using CAD models to compute32-

the pose of curved 3D object8VGIP: Image Understanding5, 1992,
184-197.

P. M. Merlin and D. J. Farber, A parallel mechanism for detecting curves
in pictures |EEE Trans. Compu®4, 1975, 96-98.

D. H. Ballard, Generalizing the Hough transform to detect arbitrary
shapesPattern Recognitl3, 1981, 111-122.

L. S. Davis, Hierarchical generalized Hough transform to detect arbitrary
shapesPattern Recognitl5, 1982, 277-285.

R. Kichnapuram and D. Casasent, Hough space transformations for dis-
crimination and distortion estimatio©omput. Vision Graphics Image
Process38, 1987, 299-316.

M. G. Albanesi and M. Ferretti, A space saving approach to the Hough
transform, inProceedings, 10th Int. Conf. on Patt. Recog., Atlantic City,
NJ, 1990.

S. Jeng and W. Tsai, Scale- and orientation-invariant generalized Hough
transform—a new approacRattern Recognit24, 1991, 1037-1051.

R. K. K.Yip, P. K. S. Tam, and D. N. K. Leung, Modification of Hough
transform for object recognition using a 2-dimensional arRatfern
Recognit28, 1995, 1733-1744.

P.-K. Ser and W.-C. Siu, A new generalized Hough transform for the 40.

detection of irregular objects, Visual Comm. Image Represes)t1 995,
256-264.

A. S. Aguado, M. E. Montiel, and M. S. Nixon, Improving parameter
space decomposition for the generalized Hough transforimtirCon.

on Image Process. ICIP'96, September 16-19, Lausanne, Switzerland,
1996

A. P. Pentland, Perceptual organization and the representation of natura3.

form, Artificial Intelligence26, 1986, 292—331.

J. Princen, J. lllingworth, and J. Kittler, A formal definition of the Hough
transform: Properties and relationshipsviath. Imaging Visiord, 1992,
153-168.

22,

24.

25.

26.

30.

31.

33.

34.

35.

36.

38.

39.

41.

42.

44,

221

S. R. Deans, Hough transform from the radon transfé&BE Trans.
PAMI 13, 1981, 185-188.

G. H. Granlund, Fourier preprocessing for hand print character recogni-
tion, IEEE Trans. Comput. (Short Note), 1972, 195-201.
C.T.Zahnand R. Z. Roskies, Fourier descriptors for plane closed curves
IEEE Trans. Compu®1, 1972, 269-281.

C. W. Richard and H. Hemami, Identification of three-dimensional ob-
jects using Fourier descriptors of the boundary culiZ&E Trans. SMC
24,1974, 371-378.

E. Persoon and K.-S. Fu, Shape discrimination using Fourier descriptors
IEEE Trans. SMQ7, 1977, 170-179.

T. P. Wallace and P. A. Wintz, An efficient three dimensional aircraft
recognition algorithm using normalized Fourier descript@emput.
Vision Graphics Image Procesk3, 1980, 99-126.

28. T. R. Crimmins, A complete set of Fourier descriptors for two-dimen-

sional shapedEEE Trans. SMC12, 1982, 848-855.

29. F.P.Kuhland C.R. Giardina, Elliptic Fourier features of a closed contour,

Comput. Vision Graphics Image Proce$8, 1982, 236-258.

D. Proffit, Normalization of discrete planar objdeattern Recognitl5,
1982, 137-143.

L. T.Watsonand L.G.S. Shapiro, Identification of space curves from two-
dimensional perspective viewgEE Trans. PAMK, 1982, 469-475.

P. J. van Otterld\ Contour-Oriented Approach to Shape AnalyBigen-

tice Hall, New York, 1991.

P. Rosin and S. Venkatesh, Extracting natural scales using Fourier de
scriptors,Pattern Recognit26, 1993, 1383—-1393.

L. H. Staib and J. S. Duncan, Boundary finding with parametrically
deformable modeldEEE Trans. PAMIL4, 1992, 1061-1075.

W. C. Y. Lam, K. S. Y. Yuen, and D. N. K. Leung, Fourier parameter-
ization provides uniform bounded Hough spaceCwmputer Analysis

of Images and Patternsth. Int. Conf., CAIP'93, Budapest, Hungary,
(Dimitri Chetverikov and Watter G. Kropatsch, Eds.), Lecture Notes in
Computer Science, Vol. 719, Springer-Verlag, Berlin/New York, 1993.
W. E. L. Grimson and D. P. Huttenglocher, On the sensitivity of the
Hough transform for object recognitiofEEE Trans. PAMI12, 1990,
255-274.

37. K.F. LaiandR.T. Chin, Deformable contours: modeling and extraction,

IEEE Trans. PAMIL7, 1995, 1084—-1090.

H. Li and M. A. Lavin, Fast Hough transform: a hierarchical approach,
Comput. Vision Graphics Image Proce86, 1986, 139-161.

J. lllingworth and J. Kittler, The adaptive Hough transfollBEE Trans.
PAMI 9, 1987, 690-697.

J. Van Aken and M. Nova, Curve-drawing algorithms for faster display,
ACM Trans. Graphicg, 1985, 147-169.

S. D. Shapiro, Use of the Hough transform for image data compression
Pattern Recognitl 2, 1980, 333-337.

Y. C. Hecker, J. lllingworth, and J. Kittler, Detecting partially occluded
ellipses using the Hough transforfmage Vision Comput7, 1989,
31-37.

A. S. Aguado, M. E. Montiel, and M. S. Nixon, On using directional
information for parameter space decomposition in ellipse dete®atn,

tern Recognit29(3), 1996, 369—-381.

D. H. Ballard and D. Sabbah, Viewer independent shape recognition,
IEEE Trans. PAMB, 1983, 653—660.



